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Key messages 

 The superficial nature of epidermal graft enables it to be performed in a relatively pain 

free manner in an outpatient setting with minimal or no donor site morbidity, however 

little is known about the precise mechanism of healing by epidermal graft. 

 This paper aims to explore the evolution of the harvesting systems, the ultrastructure 

of the epidermal graft and the current hypotheses on the mechanism of wound 

healing by epidermal graft. 

 The healing by epidermal graft is influenced by the interplay of three main 

mechanisms: keratinocyte activation, growth factor secretion and re-epithelialisation 

from the wound edge.  

 We explained how these processes work and integrate to promote wound healing 

based on the current in vivo and in vitro evidence and reviewed the ongoing clinical 

trials. 
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Abstract 

 

Epidermal grafting for wound healing involves the transfer of the epidermis from a healthy 

location to cover a wound. The structural difference of the epidermal graft in comparison to 

the split thickness skin graft and full thickness skin graft contributes to the mechanism of 

effect. Whereas skin grafting is an epidermal transfer little is known about the precise 

mechanism of wound healing by epidermal graft. This paper aims to explore the evolution of 

the epidermal graft harvesting system over the last five decades, the structural advantages of 

epidermal graft for wound healing and the current hypotheses on the mechanism of wound 

healing by epidermal graft. Three mechanisms are proposed: keratinocyte activation, growth 

factor secretion and re-epithelialisation from the wound edge. We evaluate and explain how 

these processes work and integrate to promote wound healing based on the current in vivo 

and in vitro evidence. We also review the ongoing clinical trials evaluating the efficacy of 

epidermal graft for wound healing. Epidermal graft is a promising alternative to the more 

invasive conventional surgical techniques as it is simple, less expensive, and reduces the 

surgical burden for patients in need of wound coverage. 
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Introduction 

 

Epidermal grafts (EG) for wound healing involves the transfer of the epidermal layer from an 

area of healthy skin to the wound bed. The EG are harvested by applying continuous negative 

pressure on the donor site to promote blister formation. The roof of the blister, which is the 

epidermis, is then excised and transferred to the wound. The superficial nature of the graft 

enables this autologous skin grafting to be performed in a relatively pain free manner in an 

outpatient setting with minimal or no donor site morbidity (1, 2). 

The EG has been reported to behave more like a tissue engineered skin graft or a cultured 

keratinocyte sheet, which stimulates the wound to regenerate by itself rather than to provide 

instant wound coverage as seen with FTSG and SSG (3, 4). Cultured keratinocytes have been 

used for resurfacing burn wounds and in the treatment of skin ulcers since the 1970s (5). 

However, the clinical application of the cultured keratinocytes has been limited by the short-

term and long-term results: variable graft take rate, limited mechanical resistance, 

hyperkeratosis, scar contracture, ulceration and blister formation due to reaction towards 

foreign fibroblasts in feeder media (6-8). These results, accompanied by the long culture time 

(typically requiring three to four weeks), the fragility of the sheets, and the high cost, has 

limited the use of this technique to only specialised facilities (9).  

Newer methods developed to overcome these drawbacks, include pre-confluent 

keratinocytes combined with various delivery systems such as dermal substitute (9), polymer 

matrix (10, 11), fibrin glue suspension (12), and aerosol spray (13) as well as co-culture with 

melanocytes (9) require advanced logistics and handling capacity which involves clean room 

facilities and the use of clinical-grade reagents that are compliant with the Advanced Therapy 
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Medicinal Products (ATMPs) guideline (9). Similar challenges are faced by tissue engineered 

skin grafts, which are often not easy to handle, lack durability, are expensive and not available 

off-the-shelf (14).  

EGs are advantageous as they do not require a carrier system, additional culture time, or a 

specialised facility. We have previously reported good clinical results with the use of EGs for 

wound healing in the outpatient setting with over two thirds of patients achieving successful 

wound healing within six weeks (1). Comparable clinical outcomes were reported by several 

other groups (3, 4, 15). However, little is known about its mechanism of healing. 

The goal of this review is to explore the mechanism of healing by EG. We will first highlight 

the evolution of the harvesting system over the last five decades and the structural 

advantages of EG, before exploring the current hypothesis on its healing mechanism. We end 

with proposing the possible models to study the mechanism of healing by EG along with an 

overview on the ongoing clinical trials aimed at evaluating the efficacy of EG for wound 

healing.  

 

EG harvesting systems 

 

Various EG harvesting devices were used over the last fifty years with clear refinement in 

technology over the years (1, 16-19). The three harvesting systems which were most 

commonly used to harvest EG were the Dermovac system (Oy Instrumentarium, Helsinki, 

Findland), the syringe system, and the CelluTome Epidermal Harvesting System (Acelity, San 

Antonio, Texas) (Figure 1). These devices rely on the same principle of applying continuous 
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negative pressure onto healthy skin to promote blister formation, although they vary in the 

amount of the negative pressure generated and the size of graft harvested.  

The earliest device used was the Dermovac, first developed by Kiistala in 1968, which enabled 

separation of the epidermis from the dermis using purely mechanical forces without causing 

any chemical or thermal damage(19). This device consisted of a transparent plexiglass suction 

cup and a hand pump that generated negative pressure of 250-300 mmHg with a blistering 

time of about 1-2 hours (Figure 1a). The suction cup was equipped with an adapter plate, 

which allowed the user to determine the number and size of blisters to be harvested. The 

suction blisters were then excised separately by the surgeon and transferred to the site of 

interest. Smaller grafts were more convenient as larger grafts tended to curl at the edges, 

making the transfer challenging (20). The long harvest time and the size of the equipment 

meant the techniques did not gain popularity (21). 

The EG harvesting system more commonly associated with EG employs syringes (21-23). The 

syringe system was simple, comprising a syringe with the piston removed, placed onto the 

skin then suction applied through the nozzle. This could be simply achieved by a three-way 

connector linked to a larger syringe, which had two to three times the suction capacity of the 

smaller one (Figure 1b). The syringe system had a blistering time of one hour and raised blister 

measuring 1.5 cm in diameter which required surgical excision for transfer (21-23). Variations 

on the system include use of a smaller syringe or subepidermal local anaesthesia infiltration 

(23). However, the reliability of the syringe system is dependent on numerous patient and 

environmental factors(15). Furthermore, its clinical applicability has been limited by the long 

harvest time, the requirement for repeated grafting due to the small graft size as well as being 

tedious with inconsistent blister formation (15). 
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The most recent harvesting system, which has been commercially developed, is the 

CelluTome Epidermal Harvesting System (3, 4, 15). This system consists of an automated 

harvester, a vacuum head and a control unit (Figure 1c). It combines negative pressure of 400-

500 mmHg and temperature of 40oC, allowing 128 micro-blisters (each of 2mm diameter, 

2mm apart) to be raised within 30 minutes(1). The harvester is equipped with an in-built blade 

to excise the roof of the blister and the EG is then transferred by use of an adhesive dressing 

to the designated wound site. Being an automated device, it ensures consistency in the graft 

size and number. In contrast to the previous devices, the shorter harvest time of the 

CelluTome Epidermal Harvesting System comes from the high negative pressure, which is 

applied concurrently with the thermal energy of 40oC and its design which harvests an array 

of micro-blisters (15). It also offers painless graft harvest without anaesthesia, which is easily 

performed in the outpatient and community setting due to the straightforward nature of the 

procedure (3, 4). Serena et al highlighted several advantages of this technique in resource-

poor setting, including simplicity, affordability, reproducibility, efficiency and the capacity of 

non-surgically trained clinician to perform the procedure (4).   

 

Histology of EG 

 

The epidermis is the upper most layer of the skin. The EG harvesting systems separate the 

epidermis from the dermis at the dermal-epidermal junction (DEJ) while preserving the 

histological architecture of the epidermis(19). Ultrastructurally, the DEJ consists of four zones 

(Figure 2): first, the membrane of the basal keratinocytes which contains hemidesmosomes; 

second, the lamina lucida, an electron-lucent region as seen by electron microscopy, which 
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anchoring filaments traverse; third, the lamina densa, an electron-dense area as seen by 

electron microscopy; and fourth, the sub-basal lamina which contains anchoring fibrils(24). 

The anchoring filament links the basal keratinocytes to the lamina lucida while the anchoring 

fibrils link the lamina densa to the underlying dermal matrix (24, 25). Histological study of the 

EG harvested from seven healthy volunteers showed that the separation is sub-epidermal, at 

the level of the sub-basal lamina, with a well-defined basement membrane lining the blister 

(26). Immunohistochemical staining for collagen type IV, the primary component of lamina 

densa, further confirmed that the basement membrane components were contained within 

the micrografts (27, 28).  

Electron microscopic analysis of the EG harvested from healthy volunteers using Dermovac at 

-200 mmHg within 90 to 120 minutes revealed that the ultrastructure of the epidermis is 

preserved, although vacuoles were seen within the keratinocyte cytoplasm (29). Similar 

finding of vacuoles within the cytoplasm was observed in another study analysing EGs 

harvested using the syringe system (30). Despite the presence of vacuoles, the nuclear 

membrane remained intact (30). Furthermore, the epidermal cells were found to be viable in 

a study that analysed EG harvested from healthy volunteers using the CelluTome Epidermal 

Harvesting System, which demonstrated the presence of Ki67 stained proliferative cells at the 

basal layer of the grafts (27). The presence of the nuclear protein Ki67, which is expressed in 

cycling cells (G1, S, G2, and M phases) and absent in resting G0 cells, indicates that the 

proliferative potential of the EG is preserved upon separation (31).  

The separation at the DEJ can be accelerated by heat, with the temperature ranging between 

40oC to 45oC being reported as the optimal temperature for rapid suction blister formation 

(32). In a systematic review on the suction blistering time, skin temperature was identified as 
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the strongest predictor for the blistering time, indicating that the DEJ loses its strength with 

the increasing temperature due to temperature related detachment of the hemi-

desmosomes and/or the inflow of blister fluids (33). The ability of the CelluTome Epidermal 

Harvesting System to raise blisters in a short period of time is due to negative pressure 

coupled with a temperature of about 40oC.  

 

Mechanism of wound healing by EG 

 

The separation at the DEJ maintains the entire ultrastructure of the epidermis, constituents 

of which contributes to its unique wound healing mechanism. The healing by EG is influenced 

by the interplay of three main mechanisms: keratinocyte activation, growth factor secretion 

and re-epithelialisation from the wound edge (Figure 3). Each of these mechanisms will be 

explored in detail in this section.  

 

Keratinocyte activation and migration onto the wound bed 

The first of these mechanisms is the activation of the basal keratinocytes within the EG. 

Whilst, keratinocyte activation in response to epidermal injury has been well reviewed (please 

see references (34, 35)) keratinocyte activation within EG, has not.  Keratinocyte activation 

within EG was proposed to occur in addition to the well understood phases of skin graft 

healing: plasmatic imbibition, inosculation, and revascularization (36). The direct interaction 

between the basal keratinocytes within the EG and the wound bed contributes to this 

additional phase that is not seen in FTSG and SSG, which instead have a layer of dermis that 
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interacts with the wound bed (36). This phase was proposed based on the pronounced 

expression of Ki67 (marker of cell proliferation) and β1 integrin subunit (a putative 

keratinocyte stem cell marker) in the basal keratinocyte layer and on the wound bed after 

epidermal grafting (36). Both the Ki67 and β1 integrin was seen in the first week post grafting 

and disappeared at the fourth week, suggesting that the keratinocyte activation phase begins 

as part of the inosculatory phase and persists into the early stages of the revascularisation 

phase. The activated phenotype is also marked by changes in the cytoskeleton and increased 

expression of the cytoskeletal keratins involved in re-epithelialisation, namely KRT6, KRT16 

and KRT17 (34, 35). 

Arguably, keratinocyte activation could potentially be initiated upon separation of the EG 

from the DEJ during the graft harvest. As seen in epidermal injury, the exposure of the 

keratinocytes to their surrounding initiate the keratinocytes activation cycle(34). This 

activation process is achieved by the expression of several cytokines, with interleukin-1 (IL-1) 

being the most common initiator (34, 35). This cytokine, which is present in the cytoplasm of 

the keratinocytes in an unprocessed form, is converted by cellular injury to a processed form 

and released extracellularly, enabling the surrounding cells to perceive the injury (37). The IL-

1 serves as an autocrine signal to activate the surrounding keratinocytes and as a paracrine 

signal to the dermal fibroblasts, enhancing their migration, proliferation, and production of 

dermal extracellular components (34, 38, 39). The other common initiator of keratinocyte 

activation is the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα) (40). Similar to IL-

1, TNFα acts in an autocrine fashion to stimulate keratinocyte migration, and in a paracrine 

fashion activating fibroblasts(40). 
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The activated keratinocytes are mitotically active and are capable of outgrowth from the 

multiple small epidermal islands onto the wound bed (27). The proliferative capacity of these 

small islands is immense, as exemplified by the ability of Cultured Epidermal Autografts (CEA), 

harvested from a small area, to rescue patients with burn wounds over 30% of their total body 

surface area (41). As the keratinocytes migrate away from the EG, these hyper-proliferative, 

migratory keratinocytes secrete components of basement membrane into the 

microenvironment of the wound bed(34). EG from healthy donors cultured in vitro 

synthesized and secreted components of basement membrane, whereby fibronectin, laminin 

332 and type IV collagen were prominently stained at the expanding peripheries of the 

epidermal islands compared to the terminally differentiated upper layers of the epidermis 

(42, 43). This suggests that keratinocytes deposit basement membrane components on the 

wound which assist in the anchorage and migration of the keratinocytes(44). This ability of 

keratinocytes to secrete products of basement membrane and extracellular matrix is being 

exploited in efforts at producing tissue engineered skin grafts(45). These cell-derived matrices 

are advantageous for bioengineering as they are entirely cell-type specific and are processed 

and deposited onto the surface containing a full portfolio of ligands such as growth factors 

and proteoglycans(45). The synergy between the extra-cellular matrix and cytokines plays a 

pivotal role in the regulation of keratinocyte proliferation during re-epithelialisation.  

 

Expression of cytokines to activate wound bed 

Activated keratinocytes are the principle source of cytokines in the epidermis (46). The 

cytokines secreted can be broadly divided by their biological activities into three categories: 

growth factors, interleukins, and colony stimulating factors (46-48). The production of these 
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cytokines are mediated by the change in cell cycle, cell-differentiation state, a wide range of 

biological and physiological agents, and even the cytokines themselves (46).  

A number of growth factors, including epidermal growth factor (EGF), transforming growth 

factor alpha (TGFα), heparin-binding EGF, and keratinocyte growth factor, are known to 

stimulate keratinocyte motility and proliferation in a wounded epidermis (34, 48). EG 

harvested from three healthy donors and cultured in vitro for seven days have been shown 

to secrete vascular endothelial growth factor (VEGF), transforming growth factor-α (TGF-α), 

platelet-derived growth factors AA (PDGF AA), platelet-derived growth factors AB/BB  (PDGF 

AB/BB), hepatocyte growth factor (HGF), and granulocyte colony-stimulating factor (G-

CSF)(27). These growth factors are known to modulate wound healing response and are able 

to stimulate endogenous process of wound healing (3). Such benefit is seen even with 

allogenic cell therapy that has shown impressive therapeutic value in wound healing (49). The 

allogenic cells, despite not attaching and covering the wound permanently, release growth 

factors, dermal extracellular matrix and basement membrane components to accelerate 

epithelialisation from the wound edge and promote granulation formation from the wound 

bed (49).  

It is known that growth factors in combination are more stimulatory for wound healing in vivo 

than topical application of isolated growth factor therapy (47). However, the combination of 

growth factors has to be tailored to the needs of the wound at any given time. This points to 

the benefit of EGs, which have the potential to deliver a cocktail of growth factors 

continuously in keeping with the stage of healing.  
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Stimulation of wound edge keratinocytes  

Given the potent mitogenic and motogenic effects of the many growth factors, it is likely that 

the EG enhances wound edge keratinocytes to proliferate and migrate into the wound, 

stimulating re-epithelialisation from the wound edge (48, 50). Several authors have reported 

that the EG do not exhibit graft take on the underlying wound bed, however observed re-

epithelialisation occurs from the wound edge, dubbed the ‘edge effect’ (3, 51). Gabriel et al. 

and Serena et al., on the other hand, reported visible graft take and subsequent re-

epithelialisation from the wound edge as well as from within the wound bed when the EG 

exhibited graft take (4, 15). Costanzo et al similarly reported graft take in 8 out of 29 cases 

but highlighted that the major effect appears to be the stimulation of re-epithelialisation from 

the wound edge (51).  

For re-epithelialisation to occur from the wound edge, keratinocytes must first disassemble 

their cell-cell and the cell-substratum adhesion. Numerous regulators modulate the 

proliferation and migration of keratinocytes during epithelialisation (35). A key event in 

breaking the polarity between the tightly organised epithelial cells is the loss of epithelial 

junctions, mediated by the downregulation of the tight and adherens junction proteins, 

zonula occludens 1 (ZO-1) and E-cadherin, respectively. These molecules are the 

transmembrane proteins, which mediate cell-cell interaction and communication (52). These 

transmembrane proteins are known to be co-localized and co-assembled in a multiprotein 

complex with the gap junctional protein, Connexins, especially Connexin 43, the most 

ubiquitous Connexin in the epidermis (Figure 4) (52). Connexins play a vital role in the 

migratory property of keratinocytes in addition to other physiological processes, which 

includes cell differentiation, proliferation, electrical transmission and inflammation(53, 54). 
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Furthermore, Connexins form the centre of a protein complex or “nexus” acting as a master 

gene that can influence the expression of over 300 other genes at the transcriptional level 

(55). The cytoplasmic tail of Connexin 43 is associated with actin cytoskeletal proteins via E-

cadherins, ZO-1, α- and β-catenin, either directly or via adaptors (52, 54). These interactions 

affect both the cell adhesion and cytoskeletal dynamics and therefore the cell migration and 

wound healing. In acute wounding, Connexins are downregulated about 6 hours after injury 

which correlates with the keratinocyte adopting a migratory phenotype as they start to crawl 

across the wound bed to re-epithelialise the wound (53). The upregulation of Connexin 43, 

Connexin 30 and Connexin 26 at the wound edge, as seen in chronic wounds, is known to 

reduce the migratory activity of keratinocytes and fibroblasts due to the substantially 

increased adhesion between cells (56, 57).  

The modulation of the gap junctional proteins by growth factors and cytokines has been 

reviewed extensively by Schalper et al (58). The growth factors expressed by the EG are likely 

to downregulate Connexins at the wound edge, initiating keratinocyte migration. Although 

the exact type and concentration of growth factors expressed by the EG in vivo is yet to be 

outlined, the concentration of growth factors expressed by the grafts in vitro suggests that it 

is likely sufficient to modulate the gap junctional proteins at the wound edge (27, 58).  

 

Models to study wound healing mechanism of EG  

 

There is currently a paucity of data on the precise in vivo wound healing mechanism by the 

EGs.  As EGs stimulates both the wound edge and wound bed to regenerate, analysis should 
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involve tissues taken from these two locations. This could be performed by taking tissue 

biopsies prior to treatment and repeated again at week 1 post treatment or done repeatedly 

at several fixed intervals throughout the treatment. The skin biopsies taken at the wound 

edge can confirm the activation and proliferation of the keratinocytes upon grafting. This can 

be done by observing the morphologic changes of the keratinocytes by a simple haemotoxylin 

and eosin (H&E) staining as well as by immunostaining for proliferative markers and gap 

junctional proteins. The morphological changes and the downregulation of the gap junctional 

proteins can confirm the change of the keratinocytes into a migratory state (56, 59). Tissue 

biopsy from the wound bed, on the other hand, will be able to confirm the activation of the 

wound bed and the presence of components of the basement membrane. Furthermore, 

staining for keratinocyte markers, such as KRT5, KRT6 and KRT14 can confirm the presence of 

the graft on the wound bed (60), as several studies have reported that graft take was not 

clinically visible in most cases (15, 51). Besides tissue biopsy, non-invasive investigation such 

as the analysis of wound fluid collected throughout the treatment will be able to provide 

invaluable information on the expression of cytokines and growth factors (61). As well as 

confirming the type and concentration of growth factors expressed, this will provide insight 

into the changes in expression with treatment.  

Several clinical trials are currently underway to investigate the efficacy of EG in the clinical 

setting using the Cellutome Epidermal Harvesting System. We are currently undertaking a 

randomised controlled trial to evaluate the efficacy of EG against SSG (EPIGRAAFT Trial) (62, 

63). This trial will also include mechanistic analysis to further understand the difference in the 

mechanism of wound healing between the two techniques. Another large randomised 

multicentre controlled trial is comparing the safety and effectiveness of EG combined with 

multi-layered compression therapy for the healing of venous leg ulcers (64). Similarly, the 
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effectiveness of EG for chronic wounds in the outpatient setting is being investigated by a 

non-randomised study which compares EG against SSG from historical controls (65). Besides 

chronic wounds, the efficacy of EG for wounds secondary to inherited connective tissue 

disease, epidermolysis bullosa, is also being evaluated (66). The findings from these high 

quality trials will define the efficacy of this technique and further improve our understanding 

of the mechanism of healing by EG.  

 

Conclusion 

 

EG for wound healing holds promise as a potential alternative to the more invasive 

conventional surgical techniques as it is simple, inexpensive, and reduces the surgical burden 

for patients in need of wound coverage. The increased number of publications in the last 

couple of years testifies the growing clinical popularity of this technique as a form of 

autologous skin grafting in the outpatient setting. In this review, we have highlighted the 

possible mechanisms of wound healing by EG based on the current in vitro and in vivo 

evidence. However, more work needs to be done to better understand the mechanism of 

healing at the cellular level in order to propose an evidence based clinical pathway.  
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Figure 1 

Epidermal graft harvesting systems. (A) The Dermovac system which consists of a pair of 

transparent plexiglass suction cups and a handheld pump. (B) The syringe system which 

consists of a small syringe with the piston removed and connected to a larger syringe via a 

three-way connector. The three-way connector is locked to maintain the negative pressure 

throughout the procedure. (C) The CelluTome Epidermal Harvesting System which consists of 

a control unit connected to a vacuum head.  

 

Figure 2 

Ultrastructure of DEJ and blister cavity. The DEJ consists of four zones: membrane of the basal 

keratinocytes, lamina lucida, lamina densa, and sub-basal lamina. Hemidesmosomes, present 

at the dermal pole of the basal keratinocytes, link to anchoring filaments that connect the 

basal keratinocytes to the lamina lucida. Achoring fibrils link the lamina densa and the dermal 

matrix. Continuous negative pressure forms a blister at the level of sub-basal lamina. 
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Figure 3 

Mechanism of healing by epidermal graft (EG). (A, B, C) The aerial view of four EGs on a 

healthy wound bed. (D, E) The cross-sectional view of an EG on a wound bed. Upon grafting 

(B), the keratinocytes within the EGs are activated and migrate onto the wound bed (yellow 

arrows resembles keratinocyte migration). The activated keratinocytes concurrently secrete 

growth factors to the wound bed to stimulate endogenous process of wound healing (E) 

(green arrows resembles growth factor expression). The activated keratinocytes and the 

growth factors stimulate the wound edge keratinocytes to migrate into the wound, 

accelerating re-epithelialisation from the wound edge (C) (blue arrows resembles the 

migration of the wound edge keratinocyte into the wound). 

Figure 4 

The structural organisation of the gap junctional protein, the Connexin. Each Connexin is 

made of a paired hemi-channel known as a Connexon, which consists of six Connexin protein 

sub-units. Each Connexin protein subunit has four alpha-helical transmembrane proteins, two 

extracellular loops, a cytoplasmic loop, and a N- and C-terminus located within the 

cytoplasm(52). The C-terminus binds to cytoskeletal elements within the cells to regulate 

cellular migratory properties(52).  

 

 


