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Explaining why crime is spatially concentrated has been a central theme of much
criminological research. Although various theories focus on neighborhood social pro-
cesses, environmental criminology asserts that the physical environment plays a central
role by shaping people’s activity patterns and the opportunities for crime. Here, we test
theoretical expectations regarding the role of the road network in shaping the spatial
distribution of crime and, in contrast to prior research, disentangle how it might influ-
ence offender awareness of criminal opportunities and the supply of ambient guardian-
ship. With a mixed logit (discrete choice) model, we use data regarding (N = 459)
residential burglaries (for the first time) to model offender spatial decision-making at
the street segment level. Novel graph theory metrics are developed to estimate offender
awareness of street segments and to estimate levels of ambient guardianship, distin-
guishing between local and nonlocal guardianship. As predicted by crime pattern the-
ory, novel metrics concerning offender familiarity and effort were significant predictors
of residential burglary location choices. And, in line with Newman’s (1972) concept of
defensible space, nonlocal (local) pedestrian traffic was found to be associated with an
increase (decrease) in burglary risk. Our findings also demonstrate that “taste” prefer-
ences vary across offenders, which presents a challenge for future research to explain.

That crime is spatially concentrated now seems incontestable (e.g., Eck and Weisburd,
1995). Explaining why this is so, however, is still a central theme of criminological research
and a matter of some debate. Several prevailing theories assert that the environment
plays a central role in shaping the distribution of crime by facilitating the convergence
in space and time of offenders and suitable targets, in the absence of capable guardians
(Cohen and Felson, 1979). One fundamental determinant of this is the road network
because it defines how people move through the urban environment. In so doing, it serves
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a “dual function,” determining the opportunities for crime offenders encounter and be-
come aware of (e.g., Beavon, Brantingham, and Brantingham, 1994), and influencing the
locations through which ordinary citizens move and provide ambient guardianship. The
aim of prior research has been to examine the role of the road network on crime, but it
has failed to isolate the influence of these two mechanisms. This is largely because analy-
ses have been conducted to examine only the location of crime events, without reference
to the offenders involved. In addition, most researchers have tended to employ crude
metrics to describe the network, and their findings have often lacked statistical rigor.

To address these shortcomings, in this article, we make several novel contributions.
We use a discrete choice approach (McFadden, 1974), or more accurately an offense lo-
cation choice approach (Bernasco and Nieuwbeerta, 2005), to estimate empirically how
the opportunities that are targeted by burglars differ from those that are not. Our re-
search differs from previous studies of offender spatial decision-making in two important
ways. First, in most previous studies, scholars have examined offender location choice
at the area level (for the exceptions, see Bernasco, 2010b, and Vandeviver et al., 2015).
Here, consistent with contemporary theory (Weisburd, Groff, and Yang, 2012) and the
research questions at hand, we do so at the street segment level. Second, we build on
previous work (Davies and Johnson, 2015) and introduce to the discrete choice literature
a methodological approach that aims to estimate independently how the road network
influences offender awareness of crime opportunities, on the one hand, and guardian po-
tential at particular locations, on the other. By following Townsley, Birks, Ruiter, et al.
(2015), we also recognize that offenders may vary in the extent to which their spatial
decision-making is affected by different factors, and so we employ mixed logit statistical
models to estimate parameters and how they vary across offenders. In combination, our
approach allows us to examine the dual role that the road network might play in shaping
burglar spatial decision-making and the extent to which this varies across offenders.

The remainder of this article is organized as follows. In the next section, theoretical per-
spectives and research are reviewed to introduce the theoretical model. The second and
third sections describe the data and analytic strategy, respectively. The latter includes a
discussion of the application of graph theory to quantify the character of the road net-
work, as well as the statistical model employed. The fourth and fifth sections present and
discuss the results.

BACKGROUND
OFFENDERS AND THE ROAD NETWORK

The rational choice perspective (Cornish and Clarke, 1986) describes offenders, such
as burglars, as nonarbitrary decision-makers who consider (however briefly) the costs
and benefits of action alternatives, including the decision of where to offend (Clarke and
Felson, 1993). It is suggested that such decision-making will be bounded by imperfect and
incomplete information, and that future choices will be informed by the outcome of previ-
ous ones (Cornish and Clarke, 1986; see also Bennett and Wright, 1984; Cromwell, Olson,
and Avary, 1991; Wright and Decker, 1994). Nevertheless, although choices made may
not appear rational to an observer, it is assumed that selections are made that aim to max-
imize the perceived utility of a decision and minimize the expected costs. In particular, the
distance an offender must travel to offend has consistently been shown by researchers to
influence offender location choice in both quantitative and ethnographic studies.
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For example, offenders have consistently reported (e.g., Brown and Altman, 1981;
Rengert and Wasilchick, 1985; Repetto, 1974), and the results of analyses of the jour-
ney to crime (Snook, 2004; Wiles and Costello, 2000) have shown, that the likelihood of
an offender selecting a location at which to offend is inversely proportional to the dis-
tance he or she must travel to reach it. The aim of most studies of the journey to crime
has been to examine the Euclidean distance between locations (e.g., Clare, Fernandez,
and Morgan, 2009), and even though this provides a good estimate of the likely cost of
travel, it is clearly imperfect. The cost of travel is intrinsically linked to the configuration
and properties (such as the vehicle speed limit) of the road network as this determines
how quick and how easy it is to travel between any two locations. Consequently, in the
current study, we expect to find the following:

Hypothesis 1: Street segments that are quicker to travel to (in terms of estimated
travel time) from the burglar’s home will be more likely to be selected for burglary.

In addition to the fact that the selection of targets near to an offender’s home location
minimizes the cost of travel, this preference is expected to emerge for other reasons en-
capsulated by crime pattern theory (e.g., Brantingham and Brantingham, 1993). Accord-
ing to the theory, like everyone else, offenders are assumed to frequent activity nodes
routinely, such as their home and workplace. As a consequence of doing so, they develop
an awareness of these places and the routes between them. This is not necessary for of-
fending, but it shapes offenders’ familiarity and awareness of the criminal opportunities
within these spaces. According to crime pattern theory, offenders are believed to prefer
such opportunities to alternative targets for two reasons. First, offenders cannot select tar-
gets of which they are not aware (Rengert and Wasilchick, 1985). And, second, targeting
locations about which something is known reduces uncertainty about the likely outcome
of that choice (Beavon, Brantingham, and Brantingham, 1994). As such, we predict the
following:

Hypothesis 2: Street segments that are more likely to be familiar to an offender are
more likely to be selected for burglary.

In previous studies, scholars have assumed that the distance between a location and an
offender’s routine activity nodes (e.g., the home) provides a reasonable estimate of that
location’s familiarity. This assumption is not unreasonable as the findings from qualita-
tive research with burglars have revealed that they are typically most familiar with areas
that are closest to their home locations (e.g., Rengert and Wasilchick, 1985). Neverthe-
less, at the street segment level, an individual’s familiarity with locations will be more
nuanced than this, and it is likely to be a function of how frequently he or she travels to
or through them (Brantingham and Brantingham, 1993; Rengert and Wasilchick, 1985).
Although distance will influence this awareness, so too will the configuration of the road
network because this affects the likelihood that an individual will travel along a particu-
lar street to reach that or other locations (e.g., Beavon, Brantingham, and Brantingham,
1994). Some streets (such as major roads) may feature in many journeys, whereas oth-
ers less so (cul de sacs and dead ends, for instance). On the whole, streets rarely trav-
eled will be less familiar than those commonly used. Even though it is not possible to
determine which streets offenders travel during their routine activities without collect-
ing extensive primary data, it is possible to employ techniques from graph theory to
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estimate which routes and, hence, which street segments, they are most likely to use
and be familiar with (near to activity nodes such as their home location). To do this,
for each offender, we compute a novel idiosyncratic variation of the graph theory metric
betweenness. Betweenness (which is discussed in more detail later in the article) has been
used elsewhere (e.g., Davies and Johnson, 2015) to estimate overall movement potential
through the road network. Our idiosyncratic variant is intended to estimate how likely
each offender is to use particular street segments and, hence, to develop an awareness
of them. Consequently, for hypothesis 2, we specifically predict that offenders are most
likely to commit offenses on those street segments with high idiosyncratic betweenness
values.

GUARDIANSHIP AND THE ROAD NETWORK

The configuration of the road network also influences the movement of people going
about their everyday activities (e.g., Hillier, 2007; Penn, 2003)—people who (in the case
of residential burglary) have the potential to provide ambient guardianship (Cromwell,
Olson, and Avary, 1991; Felson, 1994) or to regulate behavior (Miethe and Meier, 1994).
Nevertheless, the potential role of passers-by is more complex than simply a function of
their presence or absence.

To explain, consider two theories of urban design. In the case of the first, Jacobs (1961)
suggested that guardianship is provided by everyone not engaged in criminal activity who
is present on a street. She suggested that their presence provides “eyes on the street” and
that this “natural surveillance” has the potential to deter crime.

Yet, according to Newman’s (1972) defensible space perspective (see also Coleman,
1985), whether the ambient population deters crime depends on exactly who is present
and where they are. According to this perspective, territoriality, which is communi-
cated by environmental cues regarding who (such as residents) is likely to be respon-
sible for and expected to use (or pass through) a space, plays a key role. Where it ex-
ists, for example, through the segregation of public and private spaces, it “may make
a stranger more obvious and residents more watchful” (Newman, 1980: 142). In con-
trast, on streets where territoriality is lacking, the attendant guardianship (potential) is
expected to be diminished as there will be ambiguity as to who is responsible for that
space.

Although both perspectives champion similar concepts, they principally differ in terms
of how they predict the movement of nonlocals along a street to influence crime risk.
For the former, anyone, including nonlocals, can provide additional guardianship and
this should deter crime. In contrast, according to the latter, on streets where there are
large flows of nonlocals, anonymity will be increased and this will be detrimental to the
informal guardianship provided by those who are local and live on or nearby that street,
or might otherwise feel responsible for it.

The findings of quantitative research intended to test these two theories are somewhat
mixed and can be divided into two branches. The first, which includes area-level (White,
1990) and more recently street-level studies (Armitage, 2007; Beavon, Brantingham, and
Brantingham, 1994; Johnson and Bowers, 2010; Rengert and Wasilchick, 2000), generally
find that locations that are expected to have greater through movement are more likely
to experience crime. In most of these studies, researchers have used simple ordinal or
categorical variables (e.g., the number of other roads a street directly intersects, or major
versus minor road categorizations) as proxies for traffic levels (Beavon, Brantingham,
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and Brantingham, 1994; Johnson and Bowers, 2010; White, 1990), but in recent studies,
researchers (Davies and Johnson, 2015) have used more sophisticated metrics (see the
Graph Theory section) and have come to the same conclusions.

The second branch of research involves metrics computed with the space syntax
methodology. Researchers who have used this approach have employed a form of graph
theory, but generally, they have found opposing findings to those discussed earlier (e.g.,
Hillier, 2004; Shu, 2000). That is, consistent with Jacob’s (1961) ideas, at locations that
are expected to possess greater volumes of passers-by, less crime is observed. That said,
in some studies, research teams have employed the space syntax methodology and have
reported different results. For example, Hillier and Sahbaz (2009) found that streets
that were characterized as being likely used for more localized movements tended to
experience less crime (see also Nubani and Wineman, 2005). Moreover, many stud-
ies that use the space syntax methodology have been weaker in terms of the statistical
methods applied (for an extended discussion, see Summers and Johnson, 2016), often
having relied on descriptive statistics (Shu, 2000) or having failed to account for (any)
other predictor variables known to influence crime (Hillier, 2004; Hillier and Sahbaz,
2009).

It must also be noted that no previous research of this kind has been designed to ac-
count for where offenders reside, and so the influence of offender decision-making has
been conflated in these studies. The aim of qualitative research (e.g., Cromwell, Olson,
and Avery, 1991; Wright and Decker, 1994) is to provide more insight from the offender’s
perspective. Qualitative research suggests that most (but not all) offenders avoid target-
ing locations where they are likely to be seen by neighbors or others (Bennett and Wright,
1984). Nevertheless, in such studies, researchers have not, as far as we are aware, exam-
ined how the configuration of the road network affects offender perceptions of this type
of guardianship. On the basis of the preceding text, we consider the following hypothe-
ses (detailed descriptions of the variables derived to test hypotheses are provided later in
the article). First, in support of the “eyes on the street” perspective where all passer-by
guardianship is beneficial:

Hypothesis 3: Street segments for which the potential for the through-movement of
any passers-by (estimated with a metric of overall pedestrian betweenness) is higher
are less likely to be selected for burglary.

Second, motivated by both Jacob’s “eyes on the street” and Newman’s “defensible space”
perspectives, where local passer-by guardianship is expected to be beneficial:

Hypothesis 4: Street segments for which the potential for the through-movement
of local passers-by (estimated with a metric of local betweenness) is higher are less
likely to be selected for burglary.

Third, as suggested by the defensible space but not by the “eyes on the street” perspective:

Hypothesis 5: Street segments for which the potential for the through-movement of
nonlocal passers-by (estimated with a metric of nonlocal betweenness) is higher are
more likely to be selected for burglary.
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Although these ideas best apply to pedestrian movement, it is also important to consider
vehicular movements. In their study of offender decision-making, Bennett and Wright
(1984) showed convicted burglars video recordings of 36 different homes and then asked
them to indicate which they would target and why. Among the factors offenders identified
as influencing their choices was the type of road, with busy roads being avoided as “the
offender might be seen by drivers of passing cars” (p. 64). Thus:

Hypothesis 6: Street segments for which the potential for the through-movement of
vehicular passers-by (estimated with a metric of overall vehicular betweenness) is
higher are less likely to be selected for a burglary.

OTHER FACTORS

Although our focus in this article concerns the role of the road network on criminal
location choice, other factors will clearly influence offender decision-making and need to
be accounted for. First, according to social disorganization (Shaw and McKay, 1942) and
related theories (e.g., Morenoff, Sampson, and Raudenbush, 2001; Sampson and Groves,
1989; Sampson, Raudenbush, and Earls, 1997), the extent to which residents can exert
informal social control to deter crime is influenced by how closely knit their neighbor-
hood is. Less cohesive neighborhoods lack communal ties either because (for example)
they are transient or because residents do not share common values. According to this
theory, in such communities, residents may not feel responsible for their neighborhood
and so will be less willing to act collectively as guardians against crime. In previous studies
of the kind described here (e.g., Bernasco and Nieuwbeerta, 2005; Clare, Fernandez, and
Morgan, 2009), levels of social disorganization have been estimated by researchers using
census data that characterize the (lack of) stability, or heterogeneity, of neighborhoods
with variables such as population turnover, ethnic diversity (e.g., Miethe and Meier, 1994),
and socioeconomic diversity (Johnson and Summers, 2015). In the current study, we con-
trol for these factors in the analyses that follow.

Offense location choices are also likely influenced by the type of targets available. For
example, as suggested elsewhere (Maguire and Bennett, 1982; Rengert and Wasilchick,
1985), burglars are financially motivated and are therefore likely to prefer more affluent
dwellings where greater proceeds are expected. Conversely, it is also likely that more
affluent dwellings will have better security measures and are therefore likely to be more
difficult to break into. As such, and following the approach taken in previous studies
(e.g., Bernasco and Nieuwbeerta, 2005), the affluence of each possible target location is
accounted for in the analyses presented.

Finally, it is important to note that even if an offender chooses targets randomly, roads
with more homes are more likely to be selected. To account for this, the number of
dwellings on a street segment is also included as a control variable.

VARIATION

A final point that emerges from the results published in the qualitative literature (e.g.,
Bennett and Wright, 1984; Cromwell, Olson, and Avary, 1991; Nee and Meenaghan,
2006; Rengert and Wasilchick, 2000; Wright and Decker, 1994) and in recent quantita-
tive studies (Bouhana, Johnson, and Porter, 2016; Townsley and Sidebottom, 2010) is
that although certain features often seem to influence offender decision-making, there
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is also clear variation across offenders in those factors. For example, in their interviews
with burglars, Bennett and Wright (1984) found that the presence of passers-by deterred
approximately one half of their sample either unconditionally or under some condi-
tions, whereas the remaining half reported being undeterred by the presence of others.
In their study, Wright and Decker (1994) found that neighborhood watch schemes de-
terred some offenders, who perceived an increased risk of being reported to the police
in such neighborhoods, whereas others were unconcerned by their presence. Such differ-
ences it seems emerge as a result of variation in offender experience and of the devel-
opment of cognitive scripts or templates that have proven successful in the past (Nee
and Meenaghan, 2006; Wright and Decker, 1994). Given individual differences in of-
fender experience, such scripts (and offender preferences) can be expected to vary across
offenders.

Variation is also to be expected as a result of individual differences in offender char-
acteristics. For instance, motivated by the fact that juveniles are less likely to have access
to motorized transportation, and typically have more limited activity spaces, when com-
pared with their older counterparts, the results of several qualitative (e.g., Baldwin and
Bottoms, 1976; Repetto, 1974) and quantitative studies (e.g., Bernasco and Nieuwbeerta,
2005; Johnson and Summers, 2015; Townsley and Sidebottom, 2010) have shown that
younger offenders generally travel shorter distances to offend than do adults. Similarly,
as Wright and Decker (1994) noted, how the characteristics of particular neighborhoods
are perceived is relative and “must be viewed from the perspective of offenders” (p. 94)
who may perceive the same opportunities differently. Put simply, offenders may vary in
terms of what factors influence their location choices.

With the exception of examining systematic variation in location choice for a limited
number of categorical variables (e.g., adult versus juvenile offenders), the aim of previ-
ous studies of offender location choice (but see, Townsley, Birks, Bernasco, et al., 2015)
has been to employ a modeling strategy that essentially assumes homogeneity in the (re-
vealed) preferences of offenders. As the outcomes of both theory and prior empirical
research suggest that (additional) variation is to be expected, it is important to examine
this. Nevertheless, given the current state of theoretical development and empirical in-
vestigation, with a few exceptions (such as the age of the offender), there are no strong a
priori expectations regarding patterns of variation, other than that they should exist. For
this reason, at this stage of the research endeavor, assessing the extent to which hetero-
geneity exists and for which variables is important and may yield important insights to
guide future inquiry. Consequently, like Townsley, Birks, Ruiter, et al. (2015), we employ
a mixed-logit model to test hypotheses that allows us to not only examine whether par-
ticular preferences exist but also estimate how consistent such preferences are across a
sample of offenders (without being limited to testing for variation for one or two categor-
ical variables).

DATA
STUDY AREA

Analyses were conducted for all street segments in the towns of High Wycombe and
nearby Beaconsfield and Marlow in Buckinghamshire (U.K.). The study area was de-
fined by identifying the “built-up areas” of the three towns and by applying a 1-km buffer
around them (for a map of the study area, see appendix A in the online supporting
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information'). The resulting study area covers a geography of approximately 150 km?
and includes 81,682 dwellings situated on 5,286 street segments.

CRIME DATA

Data were provided by Thames Valley Police (TVP) for all residential burglaries
recorded and officially cleared for the 10-year period 04/01/2004 to 03/31/2014. These data
included each offender’s home and offense locations. Where possible, the locations were
geocoded with Ordnance Survey? (OS) property data; otherwise TVP-geocoded coordi-
nates were used (~10 percent of locations). As with all previous discrete choice studies,
offenses that occurred outside, or that were committed by individuals living outside, the
study area were excluded by the researchers from the analysis. Although some studies
were conducted omitting offenses that involve co-offending (e.g., Bernasco and Block,
2009), this would lead to the attrition of 70 offenses (of 459). Instead, and by following
the design of other studies (e.g., Bernasco, Block, and Ruiter, 2013), for each offense
that involved co-offending, one individual was randomly selected as the “single offender”
and his or her data were included in the analysis.> The resulting data set contained 459
residential burglaries committed by 207 offenders. As a result, we obtain a clearance
rate of approximately 10 percent of all offenses reported to the police, which is higher
than reported in many studies of this kind (e.g., Bernasco and Nieuwbeerta, 2005; Clare,
Fernandez, and Morgan, 2009) and produces a similar sample size to that used in previous
research (e.g., Bernasco and Nieuwbeerta, 2005). On average, offenders each committed
2.2 burglaries (standard deviation = 5.5, range 1-59). To be a little more precise, of the
207 offenders, 54 committed two or more residential burglaries (accounting for 306 bur-
glaries) and 5 committed more than 10 offenses.*

When we considered where burglaries occurred, most street segments (91 percent,
N = 4,827) had no burglaries on them. Of those that did, the median count was 1 (range =
1-5), but 15 (.3 percent) street segments, which had large numbers of homes on them (on
average 92.7 homes compared with 14.2 for segments on which no burglaries occurred),
had 5 burglaries and accounted for 75 offenses (16 percent of all burglaries) over the
10-year period. Thus, crime was concentrated at the street segment level. This is to be
expected given the outcomes reported in the literature on crime and place (see Weisburd,
2015). Moreover, such clustering is typical of all studies of crime location choice.

STREET AND PATH NETWORKS

Data for the road and path networks were provided by the OS and included geometry
information, along with a description of their nature (e.g., “motorway”) and any routing

1. Additional supporting information can be found in the listing for this article in the Wiley Online
Library at http://onlinelibrary.wiley.com/d0i/10.1111/crim.2017.55.issue-2/issuetoc.

2. The OS is Great Britain’s national mapping agency responsible for the official mapping of the
country (https://www.ordnancesurvey.co.uk/about/overview/what-we-do.html).

3. A sensitivity analysis confirmed that alternative (random) selections produced the same pattern of
results.

4. As a sensitivity test, the statistical models that follow were conducted with the prolific residential
burglars (those who committed more than 10 offenses) excluded. The results of those analyses
(available by request) revealed the same pattern of results as those reported later in this article
and are hence discussed no further.
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Table 1. Road Network Features and Other Information Included in the
Pedestrian and Vehicular Movement and Choice Set Networks

Features and Other

Information Pedestrian Network Vehicular Network Choice-Set Network
Road and path features ~ All except: All except: All except:
included/excluded Motorways Alleyways Alleyways
Slip roads Paths Motorways
Pedestrianized streets Paths
Slip roads
Segments with no dwellings
Routing information None One way directionality N/A
included
Speed limit* (modeled N/A (3) Built-up area: N/A
travel speed®) (mph) Motorway: 70 (70)

Divided highway: 40 (36)
Local street: 20 (19)

All others: 30 (30)

Nonbuilt-up area:

Motorway: 70 (70)

Dual carriageway: 70 (68)
Local street: 30 (30)

All others: 60 (48)

ABBREVIATION: N/A = not applicable.

4Speed limits for each type of road are estimated with official speed limit guidance (DfT, 2013b).

Y Average travel speeds are derived from vehicular (Atkins, 2010; DfT, 2014) or pedestrian travel research
(LaPlante and Kaeser, 2007).

information (e.g., one-way road). Prior to analysis, these data needed preprocessing. For
example, graph theory metrics are susceptible to edge effects because their derivation
(discussed later in this article) involves the modeling of movement throughout the
wider street network. As a consequence, street segments closer to the boundary of a
study area will tend to have artificially lower estimates of movement potential as some
street segments to which they are connected (and the routes in which they will feature)
will be beyond the study area boundary and, hence, not included in the calculations.
To avoid this, we used a temporary 7-km buffer in the calculations. Features that can
distort the calculation of the metrics were also cleaned. For example, divided features
such as motorways were collapsed to a single edge to reflect the lived reality of such
roads, and traffic islands were collapsed to a single edge (see also Davies and Johnson,
2015).

The cleaned networks were then converted into a form suitable for graph theory anal-
yses (discussed later in this article). For example, split links, which can occur when streets
have different names at either end but have no junction in between, were merged. The
network was then partitioned into three networks to enable estimation of pedestrian and
vehicular movement potential (discussed later in this article), and to form the choice-set.
These networks differ by the features and traffic rules incorporated (see table 1). To elab-
orate, the vehicular network includes only vehicle-accessible roads (and, hence, excludes
alleyways, paths, and pedestrianized streets), and in the calculations that follow, one-way
directionality (where it applies) and variable travel speeds are incorporated into the anal-
yses. The pedestrian network includes only roads and paths that can plausibly be used by
pedestrians (and so this network excludes motorways and slip roads). For this network,
in what follows, a constant travel speed is assumed for all pedestrian journeys (discussed
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later in this article). Finally, the choice-set includes only roads and paths from which resi-
dential properties can plausibly be accessed (i.e., it excludes alleyways, motorways, paths,
and slip roads) and where at least one property exists.

OTHER DATA

Property data, provided by the OS, were associated with street segments by assigning
each home to the nearest applicable feature in each network. To elaborate, a property
may be assigned to a pedestrianized street segment in the pedestrian network (as that
is where the property is likely to be accessed on foot) but assigned to a different street
in the vehicular network. The reason for the latter is that vehicles cannot be driven on
pedestrianized streets. When assigning homes to the vehicular network, we thus assumed
that vehicle journeys from such homes would begin on the nearest applicable road and
consequently assigned homes to these.

Affluence was calculated with residential property sales data from the U.K. Land Reg-
istry for all sales between 04/01/04 and 03/31/14 with their prices adjusted (using the U.K.
Land Registry’s House Price Index) to April 2009 prices. These data were geocoded by
matching the addresses with those from the OS property data. Streets segments were
assigned the mean house price where at the shortest radii (incrementing by 25 m for 25—
1,000 m), there were at least five houses sold. The use of alternative criteria, such as the
average price of all houses sold within 500 m or 1 km, produced the same results and are
hence discussed no further.

The collection of estimates of social disorganization through systematic social observa-
tion was beyond the scope of the current study. Consequently, we follow the approach
taken in previous studies of offender location choice (e.g., Bernasco and Nieuwbeerta,
2005) and use indirect measures, or proxies, derived from the 2011 U.K. census. Data
were obtained for three variables (ethnic-heterogeneity, socioeconomic heterogeneity,
and population turnover) for U.K. census output areas. Output areas contain around 150
homes and are the smallest unit of analysis for which data are available. For consistency,
all three indices were operationalized with the index of qualitative variation (Agresti and
Agresti, 1978). This can be interpreted as the probability that two people randomly se-
lected from the same area came from different (ethnic or socioeconomic) groups or lived
in same output areas the previous year. Street segments were then assigned social disor-
ganization values based on the mean values of the output area(s) within which they were
located.

ROAD NETWORK MEASURES

Before describing the statistical method employed, we discuss our approach to quan-
tifying guardianship potential and offender awareness of the road network. The graph
theory approach is first discussed, and then a detailed description of how the actual met-
rics were computed is provided.

GRAPH THEORY

In previous studies, estimates of movement potential along street segments have been
used by researchers as proxy measures of ambient guardianship and people’s collec-
tive awareness of locations. A major limitation of much of the previous research (for
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exceptions, see Davies and Johnson, 2015; Hillier and Sahbaz, 2009) has been the use of
area-level metrics or ordinal variables by the research team (see earlier discussion). Space
syntax measures offer an alternative, but pure graph theory (from which the space syntax
measures are derived) metrics are preferred here as these metrics may be adapted and
applied in novel ways (discussed later in this article).

First, in regard to nomenclature, graphs can be derived to represent road networks in
two ways: with either street segments or intersections as the unit of analysis (see, Davies
and Johnson, 2015). As used by researchers in previous studies (e.g., Porta, Crucitti, and
Latora, 2006), we employ the former, commonly referred to as a “dual representation.”
In this case, street segments (any section of road between two intersections) are repre-
sented as vertices (at the midpoint of the segment) and intersections are represented as
the connections between them. The resulting mixed graphs, which include one- and two-
way roads, are defined as G = (V, E, A), which consist of vertices V = {vy, ... vy},
undirected edges E = {ej, ... e,}, and directed arcs A = {ay, ... a,}, where edges and
arcs (also called “links” or e for “generic links”) connect vertices. These links can also
be weighted where w(e) represents the cost of traversal. In this article, this is the time
required to traverse a link that is calculated by considering the metric length of the link,
and the speed of travel typical for that link (discussed later in this article). A path existing
between i and | is represented by i ~ j, and the associated travel time (between the
two street segments’ midpoints) is denoted by d;;. If the path is from and to the same
street segment, then d;; is calculated as being equal to the mean travel time between two
random points on the same street segment.’

Graph theory metrics can be thought of as providing a way of analyzing and quantifying
how a network can be traversed. A key metric is “betweenness” (Freeman, 1977), which
has been discussed in detail elsewhere (e.g., Crucitti, Latora, and Porta, 2006; Davies and
Johnson, 2015) and has been shown (e.g., Hillier and lida, 2005; Turner, 2007) and used
by researchers (Davies and Johnson, 2015) to estimate traffic and passer-by guardianship.
Classically, this is defined as:

o
ijev.i~j Y

where o;; represents the number of shortest paths between nodes i and j and o;;(e) rep-
resents those that pass through segment e. To illustrate the calculation of betweenness
(referred to as overall betweenness hereafter) and to specify how our estimate of idiosyn-
cratic betweenness is derived, consider figure 1, which illustrates different path structures
by using the basic network shown in part a. Here, metrically shortest paths are initially
created from the first vertex (x1) to all others (figure 1b). The degree of overlap of these
shortest routes (for x;) is shown in figure lc, and it can be observed that for vertex xp,
the vertex most likely to be traversed (apart from itself) is vertex x4. All other vertices
feature in only one shortest path through the network that originates from vertex x;. As
will be discussed, individual estimates such as that shown in figure 1c are not usually used
in isolation, but they are aggregated to derive an estimate of overall betweenness (e.g.,
see also Davies and Johnson, 2015). Nevertheless, as described later in this article, we use

5. For street segment of length L, thisis L /3.
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Figure 1. Steps in the Calculation of Idiosyncratic (B and C) and Overall
(D) Betweenness Metrics

a X3 b %

) X5 X Xs
X4
xZ x6 / X

X3

X3

X, Xg X X5
X, Xy

X Xg X, Xe
NOTE: In the example shown, idiosyncratic betweenness (b-c) is calculated for vertex x;.

them here as an index of idiosyncratic betweenness to estimate how familiar an offender
residing on any vertex (i) is likely to be with all other vertices (j) in the road network. This
produces a matrix (i) of idiosyncratic betweenness values.

Before discussing the measure of idiosyncratic betweenness further, let us clarify how
the estimate of overall betweenness is derived. To produce this (see also Davies and
Johnson, 2015), the earlier process is repeated for all other vertices (in our example,
vertices xp, X3...Xg) in the network. The degree of overlap for the routes from and to
every vertex (the aggregation of the steps shown in figure 1b and c for all vertices)
is then computed and represents the betweenness value derived with equation (1) and
shown in figure 1d. As illustrated in figure 1d, in our example, the vertex x, features
in most of the shortest paths between vertices in the network and consequently has the
highest overall betweenness value. In this extreme example, the other vertices only fea-
ture in those shortest paths for which they are the origin or destination, and so they
have uniformly low overall betweenness values (unlike the measure of idiosyncratic be-
tweenness). The overall betweenness value for an edge (B.) may thus be thought of
as estimating how likely (or frequently) it is that a street segment is traversed dur-
ing everyday urban activity in the network (see also Hiller and Iida, 2005). In contrast
to idiosyncratic betweenness, this overall index of betweenness provides an indication
of overall movement potential for each street segment, and we use it to estimate the
likely awareness and presence of passers-by at each location. As such, each street seg-
ment has a single overall betweenness value for this index (rather than a matrix of
values).

Nevertheless, equation (1) (used in studies such as Davies and Johnson, 2015) com-
prises the restrictive assumption that an equal number of journeys will originate and ter-
minate at all vertices in the network (street segments). In reality, certain segments (e.g.,
those with high-density residential properties) will act as origins/destinations for more
journeys (Leung et al.,2011). To account for this, vertex weighting is applied where routes
are multiplied by w; (the origin’s weight) and w; (the destination’s weight) and divided
by > wi (the total weights of all destinations possible from 7). Through this approach, we
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effectively assume that the number of journeys that start at node i will be proportionate
to some factor such as, and as we use in this study, the number of residential properties
located on that street segment, and that these journeys will be distributed to other nodes
according to some factor (here, the proportion of residential properties at node j):°

"Ve _ Z Oij ((3) w; Wi (2)
ijeV, i~j Ol 2 g Wi

When considering pedestrian and vehicular journeys, it may be unrealistic to estimate
movement potential by including long journeys in the calculation of betweenness. There-
fore, and as used by researchers in previous studies (e.g., Davies and Johnson, 2015), trips
can be restricted so that only destinations within a specified range (d;; < r) are considered
likely destinations:

Wg _ Z Uij (6) wi wj (3)
ijeVidj<r Ol 2k Wk
In what follows, it is this measure (equation (3)) of overall betweenness that we used
to estimate movement potential for pedestrians (to test hypothesis 3) and vehicles (to
test hypothesis 6). With respect to pedestrian movement, trips through the road network
can also be divided into those sections of a journey that might be thought of as being
more a part of a person’s “local area”—and hence that he or she might feel more re-
sponsible for—and those that are not. For example, for pedestrian journeys that origi-
nate from a person’s home, only the first part of the trip may be part of the road net-
work that they perceive as “local.” To examine this, we introduce two further variants
of overall betweenness. “Local betweenness,” which is used to estimate movement po-
tential for local passers-by (to test hypothesis 4), we calculated with a threshold /, where
di. <1, that is, where the travel time between the origin and focal vertex is less than or
equal to some threshold /. Conversely, “nonlocal betweenness,” which is used to esti-
mate movement potential for nonlocal passers-by (to test hypothesis 5), we computed for
those trips where d;, > [. The formulas for local (L) and nonlocal (N) betweenness are
respectively:

. 3 0ij () wi w; 4)

ijeVidj<r de<i Ol 2wk

Nzl — Z 0ij (e) w; wj (5)

gij YW
ijeVidij<rde>1 U 2wk

Even though betweenness has been used by researchers to estimate macro-level move-
ment through networks (e.g., Davies and Johnson, 2015), and hence collective awareness
spaces, its application to micro-level (offender) movement is novel. In previous studies,

6. Intuitively, routes that start and end on street segments with more (less) homes on them will receive
a higher (lower) weighting.
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researchers have used proximity to the offender’s home location as a proxy for “aware-
ness.” Although not entirely unreasonable, this confounds movement potential and the
attendant “awareness” with the “effort” required to reach a location. It is also a crude
estimate of both constructs.

Our alternative estimate, idiosyncratic betweenness, which was described in general
terms earlier, is specified more formally in equation 6. Unlike the overall estimate of
betweenness, this is computed for each offender from his or her known activity nodes (Y;
which in this study is their home location), and hence, no origin weighting is applied in
this case:

oy (e) w;

P’ =
Oyj Dk Wk

e

(6)

jeV.yeY x~j

To allow us to differentiate between offender awareness (potential) and the effort
(time) required to travel to a particular location, in addition to computing idiosyncratic
betweenness values for each offender, we estimate the effort required to reach locations
in the network (to test hypothesis 1). This is derived from the graph theory metric “close-
ness centrality” (Freeman, 1977):

= Y (a1 )

jeVie~j

For each edge, closeness (C) is simply the inverse of the sum of the shortest travel times
to all other vertices. Again, an idiosyncratic variant is calculated. Nonetheless, rather
than adapting closeness, “idiosyncratic farness” is used for interpretability and repre-
sents the travel time between the focal vertex and the offender’s vertices. This is calcu-
lated as follows (i.e., by not inversing the sum of the distances as performed in closeness
calculations):

Fy = Y d (8)

yeYe~y

This can be interpreted as the level of effort (in estimated minutes traveling) required
to reach a street segment (from the offender’s home location) where segments with higher
scores require more effort (time) than do those with lower ones. By definition, idiosyn-
cratic farness will always be greater than, or equal to, the Euclidian travel time between
two locations (see appendix B in the online supporting information).

GRAPH THEORY METRICS

To calculate the graph theory metrics, the shortest paths were created between all pairs
of vertices. The cost of traversal was estimated by calculating the time required to travel
along each link based on acceptable travel speeds. This is to be preferred for vehicu-
lar movements, for which the speed limit varies across street segments, as it may better
approximate route choices (Leung et al., 2011). For pedestrian movement, this will be
equivalent to metric distance as walking speed is assumed constant [3 miles per hour in
this case; Department for Transport (DfT), 2013a]. Alternatives to this route choice logic,
such as minimizing angular change at intersections, which is often used by research teams
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Figure 2. “Local” and “Nonlocal” Betweenness for an Individual Living
at Location x
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in space syntax studies (e.g., Hillier and Iida, 2005), were also tested but made little dif-
ference to the results and so are discussed no further.

Measures of betweenness were then calculated as described earlier. The radii (r) for
pedestrian movements was set at 20 minutes of traveling time (approximately one mile)
based on the median pedestrian journey times recorded in the 2013 DfT travel survey
(DfT, 2013a). This also roughly equates to the distance within which most households in
the United Kingdom should find their local services, such as supermarkets (DfT, 2011).
As a result of the configuration of the road network, what is “local” for pedestrians is
likely to vary across people and places. To examine local and nonlocal betweenness for
pedestrians, / was set to half of the maximum journey length (10 minutes). Figure 2 shows
an example of what an individual living at location “x” would consider as local (black),
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Table 2. Summary Statistics of the Independent Variables Used in the
Choice-Set (Excluding Links with No Homes on Them)

Resolution of

Type of Variable Variable Variable Total Mean SD Min Max
Alternative Segment Level Number of segments 5,286 — — — —
Specific Number of burglaries per 459 1 4 .0 5.0
segment
Number of dwellings per 81,682 15.5 18.9 1.0  307.0
segment
Affluence (£100,000s) — 35 2.8 6 2.7
Betweenness (pedestrian) — 11.1 13.3 .0 100.0
Local betweenness — 10.9 12.8 .0 100.0
(pedestrian)
Nonlocal betweenness — 10.1 12.6 .0 100.0
(pedestrian)
Betweenness (vehicular) — 32 7.5 .0 100.0
Output Area Number of output areas 510 — — — —
Level Number of segments 5,286 10.7 5.7 .0 48.0
Ethnic heterogeneity (%) — 259 192 .0 66.8
Residential turnover (%) — 213 115 33 83.7
Socioeconomic — 68.1 58 474 79.7
heterogeneity (%)
Individual Segment Level Idiosyncratic farness — 4.6 2.0 .0 10.5
Alternative (10min)
Specific Idiosyncratic betweenness — 5 4.0 .0 100.0

NOTE: The column “Total” indicates the overall sample size for a particular variable.
ABBREVIATION: SD = standard deviation.

nonlocal but within the pedestrian radii (medium gray), and outside the pedestrian radii
(light gray).” Based on the DfT survey, the radii for vehicular journeys were set to 25 min-
utes of traveling time. Unlike pedestrian journeys, this equates to different geographical
distances across the network as a result of variation in the speed limits associated with
different types of roads.

Idiosyncratic betweenness was calculated similarly to overall betweenness but included
only those shortest paths that originated from the offender’s home vertex. Idiosyncratic
farness (road network travel time) was calculated with the average of the pedestrian and
vehicular traversal times associated with the shortest paths. The weightings applied were
calculated with the number of properties on each (destination) link. Finally, as between-
ness has no innate scale, the values were normalized to the range 0-100. Descriptive statis-
tics for the independent variables are presented in table 2. In the table, alternative-specific
variables are those that vary for each street segment but are identical for each offender.
For example, the level of affluence for each street segment will vary across street seg-
ments but not across offenders. In contrast, individual-alternative specific variables are
those that vary by street segment (or output area) and for each offender. For example,
the idiosyncratic farness of a specific street segment will vary depending on the offender’s
home location because it will be measured relative to where he or she lives. Spatial
variation in the vehicular and pedestrian (overall) betweenness metrics is illustrated in

7. Sensitivity tests were performed to examine the choice of radii used. Generally consistent results
(available by request) were found for “local” distances ranging from 2.5 to 15 minutes, although
the effects reported diminish for greater distances.
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figure 3. Street segments with darker shading have higher overall betweenness val-
ues and are expected to have greater vehicular or pedestrian movement potential,
respectively.

ANALYTICAL STRATEGY

Studies of crime event locations are typically aimed at identifying those factors (e.g.,
indicators of social disorganization or movement potential on the road network) that are
associated with where crimes occur. They generally achieve this aim, however, without
reference to where offenders live. This is problematic because the results of research
concerned with the journey to crime indicate that offenders typically commit offenses
near to their home locations. The aim of studies of the journey to crime is also prob-
lematic because the research teams ignore the characteristics of the locations in which
offenders choose to commit crime. Widely established in other fields, the discrete choice
framework (McFadden, 1974) was first used in the field of criminology by Bernasco and
Nieuwbeerta (2005) to overcome these shortcomings. It allows the simultaneous analy-
sis of how characteristics of offenders (e.g., where they live) and the areas from which
they can select to offend influence criminal location choice. For example, Bernasco and
Nieuwbeerta (2005) reported that burglars were found to be more likely to target areas
that were closer to their home location and that had more ethnic diversity, more single-
family homes, and more homes. The use of this framework has now become well estab-
lished in the criminological literature, although the units of analysis considered are typi-
cally large areal units (for an overview of studies, see appendix C in the online supporting
information).

Discussed in detail elsewhere (e.g., Bernasco and Nieuwbeerta, 2005), the framework is
straightforward and regards a decision-maker (the offender) who chooses from a choice-
set (street segments in the current study) the alternative that he or she expects to derive
the most utility from (Train, 2009). When following notation from Bernasco (2010b) and
Train (2009), this can be formally expressed as follows. A decision maker, n, faces a choice
from J alternatives. The utility, U, the decision maker derives from alternative j is:

Uj, ] =123,..., J )

Although the utility derived from each alternative is only known by the decision-maker,
he or she will choose alternative i if it provides the greatest utility:

Um‘ > Unj Vj 75 i. (10)

By observing the attributes of the alternatives, a,;, and of the decision-maker, d,, a
function can be specified regarding the decision-maker’s utility:

Vi = V(an, dy) Vi (11)
Nonetheless, not all factors affecting utility will be observed:

Vi # Uy (12)
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Figure 3. Normalized Vehicular (Top) and Pedestrian (Bottom) Overall
Betweenness Scores on Their Respective Networks
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Utility is thus expressed as Vj,; plus an error term, &,;, which is treated as random and
represents idiosyncrasies and unobserved factors:

Uni = ‘/ni + &ni (13)

Consequently, the probability that decision-maker # chooses alternative i is the proba-
bility that the utility from i is greater than the utility from all other alternatives:

Py = Pr(Uy > U,V j #i) (14)

P = Pr(enj — eni < Vii— ViV j #10) (15)

If the unobserved utility components, ¢,;, are independently and identically distributed
with a Gumbel Type I extreme value distribution, the basic conditional logit (CL) model
is derived (McFadden, 1974) with the assumption that the vector of parameters (x,;) is
linear:

Vi = B'%ui (16)
The odds of decision-maker n choosing alternative i is then estimated by:

el xni
7 e
Z] -1 eﬂ nj

where B’ is a vector of parameters to be estimated and e” is the multiplicative effect of a
one-unit increase in an alternative’s attribute on the odds of selection.

Nevertheless, even though the previously applied choice models (see appendix C in the
online supporting information), such as the CL, are suitable for many types of decisions,
several assumptions, such as the independence of irrelevant alternatives (ILAs), should be
met for their appropriate application. The IIA states that alternatives are independent if
the utility from one choice depends only on that alternative’s utility function (Ben-Akiva
and Lerman, 1985). To put it another way, if alternative A is preferred to alternative B,
the introduction or removal of alternative C should not change this preference. Although
this seems logical, it ignores the possibility that some locations are similar and therefore
substitutive and not independent. In fact, the two crime location choice studies that com-
prised models obviating this assumption (Bernasco, 2010b; Bernasco, Block, and Ruiter,
2013) found evidence of violations.

To relax this and other assumptions, other models should be considered. Although
various alternative models exist, one that has only recently been used in criminological
enquiry (Townsley, Birks, Ruiter, et al., 2015) but has been heavily lauded by researchers
in the wider literature (Hensher and Greene, 2003) is the mixed logit (ML) model (Mc-
Fadden and Train, 2000). As a detailed technical discussion of the use of the ML model
in offender location studies is provided by Townsley, Birks, Ruiter, et al. (2015), and be-
cause we follow their approach, we limit the current discussion to the basic principles and
advantages of the approach. In addition to relaxing the IIA assumption, in contrast to
the CL, the ML model assumes a probability density function for the coefficients, f(86),
where 6 represents the mean and the standard deviation of the 8s. By allowing coefficients
to vary across decision makers, taste variation can be estimated across offenders.

P, = (17)
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The ML model also addresses problems associated with modeling repeated choices by
the same offender. That is, traditional CL models assume unobserved factors that affect a
person’s choice are independent on each choice occasion, which will lead to biased stan-
dard errors. Although other models partially account for repeated choices by computing
“robust standard errors” (White, 1982), with ML models, this is addressed more directly
by explicitly modeling choice occasions for serial offenders.

The application of the discrete choice framework requires the specification of the
decision-makers, the choice-set, and the choice criterion. In studies of crime location
choice, the decision-makers are clearly offenders, and the criteria are those factors hy-
pothesized to influence targeting decisions. In the case of residential burglary, although
offenders theoretically choose from every dwelling, the results of studies reveal that of-
fenders follow a spatially structured decision process (e.g., Brown and Altman, 1981).
Consequently, the choice-set employed by research teams in previous studies has typi-
cally been a spatially aggregated grouping, such as census tracts. Nevertheless, persuasive
arguments do exist for the use of finer spatial granularity (Andresen and Malleson, 2011;
Weisburd et al., 2004).

For example, people do not navigate from one large area to another; they navigate
along the road network. As such, a spatial resolution at this scale (e.g., street seg-
ment) should better capture the spatial logic of offender decision-making (Johnson and
Bowers, 2010). Also, as constructs such as (the potential for) guardianship and awareness
spaces can be more precisely measured at this level, street segments are a natural unit
for studying crime (Weisburd, Groff, and Yang, 2012). These smaller spatial units are
also methodologically justified as even if an offender’s mental map is more generalized
than is specified, local variations would be unobserved if aggregated before measurement
(Bernasco, 2010b).

MODEL SPECIFICATION

Unlike other logit models, ML cannot be solved analytically (Train, 2009) but must be
estimated with either maximum simulated likelihood (MSL) or hierarchical Bayes (HB).
Nevertheless, given acknowledged problems associated with large choice-sets and MSL
(Hensher and Greene, 2003), as in Townsley, Birks, Ruiter, et al. (2015), the results for
models estimated with HB are reported here (see also Train, 2009). We note, however,
that analyses were also conducted with equivalent MSL models that use the “mixlogit”
(Hole, 2007a, 2007b) routine in Stata (StataCorp, College Station, TX). We used various
numbers of Halton draws (all of which converged), with and without correlated coeffi-
cients. These analyses generated the same pattern of results as for the HB models and so
are discussed no further.

To apply the ML model to offense location choice requires the identification of those
variables for which taste variation is expected, alongside the specification of their assumed
distributions (all are treated as random variables). As in Townsley, Birks, Bernasco, et al.
(2015), all variables were entered nonfixed so that their effects could vary among bur-
glars and are modeled with normal distributions—the default choice of prior probability
distribution in the absence of compelling evidence to suggest otherwise. To identify and
account for patterns of tastes where the preferences for some variables are associated
with the preference for others, all coefficients were entered to allow correlation with each
other.
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To compute HB models, parameter values were initially estimated from the prior prob-
ability distribution and then simulated draws were taken from the posterior parameter
distribution, from which coefficient values were reestimated. Through this analysis, we
found model parameters (the mean and the variance) to be stable beyond 50,000 (re-
tained) draws, and hence all models were estimated with 100,000 (retained) draws, with
the first 25,000 draws discarded and used as a “burn-in” to minimize any effect of the prior
probability distributions (Train and Sonnier, 2005). Because subsequent draws from the
posterior distributions are necessarily dependent on the previous draws, any autocorre-
lation is mitigated through thinning, whereby only every 10th draw is retained and the
parameters calculated from this sample (Train and Sonnier, 2005). All models were com-
puted with the “bayesmixedlogit” routine (Baker, 2013) in Stata.® Equivalent conditional
logit models were also estimated to assess the performance of the mixed logit. As noted,
for all analyses, the unit of analysis is the street segment.

RESULTS

For parsimony, table 3 shows the results for the key variables of interest, along with
the model fits from the ML models. Estimates for the full models can be found in ap-
pendices D and E in the online supporting information. The former replicates table 3 but
includes all variables, whereas the latter displays the results for the unscaled form of the
variables. In table 3, for completeness, models for each variable are tested independently
before being combined. The top panel of table 3 shows the point estimates for the mean
(recall that for the ML model a distribution of coefficients is computed for each indepen-
dent variable) multiplicative odds ratio (OR) of a target street segment being selected
after a one-unit increase in the relevant independent variable. In terms of this “one-unit
increase,” to make results easier to interpret, some variables’ units are scaled (as indi-
cated). The standard errors shown are approximated with the delta method (Buis, 2014),
and they indicate the statistical significance of the mean estimates.

The bottom panel of table 3 shows the standard deviations (SDs) for the between-
offender estimates of the ORs. These provide an estimate of the extent to which taste
variation exists across offenders for a particular variable. In this part of the table, the
numbers in parentheses are ¢ statistics, which indicate whether any observed variation
across offenders is statistically significant. Although the SDs shown in table 3 give a good
indication of preference variability, figure 4 illustrates their estimated distributions (from
model 3) more precisely. In what follows, the overall model fits, the point estimates, and
the taste variation are discussed in turn.

OVERALL MODEL FITS

In following Townsley, Birks, Ruiter, et al. (2015), model fits were assessed with the
intuitive root likelihood (RLH) statistic, which ranges between 0 and 1, and for which a

8. To assess multicollinearity among the independent variables, variance inflation factors (VIFs) and
condition indexes were computed where values greater than 5-10 and 30-100, respectively, suggest
moderate-to-severe multicollinearity (Belsley, Kuh, and Welsch, 1980; Cohen et al., 2003). The
largest VIF score of 4.4 and condition index of 29.6 indicate no major problems as there is only
weak (to moderate) evidence of multicollinearity.
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Table 3. Mixed Logit Models of Residential Burglar Location
Preferences (Estimated Average Odds-Ratios Are Shown in the
Top Panel, Whereas Their Standard Deviations Are
Shown in the Bottom Panel)

Average Odds Ratios

Variable 1a 1b 1c 2a 2b 3
Offender Variables Idiosyncratic Farness — 30% 34 31
10 min (.04) (:04) (.04)
Idiosyncratic 3.53* 2.59* 2.51%
Betweenness — 10% (1.70) (:94) (.86)
Guardianship Pedestrian (overall) 1.01
Variables Betweenness — 10% (.05)
Local Pedestrian (overall) .68** 67
Betweenness — 10% (.06) (.07)
Nonlocal Pedestrian (overall) 1.22% 1.15
Betweenness —-10% (.09) (.06)
Vehicular (overall) 64+ 64+ .66™*
Betweenness — 10% (.08) (.08) (-10)
Standard Deviations of the Average Odds Ratios
Variable 1a 1b 1c 2a 2b 3
Offender Variables Idiosyncratic Farness — ST A8+ S53**
10 min (4.18) (4.33) (4.46)
Idiosyncratic Betweenness — 6.83** 6.02* 5.37*
10% (2.66) (2.28) (2.06)
Guardianship Pedestrian (overall) 46™
Variables Betweenness — 10% (5.53)
Local Pedestrian (overall) 40 A6™
Betweenness — 10% (4.69) (4.36)
Nonlocal Pedestrian (overall) .64** .69**
Betweenness —10% (5.44) (5.02)
Vehicular (overall) .64+ A44x 61"
Betweenness — 10% (4.29) (3.96) (3.55)
Mixed Logit RLH (x1074)2 16.7 10.5 22.0 73 10.1 284

NOTES: In the top panel, the figures in parentheses are the standard errors of the average odds ratios. In the
bottom panel, the figures in parentheses are ¢ statistics for the between-offender standard deviations. Five other
control variables (ethnic heterogeneity, residential mobility, socioeconomic heterogeneity, affluence, and the
number of dwellings) were also included in each model, but for conciseness are not shown (a complete table of
results is provided in appendix D in the online supporting information).

aThe null model RLH is 1.9 x 10—, and the conditional logit RLH values (x10~*) are 5.1,4.2,5.4,4.0,4.2, and
7.4, respectively.

*p < .05;**p < .01 (two-tailed).

value of 1 indicates a perfect model (the estimated probabilities of the observed choices
are 100 percent). This value can also be compared with the RLH for other models such
as the equivalent conditional logit and null models. In the case of the latter, this is equal
to !/number of alternatives (1.9 x 10~*), and an RLH value less than this indicates that
a fitted model performs worse than chance. As shown in table 3, the RLH for the fitted
ML models is between 7.3 and 28.4 (x 10~*) and that for the CL models is between 4.0
and 7.4 (x 10~*). This indicates both sets of models fit the data significantly better than
do their respective null models, and that the ML models fit the data better than do the CL
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Figure 4. Estimated Distributions of the Main Variables’ Odds Ratios on
the Likelihood of That Target Being Selected
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models. In terms of the final model (3), the RLH statistics indicates that the ML model
fits the data around 4x better when compared with the equivalent CL. model and around
15x better when compared with the null model.

POINT ESTIMATES

When we consider the offender variables first, the estimates of offender awareness (id-
iosyncratic betweenness) and the travel time (idiosyncratic farness) required to reach of-
fense locations were both significant predictors of location choice when entered indepen-
dently (figure 1a and b), when entered together (figure 1c), and when the effects from
other offender variables were accounted for in the final model (3). In terms of the results
for the final model, the findings suggest that for every 10 minutes a street segment is from
an offender’s home location, the odds of it being selected (all else equal) decreases on
average by .31. In contrast, for every 10 percent increase in “idiosyncratic betweenness,”
the odds of a street segment being selected increases (on average) by 2.51. Hypotheses
1 and 2 are thus both supported in that locations that are easier to reach (“idiosyncratic
farness”) and are likely more familiar (“idiosyncratic betweenness”) to an offender are
more likely to be selected. It should be noted that both of these variables were calculated
by combining scores calculated from the pedestrian and vehicular networks (e.g., pedes-
trian idiosyncratic farness and vehicular idiosyncratic farness); nonetheless, there were no
significant differences when these were disaggregated.

In terms of passers-by guardianship, model 2a shows that when pedestrian (overall)
betweenness—estimated in the aggregate—is entered alone, it is not a significant predic-
tor of crime location choice. Yet, when disaggregated into local and nonlocal movement
(model 2b), both were significant. In this case, greater nonlocal (overall) betweenness
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was associated with a street segment being more likely to be selected, whereas greater
local (overall) betweenness was associated with a street segment being less likely to be
selected, as predicted. This pattern of results persists when these variables were entered
into model 3 (which also accounts for the offender variables). These results are in line with
hypotheses 4 and 5, although hypothesis 3 regarding an increase in likelihood of burglary
associated with any passers-by (overall pedestrian betweenness) was not supported (even
when entered into the final model). For vehicular betweenness, the point estimate was
also statistically significant and suggests that, all else equal, segments that are expected
to contain greater levels of vehicular traffic were less likely to be chosen. This finding
supports hypothesis 6.

Although entered predominantly as control variables and not shown in table 3 (see
appendices D and E in the online supporting information), it is worth noting that two
social disorganization variables (residential mobility and socioeconomic heterogeneity)
were both statistically significant and positively associated with a location being selected
for a burglary, as expected. A third (affluence) was also statistically significant and neg-
atively associated with a location being selected for burglary. In contrast, ethnic hetero-
geneity was not statistically significant, nor was the number of dwellings.

TASTE VARIATION

For most findings so far discussed, the phrase “on average” is a necessary clause as
all SDs associated with the coefficient estimates were statistically significant. When we
take each of the main findings in turn, the standard deviations for the offender variables
“idiosyncratic betweenness” and “idiosyncratic farness” suggest that the effects of famil-
iarity and accessibility (measured in terms of the time required to travel to a location)
vary across offenders. As illustrated in figure 4, the final model suggests that of the sam-
pled offenders, 75 percent seemed to prefer targets located on street segments that were
estimated to be more familiar to them, whereas 86 percent seemed to prefer closer targets.

In the case of the standard deviations for the pedestrian passer-by guardianship vari-
ables, approximately 70 percent of offenders seemed to prefer segments with fewer num-
bers of locals, whereas 55 percent seemed to prefer segments with greater numbers of
nonlocals. There was also significant taste variation in the vehicular passer-by guardian-
ship variable such that an estimated 70 percent of offenders seemed to prefer segments
with lower levels of vehicular traffic. All other (control) variables also exhibited taste
variation (see also appendix D in the online supporting information).

OTHER FINDINGS

Calculated from the estimated covariance matrix (not shown), table 4 provides point
estimates for the correlations (between coefficients) matrix. This then provides an indi-
cation of whether offenders who had a preference for one factor also tended to have a
preference for another. Four covariances were statistically significant (p < .05). The local
betweenness coefficient was highly negatively correlated (—.90) with the coefficient for
nonlocal betweenness—offenders who preferred street segments with higher expected
levels of nonlocal passers-by tended not to prefer those with higher numbers of local
passers-by (street segments can have high levels of both). Residential mobility was highly
positively correlated with the number of dwellings (.87), suggesting that offenders who
preferred to target street segments with larger numbers of residential dwellings also
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Table 4. Correlation Matrix of the Coefficients

Variable 1 2 3 4 5 6 7 8 9 10
1. Idiosyncratic Farness (10 min) 1.00 -.17 -12 .16 -26 .13 40 =27  —-.08 22
2. Idiosyncratic Betweenness 1.00 05 —-.03 06 —05 -—.14 .10 .04 -.01
(10%)

3. Local Pedestrian (overall) 1.00 —.90* 17 —-12 —-.09 .02 .16 .20
Betweenness (10%)

4. Nonlocal Pedestrian (overall) 1.00 —-.18 -.20 14 —02  —-09 —-.09
Betweenness (10%)

S. Vehicular (overall) 1.00 20 =28 .09 02 —-15
Betweenness (10%)

6. Ethnic Heterogeneity (%) 1.00 09 -19 -02 -34

7. Residential Turnover (%) 1.00 —.43* .01 87*

8. Socioeconomic Heterogeneity 1.00 —-.01 -.16
(%)

9. Affluence (£10,000s) 1.00 35

10. Number of Dwellings 1.00

*p < .05 (two-tailed).

preferred those roads that were located in areas of high residential turnover. Although
only moderately correlated, residential mobility was also positively correlated with
farness (.40) and negatively correlated with socioeconomic heterogeneity (—.43).

DISCUSSION

In this article, we employed novel approaches to test more directly aspects of theo-
ries of burglar location choice that have been largely unexplored in previous research. In
particular, we introduced variants of existing graph theory metrics to (for the first time)
disentangle the estimation of offender awareness, the effort (in terms of network travel
time) involved in traveling to particular locations, and the potential for ambient guardian-
ship at specific locations in the road network. Like Townsley, Birks, Ruiter, et al. (2015),
we used a more sophisticated discrete choice model than is typically used by researchers in
studies of offender location choice to test hypotheses, and the findings illustrate the ben-
efits of so doing. For example, allowing parameters to vary to account for taste variation
led to significant improvements in model fit and a better understanding of the consistency
with which particular factors affect offender decision-making (something that cannot be
estimated with a conditional logit model). In terms of the overall fit of the final model,
interpretation of the RLH is not as simple as for the R squared values associated with
(say) ordinary least-squares models, or even the pseudo R-squared values computed for
conditional logit models (see McFadden, 1974). Nevertheless, the change in the RLH rel-
ative to the null (a factor of 15) and equivalent conditional logit (a factor of 3.8) models
suggests that the ML model (3) fits the data reasonably well and provides an improve-
ment over the conditional logit model. Townsley, Birks, Ruiter, et al.’s (2015) analysis of
offender spatial decision-making at the area level (for which the improvements in model
fits were 25.2 and 5.4, respectively) also demonstrates the value of using ML models in
studies of offender location choice. This suggests the utility of the ML approach to mod-
eling, regardless of the unit of analysis employed (street segments in the current article
and large areal units in Townsley, Birks, Ruiter, et al., 2015).

When we consider the role of offender awareness and accessibility, we find “idiosyn-
cratic farness” and “idiosyncratic betweenness” to be significant predictors of crime
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location choice, as expected. That is, the effort required to reach locations was negatively
associated with the likelihood that an offender would select a particular street segment on
which to offend. When we accounted for this, and in line with crime pattern theory, our
estimate of an offender’s familiarity with a street segment was also (positively) correlated
with the likelihood that they would select it.

Yet, it is important to note that there was evidence of individual variation in taste pref-
erences for these two (idiosyncratic) variables. With respect to the distance traveled—the
only estimate of offender awareness used by research teams in other studies—Townsley,
Birks, Ruiter, et al. (2015) also reported variation in preferences for this variable (mea-
sured in Euclidian terms at the area level in their study). Thus, future research might be
designed to explore what explains such variation. For example, is this associated with
characteristics of the offenders, characteristics of the areas within which they live, or
both? For example, awareness may play a more important role in target choice for less
experienced burglars who are unwilling to seek out new opportunities for crime (e.g.,
Bennett and Wright, 1984). Alternatively, offender awareness may be more important in
neighborhoods that have less regular road network configurations that would be more
difficult to navigate without some awareness of them (see Beavon, Brantingham, and
Brantingham, 1994; Bevis and Nutter, 1978).

The findings from qualitative research concerned with burglars’ use of space (e.g.,
Rengert and Wasilchick, 2000; Wiles and Costello, 2000) has revealed that different ac-
tivity nodes, such as schools for younger burglars and the workplace for older offenders,
influence offender spatial decision-making. Thus, data permitting, in future quantitative
research of the kind reported here, scholars may derive estimates of idiosyncratic aware-
ness by using other likely significant activity nodes as origin points. They may also use
the methodology to examine more precisely how an offender’s awareness space evolves
over time when he or she (for example) changes residential address (see Bernasco, 2010a;
Rengert and Wasilchick, 1985).

When we consider ambient guardianship, existing graph theoretical measures (see
Davies and Johnson, 2015) that can be used to estimate the level of passers-by (and
guardianship) were also advanced in this article. This was achieved by weighting the met-
rics to account for the nonuniform distribution of journeys, and by deriving estimates of
local and nonlocal movement potential. As found in Bennett and Wright’s (1984) quali-
tative research, burglars seemed to avoid street segments with higher estimated levels of
vehicular traffic. Moreover, street segments with greater estimated volumes of nonlocal
passers-by and lower estimated volumes of local passers-by were found to be more likely
to be targeted by burglars, although—and in line with findings from qualitative research
(e.g., Bennett and Wright, 1984; Wright and Decker, 1994)—these “taste preferences”
also varied across offenders. The correlation between the coefficients representing the es-
timated number of local and nonlocal passers-by (guardianship) was also significant. As
a result, burglars who preferred street segments for which fewer local passers-by would
be expected also simultaneously preferred those where more nonlocal passers-by would
be expected (and vice versa). That is, rather than preferring street segments where no
passers-by would be expected whatsoever, burglars tended to prefer streets where people
would be expected but where fewer local people would be anticipated. These findings sup-
port predictions from the “defensible space” perspective for which nonlocal movement
would be perceived to be detrimental to effective guardianship by suppressing the abil-
ity of local residents (and others) to exhibit territoriality and deter crime. This supports
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Newman’s (1972) suggestion that crime risk is influenced by both how much movement
there is on a street and who is involved.

To some extent, these findings are also in keeping with the ideas underpinning social
disorganization and associated theories (e.g., Sampson and Groves, 1989). That is, in areas
where the estimated number of nonlocal passers-by is high, residents’ ability to act collec-
tively to deter crime may be impaired. Nevertheless, an alternative interpretation of this
finding is that the key ingredient is not social disorganization but simply guardianship, and
that effective guardianship is directly influenced by the way in which urban form shapes
the movement of different people through places. In this way, there would still be a form
of social organization (as who is present seems to matter), but it would be much simplified
and more consistent with Newman’s ideas than with those invoked by theories of social
disorganization. In the current study, we included estimates of social disorganization as
control variables, and so the effect of nonlocal movement was estimated net of area-level
indicators of social disorganization. However, the indicators of social disorganization we
used here were for larger spatial units than the modeled target locations (street segments),
and the (census) data we used represent only indirect estimates of social processes. Thus,
future research may seek to combine more precise approaches to measuring local social
processes (Sampson and Groves, 1989; Sampson, Raudenbush, and Earls, 1997; see also,
Weisburd, Groff, and Yang, 2012) with the approach to investigating the role of the road
network employed here.

When we consider our estimates of local and nonlocal movement further, it is, of
course, important to note that they are estimates. Their derivation was based on the
principles of graph theory (and on common sense), which have been verified for pedes-
trian movement more generally (e.g., Hillier and Iida, 2005), but future studies might be
designed to explore this further. For example, our implementation is a first step and is
consequently a simple one. What is local may vary by person, area, and composition of
the road network. For example, older adults may have a more extended sense of what they
perceive as local when compared with their younger counterparts. Those who commute
to work on foot may have a different perception of what is local when compared with
those who use vehicular transport. Other possibilities exist. Areas will vary in terms of
housing density, and in dense areas, only those homes very close to a person’s residence
might be perceived as local, whereas in low-density areas, people’s perception of local
might extend over larger geographic areas. The composition of the road network too can
directly affect how aware people become of particular locations. For example, grid lay-
outs offer uninterrupted sight lines making areas permeable and predictable (see Beavon,
Brantingham, and Brantingham, 1994), facilitating awareness of locations and potentially
what is perceived to be local. On the other hand, more irregular layouts decrease per-
meability and limit awareness of locations (Brantingham and Brantingham, 1993), even
those nearby that, in turn, may reduce what people perceive as local. For simplicity, here
we differentiate between local and nonlocal areas, which assumes a step-function in the
way that people perceive areas. In reality, people’s perceptions may vary along a contin-
uous rather than a binary scale. For the reasons discussed, examining this issue in a more
precise way was beyond the scope of this article, but we would encourage others to do
so in the future. Such studies are likely to involve additional methods to those used here,
such as interviews and field studies.

It is also important to acknowledge limitations associated with the police data analyzed
here. Not all crimes are recorded by, or cleared by, the police, and consequently, the
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current findings may only apply to the sample of offenders who came to the attention of
the police. This is, of course, true of all studies that involve the analysis of crimes cleared
by the police, but the outcomes of recent work (Johnson, Summers, and Pease, 2009;
Lammers, 2014) have revealed that spatial patterns of offending observed for those who
are cleared by the police and those who are not are similar. Nonetheless, replication is
needed to establish the external validity of the findings reported here, and future research
might seek to do so comprising other forms of data.

In summary, in the current study, we used graph theory metrics and a mixed logit
approach to test theories of criminal location choice for the crime of burglary. Analy-
ses were conducted at a much finer spatial scale than has been generally the case hith-
erto. This is important not because smaller is better but because the street segment is
likely one key scale at which people navigate their environment and events (criminal
or otherwise) take place. This choice of scale enabled the generation of novel “idiosyn-
cratic” measures of offender awareness. These might be further developed in future re-
search with other anchor points of importance to an offender, such as place of work or
other locations. The more established (overall) betweenness measures could also be ex-
tended to consider (for example) temporal variation in traffic flows, public transportation
systems, and other factors. The use of the mixed logit model also shows considerable
promise, providing insight into variation in individual taste preferences across offend-
ers that is not possible to detect with conditional logit variants. A challenge for future
research will be to explain this variation. For now, our results provide further support
for crime pattern theory, Newman’s concept of defensible space, and theories of social
disorganization.
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