
Deep Parameter Optimisation for Face Detection
Using the Viola-Jones Algorithm in OpenCV

Bobby R. Bruce1, Jonathan M. Aitken2, and Justyna Petke1

1 CREST Centre, SSE Group, Department of Computer Science, UCL, UK,
r.bruce@cs.ucl.ac.uk, j.petke@ucl.ac.uk,

2 Department of Automatic Control & Systems Engineering,
University of Sheffield, UK,

jonathan.aitken@sheffield.ac.uk

Abstract. OpenCV is a commonly used computer vision library con-
taining a wide variety of algorithms for the AI community. This paper
uses deep parameter optimisation to investigate improvements to face
detection using the Viola-Jones algorithm in OpenCV, allowing a trade-
off between execution time and classification accuracy. Our results show
that execution time can be decreased by 48% if a 1.80% classification
inaccuracy is permitted (compared to 1.04% classification inaccuracy of
the original, unmodified algorithm). Further execution time savings are
possible depending on the degree of inaccuracy deemed acceptable by
the user.

Keywords: Deep Parameter Optimisation, Automated Parameter Tun-
ing, Multi-objective Optimisation, Genetic Improvement, GI, SBSE, OpenCV,
Viola-Jones Algorithm

1 Introduction

Traditional small mobile robotics applications have limited power and computing
capacity. This is further complicated for Unmanned Aerial Vehicles (UAVs),
which have limited battery-life and thus any excess weight is detrimental to the
time that can be spent in the air. The efficiency and accuracy of the processing is
thus essential in an Unmanned Aerial Vehicle (UAV) performing tasks. Typically
these tasks can use visual servoing in order to direct flights to locate objects of
interest [5], or to provide a larger field of view for ground-based vehicles [7]. This
is especially important in areas in which the Global Positioning System (GPS)
is unavailable, where an aerial vehicle can be used to localise a ground vehicle
and provide extra information about routing [2].

For example, if the UAV is performing a visual survey of a region, any repeti-
tion of a route is wasteful. The optimisation of any visual processing is essential
so that areas do not need to be re-covered and thus battery capacity is not
wasted. Speeding up visual processing leads to images being processed at faster
rates which allows the capture of more data [11].



Therefore, we propose to optimise OpenCV, a very popular computer vision
library within the robotics community, using the recently introduced technique
of deep parameter optimisation [14]. Our results show that we can achieve signifi-
cant efficiency gains when we trade-off runtime and image classification accuracy.
The following sections present the details of our approach.

2 OpenCV

OpenCV1 is a library for computer vision [3]. It was developed by Intel, then
Willow Garage, leading to its integration in the popular robotic development
architecture – Robot Operating System (ROS) [8] and wide uptake within the
robotics as well as the computer vision community. It is now maintained by
Itseez, a software company that specialises in optimisation of real-world appli-
cations in computer vision, pattern recognition and machine learning2.

Face detection in OpenCV is commonly implemented using the Viola-Jones
algorithm [12, 13]. The Viola-Jones algorithm searches an image, at multiple
scales, shifting through the image one pixel at a time, for a collection of haar
features, which are shapes of binary values defining areas of light and darkness,
components of the object separate from the background. The selected set of haar
features defines the detected objects. There is a common set of haar features
implemented in OpenCV that detects human faces, and a cascade classifier can
be trained with an appropriate set.

3 Deep Parameter Optimisation

Deep parameter optimisation [14] is a technique that delves deeper into pa-
rameters that can affect non-functional program properties than traditional ap-
proaches (e.g., used in the machine learning community [6]). This forms a larger
search-space opening new routes over which optimisation can be performed.
There is a three-step process for performing deep parameter optimisation: (1)
Discovery of the locations for deep parameters; (2) Exposing deep parameters
to be available for tuning; (3) Search-based tuning of the exposed parameters.

4 Related Work

Previously studies have investigated the potential of optimising the Viola-Jones
algorithm or adjusting it to perform more favourably under differing condi-
tions [1, 9, 10].

Aby et al. [1] explored optimisation of the Viola-Jones algorithm on an em-
bedded, single-board, computing platform – the Beagle Board. Rather than di-
rectly optimising the algorithm, they scheduled the heavy computational tasks

1 OpenCV’s source code is available at: https://github.com/Itseez/opencv/
2 Itseez software company website: http://itseez.com/



on the Digital Signal Processor, freeing up the main ARM processor to complete
ancillary computational tasks. Whilst this technique provides an improvement
of processing time of the Viola-Jones algorithm it does not attempt to optimise
the algorithm itself.

Rahmen et al. [9] developed an algorithm that uses skin colour and shape
processing to detect faces. Initially this segments the images using typical skin
colours before looking for smaller shapes that characterise faces. They achieved
good performance, and indicate a favourable improvements in processing speed.

Ren et al. [10] applied a series of optimisation techniques in order to improve
performance. They focused on removing the need to use dedicated extra process-
ing power, rather than looking for software-based solutions. They tested three
different optimisation approaches:

– Data Reduction – reducing the resolution of images used for face identi-
fication, increasing the shift between images from the standard one pixel,
increasing the sizes used at each scale step and defining a larger minimum
face size terminating the algorithm more quickly.

– Search Reduction – using key frames to limit the number of frames that need
processing for a given video sequence.

– Numerical Reduction – using fixed-point formatted numbers rather than
floating point to save on computation.

This paper provides an extension of this optimisation work as it applies deep
parameter optimisation to the Viola-Jones algorithm itself. Rather than shifting
processing, or attempting pre-filtering, we adjust the parameters themselves. Un-
like the work of [10] the adjustments made throughout the optimisation are not
limited to different areas, but operate across the complete algorithm. By using
deep parameter optimisation, we can expose hidden options for optimisation.

5 Experimental Setup

Given OpenCV is a library, we developed a small command-line level program
to utilise the OpenCV’s functionality we wished to be optimised. This program,
classify_images, took a directory of images as a lone argument. When ex-
ecuted classify_images produces output identifying which images contained
faces and which did not. classify_images utilises the CascadeClassifier::

detectMultiScale method with CascadeClassifier initialised using
haarcascade_frontalface_alt.xml (included by default in OpenCV).

We created a dataset of 10,000 images which contain faces3 and 10,000 images
which do not4. This was then split into a training set containing 1,500 images
with faces and 1,500 without, and a test set containing 8,500 images with faces

3 Obtained from the University of Massachusetts ‘Labelled Faces In The wild’ dataset
- http://vis-www.cs.umass.edu/lfw/lfw.tgz

4 Obtained from the Caltech-256 dataset – http://www.vision.caltech.edu/Image_

Datasets/Caltech256/256_ObjectCategories.tar



and 8,500 without. Prior to any form of optimisation classify_images incor-
rectly classified 0.90% of the training set and 1.04% of the test set.

We then profiled the software to find which files were the most heavily
utilised in OpenCV when classifying images. We found that the top two files
were cascadedetect.cpp and cascadedetect.hpp. We then proceeded to ex-
tract all integer constants from these files. This process involved using a regular
expression to highlight all instances of integer constants. Before doing so we car-
ried out a replacement of all occurrences of [variable]++ to [variable]+=1,
increasing the number of constants available for extraction.

We then replaced all instances of integer constants found with unique C
Define Compilation Macros. These were extracted to a file called defines.hpp

which was then included in both cascadedetect.cpp and cascadedetect.hpp.
In total, defines.hpp contained 537 integer constants. defines.hpp can be seen
as a source-code level configuration file which we altered.

While it would have been possible to proceed at this point with the parameter
tuning process, considerable savings can be made by carrying out sensitivity
analysis – the process of selecting a subset of parameters to optimise the desired
non-functional properties.

For each of the 537 integer constants we first added one, compiled the OpenCV
library, then run classify_images on a single face image randomly selected
from the training set. If classify_images compiled, run, and produced a result
without crashing, it passed what we refer to as ‘stage 1’. If an integer passed
‘stage 1’ we then added 50 to the integer value. classify_images was then
compiled with the modified OpenCV and run on the training set. To pass this
stage (‘stage 2’) the modified version had to complete compilation and complete
execution in a time different to the original (outside of the 95% confidence inter-
val for the original, unmodified, classify_images run 100 times on the training
set). ‘stage 1’ can be viewed as a step to filter out parameters that are too sen-
sitive, while ‘stage 2’ can be viewed as a step to filter out those that are not
sensitive enough. After these two stages of sensitivity analysis we were left with
51 deep parameters for optimisation.

We tuned these parameters using the NSGA-II algorithm [4] implemented
in the MOEA framework5. For the execution time objective we used UNIX’s
time utility on classify_images when classifying the training set. The second
objective, classification inaccuracy, was calculated as a percentage of incorrect
classifications by classify_images on the training set. NSGA-II attempts to
minimize both of these objectives. We further reduced the search-space by only
allowing parameters to be increased to a maximum of 64 and to be decreased to
a minimum of 0.

We ran NSGA-II on 100 individuals over 10 generations in an Ubuntu 14.04.4
m4.large Amazon EC2 Instance (2x2.4GHz Intel Xeon E5-2676 v3 processor,
8GiB of memory, SSD Storage). The initial generation was seeded with an indi-
vidual containing the original parameter settings. The remainder of the initial

5 MOEA framework available at: http://moeaframework.org/



population was generated by iterating through the parameters and generating a
variant equal to the original but with the parameter being increased by 1 or 2.

Once complete, the MOEA framework returned the Pareto front of solutions.
To ensure these results were not over-fitted to the training set, we ran each Pareto
optimal solution on the test set, removing any which crash or were dominated
by other solutions to produce the final Pareto optimal set.

6 Results

The NSGA-II algorithm produced a Pareto front that contained 14 solutions
when run on the training set. When ran each of these Pareto optimal solutions
on the test set, one failed to complete execution and another was dominated
by other solutions in the set thus leaving 12 Pareto optimal solutions and the
original, unaltered program which was also found to be Pareto optimal when
run on the test set6. These are shown in Figure 1 (the original program included
as the left-most solution).

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Incorrect Classification (%)

Ti
m

e 
(s

)

Fig. 1. The Pareto front of solutions when run on the test set of 17,000 images.

7 Conclusions

We used deep parameter optimisation to investigate improvements to face de-
tection using the Viola-Jones algorithm in OpenCV, allowing for a trade-off
between execution time and classification accuracy. In this study, a basic form
of deep parameter optimisation decreased the execution time of the Viola-Jones
algorithm by 48% with a 1.80% classification inaccuracy when evaluated on a

6 The source for the deep parameter optimisation algorithm we used and data dis-
cussed here is available from: https://github.com/BobbyBruce1990/DPT-OpenCV.
git



test set of 17,000 images (compared to a 1.04% inaccuracy when using the orig-
inal algorithm). This technique shows the capacity for improvement within a
widely used implementation of the Viola-Jones algorithm and provides a sound
basis for further exploitation of more complex Search Based Software Engineer-
ing (SBSE) methods. The source to achieve this has been made openly available
on GitHub6.

References

1. Aby, P., Jose, A., Dinu, L., John, J., Sabarinath, G.: Implementation and optimiza-
tion of embedded face detection system. In: International Conference on Signal
Processing, Communication, Computing and Networking Technologies (ICSCCN).
pp. 250–253 (2011)

2. Aitken, J.M., McAree, O., Veres, S.: Symbiotic relationship between robots – a ROS
ARDrone/YouBot library. In: Proceedings of UKACC International Conference on
Control (CONTROL) (2016)

3. Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.” (2008)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on
6(2), 182–197 (2002)

5. Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams,
J.A., Humphrey, C.: Supporting wilderness search and rescue using a camera-
equipped mini UAV. Journal of Field Robotics 25(1-2), 89–110 (2008)

6. Hoos, H.H.: Autonomous Search, chap. Automated Algorithm Configuration and
Parameter Tuning, pp. 37–71. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-21434-9_3

7. Hsieh, M.A., Cowley, A., Keller, J.F., Chaimowicz, L., Grocholsky, B., Kumar,
V., Taylor, C.J., Endo, Y., Arkin, R.C., Jung, B., Wolf, D.F., Sukhatme, G.S.,
MacKenzie, D.C.: Adaptive teams of autonomous aerial and ground robots for
situational awareness. Journal of Field Robotics 24(11-12), 991–1014 (2007)

8. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5 (2009)

9. Rahman, M., Ren, J., Kehtarnavaz, N.: Real-time implementation of robust face
detection on mobile platforms. In: IEEE International Conference on Acoustics,
Speech and Signal Processing. pp. 1353–1356 (2009)

10. Ren, J., Kehtarnavaz, N., Estevez, L.: Real-time optimization of Viola-Jones face
detection for mobile platforms. In: IEEE Circuits and Systems Workshop: System-
on-Chip-Design, Applications, Integration, and Software. pp. 1–4 (2008)

11. Shubina, K., Tsotsos, J.K.: Visual search for an object in a 3D environment using a
mobile robot. Computer Vision and Image Understanding 114(5), 535–547 (2010)

12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE (2001)

13. Viola, P., Jones, M.: Robust real-time face detection. International journal of com-
puter vision 57(2), 137–154 (2004)

14. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference.
pp. 1375–1382 (2015)


