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Endogenous GABA Controls
Oligodendrocyte Lineage Cell Number,
Myelination, and CNS Internode Length

Nicola B. Hamilton,1 Laura E. Clarke,1 I. Lorena Arancibia-Carcamo,1

Eleni Kougioumtzidou,2 Moritz Matthey,3 Ragnhildur K�arad�ottir,3 Louise Whiteley,1

Linda H. Bergersen,4,5 William D. Richardson,2 and David Attwell1

Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons
to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate
the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in
Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number
of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myeli-
nation but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a
property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lin-
eage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting
that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast,
block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that,
during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction
velocity of action potentials within the CNS.
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Introduction

By speeding action potential conduction, myelination of

CNS axons by oligodendrocytes increases the brain’s cog-

nitive abilities. During development or learning, an adjust-

ment of myelin thickness or internode length may be used to

tune the conduction speed of myelinated axons (Fields, 2008;

Ull�en, 2009). This can promote synchronous neuronal firing

(Lang and Rosenbluth, 2003; Sugihara et al., 1993), make

impulse propagation time less dependent on the spatial trajec-

tory of the axon transmitting information between areas

(Salami et al., 2003), or adjust propagation delays to mediate

sound localization (Ford et al., 2015; Jeffress, 1948; McAl-

pine and Grothe, 2003; Seidl et al., 2010). Magnetic reso-

nance imaging (MRI) reveals changes to white matter

microstructure—perhaps reflecting alterations of myelina-

tion—when human subjects learn a skilled motor task such as

playing the piano (Bengtsson et al., 2005) or juggling (Scholz

et al., 2009). Analogous MRI changes, accompanied by ele-

vated myelin basic protein (MBP) expression, are observed in

rats trained to grasp food pellets (Sampaio-Baptista et al.,

2013), and new myelin production is necessary for mice to

become skilled wheel runners (McKenzie et al., 2014).
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Together, these studies suggest that adaptive myelination is a

normal and essential aspect of neural plasticity.

The proliferation of oligodendrocyte precursor cells

(OPCs) must be controlled in order to generate the correct

number of oligodendrocytes to ensheath the length of axons

requiring to be myelinated. OPC proliferation and myelina-

tion are coordinated by communication between the axons to

be myelinated and the developing oligodendrocyte lineage

cells. This has long been known to involve growth factors,

but OPCs also receive excitatory and inhibitory synaptic

input mediated by glutamate and GABA (Bergles et al.,

2000; Ge et al., 2009; Lin and Bergles, 2004; Karadottir

et al., 2005, 2008; Kukley et al., 2007, 2008; Ziskin et al.,

2007; Zonouzi et al., 2015), suggesting that these neurotrans-

mitters may also control oligodendrocyte development and

myelination. Glutamate has been suggested to block the pro-

liferation and lineage progression of OPCs (Gallo et al.,

1996; Yuan et al., 1998), but also promotes myelin formation

(Lundgaard et al., 2013; Wake et al., 2011). Endogenous

GABA has been reported to have no effect on OPC develop-

ment (Gallo et al., 1996; Yuan et al., 1998), but may stimu-

late OPC migration (Tong et al., 2009) and, by inhibiting

neuronal activity, might be expected to decrease myelination

(Malone et al., 2013; Sampaio-Baptista et al., 2013). Howev-

er, during hypoxia, a decrease of GABAA receptor mediated

signaling to OPCs increases their proliferation whilst delaying

myelination (Zonouzi et al., 2015).

Here we demonstrate a strong effect of endogenous

GABA release on oligodendrocyte development in cerebral

cortical slices. By acting on GABAA receptors, GABA almost

halves the number of OPCs and mature oligodendrocytes

produced. Consequently, myelin coverage of axons is

decreased. Furthermore, the change in the number of OPCs

produced is shown to regulate the myelin sheath internode

length, which has previously been postulated to be set solely

by the axon diameter (Rushton, 1951) or to be an intrinsic

property of the oligodendrocytes carrying out the myelination

(Bechler et al., 2015). Thus, GABA release from inhibitory

interneurons can tune the conduction speed of CNS axons.

Materials and Methods

Organotypic Cortical Slices and Myelination Assay
Sox10-lox-GFP-STOP-lox-DTA (called Sox10-GFP below) mice

express GFP in oligodendrocyte lineage cells (Kessaris et al., 2006),

which allowed us to develop an assay for myelination in organotypic

brain slices in which oligodendrocyte lineage cells fluoresce green,

and neuronal axons and myelin are identified and quantified with

immunofluorescence (Fig. 1). Using this model we could assess

whether changes in myelination reflected changes in the number of

oligodendrocyte lineage cells, axonal density or the myelinating activ-

ity per oligodendrocyte lineage cell.

Coronal cortical slices (350 mm) from 8 day old transgenic

mice were cut, and cultured (De Simoni and Yu, 2006; Rinholm

et al., 2011) in medium containing 50% Minimal Essential Medium

(MEM), 23% Earl’s Balanced Salt Solution (EBSS), 25% horse

serum, penicillin (25 units/mL) and streptomycin (25 mg/mL), all

from Gibco-Invitrogen, and 1.125% nystatin (12.5 units/mL),

36 mM glucose and 5 mM Tris base from Sigma-Aldrich, at 378C

in a humidified atmosphere with 5% CO2. The extracellular concen-

trations of major ions were (mM) NaCl 115, NaHCO3 34,

NaHP04 1, KCl 5.2, CaCl2 1.9, MgCl2 1.1. The feeding medium

was changed every 3 or 4 days. After 2 weeks the slices were fixed

and immunolabeled with markers for myelin (MBP primary, and

AlexaFluor 555 secondary antibodies) and axons (neurofilament

(NF) 200 primary and Cy5.5 secondary antibodies: this emission is

recolored blue in the figures). Images (confocal Z stacks) were taken

of myelination within the gray matter of layers I–VI.

Myelination develops over about 2 weeks in these cultured sli-

ces (Fig. 1A,E). Initially many oligodendrocyte lineage cells are visi-

ble but, as neuronal processes develop, these become fewer in

number as a result of cell death, and differentiate so that MBP

appears. Larger magnification pictures of the cultures and electron

microscope images (Fig. 1B–D) reveal that the great majority of the

MBP is in compact myelin in close apposition to neurofilament-

labeled processes (only 11% of MBP labeled processes were not

clearly wrapping neurofilament labeled axons, and those might be

processes connecting internodes to the oligodendrocyte somata, or

wrapping axons in which the neurofilament labeling was too weak to

see). Thus, very few oligodendrocytes express MBP before they mye-

linate, and labeling is concentrated in compact myelin around axons.

By counting the number of GFP expressing cells, and using

the total fluorescence of secondary antibodies to the NF antibody

and to the MBP antibody as measures of the amount of neuronal

processes and of myelin present (Rinholm et al., 2011), the progress

of myelination in the cultures can be assessed as in Fig. 1E. During

the first few days in culture the number of oligodendrocyte lineage

cells increases as OPCs proliferate, which is followed by a decrease

to below the initial number as cells die. After about a week the

number of neuronal processes reaches a plateau, while myelination

continues for at least another week. To quantify the amount of mye-

lin per neuronal process, we calculated the ratio of the MBP fluores-

cence to NF fluorescence. At high magnification, in the centre of

the cortex, gaps in the myelin corresponding to ankyrin G-

expressing nodes of Ranvier can be seen (Figs. 1B and 5A), allowing

quantification of the number of nodes present and of internode

length (Fig. 5F).

Myelination was quantified (with Metamorph or Image J)

either by measuring the peak intensity of MBP labeling divided by

that of the axon labeling (NF200) in the confocal stack image with

the largest intensity in each stack, to obtain a measure of myelina-

tion per axon (Rinholm et al., 2011), and then averaging over 2-6

stacks from each slice, or by counting the fraction of axons myelinat-

ed in four contiguous regions (Fig. 4I, 30 mm by 25 mm), the overall

position of which was chosen randomly. The amount of myelin per

length of axon was measured by placing a 3 mm by 3 mm square

over the first (from the top left corner) myelinated axon found cross-

ing the top edge of each of the regions in Fig. 4I and integrating the

MBP intensity over this 3 lm square area. The internode length of
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the myelin sheath was measured between two nodes of Ranvier, one

at least of which was within a 92 lm by 160 lm region initially

imaged, and the internode was followed to its end even if that was

outside the initially imaged region (Fig. 5F). These measurements of

sheath length are approximately 1 lm shorter than the length that

would be measured from the centre of one node to the centre of the

next. Measurements of the fraction of axons myelinated, the amount

of myelin per length of axon, the number of nodes of Ranvier per

field of view, the length of Ranvier nodes and the length of interno-

des were collected with the experimenter being blind to the

experimental condition. When measuring internode length, 80% of

internodes remained within one 1.38 lm thick confocal image

plane, while 20% extended across 2 adjacent planes in depth. The

maximum error this could induce in the derived value for the inter-

node length was 0.14%.

Immunocytochemistry
To label organotypic slice cultures, slices were fixed in 4% parafor-

maldehyde in PBS for 1 h, then rinsed three times (for 10 min) in

PBS followed by preincubation in 0.5% Triton and 10% goat serum

FIGURE 1: Development of myelination in cultured cortical slices. A: Cortical slices from mice with oligodendrocyte lineage cells expressing
GFP (under control of the Sox10 promoter, green) after different numbers of days in vitro (DIV). Blue is antibody to neurofilament 200
(NF200) and shows axons; red is antibody to myelin basic protein (MBP). Slice orientation is approximately with the pial surface at the top
and the corpus callosal surface at the bottom. Band of heavy myelination at DIV14 is in layers IV-V (the Baillarger lines). B: Higher magnifica-
tion view of cultures showing neurofilament in axons, some of which are wrapped with MBP containing myelin (green GFP channel not
shown). C: A myelinated axon imaged in cross section. D: EM picture of myelin sheath (large bracket in inset) in cultured slice. The inter-
dense line distance (small bracket) was 12.55 6 0.19 nm and the g ratio was 0.81 6 0.01 in 48 sheaths. E: Mean values of numbers of GFP
expressing cells/mm2 (green, right axis) and mean fluorescence (left axis) of NF200 (blue) and MBP (red) averaged over 920 lm by 920 lm
images (8–15 images at different ages, using 3 animals in each of 2 experiments).
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in PBS for 6–8 h at room temperature. The slices were then incu-

bated with primary antibodies for 36 h at room temperature with

slight agitation, rinsed in PBS three times (for 10 min), and then

incubated with secondary antibodies for 3 h before being rinsed

again in PBS 3 times (for 10 min). Slices were finally mounted on a

microscope slide with Citifluor (glycerol/PBS, Citifluor), covered

with a 0.17 mm thick glass cover slip, and sealed with nail varnish

(Boots, UK). The primary antibodies used were myelin basic protein

(MBP, mouse, IgG, 1:100, Millipore, or rat, IgG 1:200, Millipore),

200kD neurofilament heavy (NF200, chicken, IgY, 1:10000 Abcam),

ankyrin G (AnkG, rabbit, IgG, 1:400, Santa Cruz), APC (mouse,

IgM, 1:50, Calbiochem), cleaved caspase 3 (rabbit, 1:200, Cell Sig-

naling), and NG2 (rabbit, 1:400, Millipore). The secondary anti-

bodies were AlexaFluor antibodies raised in goat (anti-mouse 350,

anti-rat 555, anti-rat 350, anti-rabbit 568 and 633, anti-chicken

488) or donkey (anti-rabbit 647), all from Molecular Probes, or

CY5.5 goat anti-chicken IgY from Abcam or Jackson Labs.

EdU Labeling and Detection
5-ethynyl-2’-deoxyuridine (EdU) (Invitrogen) is a thymidine ana-

logue that is incorporated into the DNA of cells as they undergo

DNA replication (Chehrehasa et al., 2009). EdU was added to the

organotypic slice medium at a concentration of 10 mM, on DIV4

for 48 h, to quantify the percentage of cells that divide between

Days 4 and 6 in vitro. EdU developing was performed immediately

following immunocytochemistry, with the Click-iT EdU Alexa

Fluor-594 Imaging Kit (Invitrogen). Slices were immersed in Click-

iT developing cocktail and incubated for 45 min at 21�C in the

dark, according to the manufacturer’s instructions. Slices were

washed three times in PBS and post-stained with DAPI (300 nM,

Molecular Probes) to visualize cell nuclei.

Electron Microscopy
At DIV14 organotypic slices were immersion fixed in 2% parafor-

maldehyde and 2% glutaraldehyde in 0.1 M cacodylate buffer over-

night. All slices were then post-fixed in 1% OsO4/0.1 M cacodylate

buffer (pH 7.3) at 38C for 2 h before washing in 0.1 M cacodylate

buffer (pH 7.3). The slices were dehydrated in a graded ethanol-

water series at 38C and infiltrated with Agar 100 resin mix. The slice

was then cut perpendicularly to the plane of the slice (in the cortical

region where myelination within the organotypic slice is most

dense), blocked out, and hardened. Ultra-thin sections were taken

on a Reichert Ultracut S microtome. Sections were collected and

stained with lead citrate. The sections were imaged using a Joel

1010 transition electron microscope and a Gatan Orius camera.

Cortical OPC Cultures
These were as described by Lundgaard et al. (2013). Briefly, purified

oligodendrocyte precursors were obtained using the shake off meth-

od of McCarthy and de Vellis (1980) applied to mixed glial cultures

that had been cultured for 10 days. They were resuspended in

DMEM media with modified SATO serum-free supplement (100

mg/mL BSA, 60 ng/mL progesterone, 16.1 mg/mL putrescine, 5 ng/

mL sodium selenite, 5 mg/mL insulin, 5 mg/mL N-acetyl-L-cysteine,

50 mg/mL holo-transferrin and 1% Pen/Strep) and growth factors

(PDGF-aa at 10 ng/mL and FGF-b at 10 ng/mL from Peprotech;

UK). OPCs were seeded at a density of 22 3 103 cells/cm2 onto

PDL coated glass coverslips yielding a purity of 86 6 2% (n 5 18)

NG21 cells after 3 days of proliferation (following the 10 days in

culture with other glia).

Electrophysiology
For studying the electrophysiology of OPCs, they were identified

from their dye-fill morphology and I-V relations, and were whole-

cell clamped with pipettes of series resistance 5–20 MX. Electrode

junction potentials were compensated. For experiments assessing

OPC electrophysiology in organotypic slices, they were superfused at

33 6 18C with bicarbonate-buffered solution containing (mM) 126

NaCl, 24 NaHCO3, 1 NaH2PO4, 2.5 KCl, 1 MgCl2, 2 CaCl2, bub-

bled with 95% O2/5% CO2, pH 7.4. The OPCs were voltage

clamped at 264 mV and ECl was set to 24 mV with KCl-based

solution containing (mM) 130 KCl, 4 NaCl, 1 CaCl2, 10 HEPES,

10 EGTA, 4 MgATP, 0.5 Na2GTP, 0.05 AlexaFluor594 (pH 7.15).

For experiments assessing OPC electrophysiology in culture, the cells

were clamped at 244 mV and superfused at 228C with HEPES-

buffered solution containing (mM): 144 NaCl, 2.5 KCl, 10 HEPES,

1 NaH2PO4,2.5 CaCl2, 10 glucose (pH 7.4). ECl was set to 287

mV by using a K-gluconate based internal solution containing

(mM): 130 K-gluconate, 4 NaCl, 0.5 CaCl2, 10 HEPES, 10

BAPTA, 4 MgATP, 0.5 Na2GTP, 2 K-Lucifer yellow (pH 7.3).

Statistics
Data are shown as mean 6 s.e.m. Unless stated otherwise, Student’s

2-tailed t-tests were used. For multiple comparisons, P values were

corrected using a procedure equivalent to the Holm-Bonferroni

method (for N comparisons in an experiment, the most significant P

value is multiplied by N, the 2nd most significant by N-1, the 3rd

most significant by N-2, etc.; corrected P values are considered sig-

nificant if they are less than 0.05). Analysis of variance showed that

most variability in the data was between different slices rather than

between experiments done on different days, so when pooling data

between different experiments we used the number of slices as the

number of observations for statistical calculations. Numbers on fig-

ure bars show number of slices, except where stated otherwise.

Results

GABA, But Not Glutamate, Regulates the Number
of Oligodendrocyte Lineage Cells
GABA evokes a current in OPCs (Lin and Bergles, 2004),

and will also alter neuronal firing which can influence OPC

proliferation and myelination (Gibson et al., 2014). To inves-

tigate the role of GABA in regulating oligodendrocyte devel-

opment we used organotypic brain slices made from the

frontal cortex of mice that express GFP in oligodendrocyte

lineage cells (see Materials and Methods). Because the slices

are able to retain the cyto-architecture found in the cortex for

many weeks, they are a good model to study neuron-glial

communication while allowing pharmacological manipula-

tion. Fixing slices after different durations in culture, and
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labeling for neurofilament 200 (NF) and myelin basic protein

(MBP), allowed us to image neuronal processes, oligodendro-

cyte lineage cells and myelin, and to monitor the develop-

ment of compact myelin (Fig. 1).

To test the effect of endogenously released glutamate

and GABA on the number of oligodendrocyte lineage cells

generated, we included the NMDA receptor blocker MK-801

(50 lM), the AMPA/KA receptor blocker NBQX (25 lM)

or the GABAA receptor blocker GABAzine (50 lM; bicucul-

line was not used because it also blocks K1 channels: Seutin

and Johnson, 1999) in the culture medium from days 3 to

14 in vitro. Blocking NMDA receptors led to a 40 6 12%

decrease (P 5 0.02) of the amount of neurofilament labeling

in the cultures, probably because neurons need a basal level

of NMDA receptor activation to survive (Hardingham and

Bading, 2003), which precluded a meaningful analysis of

whether NMDA receptors regulate myelination. Deleterious

effects on neurons were not observed when blocking AMPA/

KA or GABAA receptors. NBQX, which blocks excitatory

synaptic transmission from axons to OPCs (Kukley et al.,

2007; Ziskin et al., 2007), had no effect on the number of

oligodendrocyte lineage cells present at DIV14 (Fig. 2A,B),

nor on the amount of labeling for neurofilament (reduced by

3 6 11%, P 5 0.81) or MBP (increased by 4 6 6%,

P 5 0.75). In contrast GABAzine, which blocks inhibitory

synaptic transmission, dramatically increased the number of

oligodendrocyte lineage cells (Fig. 2A,B); the increase over 7

independent sets of cultures (each from 2-3 animals) was

1.76 6 0.08 fold (Fig. 2B), implying that endogenous GABA

release normally decreases the number of oligodendrocyte lin-

eage cells by a factor of 1/1.76 or 43%.

The larger population of oligodendrocyte lineage cells

observed in the presence of GABAzine included more mature

oligodendrocytes. Using the combination of Sox10-GFP

expression and adenomatous polyposis coli (APC) antibody

labeling to define mature oligodendrocytes (Bhat et al., 1996)

we found that, by 2 weeks in culture, GABAzine produced a

large fractional increase in the number of mature (APC-

expressing) oligodendrocytes (increased by 73%) as well as in

the number of APC-negative GFP-positive OPCs (increased

by 48%, Fig. 2D–G). Thus, endogenous GABA, acting via

GABAA receptors, greatly decreases the number of both

OPCs and mature oligodendrocytes. Increasing GABAA

receptor activation, by applying muscimol (10 lM) (Yuan

et al., 1998), decreased the number of oligodendrocyte line-

age cells present at DIV14 by 23 6 6% (Fig. 2B). Thus,

increases and decreases of GABAA receptor activation bidirec-

tionally alter the number of oligodendrocyte lineage cells.

The increase of the number of oligodendrocyte lineage

cells produced by GABAzine did not appear to depend on

NKCC1 transporters accumulating Cl- in the cell to shift

positive the reversal potential for GABAA receptors (so that

GABA depolarizes OPCs: Lin and Bergles, 2004; Tyzio et al.,

2011). Blocking NKCC1 with bumetanide (100 lM, from 3

to 14 days in vitro) had no effect on the change of number

of oligodendrocyte lineage cells produced by GABAzine or

muscimol (Fig. 2B). Blocking GABAB receptors with 50 lM

CGP35348 or activating them with 10 lM baclofen also had

no effect on the number of oligodendrocyte lineage cells pre-

sent (Fig. 2B), unlike a previous report for pure OPC cultures

(Luyt et al., 2007).

GABA Regulates the Proliferation and Death of
Oligodendrocyte Lineage Cells
GABAzine could increase the number of oligodendrocyte lin-

eage cells either by blocking a GABA-mediated suppression of

OPC proliferation, or by blocking GABA-evoked cell death.

To investigate this we applied GABAzine from 3-6 days in

vitro, i.e. the period in Fig. 1E when OPC proliferation dom-

inates. At day 6, NG2-expressing OPCs were the majority of

the oligodendrocyte lineage cells (68.5 6 2.8% in control sli-

ces and 74.6 6 2.4% in GABAzine treated slices, not signifi-

cantly different, P 5 0.11). By DIV6, GABAzine had evoked

an increase in the number of oligodendrocyte lineage cells

(Fig. 2C) similar to that seen at DIV 14 (Fig. 2B), and apply-

ing GABAzine after P6 had much smaller effects (data not

shown) demonstrating that the effects of GABAA signaling

are exerted mainly at the OPC/early oligodendrocyte stage of

development.

Using EdU, we found that GABAzine increased the

fraction of OPCs that were dividing between days 4 and 6 in

vitro (Fig. 3A–C). In addition, labeling for apoptotic cell

death at day 6 in vitro with antibody to cleaved caspase-3,

showed that GABAzine reduced the proportion of SOX10-

GFP cells undergoing apoptosis (Fig. 3D–F). Thus, endoge-

nous GABA release normally suppresses OPC proliferation

and increases cell death.

We investigated whether these effects of GABA were

directly on OPCs, or mediated by changes of neuronal firing,

or involved effects both on OPCs and on neurons. A direct

suppressive effect of GABA on the proliferation of neural

stem cells, mediated by a PI3K-related kinase (PIKK) and his-

tone H2AX, has been reported (Fernando et al., 2011). If

GABA acts in the same way on OPCs then blocking the

action of PIKK should mimic the effect of GABAzine in our

experiments. However, we found that block of PIKK (using

ATM kinase inhibitor, 10 lM) had no effect on the number

of oligodendrocyte lineage cells (decreased by 3 6 3% in 3

experiments using a total of 22 slices for each condition, not

significant: P 5 0.43).

Blocking neuronal firing by applying 1 lM TTX from

Days 3 to 6 in vitro also had no effect on the number of
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FIGURE 2: Blocking GABAARs increases the number of oligodendrocyte lineage cells. A: Cortical slices at DIV14 after culture in control
conditions, or with GABAA or AMPA/KA receptors blocked with GABAzine or NBQX respectively. B: Number of Sox10-GFP-expressing
cells, in control conditions and with the indicated drugs present from DIV3-14 (Gz, GABAzine; Musc, muscimol; CGP, CGP35348; Bac,
baclofen). P values are Holm-Bonferroni corrected for 5 comparisons for Gz, Musc, Bumetanide, CGP, Bac, and for 2 comparisons when
comparing Bumetanide1Gz or Bumetanide1Musc with Bumetanide (numbers on bars are total numbers of slices from 12 experiments
using two or three animals each). C: Effect of GABAzine from DIV3-6 on number of GFP-expressing cells at DIV6 (numbers on bars are
total numbers of slices from 7 experiments using two or three animals each). D: Labeling of oligodendrocyte lineage cells (expressing
GFP, green) for the mature oligodendrocyte marker APC (white) and for MBP (red). Top arrowed GFP-expressing cell expresses APC, as
well as MBP in its myelinating processes (top thin arrow indicates a primary process linking the arrowed soma to a MBP expressing pro-
cess), unlike the bottom cell. E: Number of cells expressing GFP and APC in the presence of GABAzine, normalized to the number in
control conditions (numbers on bars are total number of slices from 3 experiments using 3 animals each). F: Labeling of oligodendrocyte
lineage cells (expressing GFP, green) for APC (white) and for the OPC marker NG2 (red). Unlike the left cell which expresses APC, the
right arrowed cell lacks APC and expresses NG2. G: Number of cells expressing GFP but not APC in the presence of GABAzine, normal-
ised to the number in control conditions (numbers on bars are as in E).
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OPCs produced (decreased by 2.9%, not significant,

P 5 0.7), but blocked the increase in OPC number produced

by GABAzine (Fig. 3G, increased by 8.4%, not significant,

P 5 0.61). If GABA affects proliferation and cell death solely

by acting directly on OPCs, this block could be explained by

TTX suppressing action potential evoked release of GABA

onto OPCs, or blocking voltage-gated Na1 channels in

OPCs that are activated by the depolarization (Lin and Ber-

gles, 2004) that GABA produces. However, in both these sce-

narios, TTX alone should produce the same increase in

proliferation as GABAzine, but it did not (Fig. 3G). An alter-

native hypothesis is that the increase in OPC number evoked

by GABAzine, and its block by TTX, may be due to GABA-

zine increasing neuronal action potential firing, leading to the

release from neurons of a factor promoting OPC proliferation

and decreasing OPC death. However, although the GABAA

agonist muscimol (which should reduce neuronal firing)

decreased the number of oligodendrocyte lineage cells (Fig.

2B), TTX (which should abolish firing completely) had no

effect (Fig. 3G). These results might, however, be explained if

FIGURE 3: Endogenous GABA release decreases proliferation and increases death of oligodendrocyte lineage cells. A,B: Example of
EDU labeling (red) in NG2 expressing cells (green) without (A) and with (B) GABAzine. C: Quantification of fraction of OPCs dividing
between DIV4-6 (numbers on bars are total number of slices from 2 experiments, each using 3 animals). D-E: Example of cleaved cas-
pase 3 labeling (red) in SOX10-GFP expressing cells (green) without (D) and with (E) GABAzine. F: Quantification of fraction of oligoden-
drocyte lineage cells labeling for cleaved caspase 3 at DIV6 (numbers on bars are total number of slices from 2 experiments each using
3 animals). G: TTX has no effect alone on the number of oligodendrocyte lineage cells, but blocks its increase by GABAzine (numbers on
bars are number of slices from 3 experiments each using 3 animals). H: NBQX does not affect the number of oligodendrocyte lineage
cells nor its increase by GABAzine (numbers on bars are total number of slices from 2 experiments each using 2 animals).
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there are two effects regulating OPC proliferation: a direct

effect of GABA on OPCs which suppresses proliferation

(Zonouzi et al., 2015), and release of a factor by active neu-

rons that induces the expression of GABAA receptors or sig-

naling molecules downstream from them, that enables the

number of oligodendrocyte lineage cells to be regulated by

GABA (see Discussion).

In order to determine whether neuronal activity was

needed to maintain GABAA receptor expression in OPCs (cf.

Arellano et al. (2016) who found that the presence of neurons

is needed, but that activity is not), we applied TTX to the

organotypic slices. We measured GABA-evoked currents at

264 mV (with ECl5-4 mV) in patch-clamped Sox10-GFP-

expressing OPCs after incubation in TTX from DIV3 to

DIV6, and found that the currents were not significantly

reduced (19% decrease, P 5 0.53, n 5 9 with and n 5 9 with-

out TTX), in agreement with the lack of dependence of

expression on neuronal spiking seen by Arellano et al. (2016).

We attempted to determine whether GABA has direct

effects on OPC proliferation by making cortical OPC cul-

tures and activating GABAA receptors with muscimol. In

accordance with a recent publication from the Matute labora-

tory (Arellano et al., 2016), GABAA receptor mRNA expres-

sion was downregulated (by 83% and 78% respectively) for

the GABAA receptor a1 and b2 subunits in pure OPC cul-

tures without the presence of neurons or neuronal-

conditioned media (after 10 days in mixed glial culture: see

Methods). However, a GABAA receptor mediated current was

still observed in these cells (at DIV3 in pure OPC cultures

after 10 days in mixed glial culture: see Methods). An out-

ward current of 38 6 8 pA was evoked by 100 lM GABA at

244 mV with ECl set to 287 mV, implying that GABAA

receptors were still functional in the cells. We found that acti-

vating GABAA receptors with muscimol (10 lM), blocking

them with GABAzine (50 lM) or applying TTX (1 lM),

from DIV1 to DIV3 in pure OPC culture, had no effect on

the number of proliferating cells, generating a 6.5% increase

(P 5 0.41), a 7.6% increase (P 5 0.46), and a 3.5% decrease

(P 5 0.98), respectively.

Activation of voltage-gated Na1 channels in OPCs by

the depolarization produced by glutamatergic excitatory syn-

aptic input to OPCs does not contribute to the GABAzine-

evoked increase in OPC number, because having NBQX pre-

sent with the GABAzine did not prevent the increase in cell

number produced by GABAzine (Fig. 3H).

Endogenous GABA Release Decreases Myelination
In contrast to the effect of GABAzine and muscimol on oli-

godendrocyte lineage cell number, neurofilament labeling was

unaffected by these drugs, implying little effect on the growth

of neuronal processes, while total MBP fluorescence was

increased by 42 6 19% by GABAzine and decreased by

33 6 7% by muscimol (Fig. 4A–F). As an index of myelina-

tion per neuronal process, we normalized the summed fluo-

rescence of the MBP present to the summed fluorescence of

the neurofilament present. GABAzine increased this index by

26 6 10%, while muscimol decreased it by 37 6 6% (Fig.

4G,H). The GABAzine-evoked myelination increase was, in

part, the result of GABAzine increasing by 25 6 6% the frac-

tion of axons myelinated, without significantly changing the

number of axons present (Fig. 4I-K). This implies that

endogenous GABA release normally decreases the fraction of

axons myelinated by a factor of 1/1.25 or 20%.

By selecting only myelinated axons, and measuring the

MBP fluorescence per length of axon (Fig. 4L), we found

that GABAzine also increased the amount of myelin labeling

per length of axon by 28 6 11% (Fig. 4M), implying that

endogenous GABA release normally decreases the amount of

myelin per myelinated axon by a factor of 1/1.28 or 22%.

This might reflect an increase in myelin thickness, or in axon

diameter (measurement of which is inaccurate in our light

microscopy images), or both. Thus, endogenous GABA

release normally decreases both the fraction of axons myelin-

ated and the amount of myelin per axon.

Endogenous GABA Increases Internode Length
The myelin sheath internode length has previously been pos-

tulated to be set solely by the axon diameter (Rushton, 1951)

or to be an intrinsic property of the oligodendrocytes carrying

out the myelination (Bechler et al., 2015). However, in

GABAzine there are more OPCs competing to myelinate the

same number of axons. In addition to this being a possible

reason why more axons become myelinated, it may result in

each oligodendrocyte making shorter internodes. We identi-

fied Ranvier nodes using antibody to ankyrin G, or as gaps

in the MBP- and GFP-labeling of the myelinating processes

of oligodendrocytes (Fig. 5A). GABAzine increased, while

muscimol decreased, the number of nodes in each 146 lm

square field of view (Fig. 5B). The 47% increase in node den-

sity produced by GABAzine is larger than the 25% increase

in the number of axons myelinated (Fig. 4K), implying that

GABAzine decreases the separation of nodes along axons, i.e.

decreases the internode length. GABAzine and muscimol did

not alter the lengths of the nodes themselves (Fig. 5C–E).

The distribution of internode lengths differed significantly

between control slices and GABAzine-exposed slices (Fig. 5F–

G), corresponding to a 13% decrease of mean internode

length in GABAzine treated slices (Fig. 5H: the Gaussian fits

to the distributions in Fig. 5G predict a 21% decrease),

which implies that endogenous GABA release normally

increases the mean internode length by a factor of 1/1.13 or

12%.
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FIGURE 4: Endogenous GABA release decreases myelination. A, C, E, G: Cortical slices at DIV14 after culture in control conditions, or
with GABAzine or muscimol present from DIV3-14, showing labeling for (A) Sox10-GFP, (C) neurofilament (NF200), (E) MBP and (G) all
the labels. B, D, F: Quantification (averaged over the whole image) of the labeling in the panels to the left (panel B is similar to the 1st,
3rd, and 4th bars in Fig. 2B but using data only for the slices from which panels D, F, and H were obtained; numbers on bars are total
number of slices from 7 experiments using 2 or 3 animals each). H: Ratio of labeling for MBP to that for NF200. I: Specimen labeling
with superimposed squares for quantification of the fraction of NF200-expressing axons (blue) that are myelinated (i.e., wrapped with
MBP, red). J-K: Effect of GABAzine from DIV3-14 on the number of axons present per rectangle (J) and the percentage of axons myelin-
ated (K); numbers are total number of areas from 8 slices, in 2 experiments with 3 mice each. L: Specimen image of myelinated axon,
with 3 lm long region of interest used to quantify the amount of MBP per micron of axon. M: Effect of GABAzine on MBP fluorescence
intensity per micron of axon. Numbers on bars are total number of axons in 8 slices, from 2 experiments using 3 mice each.
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Discussion

Our data reveal that the neurotransmitter GABA exercises a

major influence on the number of oligodendrocyte lineage

cells in situ in cerebral cortical slices. Blocking the effects of

GABA on GABAA receptors nearly doubled the number of

oligodendrocyte lineage cells (Fig. 2A,B), increased myelina-

tion (Fig. 4G,H) and decreased internode length (Fig. 5G,H).

Thus, endogenous GABA release is important in determining

the development of these cells (Zonouzi et al., 2015).

In contrast, blocking endogenous glutamatergic excita-

tion had no effect on the number of oligodendrocyte lineage

cells (Fig. 2B). These observations are in contrast to those of

Yuan et al. (1998), who found that glutamate decreased the

number of oligodendrocytes in cerebellar slices, while GABA

had no effect. The reason for this difference is unclear

(although we note that LoTurco et al. (1995) found a

suppressive effect of GABA on cortical progenitor cell

proliferation, similar to what we find for oligodendrocyte lin-

eage cells). It may imply a difference between the neocortex

and the cerebellar cortex in the mechanisms regulating cell

proliferation and myelination.

The increase in the number of CC1-expressing mature

oligodendrocytes and myelination seen in the presence of

GABAzine contrasts with the inhibition of lineage progression

reported by Zonouzi et al. (2015) when the GABAA receptor

blocker bicuculline was injected in vivo. This could reflect

the fact that bicuculline salts have nonspecific actions and, in

addition to blocking GABAA receptors, also block Ca21-acti-

vated K1 channels (Seutin and Johnson, 1999). The increase

of myelination is presumably a result of the increase in

the number of oligodendrocyte lineage cells which is pro-

duced (Fig. 3A–F) by an increase of proliferation of OPCs,

and also a decrease of cell death (which occurs both at the

OPC stage and after differentiation into pre-myelinating

FIGURE 5: Endogenous GABA release increases internode length. A: Myelinated axon node of Ranvier labeled for ankyrin G (Ank G),
myelin basic protein (MBP) and neurofilament (NF200); right panel shows merged image. B: Nodes per 146 lm square field of view at
DIV14, in control conditions, or with GABAzine or muscimol present from DIV3-14. Numbers on bars are fields of view; 6-10 fields were
taken per slice (a total of 6 slices were used from 2 mice). C-E: Node lengths (measured from all the nodes imaged for panel B) in differ-
ent conditions assessed as: (C) gap between end of internodal MBP labeling, (D) gap between internodal GFP, and (E) length of ankyrin
G labeling. Numbers on bars are total numbers of nodes counted in B. F: Example of internode length measurement. Nodes are identi-
fied as gaps in GFP and MBP labeling. G: Distribution of internode lengths, L (in 10 lm bins), at DIV14, in control conditions (in eight 92
lm x 160lm images from 4 slices taken from 2 animals), or with GABAzine present from DIV3-14 (7 images from 4 slices). Fits are
Gaussian curves, {A/[r�(2p)]}exp{-(L-M)2/(2r2)}, with parameters A 5 991, mean length M 5 48.9 lm, r 5 20.3 lm in control and A 5 1004,
M 5 38.5 lm, r 5 23.3 lm in GABAzine. P value showing significantly different distributions is from Kolmogorov-Smirnov test. H, Mean
internode length from (G); numbers on bars are internodes.
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oligodendrocytes: Barres et al., 1992; Trapp et al., 1997). The

increased number of OPCs available for myelination (Fig.

2B,C,G) increases the fraction of axons that become myelin-

ated (Fig. 4K) and decreases internode length, presumably

because more OPCs myelinate the same axon (Fig. 5F–H).

Thus, the number of oligodendrocyte lineage cells that are

produced and survive—and the resulting myelination—are

determined not only by a cell-intrinsic clock and/or the avail-

ability of growth factors (Raff et al., 1988; Calver et al.,

1998; van Heyningen et al., 2001), but also by locally

released GABA.

How GABAergic signaling suppresses proliferation and

increases cell death remains unclear. We have shown that it

does not depend on the reversal potential for GABA-evoked

currents being maintained positive to the resting potential by

NKCC1, since the effect of GABAzine on oligodendrocyte

lineage cell number was unaffected by blocking NKCC1 with

bumetanide (Fig. 2B), and so is unlikely to reflect GABA-

evoked depolarization initiating a Ca21 influx through

voltage-gated calcium channels (although we cannot rule out

the possibility that another mechanism keeps [Cl-]i high). In

contrast, Zonouzi et al. (2015) observed that knock-out of

NKCC1 had effects similar to the application of bicuculline.

We considered the following hypotheses for how GABAzine

might increase the number of oligodendrocyte lineage cells.

First we postulated that GABA regulates proliferation

solely by acting on oligodendrocyte lineage cells (as suggested

by Zonouzi et al., 2015). The increase of OPC number pro-

duced by GABAzine (Fig. 2B), would then imply that there is

a tonic release of endogenous GABA onto OPCs. The lack of

effect of TTX on proliferation (Fig. 3G) would imply that this

GABA release is not action potential driven. On this hypothe-

sis, therefore, the GABA would have to be released in an action

potential independent manner, perhaps from OPCs or astro-

cytes, as both synthesize GABA from putrescine using mono-

amine oxidase B (Barres et al., 1990; Yoon et al., 2014).

Inconsistent with this, however, we found that GABAzine had

no effect on proliferation in the presence of TTX (Fig. 3G).

We therefore turned to the idea that all of the actions

of GABAzine are solely on neurons, with GABAzine increas-

ing spiking and promoting the release of a substance that pro-

motes OPC proliferation. This would be consistent with

GABAzine having no effect in TTX (Fig. 3G), but to explain

why TTX alone has no effect (Fig. 3G) we would have to

also postulate that the spiking rate is very low in the absence

of GABAzine. If this were the case, however, the GABAA ago-

nist muscimol (which is expected to decrease the spiking rate

like TTX), should also have no effect on OPC proliferation,

but in fact it decreases proliferation and myelination (Figs.

2B and 4F).

Thus, the effects of the GABAergic agents and TTX

that we have observed apparently cannot be explained solely

in terms of an action of GABA solely on OPCs (as postulated

by Zonouzi et al., 2015) or solely on neuronal spiking. How-

ever, the combination of spiking-induced release of a factor

regulating OPC proliferation and a direct suppressive effect

of GABAA receptor activation on OPC proliferation might

explain the results. The difference in behaviour from the cere-

bellar OPCs studied by Zonouzi et al. (2015) could reflect

the difference of brain area studied.

While the exact mechanisms remain to be defined, it is

clear that the development of grey matter OPCs is locally reg-

ulated by GABA release (presumably from nearby interneur-

ons: Mangin et al., 2008), which decreases myelination but

increases internode length (Figs. 4 and 5). Consequently,

interneuron activity can tune the conduction speed of nearby

axons, and differences in the local density or activity of inter-

neurons along the path of a set of axons might lead to a spa-

tial variation (Tomassy et al., 2014) of the fraction of axons

that become myelinated, or of the internode length in the

axons that do become myelinated. A spatial variation of inter-

node length has been reported for axons in the auditory sys-

tem and is predicted to affect conduction speed (Brill et al.,

1977; Ford et al., 2015; Seidl et al., 2010).

Finally, as suggested by recent findings (Zonouzi et al.,

2015), it is likely that GABAergic effects on myelination

could play a role in pathology. Therapeutic drugs affecting

the activity of GABAA receptors might alter CNS myelination

if they are administered during the period over which oligo-

dendrocytes develop. Indeed, in rats, the anti-epileptic

GABAA agonist phenobarbital decreases myelin formation in

rat pups when administered either to the pups or to their

mothers before birth (Patsalos and Wiggins, 1982).
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