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a b s t r a c t 

Previous studies of Jupiter’s upper atmosphere often assume that the mid-to-low latitude ionosphere is 

corotating, but a model describing an observed asymmetry in hydrogen Lyman- α emission ( ∼10 0 0 km 

above the 1 bar level) disagrees with this assumption. From measurements of the Doppler shifted 

H 

+ 
3 

ν2 Q ( 1 , 0 −) line at 3.953 μm using the IRTF, the line-of-sight velocities of the H 

+ 
3 

ions were derived in 

the planetary reference frame and found to be 0.091 ± 0 . 25 km s −1 , 0.0082 ± 0 . 30 km s −1 and 0.31 ±
0 . 51 km s −1 in 1998, 2007 and 2013 respectively. These zero velocities represent corotation at the mid- 

to-low latitude region of Jupiter’s ionosphere. There is no evidence of flows associated with the hydrogen 

Lyman- α emission asymmetries detected in the peak H 

+ 
3 

emission layer ( ∼550 km above the 1 bar level), 

and we assert that the H 

+ 
3 

ions in Jupiter’s mid-to-low latitude are rigidly corotating. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Our current understanding of Jupiter’s main auroral emission

omes from models which couple the main auroral emission to

orotation breakdown in the middle magnetosphere (e.g. Hill,

001; Cowley and Bunce, 2001 ). These models include the spe-

ific assumption that the non-auroral thermosphere is corotating.

 model by Smith and Aylwood (2009) suggests that the equato-

ial region of Jupiter’s thermosphere is corotating, and the model

escribes how angular momentum from this region is transferred

o the polar region through meridional advection. They imply that

he rotation of the magnetosphere inward of ∼30 R J is very sensi-

ive to the thermospheric velocities. 

In the auroral regions, the H 

+ 
3 

ions deviate from corotation,

riven by strong auroral currents, as predicted by Cowley and

unce (2001) . Stallard et al. (2001) measured velocities in the

uroral regions of ∼ 1–3 km s −1 from IRTF-CSHELL observations

nd Chaufray et al. (2011) measured velocities of up to 3.1 ±
0.4 km s −1 from CFHT-FTS/BEAR observations. These velocities are 

easured in the planetary reference frame, a reference frame

hich rotates with the planet at its rotation rate. A corotational ve-

ocity in this reference frame is 0 km s −1 , and ions moving at this

elocity appear stationary to an observer situated on the planet.
∗ Corresponding author. 

E-mail address: rej17@le.ac.uk (R.E. Johnson). 
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ince the mid-to-low latitude ionosphere maps to Jupiter’s inner

agnetosphere, which near rigidly corotates, it is assumed that

here are no auroral currents present at these latitudes and there-

ore electron excited H and H 2 emissions are expected to be lim-

ted in this region. 

Sounding rocket measurements in 1978 by Clarke et al.

1980) and Voyager 1 and 2 observations in 1979 by Sandel and

roadfoot (1980) have shown a longitudinal asymmetry in the

quatorial H Ly- α emission, referred to as the H Ly- α ‘bulge’. The

osition of the bulge is fixed in magnetic System III longitude,

eaking at about 100 ° ( Dessler et al., 1981; Skinner et al., 1988 ).

he bulge was observed on the night side from Voyager 2 UVS ob-

ervations ( McConnell et al., 1980 ). Clarke et al. (1991) observed

vidence of broadening of the H Ly- α line profile for measure-

ents taken at the location of the bulge. This may suggest that

he bulge is produced by a broadening of the H Ly- α line profile

ather than an increased H density. It has been shown by Emerich

t al. (1996) that the broadening may be due to turbulent flows.

owever McGrath et al. (1990) found no corresponding asymme-

ry in the integrated H 2 Lyman and Werner band emission; hence

he bulge is not a result of precipitation and therefore not an au-

oral process. A slight decrease in H 

+ 
3 

emission has been observed

y Lam et al. (1997) at the position of the bulge. However, this in-

rease is only 2.3 μWm 

−2 sr −1 and its relationship with the H Ly- α
ulge remains unclear. 

A model was developed by Sommeria et al. (1995) to inves-

igate the flows required to produce the observed broadening of
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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(  
the H Ly- α line profile at the position of the bulge. The circulatory

pattern suggested by Sommeria et al. (1995) describes two jets,

initiated in the polar regions at 20 km s −1 at ∼ 10 0 0 km above the

1 bar level. This velocity is significantly larger than observations

in the auroral regions of ∼ 4–8 km s −1 at ∼ 1500 km above the

1 bar level by Chaufray et al. (2010) from HST-STIS observations

of H Ly- α emission. These two jets travel equatorward from the

auroral regions and collide in the equatorial region at the location

of the bulge. After the jets collide, the calculations of Sommeria

et al. (1995) produce an Eastward jet with initial velocity of

9.3 km s −1 and a Westward jet with initial velocity of 7.9 km s −1 .

The prediction of strong Eastward and Westward jets in the upper

atmosphere, opposes the assumption that Jupiter’s mid-to-low

ionosphere is corotating. 

H Ly- α emission occurs over a wide range of altitudes, from

approximately 200 km to 2200 km above the 1 bar level ( Chaufray

et al., 2010 ). The H 

+ 
3 

emission occurs over a more limited range,

with the peak auroral emission at ∼550 km above the 1 bar level

( Melin et al., 2005 ). The wings of the H Ly- α emission spectra are

produced deeper in the atmosphere ( Jaffel et al., 2007 ); therefore

the emission from the broadened component of H and H 

+ 
3 

could

be produced at similar altitudes. However the differences in ve-

locity between H and H 

+ 
3 

measured by Chaufray et al. (2010) and

Stallard et al. (2001) could arise due to a difference in emission

altitude. If a similar coupling of velocities and altitudes of H and

H 

+ 
3 

in the auroral region exists in the equatorial region, and if

the flow proposed by Sommeria et al. (1995) also exists, then one

would expect to observe strong H 

+ 
3 

flows of several km s −1 at the

mid-to-low latitude region of Jupiter’s ionosphere. No studies to

date have measured the velocity of the H 

+ 
3 

ions at mid-to-low

latitudes. In this study we address these contradicting ideas and

investigate whether the H 

+ 
3 

ions in Jupiter’s mid-to-low latitude

ionosphere are corotating. 

2. Observations and data analysis 

In this paper ionospheric flows in the mid-to-low latitude

region were investigated by measurements of the Doppler shifted

H 

+ 
3 

ν2 Q( 0 , 1 −) emission line at 3.953 μm. Data were taken with

the long-slit echelle spectrometer CSHELL ( Greene at al., 1993 ), at

the NASA Infrared Telescope Facility (IRTF) in Hawaii, which has

a resolving power of 40,0 0 0 for a slit width of 0.5 ′′ . H 

+ 
3 

ions can

be observed across the whole disk of Jupiter, generated through a

fast chain reaction that begins with the ionisation of H 2 by solar

EUV, producing H 

+ 
2 
, which rapidly reacts with H 2 to produce H 

+ 
3 

( Lam et al., 1997; Miller et al., 1997 ). Greater concentrations of H 

+ 
3 

ions are created in the auroral regions due to energetic particles

precipitating down the magnetic field lines that ionise the H 2 

( Miller et al., 20 0 0 ). The data were taken from several nights of

observations: 5 nights in 1998, 6 nights in 2007 and 3 nights in

2013. In 1998, scans of the Northern and Southern auroral regions

were carried out using an observing methodology described in

detail by Stallard et al. (2001) . The observations in 2007 were

made in a similar way. During a scan the telescope is positioned

so that the slit of CSHELL is at the Northern or Southern polar

limb of Jupiter and then the telescope is moved equatorward in

steps with size equivalent to the slit width. In addition to the

auroral scan, the 1998 and 2007 observing procedure includes a

jump to the equatorial regions and it is these measurements that

are reported upon in this study. No auroral data was taken in 2013

and the telescope was at a fixed position, with the slit of CSHELL

approximately at Jupiter’s equator, hence all the measurements

taken in this year were used in this investigation. 

At high latitudes, where the limbs of the planet are visible

inside the slit, it is possible to determine the latitude of the slit

using the length of the chord of emission. However, it is difficult
o identify the exact latitude position of the low latitude observa-

ions, as the body of the planet entirely fills the slit. The latitude

anges of the data have been approximated and are shown by

he shaded regions in Fig. 1 a. The maximum range of latitudes of

he mid-to-low latitude data was calculated by relating Jupiter’s

pparent equatorial diameter to CSHELL’s slit length of 30 ′′ . As

upiter and the Earth are moving relative to each other, Jupiter’s

pparent equatorial diameter changes over the years observed:

ver the three separate observations it was ∼49.65 ′′ , 45.75 ′′ and

4.19 ′′ . As the apparent diameter decreases, the maximum latitude

ange also decreases, which can be seen in Fig. 1 a. The light grey

egion in Fig. 1 a represents the maximum range of latitude which

ncludes data equatorward of ∼48.3 °, ∼43.3 ° and ∼15.0 ° latitude

n both hemispheres over the three separate observations. The

aximum range is a broad range which accounts for drift of the

elescope, which can occur, for example, if the guide star is lost

ue to bad weather, and it also accounts for human error in cor-

ecting for this drift. This range was refined by using the change

n declination caused by the telescope moving from the equatorial

easurement back to the polar limb, effectively providing the

xpected latitude range given perfect observing conditions. This

educed the latitude range in 1998 and 2007 to ∼25.8 ° and ∼27.1 °
olatitude and is represented by the dark grey region in Fig. 1 a.

he latitude range could not be refined in this way for 2013 as the

osition of the telescope was fixed at Jupiter’s equator, and so no

ffset information was available. During all the measurements the

lit was aligned East–West and centred on Jupiter’s rotational axis.

Using these high spectral resolution observations we will de-

ermine the line-of-sight (LOS) velocity from Doppler shifted H 

+ 
3 

mission lines using the method originally discussed in Stallard et

l. (2001) and adapted for use at mid-to-low latitudes. 

Initially the Doppler shift of the H 

+ 
3 

emission line is measured

n the observer reference frame, which includes the LOS compo-

ent of Jupiter’s rotation. As stated previously, velocities derived

y Stallard et al. (2001) and Chaufray et al. (2011) are in the plan-

tary reference frame, where the rotation rate of the planet has

een removed. By removing the LOS component of Jupiter’s rota-

ion, we are transforming from the observer reference frame to the

lanetary reference frame which corotates with System III. 

Fig. 1 b shows a comparison of the LOS velocity in the planetary

nd the observer reference frame. When H 

+ 
3 

is measured in the ob-

erver reference frame, the Doppler shift of the H 

+ 
3 

emission line

ncludes a large component due to the rotation of Jupiter, which is

epresented by the dotted blue line in Fig. 1 b. This line also rep-

esents corotation in the observer reference frame. The black dot-

ash black line in Fig. 1 b represents the LOS velocity of the H 

+ 
3 

ons in the observer reference frame. The component of rotation

an easily be calculated using the circumference, rotation rate and

pparent size of Jupiter in the sky and varies linearly across the

isc of the planet, as described by Stallard et al. (2001) . Jupiter’s

otation is then removed from the spectral slit image by shifting

ach spatial position (row) by the appropriate amount. The solid

lack line in Fig. 1 b shows the LOS velocity of the H 

+ 
3 

ions in the

lanetary reference frame. A value of zero, once transformed to the

lanetary reference frame, means that the ions are rotating at the

lanetary rotation rate, hence the solid red line represents corota-

ion in the planetary reference frame. 

The emission of H 

+ 
3 

is weaker at the equator than in the auroral

egions. In addition, at these latitudes the methane in Jupiter’s at-

osphere becomes less efficient at absorbing sunlight at the wave-

ength at which H 

+ 
3 

emission is observed, causing increased noise

n the data. To enhance the signal, the spectral slit images across 1

ear were coadded to study the bulk flows of H 

+ 
3 

. Before coadding

e must remove the component Jupiter’s rotation as the appar-

nt size of Jupiter in the sky varies across the 3 years of data

 Fig. 1 a), and so the change in rotational velocity per pixel also



R.E. Johnson et al. / Icarus 280 (2016) 249–254 251 

Fig. 1. (a) The latitude ranges of the collated mid-to-low latitude H 

+ 
3 

emission data taken in 1998, 2007 and 2013. The light grey region is the maximum range of latitudes 

of the data: ∼48.3 °, ∼43.3 ° and ∼15.0 ° colatitudes respectively. The dark grey region represents the refined latitude range: ∼25.8 ° and ∼27.1 ° colatitudes for 1998 and 2007 

respectively. This schematic is to scale except for the slit width. In creating this schematic, the sub-Earth latitude of the observer and the flattening of Jupiter have been 

taken into account. (b) Two mid-to-low latitude LOS velocity profiles, derived from mid-to-low-latitude H 

+ 
3 

emission CSHELL data, taken on 7th Septemeber 1998. The first 

LOS velocity profile is in the observer reference frame and is indicated by the dot-dash black line. This reference frame includes the LOS component of Jupiter’s rotation, 

which is represented by the dotted blue line. If the H 

+ 
3 

ions are corotating, then their LOS velocity will match the dotted blue line. The dotted black line is the 1D polynomial 

fitted to the derived LOS velocities and the light grey shaded region represents the associated errors. The second LOS velocity profile is in the planetary reference frame 

and is indicated by the bold black line. In this reference frame the LOS component of Jupiter’s rotation has been removed and the H 

+ 
3 

ions that are corotating will have a 

velocity of zero, represented by the bold red line. The dashed black line is the 1D polynomial fitted to the derived LOS velocities and the dark grey shaded region represents 

the associated errors. The x -axis is the spatial axis in Jupiter radii ( R J = 71492 km ), where the centre of the rotational axis is assumed to be at the centre of the slit. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

c  

n  

t

 

a  

t  

s  

S  

a  

e  

t  

t  

t  

p  

L  

t  

v  

p  

t

 

s  

o  

b  

e  

m  

t  

l  

a  

1  

a  

C  

t  

f  

b  

s

L  

s  
hanges. Undertaking a summation prior to removing the compo-

ent of Jupiter’s rotation would result in meaningless LOS veloci-

ies. 

In keeping with the method described in Stallard et al. (2001) ,

 Gaussian was fitted to the H 

+ 
3 

emission line at every spatial posi-

ion. The relative peak position of this Gaussian provides a Doppler

hifted LOS velocity. The main adaptation of the method used in

tallard et al. (2001) was the exclusion of the spatial correction,

s this is not required at mid-to-low latitudes since the slit is

venly illuminated in this region. To correct for the relative mo-

ion of Earth and Jupiter, a zero velocity must be subtracted from

he derived LOS velocities. By subtracting the zero velocity from

he derived LOS velocities, the LOS velocity at the centre of the

lanet becomes zero as seen in Fig. 1 b. Ideally we would use the

OS velocity at the central meridian longitude (CML) as an arbi-

rary zero point, however, since the limbs of the planet are not

isible in the slit we cannot accurately identify the centre of the

lanet. Hence, we approximate an absolute velocity by subtracting

he median value of the LOS velocity. 
Emerich et al. (1996) measured turbulent velocity from the

pectra of the H Ly- α emission to be ± 7 km s −1 at the location

f the H Ly- α bulge. They believe this turbulence could be caused

y the collision of supersonic jets as described by Sommeria

t al. (1995) . However, CSHELL introduces broadening into the

easured emission line and therefore cannot be used to study

his turbulence. Situated inside the instrument, arc lamps emit

ight at known wavelengths and from the emission lines of the

rc lamps the half width at full maximum can be calculated. For

998, 2007 and 2013 the standard deviation of the half width

t half maximum was found to be ∼1.59 pixels. This means that

SHELL can only detect turbulence greater than ± 5 km s −1 and

he attenuated signal of H 

+ 
3 

at the equator increases this error

urther. As such, this data cannot be used to measure the spectral

roadening caused by turbulence within the H Ly- α region, and

o this study concentrates on bulk velocities. 

Unlike the auroral regions, no literature has reported on H 

+ 
3 

OS velocities in the mid-to-low latitude region of Jupiter’s iono-

phere. Investigations by Tao et al. (2014) have shown that the
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Fig. 2. Mid-to-low latitude LOS velocity profiles in the planetary reference frame, 

derived from mid-to-low-latitude H 

+ 
3 

emission CSHELL data, taken on 7th Septem- 

ber 1998. The data covers a wide range of central meridian lines (CML). The solid 

black line is the derived LOS velocity of the H 

+ 
3 

ions. The dashed black line is a 1D 

polynomial fitted to the derived LOS velocity values. In this reference frame, a zero 

velocity implies corotation and is represented by the solid red line. The grey shaded 

region represents the errors. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Three mid-to-low latitude LOS velocity profiles in the planetary reference 

frame, for 1998, 2007 and 2013. The LOS velocity values were calculated from sum- 

mation of the mid-to-low-latitude H 

+ 
3 

emission lines in a particular year. 
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maximum thermospheric neutral wind velocity, generated by so-

lar EUV flux and auroral energy inputs, at latitudes less than 30 °
is 6.54 m s −1 . However these winds remain below the sensitivity

of CSHELL ( > 100 m s −1 ) and so we cannot measure the effect of

the velocity increase of the thermospheric neutral winds on the

H 

+ 
3 

ions. As we cannot detect these winds using CSHELL data, we

do not expect to measure any deviations from corotation due to

coupling with the thermospheric neutral wind. 

As outlined in Stallard et al. (2001) a correction was applied to

the data since there is a distortion in the H 

+ 
3 

emission line intro-

duced by the cross-disperser component of CSHELL. The difficulty

in applying this correction introduces a significant error into the

final velocity calculation. In addition to the instrumentation error,

errors were accumulated through fitting Gaussians to the H 

+ 
3 

emis-

sion line and fitting a 1D polynomial to the derived LOS velocities.

Through propagation of these errors, a final error at each spatial

position along the slit was produced, and is indicated in the fig-

ures, where appropriate. 

3. Results and discussion 

An example of six mid-to-low latitude H 

+ 
3 

LOS velocity profiles

from the 7 th September 1998 is shown in Fig. 2 . The solid black

line is the calculated LOS velocity of the H 

+ 
3 

ions in the plane-

tary reference frame, derived from individual spectral slit images.

The dashed black line is a 1D polynomial fitted to the data. In the

planetary frame of reference, a LOS velocity of zero infers that the

H 

+ 
3 

ions are corotating. In Fig. 2 , corotation is represented by the

solid red line, which remains constant at a zero velocity. Depar-

tures from this zero line would be indicative of a magnetosphere–

ionosphere coupling interaction. The 1D polynomial has a gradient

very close to zero in the six plots in Fig. 2 , showing that the bulk
ow of the equatorial H 

+ 
3 

is corotating during these observations.

he LOS velocity of the H 

+ 
3 

ions in Fig. 2 shows some variability,

hich may indicate small scale flows in this region but these ve-

ocities remain inside the ∼0.5 km s −1 error. 

Flows in the circulatory pattern described by Sommeria et al.

1995) would appear in the LOS velocity profiles as deviations from

orotation at fixed longitudes. Since the H Ly- α bulge is fixed in

agnetic System III longitude, as Jupiter rotates, the localised de-

iation from corotation will be observed to move along the slit.

ig. 2 shows the LOS velocity profile for a range of CML; covering

pproximately half a jovian rotation and explores the longitude lo-

ation of the H Ly- α bulge, which is fixed at ∼100 ° longitude. If the

ocalised deviations from corotation predicted by Sommeria et al.

1995) exist, then they would be observed as a prominent return-

ng feature in Fig. 2 , with the strongest flows expected in the cen-

re of the H Ly- α bulge which would be observed in the first two

lots. There is no evidence of returning features associated with

he H Ly- α bulge outside the mean error of ± 0 . 51 km / s −1 and

ny observed variation in the LOS velocity are likely to be the re-

ult of noise. 

Fig. 2 is an example of the LOS velocity profiles from the 7 th 

eptember 1998 observations; a total of 124 measurements of mid-

o-low latitude H 

+ 
3 

emission lines were investigated. Where the

ignal was adequate to derive the LOS velocity, it was found that

he H 

+ 
3 

ions are corotating. No returning features were identified

uring these observations. This is in agreement with the results

hown in Fig. 2. 

In addition to small scale flows, Sommeria et al. (1995) mod-

lled circulatory patterns include an Eastward and Westward jet,

merging from the position of the bulge. The Eastward jet dom-

nates the Westward jet and therefore if the circulatory pattern

rom Sommeria et al. (1995) exists, it would be seen in Fig. 3 as

 general sub-rotational trend due to the main flows in the model

eing mainly against rotation. The LOS velocities in Fig. 3 were de-
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ived from the coadded spectral slit image. This prevents evidence

f longitudinal variability being observed, but allows a greater ac-

uracy of measurement of the rotation rate of the mid-to-low lati-

ude region. 

If the apparent coupling discussed by Chaufray et al. (2010) in

he auroral region continues to the equator, then we would expect

o observe the dominating Eastward electrojet as a LOS velocity

eviation from corotation by several km s −1 . To determine the

ulk flow of the H 

+ 
3 

ions, we refer to the 1D polynomial which

as fitted to the derived LOS velocities. If the gradient of this line

eviates from zero, then this will imply a departure from corota-

ion. The gradient of the 1D polynomial is –0.0013 ± 1.4 × 10 −4 ,

.8 × 10 −5 ± 3 .6 × 10 −4 and 0.0045 ± 3.0 × 10 −4 for

998, 2007 and 2013 respectively. Although the gradient of the

D polynomial for 1998 and 2013 show slight departures from

orotation, the maximum deviation of the 1D polynomial from

orotation for 1998, 2007 and 2013 is 0.091 ± 0 . 25 km s −1 ,

.0082 ± 0 . 30 km s −1 and 0.31 ± 0 . 51 km s −1 respectively.

hese are not significant deviations from corotation and a zero

alue means that the ions are rigidly corotating within the bound

f our experimental errors. 

Since the H 

+ 
3 

ions in Jupiter’s mid-to-low latitude ionosphere

ave been found to be corotating with the neutrals, there will be

o joule heating or ion drag in this region. This is because the ve-

ocity of the neutrals approximately matches that of the H 

+ 
3 

ions,

nd therefore collisions between them will be severely limited. The

emaining energy inputs in the equatorial region are heating by

tmospheric waves from lower altitudes ( Tao et al., 2009 ), redistri-

ution of polar auroral energy ( Bougher et al., 2005; Majeed et al.,

0 05, 20 09 ), and a small contribution to heating by solar photons.

nergy losses will be due to downward conduction and H 

+ 
3 

radi-

tion to space ( Yelle and Miller, 2004 ). It remains unclear if and

ow this limited set of energy terms can produce the observed

igh thermospheric temperatures at the equator (e.g. Yates et al.,

014 ). There is also disagreement over the mechanisms through

hich the energy is transported in the jovian ionosphere. Through

eridional advection, the model by Smith and Aylwood (2009) de-

cribes poleward flow of heat raising the temperature of the polar

egion and cooling the mid-to-low latitudes. However, the models

y Bougher et al. (2005) and Majeed et al. (20 05, 20 09) discuss

ow heat transported from the auroral regions through meridional

dvection heats the mid-to-low latitude region. It is the hope of

he authors that the LOS velocity measurements in this study will

o some way to constraining the equatorial conditions and hence

ork towards a unified model. 

. Conclusions 

This study is the first to measure the LOS velocity of the

 

+ 
3 

ions in Jupiter’s mid-to-low latitude ionosphere. The LOS

elocity derived from the Doppler shifted H 

+ 
3 

emission line shows

hat the H 

+ 
3 

ions in Jupiter’s ionosphere are rigidly corotating. No

vidence that the H 

+ 
3 

ions are sub- or super-rotational, has been

ound in this data. This confirms that the ionosphere rigidly coro-

ates at mid-to-low latitudes, such that the departures observed by

.g. Stallard et al. (2001) are confined to the polar region and are

herefore likely to be due to magnetosphere–ionosphere coupling

t those latitudes, as is often asserted. 

No returning features were observed in the individual H 

+ 
3 

emis-

ion lines taken over a wide range of CML and no general trends

ere identified in the summation of H 

+ 
3 

emission lines. Therefore

here is no evidence of strong flows at the equator, which the cir-

ulation pattern in the model by Sommeria et al. (1995) implies.

his lack of evidence suggests that the H Ly- α bulge is produced

hrough a different process than that modelled by Sommeria et al.

1995) . However, the model may be referring to higher altitudes
han the H 

+ 
3 

emission and therefore it may not be possible to ob-

erve the proposed flow in H 

+ 
3 

measurements. 

The spectral resolution of CSHELL is insufficient to test whether

he thermosphere corotates as a result of vertical viscous trans-

ort, which could result in up to a 0.1 km s −1 super rotation at

he equator due to Jupiter’s tropospheric jets, or meridional advec-

ion which would smooth thermospheric flows globally. In future

ork it will be important to test whether the angular momentum

s transferred by meridional advection as suggested by Smith and

ylwood (2009), Bougher et al. (2005) and Majeed et al. (2005,

009) , or by vertical transport similar to the coupling of the alti-

udes in the auroral regions discussed in Chaufray et al. (2010) . The

esult presented here highlights the need for simultaneous mea-

urements of both H 

+ 
3 

and H Ly- α emissions, as well as other ther-

ospheric components in both the auroral and equatorial region.

uch measurements would allow us to better understand how this

egion couples to both the lower atmosphere and the surrounding

agnetosphere. 
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