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A cooperative routing strategy for daily operations is necessary to maintain the effects of hotspot policing and to
reduce crime and disorder. Existing robot patrol routing strategies are not suitable, as they omit the peculiarities
and challenges of daily police patrol includingminimising the average time lag between two consecutive visits to
hotspots, as well as coordinating multiple patrollers and imparting unpredictability to patrol routes. In this re-
search, we propose a set of guidelines for patrol routing strategies tomeet the challenges of police patrol. Follow-
ing these guidelines, we develop an innovative heuristic-based and Bayesian-inspired real-time strategy for
cooperative routing police patrols. Using two real-world cases and a benchmark patrol strategy, an online
agent-based simulation has been implemented to testify the efficiency, flexibility, scalability, unpredictability,
and robustness of the proposed strategy and the usability of the proposed guidelines.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Patrolling is defined as “the act of walking or travelling around an
area, at regular intervals, in order to protect or supervise it” (Abate,
1997, p 578). Police patrol occupies a central place in crime control ef-
forts (Koper, 1995). As Cook (1980) stated, a visible police presence
can increase the public's certainty of punishment, and a frequent police
presence enhances potential criminals' perceptions of risk in the local
area. In daily operations, approaches to police patrols range dramatically
across varying contexts and cultures. Among them, one effective and
promising approach is hotspot patrolling, or place-based patrolling,
which focuses on crime hotspots, i.e., small geographical units with
high crime intensity, such as street segments or small groups of street
blocks (Braga, Papachristos, & Hureau, 2012). The effectiveness of
hotspot patrolling in reducing crime has been proved by a range of ex-
periments, such as the Minneapolis Hot Spots Patrol Experiment
(Sherman & Weisburd, 1995) and the study conducted in Philadelphia
(Ratcliffe et al., 2011). In patrolling, when there ismore than one hotspot
to cover, typically, police officers rotate randomly between hot spots, as
in the field trial in Sacramento, California (Telep et al., 2014). However,
the randomised strategy cannot be applied to situationswhere police re-
sources are limited and there aremany “hotspots” areas. Rather, the suc-
cessful operation of patrolling to cover the “hotspots” requires a detailed
patrol routing strategy. A relevant topic for policing is determining the
efficient spatial distributions of police patrol areas to provide maximal
and multiple coverage of incidents (Curtin et al., 2010). However, such
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strategies are focused on the location of centres of patrol areas, and do
not consider a detailed routing strategy for patrol teams.

Designing a routing strategy for police patrolling is never a simple
task due to several challenges. First, officers are required to cover
hotspots regularly and repetitively (Curtin et al., 2010) as well as
responding to emergencies. Thus, the performance of covering hotspots
should not deteriorate significantly when emergencies occur and some
patrollers are dispatched to handle them. Second, to cover the whole
hotspot area effectively, police patrol requires cooperation among pa-
trollers. Third, to confuse criminals and deter crime, the patrol routes
should be somewhat difficult to predict. Additionally, hotspots may
have different levels of importance and thus require different levels of
attention. This problem is called the optimal design of patrol routes
(ODPR) problem (Reis et al., 2006) or patrol route planning problem
(Chen & Yum, 2010). This work focuses on designing patrol routes for
foot patrol, rather than vehicle patrol.

All these challenges are very similar to the multi-agent patrolling
problem (Almeida et al., 2004), or multi-robot patrolling problem
(Portugal & Rocha, 2011), which focuses on surveillance tasks using mul-
tiple mobile robots to frequently visit important places in the environ-
ment. Here, we review the routing strategies in both police patrol and
robot patrol because of their similarities. More importantly, the advances
ofmulti-agent robot patrolling can benefit police patrol. Distinct solutions
have been proposed to design patrol routes, which present different strat-
egies in terms of routing, cooperation, evaluation, and other features. In
general, they can be divided into pioneer strategies (Almeida et al.,
2004;Machado et al., 2002; Portugal &Rocha, 2013a), operations research
strategies (Chevaleyre, 2004; Elmaliach, Agmon, & Kaminka, 2009;
Portugal & Rocha, 2010), alternative coordination strategies (Chen &
Yum, 2010; Chu et al., 2007; Santana et al., 2004; Sempe & Drogoul,
2003), and interaction strategies (Reis et al., 2006; Tsai et al., 2010).
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Pioneer strategies use simple pioneer architectures to guide patrol-
lers to visit places that have been visited less recently, and it would be
convenient for them to consider other factors, such as distance and co-
ordination. These simple and heuristics-based strategies have been
shown to achieve good performance in covering hotspots and coordi-
nating patrollers (Portugal & Rocha, 2013a). However, most of the pio-
neer strategies are developed in the context of robot patrol, and they
neglect the aspects of being unpredictable in patrol routes and being ro-
bust to the influences of emergency response.

Operations research strategies use graph theory tools to compute low-
cost cycles and efficient routes for each patroller. The tools include Travel-
ling Salesman or the Hamilton cycle (Elmaliach et al., 2009; Pasqualetti,
Franchi, & Bullo, 2012; Smith & Rus, 2010), spanning trees (Fazli &
Davoodi, 2010; Gabriely & Rimon, 2001), and graph partitioning (Sak,
Wainer, & Goldenstein, 2008; Stranders et al., 2013). These strategies
guarantee high visit frequency on targets and efficient cooperation be-
tween patrollers, and they scalewell with different numbers of patrollers.
However, these strategies are naturally deterministic, which wouldmore
easily allow intelligent criminals to predict the patrol routes and take ad-
vantage of the idle time between the visits of patrollers. Additionally,
Hamilton cycles and other algorithms have high computational complex-
ity and are difficult to generalise to large numbers of targets. Moreover,
these strategies would have to re-compute patrol routes if the number
of patrollers were to change because of an emergency response.

Alternative coordination strategies aim to solve the routing problem
using approaches such as task allocation (Sempe&Drogoul, 2003), rein-
forcement learning (Santana et al., 2004), cross entropy method (Chen
& Yum, 2010), and swarm intelligence (Chu et al., 2007). However,
strategies like reinforcement learning and the cross entropy method
prove to be very complex in nature, so while they are suitable for de-
signing patrol routes for a single patroller, it is difficult to extend them
to cooperative patrol with multiple patrollers.

Interaction strategies have been derived from the interactions be-
tween officers and criminals, using agent-based simulation or game the-
orymodels. For example, Reis et al. (2006) designed patrol routes based
on genetic algorithms and a multi-agent-based simulation, where a set
of criminals frequently try to commit crimes and officers try to prevent
crimes. Tsai et al. (2010) derived a strategy for police resource allocation
based onmodelling the interactions between police and terrorists as an
attacker-defender Stackelberg game, where a player always predicts his
opponent's behaviour and chooses the best response. These strategies
Fig. 1. From guide
can effectively prevent crime in crime hotspots, but only on the basis
of a substantial knowledge of crime mechanisms in the area, and it is
difficult to generalise these strategies to guiding police patrol in large
areas and preventing multiple types of crimes.

In summary, existing approaches for patrol routing are not applica-
ble to guide police patrol, as they omit the peculiarities and challenges
of police daily patrol. To facilitate the design of an effective routing strat-
egy for police patrol, the challenges mentioned above need to be speci-
fied and formulated using clear guidelines and need to be quantified by
appropriate evaluation measures. To our knowledge, few studies have
dealt with this issue. Therefore, there is a need for a comprehensive
study of guidelines and evaluation measures for designing a routing
strategy for police patrols.

In thiswork,we propose a set of guidelines for an effective police pa-
trol routing strategy and the relevant evaluation measures, which are
based on the characteristics and challenges of practical police patrol.
Under such guidelines, we develop an effective routing strategy based
on heuristics and Bayesian techniques, and subsequently quantify
their effectiveness through realistic simulation tests and in comparison
with a graph theory strategy.

This paper is a further development of, and substantial improvement
on, a previous work (Chen, Cheng, & Wise, 2015). In addition to the
broad background introduced above, the current paper is substantially
improved in five aspects. First, only three guidelines were discussed in
Chen et al. (2015), namely, efficiency, flexibility, and unpredictability.
Here two more guidelines—scalability and robustness—are developed,
whichmeasure the general applicability of the routing strategy in differ-
ent situations including different team size, hotspot areas, and emer-
gencies, as this has not be discussed in any previous literature.
Furthermore, the guideline of unpredictability is further quantified
here, which was only conceptually discussed in Chen et al. (2015). Sec-
ond, the Bayesian Ant-based Patrol Strategy (BAPS) is further developed
in accommodating these guidelines. Third, an agent-based modelling is
now implemented as an online mode that simulates the real-world po-
lice patrol with the interaction of the controller and patrollers. Fourth,
the strategy is now tested to include the emergency scenario, which
was not included in the previous paper. Finally, in order to test its appli-
cability to different areas, a new case, namely, South Chicago, is added in
addition to Camden. Furthermore, the Camden case is now conducted
with different team sizes and more experiments to cover the five
measures.
lines to BAPS.



Fig. 2. Schematic diagram of patrolling strategies in the emergency scenario. (a) BAPS, (b) CCPS.
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The remaining sections are organised as follows. In Section 2, we for-
mulate the guidelines and evaluationmeasures for police patrol routing
strategies, which is followed by a Bayesian Ant-based Patrolling
Fig. 3. Crime hotspot map. (a) in C
Strategy (BAPS) proposed in Section 3. Section 4 develops an agent-
based simulation of real-time police patrols, in order to test the effec-
tiveness of the proposed routing strategies. To test the proposed
amden, (b) in South Chicago.



Fig. 4. Individual routes of six patrollers (the blue segments are overlaps amongdifferent routes). (a) using BAPS, (b) using CCPS. (For interpretation of the references to colour in thisfigure
legend, the reader is referred to the web version of this article.)
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strategy vigorously, Section 5 presents two case studies of police patrol
using realistic police and crime. Section 6 summarises the major find-
ings and discusses topics for future study.
Table 1
Efficiency performance in Camden (values in seconds).

Team size 12 18 24 30 36 42 48

GAI_CCPS 5079 3477 2605 2039 1709 1443 1254
GAI_BAPS 4407 2833 2128 1700 1401 1223 1075
Relative change (%) −13.2 −18.5 −18.3 −16.6 −18.0 −15.2 −14.3
2. Guidelines and evaluation measures

Beforewe introduce the guidelines, it is necessary to describe the pa-
trolling procedure. This study uses a simplified procedure of real-world
police patrolling. The environment is the road network in an urban area.
Certain road segments are identified as hotspots through crime map-
ping and prediction (Ratcliffe, 2010), and the n hotspots identified are
denoted as H={h1,h2,… ,hn}. The idleness of a hotspot is defined as
the time duration between the two consecutive visits, and the average
idleness of a hotspot is the average of the idleness sequence. Patrollers
have full knowledge of the area and always travel to the next hotspot
via the shortest path on the network. A control centre dispatches the pa-
trolling tasks to the patrollers, and receives the response and feedback
from patrollers. The control centre can use different routing strategy
to guide the movements of patrollers and to affect how the hotspots
are monitored.

Police patrol mainly aims at preventing and reducing potential
crime. A fundamental question is what makes a good police patrol
routing strategy. We claim that a good patrol routing strategy should
follow the guidelines that are proposed in this study, which as a mini-
mum, should include efficiency, flexibility, scalability, unpredictability,
and robustness. Since the efficiency and flexibility have been discussed
in Chen et al. (2015), wewill briefly recap some of themain points here,
with more focus on the new measures for scalability, unpredictability
and robustness.

Several previous studies have provided inspirations for the guide-
lines and measures discussed here. Two basic concepts, namely, the
idleness and global idleness of patrolled targets, were first introduced
by Machado et al. (2002), and these are directly used in this study.
Portugal and Rocha (2013a) proposed the measure of team scalability
to quantify the impact of team size on robot patrolling, and themeasure
of robustness to consider the influence of communication errors in
robot patrolling. Thesemeasures are adapted here to account for the im-
pact of team size and emergency response in police patrol. To our
knowledge, this is the first research to use the measures for team scal-
ability and robustness in police patrol. The other measures, including
flexibility, unpredictability, and spatial scalability, are first proposed in
this study.
2.1. Efficiency

Police patrol requires every important place or hotspot to be regular-
ly and repetitively visited. Thus, efficiency is the foremost requirement
for police patrol, whichmeans patrols should minimise the time lag be-
tween two visits to every hotspot (Chen et al., 2015).

Themeasure of efficiency has been systematically discussed in Chen
et al. (2015), and the concepts are used in this study, except for the dif-
ferent notations. Efficiency ismeasured by global average idleness (GAI)
(Chen et al., 2015). GAI(t) is the global average idleness among all
hotspots at time t, and is the defined as:

GAI tð Þ ¼ ∑
n

i¼1
AIdl hi; tð Þ=n ð1Þ

This studyuses continuous time, and all themeasures related to time
use the time unit of second. Here, AIdl(hi, t) represents the average idle-
ness of a hotspot hi at time t, and n is the number of hotspots. GAI(t)
changes with time. When patrolling begins, the idleness of each hotspot
is set as 0, as if it has just been visited (Chevaleyre, 2004) and then it
gradually converges as the distribution of patrollers becomes stable.
Empirically, GAI(t) is regarded as converged if the relative difference
of its value in two consecutive patrolling is within 1%. The converged
GAI(t) is denoted as GAI, and is used to measure efficiency.
2.2. Flexibility

Theflexibility of a patrol routing strategy is to prioritise themore im-
portant hotspots so that they have higher visiting frequency or lower
average idleness. Such flexibility is measured by weighted global aver-
age idleness (WGAI) (Chen et al., 2015), which is the converged



Table 2
Efficiency performance in South Chicago (values in seconds).

Team size 8 12 16 20 24 28 32

GAI_CCPS 11,133 7425 5613 4418 3711 3152 2762
GAI_BAPS 11,725 6899 4981 3917 3253 2824 2478
Relative
change (%)

5.32 −7.08 −11.26 −11.34 −12.34 −10.41 −10.28
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WGAI(t).WGAI(t) is the weighted GAI(t):

WGAI tð Þ ¼ ∑
n

i¼1
W hið Þ � AIdl hi; tð Þ= ∑

n

i¼1
W hið Þ

� �
ð2Þ

HereW(hi) is theweight of hotspot hi. The higher crimedensity level
of a hotspot, the larger weight, which means the higher priority for pa-
trolling. AIdl(hi, t) is the average idleness of hi at time t.

Similar to GAI(t), WGAI(t) changes with time and converges after a
certain period in patrolling, and the converged value is denoted as
WGAI.

2.3. Scalability

A promising patrol strategy should be applicable to different areas
and with different numbers of patrollers; this is described as scalability.
There are two types of scalability for a patrol routing strategy: team scal-
ability and spatial scalability.

Team scalability is related to how well the strategy performs as the
number of patrollers increases (Portugal & Rocha, 2013b). A scalable pa-
trolling strategy can adapt to different team sizeswithout severe perfor-
mance degradation.

Team scalability can be evaluated by a classical metric, called Balch's
speedup measure (Balch & Arkin, 1994). In the patrolling problem,
Balch's speedup measure reveals how much more efficient a group of
patrollers is than just one patroller in completing the patrolling task,
and is defined as follows:

v Rð Þ ¼ GAI 1ð Þ= R� GAI Rð Þ½ � ð3Þ
Fig. 5. Crime hotspot maps with different risk le
where GAI(R) and GAI(1) are the GAI value of patrolling by R patrollers
and by one single patroller, respectively.

If a group of R patrollers are more efficient and achieve a low GAI
value, the resultant v(R) would be N1.0, and this performance is said
to be superlinear. Linear performance is equal to 1.0, which means
equal performance, and sublinear performance is b1.0, corresponding
to the lower efficiency (Balch & Arkin, 1994). Since it is uncommon for
one patroller to patrol a large area, the measure is modified using a
small size S as the reference, and the modified measure is named as ST
(Scalability of Team Size):

ST Rð Þ ¼ S� GAI Sð Þ½ �= R� GAI Rð Þ½ � ð4Þ

Spatial scalability of a patrol routing strategy concerns its perfor-
mance in different space areas, including the layout of the area, the den-
sity of crime hotspots, and the distribution of police officers. Unlike
team scalability, the various factors of spatial scalability are difficult to
quantify. Generally, spatial scalability can be measured by comparing
the efficiency of the designed strategy with the benchmark strategy.
To our knowledge, noprevious studyhas considered the spatial scalabil-
ity of routing strategies in the context of police patrol.

Herewe consider the influence of crime hotspot density level, as one
example of spatial scalability. For convenience, the notation crime densi-
ty level at x% represents that the total length of crime hotspots cover x%
of the total segment length of the road network. The measure to com-
pare the performance in two hotspot density levels is named as SS (Spa-
tial Scalability):

SS Lið Þ ¼ GAI Lið Þ−GAI LBð Þ½ �= GAI LBð Þ½ � ð5Þ

Here, SS(Li) refers to relative change in GAI performance due to the
change of hotspot density from the baseline level LB (e.g. level at 5%)
to Li (e.g. level at 10% or 15%).

2.4. Unpredictability

If potential criminals can easily deduce the patrol routes or the visits
to hotspots, they would commit a crime within the time between two
visits, thus rendering police patrol ineffective (Sak et al., 2008). There-
fore, it is important to keep the patrolling strategy unpredictable
vels. (a) in Camden, (b) in South Chicago.



Table 5
Performance of team scalability in Camden (GAI values in seconds).

Team size 12 18 24 30 36 42 48

GAI_CCPS 5079 3477 2605 2039 1709 1443 1254
GAI_BAPS 4407 2833 2128 1700 1401 1223 1075
TS_CCPS 1.000 0.974 0.975 0.996 0.991 1.006 1.013
TS_BAPS 1.000 1.037 1.035 1.037 1.049 1.030 1.025

Table 3
Flexibility performance of patrolling on hotspots with priority in Camden (all values in
seconds).

Strategy WGAI GAI GAI of each level

1 2 3 4 5

CCPS 2030 2040 2075 2048 2088 2039 2004
BAPS 1653 1671 1718 1725 1697 1700 1607
WBAPS 1623 1712 2054 1872 1720 1620 1456
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(Sherman et al., 2014; Yin et al., 2012). The greater is the uncertainty of
police visits, the greater is the risk perceived by potential criminals
(Sherman, 1990).

There are two kinds of randomness in the patrolling problem: ran-
domness of patrol routes and randomness of visits to hotspots. The for-
mer can be evaluated using the entropy of a patrol strategy, as proposed
by Chen and Yum (2010). However, the entropy quantifies the dissimi-
larity of different patrol routes but fails to measure the randomness of
police visits to a given place. An experienced burglar waiting around a
potential target for a time when no patrols are nearby would be more
concerned about predicting the time of the next visit rather than the
routes of the patrol team. Here, the randomness of visitations to
hotspots is evaluated by the average of the standard deviation of idle-
ness on each hotspot:

ASDI tð Þ ¼ ∑
n

i¼1
SDI hi; tð Þ=n ð6Þ

where SDI(hi,t) is the standard deviation of idleness of hotspot hi at time
t, and ASDI(t) is the average of SDI(hi, t) for all hotspots, with total num-
ber n.

Similarly, the converged ASDI(t) is denoted as ASDI. The higher value
of ASDI is favoured, as it means higher unpredictability in the patrol
routes and so it is less likely to be predicted by offenders. This is the
first time that the unpredictability is quantified for police patrol.

Besides the random visiting time, there are other methods to impart
unpredictability to patrolling, such as accessing a long hotspot segment
randomly from both ends.

2.5. Robustness

Because officers are also responsible for dealing with emergency
calls during patrolling, it is necessary to use a robust strategy, i.e., one
that remains effective even if some patrollers are dispatched for emer-
gencies. Here, the measure of robustness is the relative increase of the
GAI value in emergency scenario in comparison with the GAI value in
non-emergency scenario, which is represented as:

RI GAI ¼ GAI Emerg−GAI Normð Þ= GAI Normð Þ � 100% ð7Þ

where RI_GAI is the relative increase of GAI, and GAI_Emerg and
GAI_Norm are the GAI in the emergency scenario and normal scenario
respectively. The routing strategy with low RI_GAI is preferable, as it is
less influenced by emergencies.

To summarise, these guidelines describe five requirements for an ef-
fective police patrol routing strategy to minimise the idleness and its
Table 4
Flexibility performance of patrolling hotspots with priority in South Chicago (all values in
seconds).

Strategy WGAI GAI GAI of each level

1 2 3 4 5

CCPS 4442 4361 4358 4380 4460 4346 4550
BAPS 3890 4032 4046 4035 4000 3869 3753
WBAPS 3888 4214 4762 4466 3999 3715 3554
change in different situations. These requirements are efficiency (global
idleness), flexibility (weighted hotspots), scalability (change of the
number of patrollers), unpredictability (randomness of idleness), and
robustness (dealing with emergencies). It is difficult to define the gen-
eral threshold values of each evaluation criteria to identify an effective
strategy, as this depends on the situation, which will be shown in the
case studies in Section 4.
3. An online Bayesian ant-based patrolling strategy

This section describes how the aforementioned guidelines are trans-
ferred into a patrol routing strategy. The strategy to achieve the neces-
sary efficiency and flexibility has been described in Chen et al. (2015);
here, we give details of how to turn other guidelines into the same
Bayesian Ant-based Patrolling Strategy (BAPS). This will provide a
new perspective to understand the routing strategy and an example to
transfer the guidelines to a practical strategy.
3.1. Transferring guidelines to strategy

To follow the guidelines, one possible “bottom-up” approach is to
turn each guideline into implementable modules, which are then as-
sembled to form a complete routing strategy (see Fig. 1). First, the effi-
ciency requires fair and frequent visits on each hotspot, without any
hotspot being neglected for a long time, which requires tracking of the
visit history of each hotspot (“history tracking” for short), and deci-
sion-making that favours less-visitedhotspots. Second, theflexibility re-
quires prioritising important hotspots in the “history tracking”. Third,
the unpredictability of patrol routes would prefer irregular or random
visiting times to hotspots, rather than the repetition of a predefined
route. Fourth, the scalability calls for the cooperation among patrollers,
and the cooperation should be adaptable to different hotspot distribu-
tions and different team sizes. That is, the route of one patroller should
take account of the routes and distribution of other patrollers. Fifth, the
robustness requires real-time routing, which considers the current
hotspot distribution and activity of patrollers.

The next question is how to implement and assemble thesemodules
to form a strategy. The modules of visit history tracking and prioritising
important hotspots can be implemented by the pheromonemechanism,
with different decaying rates for different weights if needed. The re-
quirements of preference on less-visited hotspots and cooperation
among patrollers can be satisfied by the Bayesian decision-making pro-
cess. Moreover, the random visiting time and real-time routing is
achieved via the one-step routing, which calculates only the next patrol
target in each step.
Table 6
Performance of team scalability in South Chicago (GAI values in seconds).

Team size 8 12 16 20 24 28 32

CCPS 11,133 7425 5613 4418 3711 3152 2762
BAPS 11,725 6899 4981 3917 3253 2824 2478
ST_CCPS 1.000 1.000 0.992 1.008 1.000 1.009 1.008
ST_BAPS 1.000 1.133 1.177 1.197 1.201 1.186 1.183



Fig. 6. Crime hotspot maps with denser hotspots. (a) in Camden with 10% of total road length, (b) in Camden with 15% of total road length, (c) in South Chicago with 10% of total road
length, (d) in South Chicago with 15% of total road length.

25H. Chen et al. / Computers, Environment and Urban Systems 62 (2017) 19–29
3.2. BAPS

The resultant routing strategy BAPS includes two components: pher-
omone mechanism and Bayesian decision. These two components will
be described in sequence.

The pheromone is used to track the visiting history of a hotspot. The
pheromone level of a hotspot is affected by two procedures, including
deposit and decay.

Firstly, deposit occurs when a hotspot is visited at time t and the
pheromone level is increased:

Phe hi; tð Þ ¼ Phe hi; t−1ð Þ þ Phe Dep hið Þ ð8Þ

where Phe(hi, t) is the pheromone level of hi at time t, and Phe_Dep(hi)
is the amount of pheromone deposit on hi after a visit.

Secondly, the pheromone levels decay exponentially at each
hotspot. The decaying from time t0 to t is formulated as:

Phe hi; tð Þ ¼ Phe hi; t0ð Þ � λ hið Þt−t0 ð9Þ

where λ(hi) is the decay rate at hotspot hi, and λ(hi)∈(0,1).
Overall, the pheromone level at a hotspot is affected by the time and

frequency of visits, and is controlled by multiple parameters: the decay
rate and the amount of pheromone per deposit. These parameters can
be adjusted to prioritise certain hotspots.

The Bayesian decision determines which hotspot to patrol in the
next stage. For n hotspots, the decision is applied independently n
times to calculate the posterior possibility, and the hotspot with the
largest possibility is the next target. Factors influencing the posterior
possibility include the pheromone level, the distance from the hotspot
to the patroller, and themoving direction of other patrollers. Therefore,
Table 7
Performance of spatial scalability in denser hotspot maps (values in seconds).

HotspotMap_TeamSize Camden_10p_30 Camden_15p

GAI_CCPS 2806 3415
GAI_BAPS 2489 3132
Relative change (%) −11.30 −8.29
SS_CCPS (%) 37.62 67.48
SS_BAPS (%) 46.41 84.24
the posterior possibility of patrolling hotspot hi is defined as:

P patrol hið ÞjG hið Þ; S hið Þð ÞP patrol hið Þð Þ � P G hið Þjpatrol hið Þð Þ
P G hið Þð Þ

� �

� P S hið Þjpatrol hið Þð Þ
P S hið Þð Þ

� �
ð10Þ

For simplification, the term of time is omitted in Eq. (10).
P(patrol(hi)|G(hi) ,S(hi)) and P(patrol(hi)) are the posterior and prior
possibility of patrolling hi (i=1,n), respectively. G(hi) represents the
gain of patrolling hi. P(G(hi)) is the prior probability of the gain, and
P(G(hi)|patrol(hi)) is the probability of gain G(hi) on the condition
that hi is patrolled.S(hi) represents the number of patrollers that are
going to patrol hi. P(S(hi)) is the prior probability of S(hi), and P(S(hi)|
patrol(hi)) is the probability of S(hi) on the condition that hi is
patrolled. In this study P(patrol(hi)) is defined as uniform among
every hotspot, and is omitted in the computation for simplification.

The gain of patrolling hi, G(hi) is defined as G(hi)=1/[Phe(hi, t)×
NormDist(p,hi)], where NormDist(p,hi) is the normalised distance
from p, the current position of the patroller, to the hotspot hi. The nor-
malisation is done to avoid local optima in which patrollers repeatedly
patrol hotspots in a small cluster and neglect other hotspots. The distri-
bution of G(hi) needs to be defined.Without loss of generalisation, G(hi)
is defined as a continuous random variable with a probability density
function f(g):

f gð Þ ¼ 1
M

� ln
1
L

� �
� e ln 1

Lð Þ� g
M ð11Þ

where L andM are constants, and L N 0,M N 0. L controls the probability
values for zero gain and M is the gain saturation. Empirically, the value
of L is selected as close to 0, and M is the maximum of gain when the
_30 SouthChicago_10p_20 SouthChicago_15p_20

6492 8035
6358 8392
−2.06 4.44
46.94 81.87
62.32 114.25



Table 9
Measure of unpredictability in South Chicago (all values in seconds).

Team size 8 12 16 20 24 28 32

ASdIdl_CCPS 2218 1309 1843 1441 955 1132 1231
ASdIdl_BAPS 7836 5696 4735 4148 3696 3410 3010

Table 8
Measure of unpredictability in Camden (all values in seconds).

Team size 12 18 24 30 36 42 48

ASdIdl_CCPS 939 1233 1599 497 753 583 493
ASdIdl_BAPS 4349 3368 2590 2055 1649 1422 1197
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lower bound of the pheromone level and the lower bound of the nor-
malised distance are used.

In Eq. (10), P(G(hi)) is treated as a normalisation factor and omitted
in the computation for simplification (Jensen & Nielsen, 2007). P(G(hi)|
patrol(hi)) is defined as P(G(hi)|patrol(hi))= f(G(hi)).

P(S(hi)|patrol(hi)) and P(S(hi)) are used to coordinate the multiple
patrollers. The idea behind is that a patroller should avoid patrolling
the same hotspots as other teammates. The distribution of S(hi) can be

defined as fðsÞ ¼ 2m−ðsþ1Þ

2m−1 , where m is the number of patrollers. Like
P(G(hi)), P(S(hi)) is a normalisation term and can be omitted in the
computation for simplification, and P(S(hi)|patrol(hi)) equals f(s=
patrol(hi)).

Overall, the hotspot to patrol next is the one with the highest poste-
rior probability:

hnext ¼ argmax
hi

P patrol hið ÞjG hið Þ; S hið Þð Þ ð12Þ

If more than one hotspot has the equal and highest probability, the
hotspot is randomly selected from these candidates.

Notice that BAPS is a greedy strategy, as it searches only for the op-
timal choice of the next patrol target, instead of building the optimal pa-
trol route for over a long period. A greedy strategy is used to find the
locally optimal choice at each step, in the hope that these steps will
lead to a globally optimal solution (Thomas et al., 2009). It is useful
when obtaining a globally optimal solution is infeasible in a reasonable
time.

4. Agent-based modelling of cooperative police patrols

This section presents a multi-agentmodelling framework to test the
effectiveness of the routing strategy. Agent-based modelling (ABM) is a
simulation technique that seeks to capture how individual behavioural
units interact with each other and with the environment, allowing
higher-order behaviours to emerge from these interactions (Epstein &
Axtell, 1996). Chen et al. (2015) tested BAPS in an agent-based simula-
tion, but only in a non-emergency scenario. This study extends the
framework to incorporate the emergency response.

In this ABM framework, the environment is a street network in the
urban area, and crime hotspots are the street segments with a high
crime risk. There are two types of agents, namely, patrollers and the
control centre. Foot patrolswith uniform skills and speed are dispatched
either to patrol or to dealwith an emergency. The control centre records
the system state (idleness and visiting history of hotspots, etc.), com-
municates with patrollers, calculates patrol routes, and sends tasks to
patrollers.

The framework is used to model BAPS and a benchmark strategy
Christofides Cyclic Patrolling Strategy (CCPS), which is a deterministic
and cyclic patrolling strategy from graph theory (Chen et al., 2015).
CCPS is used as benchmark, as the real-world patrol strategy is confi-
dential and difficult to obtain. Moreover, the cyclic strategies are classi-
cal algorithms for patrolling problems and perform well in different
situations (Chevaleyre, 2004).

CCPS is fundamentally different from BAPS. CCPS firstly compute the
shortest cyclic route that covers every hotspot at least once. This prob-
lem is known as the Rural Postman Problem, which can be solved by
the Christofides Algorithm (Christofides et al., 1981). Then, the patrol-
lers are distributed evenly on the route, and they begin to patrol follow-
ing the same direction on the cycle. Thus, CCPS strives to achieve a
regular and fair visit on each hotspot. In contrast, patrol routes in
BAPS are built in real time, which requires patrollers to communicate
with the control centre after they finish the patrol task, and to wait for
the command of the next patrol target.

In the emergency scenario, patrollers in both BAPS and CCPS would
be interrupted if an emergency occurred. The officers in the
neighbourhood of the emergency would stop patrolling and head for
the emergency site. They would resume patrolling after dealing with
the emergency. To our knowledge, this is the first time that a cyclic pa-
trolling strategy has been tested in the emergency scenario. We believe
this will give a fair comparison for both strategies.

Processes of the two strategies are presented in Fig. 2. The control
centre consists of the patrol route scheduler and the emergency sched-
uler. The patrol route scheduler calculates the next patrol target for
BAPS patrol (Fig. 2a), or the cycle for CCPS patrol (Fig. 2b), and the emer-
gency scheduler sends out the emergency task to patrollers close to the
emergency sites. Patrollers are assigned to patrol or to respond to emer-
gency calls. Whenever a patroller receives the emergency task, s/he
stops patrolling and responds to the emergency. In BAPS, whenever a
patroller finishes the emergency or patrolling task, s/he sends out
“Task completed” to the control centre and awaits thenext task. Howev-
er, in CCPS, patrollers follow the cycle in their patrolling. The spatial dif-
ferences of the two strategies will be demonstrated in the case studies.
The normal scenario is a simplification of the emergency scenario in
which no emergency occurs and the emergency scheduler is not used.

5. Case studies

To test the applicability of the guidelines and BAPS, two case studies
were conducted, one in the London Borough of Camden, London, United
Kingdom, and the other in South Side, Chicago, Illinois, theUnited States
of America. For convenience, they are called Camden and South Chicago.
The Camden case in this study is distinguished from that of the previous
study (Chen et al., 2015) by different team size and more experiments
to cover the five measures.

The data used are provided by various agencies. Details of the Cam-
den data can be found in Chen et al. (2015), and some original crime in-
cidents were aggregated to the centre of grids when they were
recorded. Emergency calls data are added here to test the robustness.
In the South Chicago case, the street network data are obtained from
OpenStreetMap. The locations of police stations and the crime dataset
from 2001 to present are from the City of Chicago data portal (https://
data.cityofchicago.org). The time duration of crimes used is from
2011-03-01 to 2012-03-01, and the crime types include theft, burglary,
homicide, battery, arson, motor vehicle theft, assault, and robbery.
Crime counts of each segment are computed by the same method as
the Camden case. Due to the lack of emergency call data and police dis-
patch data for South Chicago, the robustness is tested using hypothetical
emergency calls, whose location and time is generated from a uniform
distribution in the area and time period. Crime hotspots are identified
as the street segments with the highest crime density and covering 5%
of the total road length (Chen et al., 2015). There are 311 and 289
crime hotspots in Camden and South Chicago, respectively. Fig. 3
shows the hotspot maps.

The agent-based framework is built using Java and the MASON sim-
ulation toolkit (Luke et al., 2005). The simulation is updated on a tempo-
ral scale of 5 s per simulation step. Simulation results are analysed using
R language and environment (R Core Team, 2015). BAPS and CCPS were
tested with different sizes of patrollers (2–8 officers per police station).

https://data.cityofchicago.org
https://data.cityofchicago.org


Table 10
Robustness performance in Camden in emergency scenario.

Patrollers per emergency 0 1 2 3 4

BAPS_18 0.0% 1.8% 4.5% 4.7% 10.2%
BAPS_30 0.0% 3.0% 3.3% 3.9% 5.4%
BAPS_48 0.0% −0.2% 0.3% 1.0% 2.4%
CCPS_18 0.0% 1.1% 0.9% 1.6% 4.1%
CCPS_30 0.0% 3.2% 4.1% 3.4% 5.5%
CCPS_48 0.0% 4.7% 4.8% 5.7% 6.1%
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GAI or WGAI is considered to converge when its value after any patrol
cycle converges with no N1% difference from the previous cycle. Each
simulation ran for at least 11 patrol cycles, after which, each hotspot
had been visited at least 11 times. This numberwas selected experimen-
tally to guarantee the convergence of GAI or WGAI. The parameters of
BAPSwere selected tominimise theGAI in the trial experiments. For ex-
ample, in selecting the pheromone decaying rate, different values
(0.9999, 0.99991, 0.99992, 0.99993, etc.) were tested in a typical simu-
lation (Camden case, 30 patrollers, 311 hotspots)with other parameters
fixed, and 0.99993was selected, as it resulted in the lowest GAI. The pa-
rameter settings of Camden were directly applied to South Chicago
without further experimenting, as they led to good performance in
South Chicago.

The computational efficiency of BAPS was tested. The simulations
were run on a Dell machine, with a 3.60 GHz Intel Core i7-4790 proces-
sor, 32.0 GB RAM and 64-bitWindows 7 operating system. In the exper-
iment of 48 officers covering 311 hotspots in Camden, the simulation
lasted 82 s, with 7000 times of determining the next patrol target and
thus about 0.01 s cost for each determination. The computational effi-
ciency in the large-scale problem or dynamic situations is subject to fur-
ther experiments.

We used the Camden case to demonstrate the spatial differences of
the two strategies. Fig. 4 shows the coverage and route of six patrollers
using BAPS and CCPS after patrolling for 5760 steps, corresponding to
8 h in the real world, which is a typical shift for policing. The colour of
the route is consistent with the station where the patroller started, ex-
cept that the blue colour represents the route overlap among patrollers.
Under BAPS, each patroller had its distinct route, andmainly patrolled a
small and different area. The level of route overlap, which is the ratio of
segments that had been traversed by over one patroller to segments
that had been traversed, is about 35%. However, under CCPS, patrollers
travelled on the same cycle that traverses every hotspot, and the level
of route overlap is 92%. This indicates that BAPS provides different
routes for different patrollers, while CCPS enforces the same patrolling
route on all the patrollers involved. The evaluation and comparison of
BAPS and CCPS are presented in order according to the guidelines.

5.1. Efficiency

Efficiency ismeasured byGAI. Tables 1 and 2 present the result ofGAI
and the relative change (Bennett & Briggs, 2005) of GAI:

RelativeChange ¼ GAI BAPS−GAI CCPSð Þ= GAI CCPSð Þ � 100% ð13Þ

In Camden, BAPS has lower GAI and consequently better perfor-
mance than CCPS. The relative change varies slightly with the team
Table 11
Robustness performance in South Chicago in emergency scenario.

Patrollers per emergency 0 1 2 3 4

BAPS_12 0.0% 1.7% 13.7% 21.2% 30.9%
BAPS_20 0.0% 4.8% 7.4% 11.4% 18.8%
BAPS_32 0.0% −1.3% 0.3% 3.1% 5.2%
CCPS_12 0.0% 2.9% 7.3% 12.1% 31.2%
CCPS_20 0.0% 3.5% 2.5% 2.7% 0.7%
CCPS_32 0.0% 3.8% 4.1% 4.5% 5.5%
size, reaching themaximumwhen team size is 18 and 24. In South Chi-
cago, the GAI values in BAPS are lower than in CCPS by around 10%, ex-
cept for the team size of 8. This might be because with a smaller patrol
team, officers have to travel longer distances to cover the whole area,
which results in the degeneracy of BAPS efficiency.

5.2. Flexibility

The flexibility of routing strategies is measured by Weighted GAI
(WGAI). Here, the hotspots are evenly divided into five levels, with
crime density and weight decreasing from Level 5 to Level 1. Fig. 5
shows the hotspot map with different risk levels in both cases.

The decay rates are selected experimentally (Chen et al., 2015). The
decay rates from Level 5 to 1) are: 0.99989, 0.99990, 0.99991, 0.99992,
and 0.99993. Table 3 compares the performance of three strategies
(BAPS, WBAPS, and CCPS) in patrolling hotspots of multiple levels
using 30 patrollers in Camden. BAPS or WBAPS have a superior perfor-
mance to CCPS in terms ofWGAI, GAI and GAI of each risk level. In com-
parison with BAPS, WBAPS reduces theWGAI by about 1.8%, at the cost
of a slight rise (2.4%) in GAI. Moreover, the GAI at Level 4 and Level 5
hotspots is reduced moderately by 4.7% and 9.4% when WBAPS is
used. WBAPS provides an easy and effective approach to highlighting
hotspots of higher levels, which shows the advantage of BAPS in that
it can be tuned for specific aims. A similar trend is observed in Table 4
in the South Chicago case with 20 patrollers. WBAPS and BAPS have
lower GAI and WGAI compared with CCPS. WBAPS has slightly lower
GAI and higher WGAI than BAPS, as well as lower GAI in the prioritised
hotspots of Level 4 and 5. The result verifies the flexibility of BAPS to pa-
trol hotspots of varied levels by using varied decay rates.

5.3. Scalability

To test the team scalability, the ST metric (see Eq. (4)) is calculated
for different sizes (see Tables 5 and 6). Table 5 reveals that in Camden,
for all tested team sizes, BAPS systems present a superlinear perfor-
mance as the speedup is N1.0, while the performances of CCPS systems
are sublinear when team size is between 18 and 36. On every tested
team size, the speedup performance of BAPS outperforms CCPS, indicat-
ing the better scalability of BAPS. Moreover, the scalability of CCPS is
achieved by setting all patrollers as evenly distributed in time and
space (Pasqualetti et al., 2012; Smith & Rus, 2010), which means the
starting positions have to be recalculated for each size, while in BAPS
starting positions have little influence on its performance. Similarly, in
South Chicago, BAPS has a superlinear performance and outperforms
CCPS on every team size (see Table 6).

Spatial scalability (SS) was tested by changing the crime hotspot
density level from 5% to 10% and 15%. The higher density level requires
better cooperation between patrolling to cover all hotspots. The corre-
sponding hotspot maps are shown in Fig. 6, and the results are present-
ed in Table 7. For example, Camden_10p_30 represents the experiment
of covering the Camden hotspot map of 10% of the total road length
with 30 patrollers. The SS values in Table 7 use 5% as the baseline den-
sity level, with other factors fixed, including the patrol area, strategy,
and team size. Overall, BAPS outperforms CCPS in all hotspot density
levels, except for the 15% South Chicago hotspotmapwith 20 patrollers.
Furthermore, the SS value of BAPS is consistently larger than CCPS, indi-
cating that BAPS is more affected by the hotspot density level. In sum-
mary, regarding SS, BAPS has better performance on different hotspot
density levels, but it is more sensitive to the high hotspot density levels.

5.4. Unpredictability

ASdIdl is measured to evaluate the unpredictability of patrolling. In
Camden, for different team sizes, the ASdIdl values of BAPS are higher
than those of CCPS (see Table 8). The low standard deviation in CCPS
can be explained by the even distribution of patrollers on the cycle
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and the same patrolling cycle used by all patrollers. In contrast, the high
deviation of idleness in BAPS and the high randomness of patrol routes
would create a perceived “omnipresence” of the police that would deter
crime in crime hotspots (Sherman & Eck, 2002). Likewise, in South Chi-
cago, for every team size, BAPS has higher ASdIdl values, compared with
CCPS (Table 9).
5.5. Robustness

The experiments of robustnesswere conducted using the real-world
emergency records in Camden (March of 2011) and hypothetical emer-
gency calls in South Chicago. When an emergency is reported, the
nearestm patrollers stop patrolling and respond. Due to insufficient de-
tails of the emergency responses (time length, number of patrollers
dispatched, etc.), different settings were attempted, including the total
number of patrollers and the number of patrollers per emergency.
Tables 10 and 11 show the robustness performance in Camden and
South Chicago. For example, BAPS_18 represents the BAPS simulation
with 18 patrollers. The percentages represent relative changes in com-
parisonwith the non-emergency scenario (0 patrollers per emergency).
In Camden (Table 10), the performance of both BAPS and CCPS deterio-
rated slightly or moderately as the number of patrollers required per
emergency increased. Evidently, the higher number of patrollers need-
ed by an emergency, the more affected the patrolling performance is.
Further, holding constant the patrolling strategy and the number of pa-
trollers per emergency means the emergency response has a more
prominent impact on the performance when the patrolling group is
smaller. Comparatively, with the team size of 18, the BAPS patrol was
more affected by the emergency response than was the CCPS patrol.
However, when the group size increased to 48, the influence on the
BAPS patrol was less prominent than that on the CCPS patrol. A similar
comparison exists in South Chicago (see Table 11), where the BAPS pa-
trol wasmore influenced than the CCPS patrol when the group sizewas
12 or 20, andwasmore robust than CCPSwhen the group size increased
to 32. The result supports the robustness of BAPS against emergency
responses.
6. Conclusions and future work

This research developed a set of guidelines for real-world police ac-
tivities, in particular a real-time cooperative police patrol routing. Five
quantitativemeasures have been developed for the guidelines: efficien-
cy, flexibility, unpredictability, scalability, and robustness. Under these
guidelines, an online Bayesian Ant-based Patrolling Strategy (BAPS)
has been developed. This strategy accounts for multiple factors that af-
fect patrol, and it adopts a probabilistic computational framework,
resulting in effective patrolling. As illustrated in the two real-world
case studies, BAPS generally outperforms CCPS in terms of multiple
measures. Thus, BAPS has great potential for real-time cooperative po-
lice patrol and other related applications.

The major contributions of this study include the developments of
the relevant guidelines and measures for a police patrol routing strate-
gy, the development of the BAPS routing strategy following these guide-
lines, and the verification of the strategy using agent-based simulations.

Futureworkwill aim at including the relevant dynamics of police ac-
tivity, such as the coordination between foot patrol and vehicle patrol,
which will provide insight into a more practical patrol routing strategy.
To carry out the research, it is necessary to automatically derive realistic
police-patrol behaviours from GPS tracks of patrols and combine them
into the patrol strategy, whichwill be another challenge. Other interest-
ing directions would include customising patrolling strategy for allevi-
ating specific crime types or focusing on improving the visibility of
policing at public places, which will need to combine multiple sources
of data, such as geodemographics.
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