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Abstract

Multi-view learning is a widely applicable research direction. This paper presents eight

PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers.

These bounds adopt data dependent Gaussian priors which emphasize classifiers with high

view agreements. The center of the prior for the first two bounds is the origin, while the

center of the prior for the third and fourth bounds is given bya data dependent vector.

An important technique to obtain these bounds is two derivedlogarithmic determinant in-

equalities whose difference lies in whether the dimensionality of data is involved. The

centers of the fifth and sixth bounds are calculated on a separate subset of the training

set. The last two bounds use unlabeled data to represent viewagreements and are thus ap-

plicable to semi-supervised multi-view learning. We evaluate all the presented multi-view

PAC-Bayes bounds on benchmark data and compare them with previous single-view PAC-

Bayes bounds. The usefulness and performance of the multi-view bounds are discussed.
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1. Introduction

Multi-view learning is a promising research direction withprevalent applicability [1].

For instance, in multimedia content understanding, multimedia segments can be described

by both their video and audio signals, and the video and audiosignals are regarded as

two views. Learning from data relies on collecting data thatcontain a sufficient signal

and encoding our prior knowledge in increasingly sophisticated regularization schemes

that enable the signal to be extracted. With certain co-regularization schemes, multi-view

learning performs well on various learning tasks.

Statistical learning theory (SLT) provides a general framework to analyze the gener-

alization performance of machine learning algorithms. Thetheoretical outcomes can be

used to motivate algorithm design, select models or give insights on the effects and behav-

iors of some interesting quantities. For example, the well-known large margin principle

in support vector machines (SVMs) is well supported by various SLT bounds [2, 3, 4].

Different from early bounds that often rely on the complexity measures of the considered

function classes, the recent PAC-Bayes bounds [5, 6, 7] give the tightest predictions of the

generalization performance, for which the prior and posterior distributions of learners are

involved on top of the PAC (Probably Approximately Correct) learning setting [8, 9]. Be-

yond the common supervised learning, PAC-Bayes analysis has also been applied to other

tasks, e.g., density estimation [10, 11] and reinforcementlearning [12].

Although the field of multi-view learning has enjoyed a greatsuccess with algorithms

and applications and is provided with some theoretical results, PAC-Bayes analysis of

multi-view learning is still absent. In this paper, we attempt to fill the gap between the

developments in theory and practice by proposing new PAC-Bayes bounds for multi-view

learning. This is the first use of PAC-Bayes analysis to multi-view learning.

An earlier attempt to analyze the generalization of two-view learning was made using
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Rademacher complexity [13, 14]. The bound relied on estimating the empirical Rademacher

complexity of the class of pairs of functions from the two views that are matched in expec-

tation under the data generating distribution. Hence, thisapproach also implicitly relied

on the data generating distribution to define the function class (and hence prior). The cur-

rent paper makes the definition of the prior in terms of the data generating distribution

explicit through the PAC-Bayes framework and provides multiple bounds. However, the

main advantage is that it defines a framework that makes explicit the definition of the prior

in terms of the data generating distribution, setting a template for other related approaches

to encoding complex prior knowledge that relies on the data generating distribution.

Kakade and Foster [15] characterized the expected regret ofa semi-supervised multi-

view regression algorithm. The results given by Sridharan and Kakade [16] take an infor-

mation theoretic approach that involves a number of assumptions that may be difficult to

check in practice. With these assumptions theoretical results including PAC-style analysis

to bound expected losses were given, which involve some Bayesoptimal predictor but can-

not provide computable classification error bounds since the data generating distribution

is usually unknown. These results therefore represent a related but distinct approach.

We adopt a PAC-Bayes analysis where our assumptions are encoded through priors

defined in terms of the data generating distribution. Such priors have been studied by

Catoni [8] under the name of localized priors and more recently by Lever et al. [17] as data

distribution dependent priors. Both papers considered schemes for placing a prior over

classifiers defined through their true generalization errors. In contrast, the prior that we

consider is mainly used to encode the assumption about the relationship between the two

views in the data generating distribution. Such data distribution dependent priors cannot

be subjected to traditional Bayesian analysis since we do nothave an explicit form for the

prior, making inference impossible. Hence, this paper illustrates one of the advantages

that arise from the PAC-Bayes framework.
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The PAC-Bayes theorem bounds the true error of the distribution of classifiers in terms

of a term from the sample complexity and the KL divergence between the posterior and

the prior distributions of classifiers. The key technical innovations of the paper enable

the bounding of the KL divergence term in terms of empirical quantities despite involving

priors that cannot be computed. This approach was adopted in[18] for some simple priors

such as the Gaussian centered atE[yφ(x)]. The current paper treats a significantly more

sophisticated case where the priors encode our expectationthat good weight vectors are

those that give similar outputs from both views.

Specifically, we first provide four PAC-Bayes bounds using priors that reflect how well

the two views agree on average over all examples. The first twobounds use a Gaussian

prior centered at the origin, while the third and fourth onesadopt a different prior whose

center is not the origin. However, the formulations of the priors involve mathematical

expectations with respect to the unknown data distributions. We manage to bound the ex-

pectation related terms with their empirical estimations on a finite sample of data. Then,

we further provide two PAC-Bayes bounds using a part of the training data to determine

priors, and two PAC-Bayes bounds for semi-supervised multi-view learning where unla-

beled data are involved in the definition of the priors.

When a natural feature split does not exist, multi-view learning could still obtain per-

formance improvements with manufactured splits, providedthat each of the views con-

tains not only enough information for the learning task itself, but some knowledge that

other views do not have. It is therefore important that people should split features into

views satisfying the assumptions. However, data split is still an open question and beyond

the scope of this paper.

The rest of this paper is organized as follows. After briefly reviewing the PAC-Bayes

bound for SVMs in Section 2, we give and derive four multi-view PAC-Bayes bounds in-

volving only empirical quantities in Section 3 and Section 4. Then we give two bounds
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whose centers are calculated on a separate subset of the training data in Section 5. After

that, we present two semi-supervised multi-view PAC-Bayes bounds in Section 6. The op-

timization formulations of the related single-view and multi-view SVMs as well as semi-

supervised multi-view SVMs are given in Section 7. After evaluating the usefulness and

performance of the bounds in Section 8, we give concluding remarks in Section 9.

2. PAC-Bayes Bound and Specialization to SVMs

Consider a binary classification problem. LetD be the distribution of featurex lying

in an input spaceX and the corresponding output labely wherey ∈ {−1,1}. SupposeQ

is a posterior distribution over the parameters of the classifier c. Define the true error and

empirical error of a classifier as

eD = Pr(x,y)∼D(c(x) , y),

êS = Pr(x,y)∼S(c(x) , y) =
1
m

m
∑

i=1

I (c(xi) , yi),

whereS is a sample includingm examples, andI (·) is the indicator function. With the

distributionQ, we can then define the average true errorEQ,D = Ec∼QeD, and the average

empirical errorÊQ,S = Ec∼QêS. The following lemma provides the PAC-Bayes bound on

EQ,D in the current context of binary classification.

Theorem 1 (PAC-Bayes Bound [7]).For any data distributionD, for any prior P(c) over

the classifier c, for anyδ ∈ (0,1]:

PrS∼Dm













∀Q(c) : KL+(ÊQ,S||EQ,D) ≤
KL(Q||P) + ln(m+1

δ
)

m













≥ 1− δ,

where KL(Q||P) = Ec∼Q ln Q(c)
P(c) is the KL divergence between Q and P, and KL+(q||p) =

q ln q
p + (1− q) ln 1−q

1−p for p > q and0 otherwise.
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Suppose from them training examples we learn an SVM classifier represented by

cu(x) = sign(u>φ(x)), whereφ(x) is a projection of the original feature to a certain feature

space induced by some kernel function. Define the prior and the posterior of the classifier

to be Gaussian withu ∼ N(0, I ) andu ∼ N(µw, I ), respectively. Note that here‖w‖ = 1,

and thus the distance between the center of the posterior andthe origin isµ. With this

specialization, we give the PAC-Bayes bound for SVMs [7, 18] below.

Theorem 2. For any data distributionD, for anyδ ∈ (0,1], we have

PrS∼Dm

















∀w, µ : KL+(ÊQ,S(w, µ)||EQ,D(w, µ)) ≤
µ2

2 + ln(m+1
δ

)

m

















≥ 1− δ,

where‖w‖ = 1.

All that remains is calculating the empirical stochastic error rateÊQ,S. It can be shown

that for a posteriorQ = N(µw, I ) with ‖w‖ = 1, we have

ÊQ,S = ES

[

F̃(µγ(x, y))
]

,

whereES is the average over them training examples,γ(x, y) is the normalized margin of

the example

γ(x, y) = yw>φ(x)/‖φ(x)‖,

andF̃(x) is one minus the Gaussian cumulative distribution

F̃(x) =
∫ ∞

x

1
√

2π
e−x2/2dx.

The generalization error of the original SVM classifiercw(x) = sign(w>φ(x)) can be

bounded by at most twice the average true errorEQ,D(w, µ) of the corresponding stochastic

classifier [19]. That is, for anyµ we have

Pr(x,y)∼D
(

sign(w>φ(x)) , y
) ≤ 2EQ,D(w, µ).
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3. Multi-view PAC-Bayes Bounds

We propose a new data dependent prior for PAC-Bayes analysis ofmulti-view learning.

In particular, we take the distribution on the concatenation of the two weight vectorsu1

andu2 as their individual product:̃P([u>1 ,u
>
2 ]>) = P1(u1)P2(u2) but then weight it in some

manner associated with how well the two weights agree averagely on all examples. That

is, the prior is

P([u>1 ,u
>
2 ]>) ∝ P1(u1)P2(u2)V(u1,u2),

whereP1(u1) andP1(u2) are Gaussian with zero mean and identity covariance, and

V(u1,u2) = exp

{

− 1
2σ2
E(x1,x2)(x>1 u1 − x>2 u2)

2

}

.

To specialize the PAC-Bayes bound for multi-view learning, weconsider classifiers of

the form

c(x) = sign(u>φ(x)),

whereu = [u>1 ,u
>
2 ]> is the concatenated weight vector from two views, andφ(x) can be

the concatenatedx = [x>1 , x
>
2 ]> itself or a concatenation of maps ofx to kernel-induced

feature spaces. Note thatx1 andx2 indicate features of one example from the two views,

respectively. For simplicity, here we use the original features to derive our results, though

kernel maps can be implicitly employed as well. Our dimensionality independent bounds

work even when the dimension of the kernelized feature spacegoes to infinity.

According to our setting, the classifier prior is fixed to be

P(u) ∝ N(0, I ) × V(u1,u2), (1)

FunctionV(u1,u2) makes the prior place large probability mass on parameterswith which

the classifiers from two views agree well on all examples averagely. The posterior is

chosen to be of the form

Q(u) = N(µw, I ), (2)
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where‖w‖ = 1.

Definex̃ = [x>1 ,−x>2 ]>. We have

P(u) ∝ N(0, I ) × V(u1,u2)

∝ exp

{

−1
2

u>u
}

× exp

{

− 1
2σ2
E(x1,x2)(x>1 u1 − x>2 u2)

2

}

= exp

{

−1
2

u>u
}

× exp

{

− 1
2σ2
Ex̃(u>x̃x̃>u)

}

= exp

{

−1
2

u>u
}

× exp

{

− 1
2σ2

u>E(x̃x̃>)u
}

= exp

{

−1
2

u>
(

I +
E(x̃x̃>)
σ2

)

u
}

.

That is,P(u) = N(0,Σ) with Σ =
(

I + E(x̃x̃>)
σ2

)−1
.

Suppose dim(u) = d. Given the above prior and posterior, we have the following

theorem to characterize their divergence.

Theorem 3.

KL(Q(u)‖P(u)) =
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[x̃>x̃ + µ2(w>x̃)2] + µ2

)

. (3)

Proof. It is easy to show that the KL divergence between two Gaussians [20] in anN-

dimensional space is

KL(N(µ0,Σ0)‖N(µ1,Σ1)) =
1
2















ln(

∣

∣

∣Σ1

∣

∣

∣

∣

∣

∣Σ0

∣

∣

∣

) + tr(Σ−1
1 Σ0) + (µ1 − µ0)

>
Σ
−1
1 (µ1 − µ0) − d















.
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The KL divergence between the posterior and prior is thus

KL(Q(u)‖P(u)) =
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) + tr(I +
E(x̃x̃>)
σ2

) + µ2w>(I +
E(x̃x̃>)
σ2

)w − d

)

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) + tr(
E(x̃x̃>)
σ2

) + µ2w>(
E(x̃x̃>)
σ2

)w + µ2

)

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[tr(x̃x̃>)] +

µ2

σ2
E[(w>x̃)2] + µ2

)

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[x̃>x̃] +

µ2

σ2
E[(w>x̃)2] + µ2

)

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[x̃>x̃ + µ2(w>x̃)2] + µ2

)

,

which completes the proof. �

The problem with this expression is that it contains expectations over the input distribu-

tion that we are unable to compute. This is because we have defined the prior distribution

in terms of the input distribution via theV function. Such priors are referred to as lo-

calized by Catoni [8]. While his work considered specific examples of such priors that

satisfy certain optimality conditions, the definition we consider here is encoding natural

prior assumptions about the link between the input distribution and the classification func-

tion, namely that it will have a simple representation in both views. This is an example of

luckiness [21], where generalization is estimated making assumptions that if proven true

lead to tighter bounds, as for example in the case of a large margin classifier.

We now develop methods that estimate the relevant quantities in (3) from empirical

data, so that there will be additional empirical estimations involved in the final bounds

besides the usual empirical error.

We proceed to provide and prove two inequalities on the involved logarithmic determi-

nant function, which are very important for the subsequent multi-view PAC-Bayes bounds.

9



Theorem 4.

− ln
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

≤ −d lnE
[

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

1/d]
, (4)

− ln
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

≤ −E ln
∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

. (5)

Proof. According to the Minkowski determinant theorem, forn× n positive semi-definite

matricesA andB, the following inequality holds

∣

∣

∣A+ B
∣

∣

∣

1/n ≥
∣

∣

∣A
∣

∣

∣

1/n
+

∣

∣

∣B
∣

∣

∣

1/n
,

which implies that the functionA 7→
∣

∣

∣A
∣

∣

∣

1/n
is concave on the set ofn × n positive semi-

definite matrices. Therefore, with Jensen’s inequality we have

− ln
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

= −d ln
∣

∣

∣

∣

E(I +
x̃x̃>

σ2
)
∣

∣

∣

∣

1/d

≤ −d lnE
[

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

1/d]
.

Since the natural logarithm is concave, we further have

− d lnE
[

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

1/d]
≤ −dE

[

ln
∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

1/d]
= −E ln

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

,

and thereby

− ln
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

≤ −E ln
∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

.

�

DenoteR= sup̃x ‖x̃‖. From inequality (4), we can finally prove the following theorem,

as detailed in Appendix A.

Theorem 5 (Multi-view PAC-Bayes bound 1).Consider a classifier prior given in (1)

and a classifier posterior given in (2). For any data distributionD, for anyδ ∈ (0,1], with
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probability at least1− δ over S∼ Dm, the following inequality holds

∀w, µ : KL+(ÊQ,S||EQ,D) ≤

−d
2 ln

[

fm− ( d
√

(R/σ)2 + 1− 1)
√

1
2m ln 3

δ

]

+
+

Hm

2σ2 +
(1+µ2)R2

2σ2

√

1
2m ln 3

δ
+
µ2

2 + ln
(m+1
δ/3

)

m
,

where

fm =
1
m

m
∑

i=1

∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

1/d
,

Hm =
1
m

m
∑

i=1

[x̃>i x̃i + µ
2(w>x̃i)

2],

and‖w‖ = 1.

From the bound formulation, we see that if (w>x̃i)2 is small, that is, if the two view

outputs tend to agree, the bound will be tight.

Note that, although the formulation offm involves the outer product of feature vectors,

it can actually be represented by the inner product, which isobvious through the following

determinant equality
∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

=
x̃>i x̃i

σ2
+ 1,

where we have used the fact that matrixx̃i x̃>i has rank 1 and has only one nonzero eigen-

value.

We can use inequality (5) instead of (4) to derive ad-independent bound (see The-

orem 6 below), which is independent of the dimensionality ofthe feature representation

space.

Theorem 6 (Multi-view PAC-Bayes bound 2).Consider a classifier prior given in (1)

and a classifier posterior given in (2). For any data distributionD, for anyδ ∈ (0,1], with

probability at least1− δ over S∼ Dm, the following inequality holds

∀w, µ : KL+(ÊQ,S||EQ,D) ≤
f̃ /2+ 1

2

(

(1+µ2)R2

σ2 + ln(1+ R2

σ2 )
)

√

1
2m ln 2

δ
+
µ2

2 + ln
(m+1
δ/2

)

m
,
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where

f̃ =
1
m

m
∑

i=1

( 1
σ2

[x̃>i x̃i + µ
2(w>x̃i)

2] − ln
∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

)

,

and‖w‖ = 1.

The proof of this theorem is given in Appendix B.

Since this bound is independent withd and the term
∣

∣

∣

∣

I+
x̃i x̃>i
σ2

∣

∣

∣

∣

involving the outer product

can be represented by the inner product through (6), this bound can be employed when the

dimension of the kernelized feature space goes to infinity.

4. Another Two Multi-view PAC-Bayes Bounds

We further propose a new prior whose center is not located at the origin, inspired by

Parrado-Herńandez et al. [18]. The new classifier prior is

P(u) ∝ N(ηwp, I ) × V(u1,u2), (6)

and the posterior is still

Q(u) = N(µw, I ), (7)

whereη > 0, ‖w‖ = 1 andwp = E(x,y)∼D[yx] (or E(x,y)∼D[yφ(x)] in a predefined kernel

space) withx = [x>1 , x
>
2 ]>.

We have

P(u) ∝ N(ηwp, I ) × V(u1,u2)

∝ exp

{

−1
2

(u − ηwp)
>(u − ηwp)

}

× exp

{

− 1
2σ2

u>E(x̃x̃>)u
}

.

That is,P(u) = N(up,Σ) with Σ =
(

I + E(x̃x̃>)
σ2

)−1
andup = ηΣwp.
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With d being the dimensionality ofu, the KL divergence between the posterior and

prior is

KL(Q(u)‖P(u))

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) + tr(I +
E(x̃x̃>)
σ2

) + (up − µw)>(I +
E(x̃x̃>)
σ2

)(up − µw) − d

)

=
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[x̃>x̃] + (up − µw)>(I +

E(x̃x̃>)
σ2

)(up − µw)

)

. (8)

We have

(up − µw)>(I +
E(x̃x̃>)
σ2

)(up − µw)

= η2w>p(I +
E(x̃x̃>)
σ2

)−1wp − 2ηµw>pw + µ2w>(I +
E(x̃x̃>)
σ2

)w

= η2w>p(I +
E(x̃x̃>)
σ2

)−1wp − 2ηµw>pw +
µ2

σ2
E[(w>x̃)2] + µ2

= η2w>p(I +
E(x̃x̃>)
σ2

)−1wp − 2ηµE[y(w>x)] +
µ2

σ2
E[(w>x̃)2] + µ2

≤ η2w>pwp − 2ηµE[y(w>x)] +
µ2

σ2
E[(w>x̃)2] + µ2, (9)

where for the last inequality we have used the fact that matrix I −(I + E(x̃x̃>)
σ2 )−1 is symmetric

and positive semi-definite.

Defineŵp = E(x,y)∼S[yx] = 1
m

∑m
i=1[yixi]. We have

η2w>pwp = ‖ηwp − µw + µw‖2

= ‖ηwp − µw‖2 + µ2
+ 2(ηwp − µw)>µw

≤ ‖ηwp − µw‖2 + µ2
+ 2µ‖ηwp − µw‖

= (‖ηwp − µw‖ + µ)2. (10)

Moreover, we have

‖ηwp − µw‖ = ‖ηwp − ηŵp + ηŵp − µw‖ ≤ ‖ηwp − ηŵp‖ + ‖ηŵp − µw‖. (11)
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From (8), (9), (10) and (11), it follows that

KL(Q(u)‖P(u)) ≤ −1
2

ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
2

(‖ηwp − ηŵp‖ + ‖ηŵp − µw‖ + µ)2
+

1
2σ2
E

[

x̃>x̃ − 2ηµσ2y(w>x) + µ2(w>x̃)2
]

+
µ2

2
. (12)

By using inequalities (4) and (5), we get the following two theorems, whose proofs are

detailed in Appendix C and Appendix D, respectively.

Theorem 7 (Multi-view PAC-Bayes bound 3).Consider a classifier prior given in (6)

and a classifier posterior given in (7). For any data distributionD, for anyw, positiveµ,

and positiveη, for anyδ ∈ (0,1], with probability at least1− δ over S∼ Dm the following

multi-view PAC-Bayes bound holds

KL+(ÊQ,S||EQ,D) ≤
−d

2 ln
[

fm− ( d
√

(R/σ)2 + 1− 1)
√

1
2m ln 4

δ

]

+

m
+

1
2

(

ηR√
m

(

2+
√

2 ln 4
δ

)

+ ‖ηŵp − µw‖ + µ
)2

+
Ĥm

2σ2 +
R2
+µ2R2

+4ηµσ2R
2σ2

√

1
2m ln 4

δ
+
µ2

2 + ln
(m+1
δ/4

)

m
,

where

fm =
1
m

m
∑

i=1

∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

1/d
,

Ĥm =
1
m

m
∑

i=1

[x̃>i x̃i − 2ηµσ2yi(w>xi) + µ
2(w>x̃i)

2],

and‖w‖ = 1.

Besides the term (w>x̃i)2 that appears in the previous bounds, we can see that if‖ηŵp−

µw‖ is small, that is, the centers of the prior and posterior tendto overlap, the bound will

be tight.
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Theorem 8 (Multi-view PAC-Bayes bound 4).Consider a classifier prior given in (6)

and a classifier posterior given in (7). For any data distributionD, for anyw, positiveµ,

and positiveη, for anyδ ∈ (0,1], with probability at least1− δ over S∼ Dm the following

multi-view PAC-Bayes bound holds

KL+(ÊQ,S||EQ,D) ≤
1
2

(

ηR√
m

(

2+
√

2 ln 3
δ

)

+ ‖ηŵp − µw‖ + µ
)2

m
+

H̃m

2 +
R2
+4ηµσ2R+µ2R2

+σ2 ln(1+ R2

σ2 )

2σ2

√

1
2m ln 3

δ
+
µ2

2 + ln
(m+1
δ/3

)

m
,

where

H̃m =
1
m

m
∑

i=1

[
x̃>i x̃i − 2ηµσ2yi(w>xi) + µ2(w>x̃i)2

σ2
− ln

∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

],

and‖w‖ = 1.

5. Separate Training Data Dependent Multi-view PAC-Bayes Bounds

We attempt to improve our bounds by using a separate set of training data to deter-

mine new priors, inspired by Ambroladze et al. [22] and Parrado-Herńandez et al. [18].

We consider a spherical Gaussian whose center is calculatedon a subsetT of training set

comprisingr training patterns and labels. In the experiments this is taken as a random sub-

set, but for simplicity of the presentation we will assumeT comprises the lastr examples

{xk, yk}mk=m−r+1.

The new prior is

P(u) = N(ηwp, I ), (13)

and the posterior is again

Q(u) = N(µw, I ). (14)
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One reasonable choice ofwp is

wp =
(

Ex̃[x̃x̃>]
)−1
E(x,y)∼D[yx], (15)

which is the solution to the following optimization problem

max
w

Ex1,y[yw>1 x1] + Ex2,y[yw>2 x2]

Ex1,x2[(w
>
1 x1 − w>2 x2)2]

, (16)

wherew = [w>1 ,w
>
2 ]>. We use the subsetT to approximatewp, that is, let

wp =
(

Ex̃∼T [x̃x̃>]
)−1
E(x,y)∼T [yx]

=















1
m− r

m−r+1
∑

k=r

[x̃kx̃>k ]















−1
1

m− r

m−r+1
∑

k=r

[ykxk]. (17)

The KL divergence between the posterior and prior is

KL(Q(u)‖P(u)) = KL(N(µw, I )‖N(ηwp, I )) = ‖ηwp − µw‖2. (18)

Since we separater examples to calculate the prior, the actual size of the training set

that we apply the bound to ism− r. We have the following bound.

Theorem 9 (Multi-view PAC-Bayes bound 5).Consider a classifier prior given in (13)

and a classifier posterior given in (14), withwp given in (17). For any data distribution

D, for anyw, positiveµ, and positiveη, for anyδ ∈ (0,1], with probability at least1− δ

over S∼ Dm the following multi-view PAC-Bayes bound holds

KL+(ÊQ,S||EQ,D) ≤
1
2‖ηwp − µw‖2 + ln m−r+1

δ

m− r
(19)

and‖w‖ = 1.

Another choice ofwp is to learn a multi-view SVM classifier with the subsetT, leading

to the following bound.
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Theorem 10 (Multi-view PAC-Bayes bound 6).Consider a classifier prior given in (13)

and a classifier posterior given in (14). Classifierwp has been learned from a subset T of r

examples a priori separated from a training set S of m samples. For any data distribution

D, for anyw, positiveµ, and positiveη, for anyδ ∈ (0,1], with probability at least1− δ

over S∼ Dm the following multi-view PAC-Bayes bound holds

KL+(ÊQ,S||EQ,D) ≤
1
2‖ηwp − µw‖2 + ln m−r+1

δ

m− r
(20)

and‖w‖ = 1.

Although the above two bounds look similar, they are essentially different in that the

priors are determined differently. We will see in the experimental results that they also

perform differently when applied in our experiments.

6. Semi-supervised Multi-view PAC-Bayes Bounds

Now we consider PAC-Bayes analysis for semi-supervised multi-view learning, where

besides them labeled examples we are further provided withu unlabeled examplesU =

{x̃ j}m+u
j=m+1. We replaceV(u1,u2) with V̂(u1,u2), which has the form

V̂(u1,u2) = exp

{

− 1
2σ2

u>EU(x̃x̃>)u
}

, (21)

whereEU means the empirical average over the unlabeled setU.

6.1. Noninformative Prior Center

Under a similar setting with Section 3, that is,P(u) ∝ N(0, I ) × V̂(u1,u2), we have

P(u) = N(0,Σ) with Σ =
(

I + EU (x̃x̃>)
σ2

)−1
. Therefore, according to Theorem 3, we have

KL(Q(u)‖P(u)) =
1
2

(

− ln(
∣

∣

∣

∣

I +
EU(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
EU [x̃>x̃ + µ2(w>x̃)2] + µ2

)

. (22)

Substituting (22) into Theorem 1, we reach the following semi-supervised multi-view

PAC-Bayes bound.
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Theorem 11 (Semi-supervised multi-view PAC-Bayes bound 1).Consider a classifier

prior given in (1) withV̂ defined in (21), a classifier posterior given in (2) and an unlabeled

set U= {x̃ j}m+u
j=m+1. For any data distributionD, for anyδ ∈ (0,1], with probability at least

1− δ over S∼ Dm, the following inequality holds

∀w, µ : KL+(ÊQ,S||EQ,D) ≤
1
2

(

− ln(
∣

∣

∣

∣

I + EU (x̃x̃>)
σ2

∣

∣

∣

∣

) + 1
σ2EU [x̃>x̃ + µ2(w>x̃)2] + µ2

)

+ ln
(m+1
δ

)

m
,

where‖w‖ = 1.

6.2. Informative Prior Center

Similar to Section 4, we take the classifier prior to be

P(u) ∝ N(ηwp, I ) × V̂(u1,u2), (23)

whereV̂(u1,u2) is given by (21),η > 0 andwp = E(x,y)∼D[yx] with x = [x>1 , x
>
2 ]>. We have

P(u) = N(up,Σ) with Σ =
(

I + EU (x̃x̃>)
σ2

)−1
andup = ηΣwp.

By similar reasoning, we get

KL(Q(u)‖P(u)) ≤ −1
2

ln(
∣

∣

∣

∣

I +
EU(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
2

(‖ηwp − ηŵp‖ + ‖ηŵp − µw‖ + µ)2
+

1
2σ2
EU

[

x̃>x̃ + µ2(w>x̃)2
]

− ηµE [

y(w>x)
]

+
µ2

2
, (24)

which is analogous to (12).

Then, we can give the following semi-supervised multi-viewPAC-Bayes bound, whose

proof is provided in Appendix E.

Theorem 12 (Semi-supervised multi-view PAC-Bayes bound 2).Consider a classifier

prior given in (23) withV̂ defined in (21), a classifier posterior given in (7) and an unla-

beled set U= {x̃ j}m+u
j=m+1. For any data distributionD, for anyw, positiveµ, and positive
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η, for anyδ ∈ (0,1], with probability at least1− δ over S∼ Dm, the following inequality

holds

KL+(ÊQ,S||EQ,D) ≤
1
2

(

ηR√
m

(

2+
√

2 ln 3
δ

)

+ ‖ηŵp − µw‖ + µ
)2

m
+

1
2

(

− ln(
∣

∣

∣

∣

I + EU (x̃x̃>)
σ2

∣

∣

∣

∣

) + 1
σ2EU [x̃>x̃ + µ2(w>x̃)2] + µ2

)

+ S̄m+ ηµR
√

2
m ln 3

δ
+ ln

(m+1
δ/3

)

m
,

where

S̄m =
1
m

m
∑

i=1

[−ηµyi(w>xi)],

and‖w‖ = 1.

7. Learning Algorithms

Below we provide the optimization formulations for the single-view and multi-view

SVMs as well as semi-supervised multi-view SVMs that are adopted to train classifiers

and calculate PAC-Bayes bounds. Note that the augmented vector representation is used

by appending a scalar 1 at the end of the feature representations, in order to formulate the

classifier in a simple form without the explicit bias term.

7.1. SVMs

The optimization problem [23, 24] is formulated as

min
w,ξ

1
2
‖w‖2 +C

n
∑

i=1

ξi

s.t. yi(w>xi) ≥ 1− ξi , i = 1, . . . ,n,

ξi ≥ 0, i = 1, . . . ,n, (25)
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where scalarC controls the balance between the margin and empirical loss.This problem

is a differentiable convex problem with affine constraints. The constraint qualification is

satisfied by the refined Slater’s condition.

The Lagrangian of problem (25) is

L(w, ξ, λ,γ) =
1
2
‖w‖2 +C

n
∑

i=1

ξi −
n

∑

i=1

λi
[

yi(w>xi) − 1+ ξi
]

−
n

∑

i=1

γiξi , λi ≥ 0, γi ≥ 0, (26)

whereλ = [λ1, . . . , λn]> andγ = [γ1, . . . , γn]> are the associated Lagrange multipliers.

From the optimality conditions, we obtain

∂wL(w∗,b∗, ξ∗, λ∗,γ∗) = w∗ −
n

∑

i=1

λ∗i yixi = 0, (27)

∂ξi L(w∗,b∗, ξ∗, λ∗,γ∗) = C − λ∗i − γ∗i = 0, i = 1, . . . ,n. (28)

The dual optimization problem is derived as

min
λ

1
2
λ>Dλ − λ>1

s.t. λ � 0,

λ � C1, (29)

whereD is a symmetricn× n matrix with entriesDi j = yiyjx>i x j. Once the solutionλ∗ is

given, the SVM decision function is given by

c∗(x) = sign















n
∑

i=1

yiλ
∗
i x
>xi















.

Using the kernel trick, the optimization problem for SVMs isstill (29). However, now

Di j = yiyjκ(xi , x j) with the kernel functionκ(·, ·), and the solution for the SVM classifier is

formulated as

c∗(x) = sign















n
∑

i=1

yiλ
∗
i κ(xi , x)















.
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7.2. MvSVMs

Denote the classifier weights from two views byw1 andw2 which are not assumed to

be unit vectors at the moment. Inspired by semi-supervised multi-view SVMs [25, 26, 4],

the objective function of the multi-view SVMs (MvSVMs) can be given by

min
w1,w2,ξ1,ξ2

1
2

(‖w1‖2 + ‖w2‖2) +C1

n
∑

i=1

(ξi1 + ξ
i
2) +C2

n
∑

i=1

(w>1 xi
1 − w>2 xi

2)
2

s.t. yiw>1 xi
1 ≥ 1− ξi1, i = 1, · · · ,n,

yiw>2 xi
2 ≥ 1− ξi2, i = 1, · · · ,n,

ξi1, ξ
i
2 ≥ 0, i = 1, · · · ,n. (30)

If kernel functions are used, the solution of the above optimization problem can be

given byw1 =
∑n

i=1α
i
1k1(xi

1, ·), andw2 =
∑n

i=1α
i
2k2(xi

2, ·). Since a function defined on view

j only depends on thejth feature set, the solution is given by

w1 =

n
∑

i=1

αi
1k1(xi , ·), w2 =

n
∑

i=1

αi
2k2(xi , ·). (31)

It can be shown that

‖w1‖2 = α>1 K1α1, ‖w2‖2 = α>2 K2α2,
n

∑

i=1

(w>1 xi − w>2 xi)
2
= (K1α1 − K2α2)

>(K1α1 − K2α2),

whereK1 andK2 are kernel matrices from two views.
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The optimization problem (30) can be reformulated as the following

min
α1,α2,ξ1,ξ2

F0 =
1
2

(α>1 K1α1 + α
>
2 K2α2) +C2(K1α1 − K2α2)

>(K1α1 − K2α2) +

C1

n
∑

i=1

(ξi1 + ξ
i
2)

s.t. yi

(

n
∑

j=1

α
j
1k1(x j , xi)

)

≥ 1− ξi1, i = 1, · · · ,n,

yi

(

n
∑

j=1

α
j
2k2(x j , xi)

)

≥ 1− ξi2, i = 1, · · · ,n,

ξi1, ξ
i
2 ≥ 0, i = 1, · · · ,n. (32)

The derivation of the dual optimization formulation is detailed in Appendix F. Table 1

summarizes the MvSVM algorithm.

Table 1: The MvSVM Algorithm

Input:

A training set withn examples{(xi , yi)}ni=1 (each example has two views).

Kernel functionk1(·, ·) andk2(·, ·) for two views, respectively.

Regularization coefficientsC1,C2.

Algorithm:

1 Calculate Gram matricesK1 andK2 from two views.

2 CalculateA, B,D according to (51).

3 Solve the quadratic optimization problem (52) to getλ1, λ2.

4 Calculateα1 andα2 using (47) and (48).

Output: Classifier parametersα1 andα2 used by (31).
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7.3. Semi-supervised MvSVMs (SMvSVMs)

Next we give the optimization formulation for semi-supervised MvSVMs (SMvSVMs)

[25, 26, 4], where besides then labeled examples we further haveu unlabeled examples.

Denote the classifier weights from two views byw1 andw2 which are not assumed to

be unit vectors. The objective function of SMvSVMs is

min
w1,w2,ξ1,ξ2

1
2

(‖w1‖2 + ‖w2‖2) +C1

n
∑

i=1

(ξi1 + ξ
i
2) +C2

n+u
∑

i=1

(w>1 xi
1 − w>2 xi

2)
2

s.t. yiw>1 xi
1 ≥ 1− ξi1, i = 1, · · · ,n,

yiw>2 xi
2 ≥ 1− ξi2, i = 1, · · · ,n,

ξi1, ξ
i
2 ≥ 0, i = 1, · · · ,n. (33)

If kernel functions are used, the solution can be expressed by w1 =
∑n+u

i=1 α
i
1k1(xi

1, ·),

andw2 =
∑n+u

i=1 α
i
2k2(xi

2, ·). Since a function defined on viewj only depends on thejth

feature set, the solution is given by

w1 =

n+u
∑

i=1

αi
1k1(xi , ·), w2 =

n+u
∑

i=1

αi
2k2(xi , ·). (34)

It is straightforward to show that

‖w1‖2 = α>1 K1α1, ‖w2‖2 = α>2 K2α2,
n+u
∑

i=1

(w>1 xi − w>2 xi)
2
= (K1α1 − K2α2)

>(K1α1 − K2α2),

where (n+ u) × (n+ u) matricesK1 andK2 are kernel matrices from two views.
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The optimization problem (33) can be reformulated as

min
α1,α2,ξ1,ξ2

F̃0 =
1
2

(α>1 K1α1 + α
>
2 K2α2) +C2(K1α1 − K2α2)

>(K1α1 − K2α2) +

C1

n
∑

i=1

(ξi1 + ξ
i
2)

s.t. yi

(

n+u
∑

j=1

α
j
1k1(x j , xi)

)

≥ 1− ξi1, i = 1, · · · ,n,

yi

(

n+u
∑

j=1

α
j
2k2(x j , xi)

)

≥ 1− ξi2, i = 1, · · · ,n,

ξi1, ξ
i
2 ≥ 0, i = 1, · · · ,n. (35)

The derivation of the dual optimization formulation is detailed in Appendix G. Table 2

summarizes the SMvSVM algorithm.

Table 2: The SMvSVM Algorithm

Input:

A training set withn examples{(xi , yi)}ni=1 (each example has two views)

andu unlabeled examples.

Kernel functionk1(·, ·) andk2(·, ·) for two views, respectively.

Regularization coefficientsC1,C2.

Algorithm:

1 Calculate Gram matricesK1 andK2 from two views.

2 CalculateA, B,D according to (64).

3 Solve the quadratic optimization problem (65) to getλ1, λ2.

4 Calculateα1 andα2 using (60) and (61).

Output: Classifier parametersα1 andα2 used by (34).
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8. Experiments

The new bounds are evaluated on one synthetic and five real-world multi-view data

sets where the learning task is binary classification. Below we first introduce the used

data and the experimental settings. Then we report the test errors of the involved variants

of the SVM algorithms, and evaluate the usefulness and relative performance of the new

PAC-Bayes bounds.

8.1. Data Sets

The six multi-view data sets are introduced as follows.

Synthetic

The synthetic data include 2000 examples half of which belong to the positive class.

The dimensionality for each of the two views is 50. We first generate two random direction

vectors one for each view, and then for each view sample 2000 points to make the inner

products between the direction and the feature vector of half of the points be positive and

the inner products for the other half of the points be negative. For the same point, the

corresponding inner products calculated from the two viewsare made identical. Finally,

we add Gaussian white noise to the generated data to form the synthetic data set.

Handwritten

The handwritten digit data set is taken from the UCI machine learning repository [27],

which includes features of ten handwritten digits (0∼ 9) extracted from a collection of

Dutch utility maps. It consists of 2000 examples (200 examples per class) with the first

view being the 76 Fourier coefficients, and the second view being the 64 Karhunen-Loève

coefficients of each image. Binary classification between digits (1, 2, 3) and (4, 5, 6) is

used for experiments.
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Ads

The ads data are used for classifying web images into ads and non-ads [28]. This data

set consists of 3279 examples with 459 of them being ads. 1554binary attributes (weights

of text terms related to an image using Boolean model) are usedfor classification, whose

values can be 0 and 1. These attributes are divided into two views: one view describes the

image itself (terms in the image’s caption, URL and alt text) and the other view contains

features from other information (terms in the page and destination URLs). The two views

have 587 and 967 features, respectively.

Course

The course data set consists of 1051 two-view web pages collected from computer

science department web sites at four universities: Cornell University, University of Wash-

ington, University of Wisconsin, and University of Texas. There are 230 course pages

and 821 non-course pages. The two views are words occurring in a web page and words

appearing in the links pointing to that page [29, 4]. The document vectors are normalized

to t f -id f (term frequency-inverse document frequency) features andthen principal com-

ponent analysis is used to perform dimensionality reduction. The dimensions of the two

views are 500 and 87, respectively.

Wisconsin

The Wisconsin data set is a subset of the course data set. It contains 122 student web

pages and 143 non-student pages. The two views are words in a page and words in the

links referring to it. The dimension of the first view is 1703,and that of the second one is

265.
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Cora

The cora data set [30] consists of 2708 scientific publications belonging to seven cat-

egories, of which the one with the most publications is set tobe the positive class, and

the rest the negative. Each publication is described by words in the content view, and the

numbers of citation links between other publications and itself in the citation view. The

dimensions are 1433 and 2708, respectively.

8.2. Experimental Settings

Our experiments include algorithm test error evaluation and PAC-Bayes bound evalua-

tion for single-view learning, multi-view learning, supervised learning and semi-supervised

learning. For single-view learning, SVMs are trained separately on each of the two views

and the third view (concatenating the previous two views to form a long view), providing

three supervised classifiers which are called SVM-1, SVM-2 and SVM-3, respectively.

Evaluating the performance of the third view is interestingto compare single-view and

multi-view learning methods, since single-view learning on the third view can exploit the

same data as the usual multi-view learning algorithms. The MvSVMs and SMvSVMs

are supervised multi-view learning and semi-supervised multi-view learning algorithms,

respectively. The linear kernel is used for all the algorithms.

For each data set, four experimental settings are used. All the settings use 20% of all

the examples as the unlabeled examples. For the remaining examples, the four settings

use 20%, 40%, 60% and 80% of them as the labeled training set, respectively, and the

rest forms the test set. Supervised algorithms will not use the unlabeled training data.

For multi-view PAC-Bayes bound 5 and 6, we use 20% of the labeledtraining set to

calculate the prior, and evaluate the bounds on the remaining 80% of training set. Each

setting involves 10 random partitions of the above subsets.The reported performance is

the average test error and standard deviation over these random partitions.
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Model parameters, i.e.,C in SVMs, andC1,C2 in MvSVMs and SMvSVMs, are se-

lected by three-fold cross-validation on each labeled training set, whereC1,C2 are se-

lected from{10−6,10−4,10−2,1,10,100} andC is selected from{10−8,5 × 10−8,10−7,5 ×

10−7,10−6,5× 10−6,10−5,5× 10−5,10−4,5× 10−4,10−3,5× 10−3,10−2,5× 10−2,10−1,5×

10−1,1,5,10,20,25,30,40,50,55,60,70,80,85,90,100,300,500,700,900,1000}. All the

PAC-Bayes bounds are evaluated with a confidence ofδ = 0.05. We normalizew in the

posterior when we calculate the bounds. For multi-view PAC-Bayes bounds,σ is fixed

to 100,η is set to 1, andR is equal to 1 which is clear from the augmented feature rep-

resentation and data normalization preprocessing (all thetraining examples after feature

augmentation are divided by a common value to make the maximum feature vector length

be one).

We evaluate the following eleven PAC-Bayes bounds where the last eight bounds are

presented in this paper.

• PB-1: The PAC-Bayes bound given by Theorem 2 and the SVM algorithm on the

first view.

• PB-2: The PAC-Bayes bound given by Theorem 2 and the SVM algorithm on the

second view.

• PB-3: The PAC-Bayes bound given by Theorem 2 and the SVM algorithm on the

third view.

• MvPB-1: Multi-view PAC-Bayes bound 1 with the MvSVM algorithm.

• MvPB-2: Multi-view PAC-Bayes bound 2 with the MvSVM algorithm.

• MvPB-3: Multi-view PAC-Bayes bound 3 with the MvSVM algorithm.

• MvPB-4: Multi-view PAC-Bayes bound 4 with the MvSVM algorithm.
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• MvPB-5: Multi-view PAC-Bayes bound 5 with the MvSVM algorithm.

• MvPB-6: Multi-view PAC-Bayes bound 6 with the MvSVM algorithm.

• SMvPB-1: Semi-supervised multi-view PAC-Bayes bound 1 with the SMvSVM

algorithm.

• SMvPB-2: Semi-supervised multi-view PAC-Bayes bound 2 with the SMvSVM

algorithm.

8.3. Test Errors

The prediction performances of SVMs, MvSVMs and SMvSVMs forthe four exper-

imental settings are reported in Table 3, Table 4, Table 5 andTable 6, respectively. For

each data set, the best performance is indicated with boldface numbers. From all of these

results, we see that MvSVMS and SMvSVMs have the best overallperformance and some-

times single-view SVMs can have the best performances. SMvSVMs often perform better

than MvSVMS since additional unlabeled examples are used, especially when the labeled

training data set is small. Moreover, as expected, with morelabeled training data the

prediction performance of the algorithms will usually increase.

8.4. PAC-Bayes Bounds

Table 7, Table 8, Table 9 and Table 10 show the values of various PAC-Bayes bounds

under different settings, where for each data set the best bound is indicated in bold and the

best multi-view bound is indicated with underline.

From all the bound results, we find that the best single-view bound is usually tighter

than the best multi-view bound, except on the synthetic dataset and the Wisconsin data set.

One possible explanation for this is that, the synthetic data set is ideal and in accordance

with the assumptions for multi-view learning encoded in theprior, while the real world
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data sets are often not. This also indicates that there is much space and possibility for

further developments of multi-view PAC-Bayes analysis. In addition, with more labeled

training data the corresponding bound will usually become tighter. We observe that on

two real-world data sets, namely, the ads data set and the Wisconsin data set, the best

multi-view bound is comparable with the best single-view bound. We perform paired t-

tests for the best multi-view bound with the best single-view bound on these two data sets

under different experimental settings, respectively. The difference is not significant at the

95% confidence level under all the settings. Last but not least, among the eight presented

multi-view PAC-Bayes bounds on real world data sets, the tightest one is often the first

semi-supervised multi-view bound which exploits unlabeled data to calculate the function

V̂(u1,u2) and needs no further relaxation. The results also show thatthe second multi-view

PAC-Bayes bound (dimensionality-independent bound with theprior distribution centered

at the origin) is sometimes very good.

9. Conclusion

The paper lays the foundation of a theoretical and practicalframework for defining

priors that encode non-trivial interactions between data distributions and classifiers and

Test Error Synthetic Handwritten Ads Course Wisconsin Cora

SVM-1 17.20± 1.39 5.66± 0.94 5.84± 0.56 19.15± 1.54 16.45± 3.37 17.39± 1.19

SVM-2 19.98± 0.76 3.98± 0.68 5.25± 0.79 10.15± 1.60 36.27± 4.28 19.40± 1.09

SVM-3 16.55± 2.04 1.65± 0.53 4.62± 0.80 10.33± 1.34 16.45± 3.90 15.11± 0.81

MvSVM 10.54± 0.73 2.17± 0.64 4.55± 0.66 10.55± 1.47 16.39± 4.62 15.45± 1.65

SMvSVM 10.30± 0.79 2.04± 0.69 4.70± 0.70 10.28± 1.63 17.69± 3.76 14.67± 1.01

Table 3: Average error rates (%) and standard deviations fordifferent learning algorithms under the 20%

training setting.
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Test Error Synthetic Handwritten Ads Course Wisconsin Cora

SVM-1 14.49± 0.98 5.57± 0.41 5.04± 0.83 14.23± 1.27 12.13± 2.44 15.28± 1.09

SVM-2 16.88± 1.06 3.75± 0.99 4.14± 0.40 7.64± 0.80 35.75± 2.80 16.17± 1.42

SVM-3 10.31± 0.82 1.51± 0.39 3.61± 0.54 7.68± 0.97 12.13± 3.38 13.16± 1.20

MvSVM 7.72± 0.78 1.98± 0.61 3.56± 0.54 7.00± 0.93 12.91± 2.69 12.65± 0.83

SMvSVM 7.48± 0.66 2.03± 0.61 3.44± 0.54 6.81± 0.98 12.91± 2.69 12.22± 0.60

Table 4: Average error rates (%) and standard deviations fordifferent learning algorithms under the 40%

training setting.

Test Error Synthetic Handwritten Ads Course Wisconsin Cora

SVM-1 14.23± 1.24 5.16± 0.61 4.32± 0.50 11.28± 1.30 9.29± 3.14 13.46± 1.14

SVM-2 16.11± 0.94 3.46± 0.94 3.90± 0.58 6.53± 1.44 35.48± 3.68 14.25± 0.47

SVM-3 9.08± 1.07 1.77± 0.85 3.43± 0.51 6.62± 1.33 9.64± 2.79 11.33± 0.86

MvSVM 7.30± 0.85 1.67± 0.63 3.45± 0.32 5.82± 1.73 10.60± 3.82 10.66± 0.65

SMvSVM 7.31± 0.80 1.82± 0.70 3.36± 0.38 5.93± 1.63 12.14± 2.70 10.70± 0.55

Table 5: Average error rates (%) and standard deviations fordifferent learning algorithms under the 60%

training setting.

Test Error Synthetic Handwritten Ads Course Wisconsin Cora

SVM-1 13.06± 2.00 5.42± 1.51 4.47± 0.60 9.70± 1.64 10.00± 3.50 12.15± 1.13

SVM-2 16.03± 1.73 3.54± 1.33 3.59± 0.66 5.62± 1.68 32.38± 8.53 13.47± 1.29

SVM-3 8.06± 1.11 1.93± 0.66 2.96± 0.51 5.56± 1.72 10.95± 3.87 9.68± 1.10

MvSVM 6.28± 1.20 1.82± 0.75 3.19± 0.63 4.20± 1.51 12.14± 2.70 9.14± 0.85

SMvSVM 6.28± 1.19 1.93± 0.77 3.15± 0.75 3.96± 1.59 12.14± 2.70 9.35± 0.84

Table 6: Average error rates (%) and standard deviations fordifferent learning algorithms under the 80%

training setting.

31



PAC-Bayes Bound Synthetic Handwritten Ads Course Wisconsin Cora

PB-1 60.58± 0.12 54.61± 1.59 40.49± 2.09 58.93± 8.90 66.47± 1.91 50.13± 2.09

PB-2 60.72± 0.09 45.17± 3.74 40.44± 2.12 61.64± 1.49 70.44± 1.41 51.36± 0.17

PB-3 60.49± 0.12 47.62± 3.42 43.75± 3.15 59.67± 2.32 66.51± 2.41 52.21± 1.76

MvPB-1 61.27± 0.07 51.63± 2.89 40.87± 2.77 63.54± 0.45 71.08± 3.69 58.38± 0.31

MvPB-2 61.04± 0.07 51.45± 2.89 40.80± 2.77 63.26± 0.47 70.54± 3.66 58.21± 0.30

MvPB-3 62.35± 0.01 63.44± 0.62 56.38± 1.49 66.37± 0.06 78.16± 0.37 60.64± 0.09

MvPB-4 62.17± 0.01 63.23± 0.61 56.29± 1.48 66.14± 0.06 77.75± 0.37 60.50± 0.09

MvPB-5 61.84± 0.09 52.52± 3.01 43.21± 2.94 64.36± 0.43 80.32± 0.33 61.80± 0.06

MvPB-6 63.74± 0.08 58.65± 7.09 54.94± 4.68 67.75± 0.25 79.83± 0.87 61.74± 0.17

SMvPB-1 60.60± 0.06 49.84± 2.87 40.65± 3.25 62.77± 0.49 69.50± 3.78 57.94± 0.26

SMvPB-2 62.17± 0.01 62.94± 0.62 56.28± 1.30 66.14± 0.06 77.74± 0.40 60.52± 0.09

Table 7: Average PAC-Bayes bounds (%) and standard deviations for different learning algorithms under the

20% training setting.
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PAC-Bayes Bound Synthetic Handwritten Ads Course Wisconsin Cora

PB-1 57.20± 0.05 45.26± 1.48 33.11± 3.89 59.68± 0.52 60.52± 2.66 45.93± 2.15

PB-2 57.40± 0.11 35.45± 3.22 28.85± 3.26 55.26± 1.97 64.87± 1.63 53.97± 0.78

PB-3 57.15± 0.07 35.48± 2.26 32.74± 4.29 56.12± 0.78 60.10± 2.08 48.88± 2.00

MvPB-1 57.69± 0.09 40.85± 3.23 33.36± 2.17 59.17± 0.51 61.12± 4.79 55.00± 0.24

MvPB-2 57.54± 0.08 40.76± 3.22 33.32± 2.17 58.99± 0.50 60.77± 4.74 55.12± 0.84

MvPB-3 58.97± 0.02 57.26± 1.17 51.68± 1.38 61.91± 0.07 70.69± 0.62 57.57± 0.03

MvPB-4 58.85± 0.02 57.15± 1.16 51.62± 1.37 61.77± 0.10 70.37± 0.62 57.48± 0.03

MvPB-5 57.44± 0.13 42.56± 3.36 35.86± 2.23 59.91± 0.48 73.15± 0.43 58.56± 0.03

MvPB-6 52.67± 2.36 42.57± 5.93 47.34± 3.05 62.86± 0.09 72.38± 1.15 58.43± 0.03

SMvPB-1 57.27± 0.06 40.76± 3.26 34.26± 3.00 58.69± 0.44 60.14± 4.64 54.63± 0.31

SMvPB-2 58.85± 0.01 57.22± 1.18 52.16± 1.50 61.77± 0.09 70.37± 0.62 57.46± 0.05

Table 8: Average PAC-Bayes bounds (%) and standard deviations for different learning algorithms under the

40% training setting.
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PAC-Bayes Bound Synthetic Handwritten Ads Course Wisconsin Cora

PB-1 55.45± 0.08 42.07± 2.35 29.65± 1.93 57.52± 0.22 57.18± 2.63 42.71± 1.24

PB-2 55.71± 0.08 30.70± 2.05 28.59± 3.71 53.71± 2.27 62.61± 2.12 52.72± 0.37

PB-3 55.39± 0.16 30.50± 3.31 30.49± 4.35 53.78± 1.01 58.08± 3.05 44.62± 1.14

MvPB-1 55.89± 0.08 34.16± 1.88 31.72± 4.13 56.90± 0.46 57.62± 4.67 53.08± 0.35

MvPB-2 55.78± 0.07 34.09± 1.88 31.69± 4.13 56.75± 0.45 57.36± 4.63 53.03± 0.35

MvPB-3 57.38± 0.01 52.82± 1.08 49.77± 2.49 59.82± 0.07 67.11± 0.66 56.23± 0.16

MvPB-4 57.29± 0.01 52.73± 1.07 49.74± 2.48 59.69± 0.07 66.85± 0.65 56.12± 0.12

MvPB-5 55.60± 0.08 36.17± 1.88 34.11± 4.26 57.56± 0.42 69.57± 0.36 57.05± 0.05

MvPB-6 39.20± 5.03 31.76± 4.17 47.56± 3.81 60.67± 0.05 67.46± 2.27 56.95± 0.03

SMvPB-1 55.58± 0.06 33.93± 2.00 32.33± 3.37 56.53± 0.43 56.89± 4.53 53.00± 0.60

SMvPB-2 57.28± 0.01 52.76± 1.15 50.51± 1.64 59.69± 0.07 66.85± 0.65 56.10± 0.07

Table 9: Average PAC-Bayes bounds (%) and standard deviations for different learning algorithms under the

60% training setting.
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PAC-Bayes Bound Synthetic Handwritten Ads Course Wisconsin Cora

PB-1 54.64± 0.77 37.52± 1.42 28.97± 1.51 56.21± 0.18 53.32± 2.72 40.22± 1.53

PB-2 54.59± 0.04 28.47± 2.07 30.28± 1.83 51.28± 2.97 59.82± 1.66 51.36± 0.17

PB-3 54.21± 0.08 26.50± 2.15 29.74± 3.42 52.00± 0.85 54.12± 2.40 42.02± 1.67

MvPB-1 54.65± 0.05 30.25± 0.86 29.69± 0.84 55.77± 1.09 52.83± 4.06 50.54± 0.38

MvPB-2 54.63± 0.05 30.19± 0.86 29.67± 0.84 55.38± 0.50 52.63± 4.02 50.50± 0.38

MvPB-3 56.41± 0.00 49.51± 0.52 48.12± 0.94 58.55± 0.07 64.48± 0.61 55.19± 0.04

MvPB-4 56.32± 0.01 49.43± 0.54 48.09± 0.92 58.44± 0.07 64.26± 0.61 55.13± 0.04

MvPB-5 54.36± 0.05 32.39± 0.88 31.44± 0.98 56.22± 0.41 66.95± 0.39 56.03± 0.04

MvPB-6 26.89± 2.05 31.52± 3.33 46.31± 1.50 59.23± 0.18 63.85± 3.51 55.98± 0.03

SMvPB-1 54.41± 0.03 30.15± 0.79 30.55± 2.28 55.24± 0.43 53.65± 5.23 51.01± 1.14

SMvPB-2 56.32± 0.01 49.43± 0.46 48.77± 1.38 58.44± 0.06 64.47± 0.80 55.18± 0.11

Table 10: Average PAC-Bayes bounds (%) and standard deviations for different learning algorithms under

the 80% training setting.
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translating them into sophisticated regularization schemes and associated generalization

bounds. Specifically, we have presented eight new multi-view PAC-Bayes bounds, which

integrate the view agreement as a key measure to modulate theprior distributions of clas-

sifiers. As the first extensions of PAC-Bayes analysis to the multi-view learning scenario,

the proposed theoretical results are promising to fill the gap between the developments in

theory and practice of multi-view learning, and are also possible to serve as the underpin-

nings to explain the effectiveness of multi-view learning. We have validated the theoretical

superiority of multi-view learning in the ideal case of synthetic data, though this is not so

evident for some real-world data which may not well meet our assumptions on the priors

for multi-view learning.

The usefulness of the proposed bounds has been shown. Although often the current

bounds are not the tightest, they indeed open the possibility of applying PAC-Bayes anal-

ysis to multi-view learning. We think the set of bounds couldbe further tightened in

the future by adopting other techniques. It is also possibleto study algorithms whose co-

regularization term pushes towards the minimization of themulti-view PAC-Bayes bounds.

In addition, we may use the work in this paper to motivate PAC-Bayes analysis for other

learning tasks such as multi-task learning, domain adaptation, and multi-view learning

with more than two views, since these tasks are closely related to the current multi-view

learning.
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A. Proof of Theorem 5

Define
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2 is 1 with the nonzero eigenvalue being‖x̃i‖2/σ2 and the

determinant of a positive semi-definite matrix is equal to the product of its eigenvalues, it

follows that
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By McDiarmid’s inequality [31], we have for allε > 0,
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Setting the right hand size equal to 1− δ3, we have with probability at least 1− δ3,
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where to reach (36) we have used (4) and defined [·]+ = max(·,0).

DenoteHm =
1
m
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RecallR= sup̃x ‖x̃‖. By McDiarmid’s inequality, we have for allε > 0,

P {E[Hm] ≤ Hm+ ε} ≥ 1− exp

(

−2mε2

(1+ µ2)2R4
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.

Setting the right hand size equal to 1− δ3, we have with probability at least 1− δ3,
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1
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δ
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In addition, from Lemma 1, we have
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According to the union bound (Pr(A or B or C) ≤ Pr(A) + Pr(B) + Pr(C)), the prob-

ability that at least one of the inequalities in (36), (37) and (38) fails is no larger than

δ/3+ δ/3+ δ/3 = δ. Hence, the probability that all of the three inequalities hold is no less

than 1− δ. That is, with probability at least 1− δ overS ∼ Dm, the following inequality
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where fm is a shorthand forf (x̃1, . . . , x̃m), and‖w‖ = 1.

B. Proof of Theorem 6

Now the KL divergence between the posterior and prior becomes

KL(Q(u)‖P(u)) =
1
2

(

− ln(
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

) +
1
σ2
E[x̃>x̃ + µ2(w>x̃)2] + µ2

)

≤ 1
2

(

−E ln
∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

+
1
σ2
E[x̃>x̃ + µ2(w>x̃)2] + µ2

)

=
1
2

(

E

( 1
σ2

[x̃>x̃ + µ2(w>x̃)2] − ln
∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

)

+ µ2

)

.

38



Define
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where f̃ is short for f̃ (x̃1, . . . , x̃m), and∆ = (1+µ2)R2
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Meanwhile, from Lemma 1, we have
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According to the union bound, we can complete the proof for the dimensionality-

independent PAC-Bayes bound.

C. Proof of Theorem 7

It is clear that fromR= sup̃x ‖x̃‖, we have supx ‖x‖ = Rand sup(x,y) ‖yx‖ = R.
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From (36), it follows that with probability at least 1− δ4,

− ln
∣

∣

∣

∣

I +
E(x̃x̃>)
σ2

∣

∣

∣

∣

≤ −d ln
[

fm− (
d
√

(R/σ)2 + 1− 1)

√

1
2m

ln
4
δ

]

+
.

With reference to a bounding result on estimating the centerof mass [31], it follows

that with probability at least 1− δ/4 the following inequality holds

‖wp − ŵp‖ ≤
R
√

m















2+

√

2 ln
4
δ















.

DenoteĤm =
1
m

∑m
i=1[x̃

>
i x̃i − 2ηµσ2yi(w>xi) + µ2(w>x̃i)2]. It is clear that

E[Ĥm] = E[x̃>x̃ − 2ηµσ2y(w>x) + µ2(w>x̃)2].

By McDiarmid’s inequality, we have for allε > 0,

P
{

E[Ĥm] ≤ Ĥm+ ε
}

≥ 1− exp

(

−2mε2

(R2 + 4ηµσ2R+ µ2R2)2

)

.

Setting the right hand size equal to 1− δ4, we have with probability at least 1− δ4,

E[Ĥm] ≤ Ĥm+ (R2
+ µ2R2

+ 4ηµσ2R)

√

1
2m

ln
4
δ
.

In addition, according to Lemma 1, we have

PrS∼Dm















∀Q(c) : KL+(ÊQ,S||EQ,D) ≤
KL(Q||P) + ln

(m+1
δ/4

)

m















≥ 1− δ/4.

Therefore, from the union bound, we get the result.

D. Proof of Theorem 8

Applying (5) to (12), we obtain

KL(Q(u)‖P(u)) ≤ −1
2
E ln

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

+
1
2

(‖ηwp − ηŵp‖ + ‖ηŵp − µw‖ + µ)2
+

1
2σ2
E

[

x̃>x̃ − 2ηµσ2y(w>x) + µ2(w>x̃)2
]

+
µ2

2

=
1
2

(‖ηwp − ηŵp‖ + ‖ηŵp − µw‖ + µ)2
+

1
2
E

[

x̃>x̃ − 2ηµσ2y(w>x) + µ2(w>x̃)2

σ2
− ln

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

]

+
µ2

2
.
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Following Shawe-Taylor and Cristianini [31], we have with probability at least 1− δ/3

‖wp − ŵp‖ ≤
R
√

m















2+

√

2 ln
3
δ















.

DenoteH̃m =
1
m

∑m
i=1[

x̃>i x̃i−2ηµσ2yi (w>xi )+µ2(w>x̃i )2

σ2 − ln
∣

∣

∣

∣

I +
x̃i x̃>i
σ2

∣

∣

∣

∣

]. It is clear that

E[H̃m] = E[
x̃>x̃ − 2ηµσ2y(w>x) + µ2(w>x̃)2

σ2
− ln

∣

∣

∣

∣

I +
x̃x̃>

σ2

∣

∣

∣

∣

].

By McDiarmid’s inequality, we have for allε > 0,

P
{

E[H̃m] ≤ H̃m+ ε
}

≥ 1− exp

















−2mε2
(R2+4ηµσ2R+µ2R2

σ2 + ln(1+ R2

σ2 )
)2

















.

Setting the right hand size equal to 1− δ3, we have with probability at least 1− δ3,

E[H̃m] ≤ H̃m+
(R2
+ 4ηµσ2R+ µ2R2

σ2
+ ln(1+

R2

σ2
)
)

√

1
2m

ln
3
δ
.

In addition, from Lemma 1, we have

PrS∼Dm















∀Q(c) : KL+(ÊQ,S||EQ,D) ≤
KL(Q||P) + ln

(m+1
δ/3

)

m















≥ 1− δ/3.

By applying the union bound, we complete the proof.

E. Proof of Theorem 12

We already have supx ‖x‖ = R and sup(x,y) ‖yx‖ = R from the definitionR= sup̃x ‖x̃‖.

Following Shawe-Taylor and Cristianini [31], we have with probability at least 1− δ/3

‖wp − ŵp‖ ≤
R
√

m















2+

√

2 ln
3
δ















.

DenoteS̄m =
1
m

∑m
i=1[−ηµyi(w>xi)]. It is clear that

E[S̄m] = −ηµE [

y(w>x)
]

.
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By McDiarmid’s inequality, we have for allε > 0,

P
{

E[S̄m] ≤ S̄m+ ε
}

≥ 1− exp













−2mε2
(

2ηµR
)2













.

Setting the right hand size equal to 1− δ3, we have with probability at least 1− δ3,

E[S̄m] ≤ S̄m+ ηµR

√

2
m

ln
3
δ
.

In addition, from Lemma 1, we have

PrS∼Dm















∀Q(c) : KL+(ÊQ,S||EQ,D) ≤
KL(Q||P) + ln

(m+1
δ/3

)

m















≥ 1− δ/3.

After applying the union bound, the proof is completed.

F. Dual Optimization Derivation for MvSVMs

To optimize (32), here we derive the Lagrange dual function.

Let λi
1, λ

i
2, ν

i
1, ν

i
2 ≥ 0 be the Lagrange multipliers associated with the inequality con-

straints of problem (32). The LagrangianL(α1,α2, ξ1, ξ2, λ1, λ2, ν1, ν2) can be written as

L = F0 −
n

∑

i=1

[

λi
1

(

yi(
n

∑

j=1

α
j
1k1(xj , xi)) − 1+ ξi1

)

+

λi
2

(

yi(
n

∑

j=1

α
j
2k2(xj , xi)) − 1+ ξi2

)

+ νi1ξ
i
1 + ν

i
2ξ

i
2

]

.

To obtain the Lagrangian dual function,L has to be minimized with respect to the

primal variablesα1,α2, ξ1, ξ2. To eliminate these variables, we compute the corresponding

partial derivatives and set them to 0, obtaining the following conditions

(K1 + 2C2K1K1)α1 − 2C2K1K2α2 = Λ1, (40)

(K2 + 2C2K2K2)α2 − 2C2K2K1α1 = Λ2, (41)

λi
1 + ν

i
1 = C1, (42)

λi
2 + ν

i
2 = C1, (43)
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where we have defined

Λ1 ,

n
∑

i=1

λi
1yiK1(:, i),

Λ2 ,

n
∑

i=1

λi
2yiK2(:, i),

with K1(:, i) andK2(:, i) being theith columns of the corresponding Gram matrices.

Substituting (40)∼(43) into L results in the following expression of the Lagrangian

dual functiong(λ1, λ2, ν1, ν2)

g =
1
2

(α>1 K1α1 + α
>
2 K2α2) +C2(α

>
1 K1K1α1 − 2α>1 K1K2α2 +

α>2 K2K2α2) − α>1Λ1 − α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

=
1
2
α>1Λ1 +

1
2
α>2Λ2 − α>1Λ1 − α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

= −1
2
α>1Λ1 −

1
2
α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2). (44)

Define

K̃1 = K1 + 2C2K1K1, K̄1 = 2C2K1K2,

K̃2 = K2 + 2C2K2K2, K̄2 = 2C2K2K1.

Then, (40) and (41) become

K̃1α1 − K̄1α2 = Λ1, (45)

K̃2α2 − K̄2α1 = Λ2. (46)

From (45) and (46), we have

(K̃1 − K̄1K̃−1
2 K̄2)α1 = K̄1K̃−1

2 Λ2 + Λ1

(K̃2 − K̄2K̃−1
1 K̄1)α2 = K̄2K̃−1

1 Λ1 + Λ2.
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DefineM1 , K̃1 − K̄1K̃−1
2 K̄2 andM2 , K̃2 − K̄2K̃−1

1 K̄1. It follows that

α1 = M−1
1

[

K̄1K̃−1
2 Λ2 + Λ1

]

, (47)

α2 = M−1
2

[

K̄2K̃−1
1 Λ1 + Λ2

]

. (48)

Now with α1 andα2 substituted into (44), the Lagrange dual functiong(λ1, λ2, ν1, ν2)

is

g = inf
α1,α2,ξ1,ξ2

L = −1
2
α>1Λ1 −

1
2
α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

= −1
2
Λ
>
1 M−1

1

[

K̄1K̃−1
2 Λ2 + Λ1

]

− 1
2
Λ
>
2 M−1

2

[

K̄2K̃−1
1 Λ1 + Λ2

]

+

n
∑

i=1

(λi
1 + λ

i
2).

The Lagrange dual problem is given by

max
λ1,λ2

g

s.t.



















0 ≤ λi
1 ≤ C1, i = 1, . . . ,n

0 ≤ λi
2 ≤ C1, i = 1, . . . ,n.

(49)

As Lagrange dual functions are concave, we can formulate theLagrange dual problem

as a convex optimization problem

min
λ1,λ2

−g

s.t.



















0 ≤ λi
1 ≤ C1, i = 1, . . . ,n

0 ≤ λi
2 ≤ C1, i = 1, . . . ,n.

(50)

Define matrixY , diag(y1, . . . , yn). Then,Λ1 = K1Yλ1 andΛ2 = K2Yλ2 with λ1 =

(λ1
1, ..., λ

n
1)
>, andλ2 = (λ1

2, ..., λ
n
2)
>. It is clear thatK̃1 andK̃2 are symmetric matrices, and

K̄1 = K̄>2 . Therefore, it follows that matricesM1 andM2 are also symmetric.
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We have

− g =
1
2
Λ
>
1 M−1

1

[

K̄1K̃−1
2 Λ2 + Λ1

]

+
1
2
Λ
>
2 M−1

2

[

K̄2K̃−1
1 Λ1 + Λ2

]

−
n

∑

i=1

(λi
1 + λ

i
2)

=
1
2

{

λ>1 [YK1M−1
1 K1Y]λ1 + λ

>
1 [YK1M−1

1 K̄1K̃−1
2 K2Y]λ2 +

λ>2 [YK2M−1
2 K̄2K̃−1

1 K1Y]λ1 + λ
>
2 [YK2M−1

2 K2Y]λ2

}

− 1>(λ1 + λ2)

=
1
2

(λ>1 λ
>
2 )





















A B

B> D









































λ1

λ2





















−





















λ1

λ2





















>

12n,

where

A , YK1M−1
1 K1Y, B , YK1M−1

1 K̄1K̃−1
2 K2Y, D , YK2M−1

2 K2Y, (51)

12n = (1, . . . ,1(2n))>, and we have used the fact that

YK1M−1
1 K̄1K̃−1

2 K2Y = [YK2M−1
2 K̄2K̃−1

1 K1Y]>.

Because of the convexity of function−g, we affirm that matrix





















A B

B> D





















is positive

semi-definite.

Hence, the optimization problem in (50) can be rewritten as

min
λ1,λ2

1
2

(λ>1 λ
>
2 )





















A B

B> D









































λ1

λ2





















−





















λ1

λ2





















>

12n

s.t.



















0 � λ1 � C11,

0 � λ2 � C11.
(52)

After solving this problem, we can then obtain classifier parametersα1 andα2 using

(47) and (48), which are finally used by (31).

G. Dual Optimization Derivation for SMvSVMs

To optimize (35), we first derive the Lagrange dual function following the same line of

optimization derivations for MvSVMs. Although here some ofthe derivations are similar
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to those for MvSVMs, for completeness we include them.

Let λi
1, λ

i
2, ν

i
1, ν

i
2 ≥ 0 be the Lagrange multipliers associated with the inequality con-

straints of problem (35). The LagrangianL(α1,α2, ξ1, ξ2, λ1, λ2, ν1, ν2) can be formulated

as

L = F̃0 −
n

∑

i=1

[

λi
1

(

yi(
n+u
∑

j=1

α
j
1k1(xj , xi)) − 1+ ξi1

)

+

λi
2

(

yi(
n+u
∑

j=1

α
j
2k2(xj , xi)) − 1+ ξi2

)

+ νi1ξ
i
1 + ν

i
2ξ

i
2

]

.

To obtain the Lagrangian dual function,L will be minimized with respect to the pri-

mal variablesα1,α2, ξ1, ξ2. To eliminate these variables, setting the corresponding partial

derivatives to 0 results in the following conditions

(K1 + 2C2K1K1)α1 − 2C2K1K2α2 = Λ1, (53)

(K2 + 2C2K2K2)α2 − 2C2K2K1α1 = Λ2, (54)

λi
1 + ν

i
1 = C1, (55)

λi
2 + ν

i
2 = C1, (56)

where we have defined

Λ1 ,

n
∑

i=1

λi
1yiK1(:, i),

Λ2 ,

n
∑

i=1

λi
2yiK2(:, i),

with K1(:, i) andK2(:, i) being theith columns of the corresponding Gram matrices.
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Substituting (53)∼(56) intoL results in the Lagrangian dual functiong(λ1, λ2, ν1, ν2)

g =
1
2

(α>1 K1α1 + α
>
2 K2α2) +C2(α

>
1 K1K1α1 − 2α>1 K1K2α2 +

α>2 K2K2α2) − α>1Λ1 − α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

=
1
2
α>1Λ1 +

1
2
α>2Λ2 − α>1Λ1 − α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

= −1
2
α>1Λ1 −

1
2
α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2). (57)

Define

K̃1 = K1 + 2C2K1K1, K̄1 = 2C2K1K2,

K̃2 = K2 + 2C2K2K2, K̄2 = 2C2K2K1.

Then, (53) and (54) become

K̃1α1 − K̄1α2 = Λ1, (58)

K̃2α2 − K̄2α1 = Λ2. (59)

From (58) and (59), we have

(K̃1 − K̄1K̃−1
2 K̄2)α1 = K̄1K̃−1

2 Λ2 + Λ1

(K̃2 − K̄2K̃−1
1 K̄1)α2 = K̄2K̃−1

1 Λ1 + Λ2.

DefineM1 , K̃1 − K̄1K̃−1
2 K̄2 andM2 , K̃2 − K̄2K̃−1

1 K̄1. It is clear that

α1 = M−1
1

[

K̄1K̃−1
2 Λ2 + Λ1

]

, (60)

α2 = M−1
2

[

K̄2K̃−1
1 Λ1 + Λ2

]

. (61)
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With α1 andα2 substituted into (57), the Lagrange dual functiong(λ1, λ2, ν1, ν2) is then

g = inf
α1,α2,ξ1,ξ2

L = −1
2
α>1Λ1 −

1
2
α>2Λ2 +

n
∑

i=1

(λi
1 + λ

i
2)

= −1
2
Λ
>
1 M−1

1

[

K̄1K̃−1
2 Λ2 + Λ1

]

− 1
2
Λ
>
2 M−1

2

[

K̄2K̃−1
1 Λ1 + Λ2

]

+

n
∑

i=1

(λi
1 + λ

i
2).

The Lagrange dual problem is given by

max
λ1,λ2

g

s.t.



















0 ≤ λi
1 ≤ C1, i = 1, . . . ,n

0 ≤ λi
2 ≤ C1, i = 1, . . . ,n.

(62)

As Lagrange dual functions are concave, below we formulate the Lagrange dual prob-

lem as a convex optimization problem

min
λ1,λ2

−g

s.t.



















0 ≤ λi
1 ≤ C1, i = 1, . . . ,n

0 ≤ λi
2 ≤ C1, i = 1, . . . ,n.

(63)

Define matrixY , diag(y1, . . . , yn). Then,Λ1 = Kn1Yλ1 andΛ2 = Kn2Yλ2 with Kn1 =

K1(:,1 : n), Kn2 = K2(:,1 : n), λ1 = (λ1
1, ..., λ

n
1)
>, andλ2 = (λ1

2, ..., λ
n
2)
>. It is clear thatK̃1

andK̃2 are symmetric matrices, and̄K1 = K̄>2 . Therefore, it follows that matricesM1 and

M2 are also symmetric.

We have

− g =
1
2
Λ
>
1 M−1

1

[

K̄1K̃−1
2 Λ2 + Λ1

]

+
1
2
Λ
>
2 M−1

2

[

K̄2K̃−1
1 Λ1 + Λ2

]

−
n

∑

i=1

(λi
1 + λ

i
2)

=
1
2

{

λ>1 [YK>n1M−1
1 Kn1Y]λ1 + λ

>
1 [YK>n1M−1

1 K̄1K̃−1
2 Kn2Y]λ2 +

λ>2 [YK>n2M−1
2 K̄2K̃−1

1 Kn1Y]λ1 + λ
>
2 [YK>n2M−1

2 Kn2Y]λ2

}

− 1>(λ1 + λ2)

=
1
2

(λ>1 λ
>
2 )





















A B

B> D









































λ1

λ2





















−





















λ1

λ2





















>

12n,
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where

A , YK>n1M−1
1 Kn1Y, B , YK>n1M−1

1 K̄1K̃−1
2 Kn2Y, D , YK>n2M−1

2 Kn2Y, (64)

12n = (1, . . . ,1(2n))>, and we have used the fact that

YK>n1M−1
1 K̄1K̃−1

2 Kn2Y = [YK>n2M−1
2 K̄2K̃−1

1 Kn1Y]>.

Because of the convexity of function−g, we affirm that matrix





















A B

B> D





















is positive

semi-definite.

Hence, the optimization problem in (63) can be rewritten as

min
λ1,λ2

1
2

(λ>1 λ
>
2 )





















A B

B> D









































λ1

λ2





















−





















λ1

λ2





















>

12n

s.t.



















0 � λ1 � C11,

0 � λ2 � C11.
(65)

After solving this problem, we can then obtain classifier parametersα1 andα2 using

(60) and (61), which are finally used by (34).
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