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1. Introduction

Multi-view learning is a promising research direction wrevalent applicability [1].
For instance, in multimedia content understanding, matiim segments can be described
by both their video and audio signals, and the video and asidioals are regarded as
two views. Learning from data relies on collecting data ttattain a stficient signal
and encoding our prior knowledge in increasingly sopheséid regularization schemes
that enable the signal to be extracted. With certain coteegation schemes, multi-view
learning performs well on various learning tasks.

Statistical learning theory (SLT) provides a general fravoix to analyze the gener-
alization performance of machine learning algorithms. Treoretical outcomes can be
used to motivate algorithm design, select models or giviglns on the &ects and behav-
iors of some interesting quantities. For example, the wedwn large margin principle
in support vector machines (SVMs) is well supported by wsi&LT boundsl 2,3,/ 4].
Different from early bounds that often rely on the complexity sneas of the considered
function classes, the recent PAC-Bayes bounds [5, 6, 7] gevéghtest predictions of the
generalization performance, for which the prior and pastetistributions of learners are
involved on top of the PAC (Probably Approximately Correening setting [&, 9]. Be-
yond the common supervised learning, PAC-Bayes analysid$mbeen applied to other
tasks, e.g., density estimation [10} 11] and reinforcertearning [12].

Although the field of multi-view learning has enjoyed a greatcess with algorithms
and applications and is provided with some theoretical ltgsBRAC-Bayes analysis of
multi-view learning is still absent. In this paper, we atgno fill the gap between the
developments in theory and practice by proposing new PAC-8hgands for multi-view
learning. This is the first use of PAC-Bayes analysis to muéwJearning.

An earlier attempt to analyze the generalization of twosmiearning was made using



Rademacher complexity [13,/14]. The bound relied on estimgdtie empirical Rademacher
complexity of the class of pairs of functions from the twowsethat are matched in expec-
tation under the data generating distribution. Hence,dpoach also implicitly relied
on the data generating distribution to define the functias<land hence prior). The cur-
rent paper makes the definition of the prior in terms of the dggnerating distribution
explicit through the PAC-Bayes framework and provides midtipunds. However, the
main advantage is that it defines a framework that makesaxbie definition of the prior
in terms of the data generating distribution, setting a tategdor other related approaches
to encoding complex prior knowledge that relies on the dateegating distribution.

Kakade and Foster [15] characterized the expected regeesemi-supervised multi-
view regression algorithm. The results given by Sridharathkakade![16] take an infor-
mation theoretic approach that involves a number of assongpthat may be dicult to
check in practice. With these assumptions theoreticaltesmcluding PAC-style analysis
to bound expected losses were given, which involve some Bapteral predictor but can-
not provide computable classification error bounds sineedtita generating distribution
is usually unknown. These results therefore representagecebut distinct approach.

We adopt a PAC-Bayes analysis where our assumptions are ehttwoeigh priors
defined in terms of the data generating distribution. Sudbreihave been studied by
Catoni [8] under the name of localized priors and more regdmntlever et al.[1/7] as data
distribution dependent priors. Both papers consideredmnsebdor placing a prior over
classifiers defined through their true generalization srrém contrast, the prior that we
consider is mainly used to encode the assumption about ldt@reship between the two
views in the data generating distribution. Such data ¢hstion dependent priors cannot
be subjected to traditional Bayesian analysis since we dbana an explicit form for the
prior, making inference impossible. Hence, this papesitates one of the advantages

that arise from the PAC-Bayes framework.
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The PAC-Bayes theorem bounds the true error of the distribatielassifiers in terms
of a term from the sample complexity and the KL divergencevben the posterior and
the prior distributions of classifiers. The key technicalawations of the paper enable
the bounding of the KL divergence term in terms of empiriazdigtities despite involving
priors that cannot be computed. This approach was adopféé]ifor some simple priors
such as the Gaussian centere@pjip(x)]. The current paper treats a significantly more
sophisticated case where the priors encode our expecth@abigood weight vectors are
those that give similar outputs from both views.

Specifically, we first provide four PAC-Bayes bounds usingngribat reflect how well
the two views agree on average over all examples. The firsbwamds use a Gaussian
prior centered at the origin, while the third and fourth oadept a diferent prior whose
center is not the origin. However, the formulations of the involve mathematical
expectations with respect to the unknown data distribstidkie manage to bound the ex-
pectation related terms with their empirical estimationsadinite sample of data. Then,
we further provide two PAC-Bayes bounds using a part of thaitrgidata to determine
priors, and two PAC-Bayes bounds for semi-supervised migdt+\earning where unla-
beled data are involved in the definition of the priors.

When a natural feature split does not exist, multi-view leggrcould still obtain per-
formance improvements with manufactured splits, provitted each of the views con-
tains not only enough information for the learning tasklifdaut some knowledge that
other views do not have. It is therefore important that peablould split features into
views satisfying the assumptions. However, data splitlisast open question and beyond
the scope of this paper.

The rest of this paper is organized as follows. After brieflyiewing the PAC-Bayes
bound for SVMs in Section] 2, we give and derive four multiwiBAC-Bayes bounds in-

volving only empirical quantities in Section 3 and SecfionThen we give two bounds
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whose centers are calculated on a separate subset of thiadrdata in Sectiohl5. After
that, we present two semi-supervised multi-view PAC-Bayests in Sectiohl6. The op-
timization formulations of the related single-view and thulew SVMs as well as semi-
supervised multi-view SVMs are given in Sectldn 7. Afterleading the usefulness and

performance of the bounds in Sectidn 8, we give concludintar&s in Sectionl9.

2. PAC-Bayes Bound and Specialization to SVMs

Consider a binary classification problem. 1®tbe the distribution of feature lying
in an input spac&X and the corresponding output lalyelvherey € {-1,1}. Suppose)
is a posterior distribution over the parameters of the dias€. Define the true error and

empirical error of a classifier as

€p Procy~o(c(X) #Y),

& = Priy-s(c0) %) = = > 1(e(x) # y).

i=1
whereS is a sample includingn examples, andl(:) is the indicator function. With the
distributionQ, we can then define the average true eEgy, = E..q€p, and the average
empirical erroréQ,s = Ec.qés. The following lemma provides the PAC-Bayes bound on

Eo.» in the current context of binary classification.

Theorem 1 (PAC-Bayes Bound [7]).For any data distributior®, for any prior P(c) over

the classifier c, for any € (0, 1]:

KLQIP) + ln(mT“)] s

Pr5~1)m [VQ(C) . KL+(EQ’S”EQ’@) < o

where KLQ||P) = ECNQIn S((c)) is the KL divergence between Q and P, and.Kjlip) =

qIn +(1-09) In for p > g andO otherwise.



Suppose from then training examples we learn an SVM classifier represented by
cu(X) = signu™ ¢(x)), wherep(X) is a projection of the original feature to a certain feature
space induced by some kernel function. Define the prior amgdisterior of the classifier
to be Gaussian with ~ N(0,1) andu ~ N(uw, I), respectively. Note that hefiev|| = 1,
and thus the distance between the center of the posteriothanarigin isu. With this

specialization, we give the PAC-Bayes bound for SVMs [7, 18we

Theorem 2. For any data distributior, for anys¢ € (0, 1], we have

#_2 m+1
R 5 +In(T=)
Prs.om | YW, 1 : KL, (Eqs(W, w)llEqn(W, 1)) < e >1-6,

where||w|| = 1.

All that remains is calculating the empirical stochastioerateEq . It can be shown

that for a posterio = N (uw, I) with |jw|| = 1, we have

Eqs = Es[F(uy(x.y))].

whereEs is the average over thatraining examplesy(X, y) is the normalized margin of

the example
Y(X.y) = YW g(x)/llp(3)I,

andF(x) is one minus the Gaussian cumulative distribution

~ 1 2
F(X :f ——e¥/’dx
(X) -

The generalization error of the original SVM classifegfx) = signfwv™¢(x)) can be
bounded by at most twice the average true el@s(w, u) of the corresponding stochastic

classifier [19]. That is, for any we have

Prixy)~o (SIgn@v' (X)) # y) < 2Eq (W, ).

6



3. Multi-view PAC-Bayes Bounds

We propose a new data dependent prior for PAC-Bayes analysislofview learning.
In particular, we take the distribution on the concatemabbthe two weight vectors;
andu; as their individual producﬂ?’([u{, u;]") = P1(u1)P2(u,) but then weight it in some
manner associated with how well the two weights agree aedram all examples. That
is, the prior is

P([ui,uz]") oc P1(u)Pa(uz)V(ug, uy),

whereP,(u;) andP;(u,) are Gaussian with zero mean and identity covariance, and

1
V(ug, up) = exp{_ﬁE(Xl,Xz)(XIul - Xguz)z} .
To specialize the PAC-Bayes bound for multi-view learning,omesider classifiers of

the form

c(X) = signu” ¢(x)),
whereu = [u],u;]" is the concatenated weight vector from two views, a(¢ can be
the concatenated = [x],Xx]]" itself or a concatenation of maps »fto kernel-induced
feature spaces. Note that andx; indicate features of one example from the two views,
respectively. For simplicity, here we use the original tees to derive our results, though
kernel maps can be implicitly employed as well. Our dimenality independent bounds
work even when the dimension of the kernelized feature sgaes to infinity.

According to our setting, the classifier prior is fixed to be
P(u) o« N(O,1) x V(ug, Up), (1)

FunctionV(uy, u;) makes the prior place large probability mass on parameitigénsvhich
the classifiers from two views agree well on all examples ayely. The posterior is

chosen to be of the form

Q(u) = N(uw, 1), 2
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where|lw|| =

Definex = [x], -x]]7. We have
P(u) o N(O,1)x V(us, Up)
{ } X exp{ = Exy.x) (X1 U1 = X3 Uz) }
- expl-Burul x| Lma)
- exp|-Burul x| Lzl
- expl 1 22,

That is,P(u) = N(0,Z) with = (1 + I%T))fl

I\)II—‘ I\)II—‘ I\)II—\

Suppose dim() = d. Given the above prior and posterior, we have the following

theorem to characterize their divergence.

Theorem 3.

E(X xT)

KLQU)IP(W) = 5 (I¢

)+—wa+foﬁ+u) @)

Proof. It is easy to show that the KL divergence between two Gausg0] in anN-

dimensional space is

KL(N (uo, Zo)lIN (11, Z1)) = > ['n(l I) + (21" Zo0) + (1 — o) "= (1 — o) — d)



The KL divergence between the posterior and prior is thus

KL(Q(WIP(u)) = % In(|l + E(Z(_);(T) ) +tr(l + E(;O;(T)) + 2w (1 + E(Z(_)ZT))W - d)
= Y+ BB (WT)) 2w ( (~~T))W+/J )
2 o2
= o+ B®D)y iE[tr(fozT)] NS SSEIWTR] + )
2 o2
1 EGX) 1 oo e
= S(-n(r+ (02 )+ SE[XTS] + %E[(W %)?] +ﬂ2)
- % In(|l + E(?;(T) ) + %E[)N(Tf( + 1A(WTX)?] +,u2),

which completes the proof. O

The problem with this expression is that it contains exgeria over the input distribu-
tion that we are unable to compute. This is because we haveedéfie prior distribution
in terms of the input distribution via the function. Such priors are referred to as lo-
calized by Catonil[8]. While his work considered specific exlamf such priors that
satisfy certain optimality conditions, the definition wensaler here is encoding natural
prior assumptions about the link between the input distidouand the classification func-
tion, namely that it will have a simple representation inhbaews. This is an example of
luckiness|[21], where generalization is estimated maksspmptions that if proven true
lead to tighter bounds, as for example in the case of a larggimelassifier.

We now develop methods that estimate the relevant quantiiti€3) from empirical
data, so that there will be additional empirical estimagiamolved in the final bounds
besides the usual empirical error.

We proceed to provide and prove two inequalities on the irealogarithmic determi-

nant function, which are very important for the subsequaritimiew PAC-Bayes bounds.



Theorem 4.

E(XXT )()(T 1/d
—In‘l L . ) —dInE‘I + 27, (4)
o
E(XX" %7 |
~In i+ ) < —E|n1|+—2. 5)
o o

Proof. According to the Minkowski determinant theorem, fox n positive semi-definite

matricesA andB, the following inequality holds
|A+ B|1/n |A|1/n | |1/n’

which implies that the functiod — |A|1/n is concave on the set of x n positive semi-

definite matrices. Therefore, with Jensen’s inequality aech

XXT j1/d

E(XXT) ~din[E(l + —)

IA

—dInE ‘| + 22 1/d].

Since the natural logarithm is concave, we further have

_dInE’I +XXT /d] < —dE In‘l+XXT /] —]Eln|l+)~;i;,
and thereby
T SOT
~In|i+ E(XX) —Eln‘l+%.

O

DenoteR = sup ||X||. From inequality[(#), we can finally prove the following thiem,

as detailed in AppendixIA.

Theorem 5 (Multi-view PAC-Bayes bound 1).Consider a classifier prior given iml(1)
and a classifier posterior given inl(2). For any data disttilon D, for anyé € (0, 1], with

10



probability at leastl — § over S~ D™, the following inequality holds

YW, 1 0 KL, (EqsllEqp) <

d d 2 1 |n 3 Hn , Q#2R [ 1 1.3, #2 M1
~4In|fn— (V(R/7) +1—1),/ﬁ|n5]++ﬁ+ ) ,/ﬁ|n5+3+|n(y+3
m

where
1 & X% \1/d
fm = E] ; ‘I + O-_ZI N
1 m
Hn = EZ[)"(? % + P (WT%)?],
i=1
and||w|| = 1.

From the bound formulation, we see thatf'(x)? is small, that is, if the two view
outputs tend to agree, the bound will be tight.

Note that, although the formulation & involves the outer product of feature vectors,
it can actually be represented by the inner product, whickwsous through the following
determinant equality
XiX

=2 +1,

‘I+

0-2
where we have used the fact that mafix" has rank 1 and has only one nonzero eigen-
value.

We can use inequality [5) instead 6f (4) to derivd-andependent bound (see The-
orem[6 below), which is independent of the dimensionalityhef feature representation

space.

Theorem 6 (Multi-view PAC-Bayes bound 2).Consider a classifier prior given il(1)
and a classifier posterior given inl(2). For any data disttilom D, for anys € (0, 1], with
probability at leastl — § over S~ D™, the following inequality holds

i f~/2+%((1+(‘;¢+In(1+§)),/$ln§+’§ntln(%zl
VW,,u . KL+(EQ’S”EQ’D) < m >
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where
XX
g

f= >

o1
(?[Xr % + 12(WT%)?] - In ‘I +
=1

1
m: )

and|w| = 1.

The proof of this theorem is given in Appendix B.
Since this bound is independent witland the tern1|| +X%2T

involving the outer product
can be represented by the inner product throlgh (6), thisdboan be employed when the

dimension of the kernelized feature space goes to infinity.

4. Another Two Multi-view PAC-Bayes Bounds

We further propose a new prior whose center is not locatedeabtigin, inspired by

Parrado-Herandez et al. [18]. The new classifier prior is
P(u) o« N(nwp, 1) x V(ug, uy), (6)
and the posterior is still

Q(u) = N(uw, 1), 7)
wheren > O, |w|| = 1 andwp = Exy).o[yX] (Or Exy)-olysd(X)] in a predefined kernel
space) withx =[x/, x]".

We have
P(u) o N(pwp, 1) x V(ui, uy)

o exp{—%(u —nwp) (U - nwp)} X exp{—%‘_zuTE(iiT)u} :

. . T\ ~1
That is,P(u) = N(up, Z) with T = (I + % )) andu, = 7Zw,,.
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With d being the dimensionality afi, the KL divergence between the posterior and

prior is

K I-(Q(U)IIP(U))

ST

B (_ n (‘I E(XXT)

(~ T)

E(%XT)
2

+1tr(l + )+ (Up— )" (1 +

E(”>~<T)

)t~ o) - )

)+ %E[)"(T)N(] + (Up —pw) (1 +

)(up .uW)) : (8)

We have

(p =)0+ 20 )1y — )

KT E>~<>~<T
2w + 26X G0
O'

) Wp = 2quwWiw + AW (1 +

w

= nzwg(l + (MT)) Wp — 27w W + —]E[(W x)2] + 1P
— P+ 565 )y — 2By ] + B TRP) +
< W, - 20uElyw] + LB ot ©

where for the last inequality we have used the fact that mbt{(l + E(f_—f))‘l IS symmetric
and positive semi-definite.
DefineW, = Ey-slyx] = & X1 [yixi]. We have
PWgWp = [IpWp — W + pw|?
= |lpwp — pWIIZ + 1 + 2wy — pw) " pw
< ligwp — pWIP + 1 + 2ullqwp — uw|

(Inwp — puwl| + p)?. (10)

Moreover, we have

InWp — uwl| = [InWp — Wy + Wy — uWl| < |lIpWp — nWoll + W — puw]l.  (11)
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From (8), [9),[(10) and(11), it follows that
E(XX")
0-2

1 - ~
)+ SImwp = Woll + Wy — sl + ) +

12

?.

KLQU)IP(U)) < —%mq| ;

g |[K7% = 2npo?y(w'x) + pP(W)?| + (12)
202
By using inequalitied{4) andl(5), we get the following twodhems, whose proofs are

detailed in Appendik®C and AppendiX D, respectively.

Theorem 7 (Multi-view PAC-Bayes bound 3).Consider a classifier prior given inl(6)
and a classifier posterior given inl(7). For any data disttilom D, for anyw, positivey,
and positive;, for anyé € (0, 1], with probability at leastL — 6 over S~ D™ the following
multi-view PAC-Bayes bound holds

KL.(EqsllEqp) < i [fm - (W - DW L i

2
1 (R [ 4 A H R+ R+dnuc®R [ 1 104 | 1P m+1
5(_ﬁ(2+ 2|n3)+”TIWp—lJW”+u) +ZT£+T ﬂln(—5+7+|n(m

m

where

1 XX |1/d
fm = —Z'I'F—Z s
m 4 g

and||w|| = 1.

Besides the termn("%;)? that appears in the previous bounds, we can see thal/jf—
uwl| is small, that is, the centers of the prior and posterior teralverlap, the bound will
be tight.
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Theorem 8 (Multi-view PAC-Bayes bound 4).Consider a classifier prior given in|(6)
and a classifier posterior given ifl(7). For any data disttilom 9D, for anyw, positivey,
and positivey, for anyé € (0, 1], with probability at leastL — § over S~ D™ the following

multi-view PAC-Bayes bound holds

2
1 (3—;(2 + 32N 2) + i, — ] + ﬂ)

KL.(EgsllEqn) < - "
5 R2+47]ua'2R+,u2R2+0'2|n(1+E2) [1 3, 4P m+1
7m+ 202 ﬁ|n5+7+ln(m
m b
where
o 5 -
q. - 1 Z[eri — 2nuo?yi(WX) + P (W) il + ﬂ]
m — m 0.2 2
i-1
and|jw|| = 1.

5. Separate Training Data Dependent Multi-view PAC-Bayes Bouds

We attempt to improve our bounds by using a separate setiningadata to deter-
mine new priors, inspired by Ambroladze et al.|[22] and Riorblerrandez et al. [18].
We consider a spherical Gaussian whose center is calcuatadsubseT of training set
comprisingr training patterns and labels. In the experiments this isrtas a random sub-
set, but for simplicity of the presentation we will assuimheomprises the lastexamples
Xk Yidkemer 41+

The new prior is

P(u) = N(wj. 1), (13)

and the posterior is again

Q(u) = N(uw., 1). (14)
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One reasonable choice wf, is

Wp = (Bx[%XT]) ™ Ey)-nlyX], (15)

which is the solution to the following optimization problem

Exl,y[ywle] + Exz,y[y\N;XZ]
max T T >
w EXl,Xz[(Wl X1 — W2 XZ) ]

: (16)

wherew = [w],w]]". We use the subs@tto approximatev,, that is, let

(Bx-t[$XT]) " Eqeyy-tlyX]

-1 m-r+1

1 m-r+1 o 1 17
—— ; [XiXy o ; [VicXe] (17)

The KL divergence between the posterior and prior is

Wp

KL(QW)IP(U)) = KLON (uw, DN (wp, 1)) = [iwip — awP. (18)

Since we separateexamples to calculate the prior, the actual size of theitrgiget

that we apply the bound to m— r. We have the following bound.

Theorem 9 (Multi-view PAC-Bayes bound 5).Consider a classifier prior given in_(13)
and a classifier posterior given if_([L4), witl, given in [1T). For any data distribution
D, for anyw, positiveu, and positivey, for anyé € (0, 1], with probability at leastl — §

over S~ D" the following multi-view PAC-Bayes bound holds

1 —r+1
3llmwp — pwl|? + In M2t

KL,(EosllEqp) < (19)

m-r

and|w| = 1.

Another choice ofv, is to learn a multi-view SVM classifier with the sub3etieading

to the following bound.
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Theorem 10 (Multi-view PAC-Bayes bound 6).Consider a classifier prior given if (13)
and a classifier posterior given in (114). Classifieg has been learned from a subset T of r
examples a priori separated from a training set S of m samieisany data distribution
D, for anyw, positiveu, and positive;, for anyé € (0, 1], with probability at leastl — §
over S~ D" the following multi-view PAC-Bayes bound holds

3lmwp — pwif? + In B

m-r

KL,(EosllEqp) < (20)

and|w| = 1.

Although the above two bounds look similar, they are esalytilifferent in that the
priors are determined fierently. We will see in the experimental results that thespal

perform diferently when applied in our experiments.

6. Semi-supervised Multi-view PAC-Bayes Bounds

Now we consider PAC-Bayes analysis for semi-supervised mighv learning, where
besides then labeled examples we are further provided withnlabeled exampled =

{X; Mo We replacé/(us, u,) with V(uy, u,), which has the form

V(uy, Up) = exp{—%uTEU ()?)?T)u}, (21)

whereE, means the empirical average over the unlabeled set

6.1. Noninformative Prior Center
Under a similar setting with Sectidn 3, that B(u) « A/(0,1) x V(u, U), we have
P(u) = N(0.Z) with = = (I + M)_l. Therefore, according to Theoré 3, we have

By (>~<>~<T)

KLQUIPW) = 5 (-In +

)-—mhx+ﬁMxﬂ+u) (22)

Substituting[(ZR) into Theoref 1, we reach the following seapervised multi-view
PAC-Bayes bound.

17



Theorem 11 (Semi-supervised multi-view PAC-Bayes bound 1)Consider a classifier
prior given in [2) withV defined in[{211), a classifier posterior given(ih (2) and arabeled
setU= {)”(,-}E“:*rﬁﬂ. For any data distributiorD, for anyé € (0, 1], with probability at least

1-6over S~ D", the following inequality holds

YW, 1 - KL, (EqsllEqp) <

L (- (1 + 280N + LEG[KTR + 2WTR)?] + ﬂz) +ln (el

b

m

where||w|| = 1.

6.2. Informative Prior Center

Similar to Section 4, we take the classifier prior to be
P(u) o N (W, 1) x V(uy, Up), (23)

whereV(uy, u,) is given by [Z1)5 > 0 andw, = Ey-o[yx] with x = [x],Xx7]T. We have
P(u) = N(up, Z) with X = (I + E”((TLST))_1 andu, = 7Ew,,.

By similar reasoning, we get

EUS_(ZX )’) +

1 1 - R
KLQW)IPW) < -3In(i + =Wy = vl + iy = ] + 2)? +

1 STS 208 TS\2 T /12
5B [KX+ 2 (WTR)?| = B YW )] + (24)

which is analogous t¢ (12).
Then, we can give the following semi-supervised multi-vi&C-Bayes bound, whose

proof is provided in AppendiXIE.

Theorem 12 (Semi-supervised multi-view PAC-Bayes bound 2Consider a classifier
prior given in [Z3) withV defined in[{21), a classifier posterior given [ (7) and araunl

beled set U= {X;}™" .. For any data distributior, for anyw, positiveu, and positive

j=m+l”
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n, for anyé € (0, 1], with probability at leastl — § over S~ D™, the following inequality
holds
2
% (%(2 + 4/2In g) + |IpWp — puwl| + ,u)

KL.(EqsliEqp) < - +

E, ivival
g(— In(jl + 2060

)+ HEQIRT + (2R +42) + St R RIS +In (22

2

m

where
_ 1 &
Sm= = D [muy(w)],
i=1

and|w|| = 1.

7. Learning Algorithms

Below we provide the optimization formulations for the sewgiew and multi-view
SVMs as well as semi-supervised multi-view SVMs that arepaeld to train classifiers
and calculate PAC-Bayes bounds. Note that the augmented vepresentation is used
by appending a scalar 1 at the end of the feature represamgain order to formulate the

classifier in a simple form without the explicit bias term.

7.1. SVMs

The optimization problem [23, 24] is formulated as

. 1, .
min = C i
nin - SIwi + Zl]f
S.t. yi(WTXi)Zl—fi, i=1,...,n,

&E>0, i=1,...,n, (25)
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where scala€ controls the balance between the margin and empirical Tdss. problem
is a diferentiable convex problem withfae constraints. The constraint qualification is
satisfied by the refined Slater’s condition.

The Lagrangian of problern (R5) is
1 n n
Lw.£.4.7) = Wl +C 21] & - 21] A yiWx) — 1+ &]

n
- Z?’ifi, 420, =0, (26)
i—1
whered = [A4,...,4,]" andy = [y1,...,¥n] " are the associated Lagrange multipliers.
From the optimality conditions, we obtain
n
AL (W, b*, &, %, 9*) = W* — Z Ayix; = 0, (27)
i=1
O LW, b, &2, y)=C-A' -y =0, i=1...,n (28)
The dual optimization problem is derived as
. 1
min  =A'DA-1"1
A 2
st. 4=0,
A<C1, (29)

whereD is a symmetria1 x n matrix with entriesD;; = y;y;x"X;. Once the solutio* is

given, the SVM decision function is given by

c'(x) = sign(i yi/l;*xTxi).

i=1
Using the kernel trick, the optimization problem for SVMssidll (29). However, now

Di; = yiyj«(xi, X;) with the kernel function(:, -), and the solution for the SVM classifier is

formulated as

c'(x) = sign[zn: yi/l;“K(xi,x)).
i=1
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7.2. MVSVMs

Denote the classifier weights from two views Wy andw, which are not assumed to
be unit vectors at the moment. Inspired by semi-supervisdd-mew SVMs |25, 26/ 4],

the objective function of the multi-view SVMs (MvSVMSs) cae [given by

. 1 no . 4 . _
min SOl + IWP) +Co Y (€ + &) + Ca ) Wiy —wjx)?
i=1 i=1

Wi W£1.62
st ywixi>1-¢, i=1---,n,
Ywgxo > 1—-&, i=1,---,n,
&,.6>0 i=1---,n (30)

If kernel functions are used, the solution of the above opttion problem can be
given byw; = 31, alki(X,, ), andw, = 311, abks(xh, -). Since a function defined on view

] only depends on thgh feature set, the solution is given by
wi= ) dik(xi). W= ) abke(. ). (31)
i=1 i=1
It can be shown that

2 2
Iwall© = af Kiag, |IwWol|° = @] Kaas,

n
Z(WIXi - W;Xi)2 = (Kia1 — Koap) T Ky — Koarp),
i1

whereK; andK, are kernel matrices from two views.
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The optimization probleni(30) can be reformulated as theviohg
. 1
al,gl,lg,fz Fo= E(CVI Kia1 + @] Kaaz) + Co(Kran — Koa) T (K — Koarp) +
n
Ci ) (€ +8)
i=1
In | |
S.t. yi(Zoﬂlkl(xj,xi)) >1-¢4, i=1.---,n,
j=1
n ) ]
Vi( ) edkox;, X)) 2 1= &, i=1--.n,
j=1
E,6,>0, i=1---,n (32)

The derivation of the dual optimization formulation is dktd in AppendiXF. Tabléll

summarizes the MvSVM algorithm.

Table 1: The MvSVM Algorithm

Input:
A training set withn exampleg(x;, i)}, (each example has two views).
Kernel functionk, (-, -) andk(-, -) for two views, respectively.
Regularization coicientsC,, C,.
Algorithm:
1 Calculate Gram matricds; andK, from two views.
2 CalculateA, B, D according to[(5/1).
3 Solve the quadratic optimization problem](52) to get,.
4 Calculatar; anda, using [47) and(48).
Output: Classifier parameters; anda, used by[(311).
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7.3. Semi-supervised MvSVMs (SMvSVMs)

Next we give the optimization formulation for semi-supead MvSVMs (SMvSVMSs)
[25,126, 4], where besides timdabeled examples we further haveinlabeled examples.
Denote the classifier weights from two views Wy andw, which are not assumed to

be unit vectors. The objective function of SMVSVMs is

n+u

. 1 no . . .
min SOl + Iwall?) + Cr ) (€ +€) + Co ) (WIX; ~ W3x5)?
i=1 i=1

Wi W £1.62
st ywixi>1-¢, i=1---,n,
YiWwgxh>1—&, i=1---,n,
&,6>0 i=1---,n (33)

If kernel functions are used, the solution can be expresgesh b= Y/ cyilkl(xi ),
andw, = Y abko(X), ). Since a function defined on viejvonly depends on théth
feature set, the solution is given by

n+u n+u

Wy = Z ik (Xi,-), W= Z abko(Xi, -). (34)
i=1 i=1
It is straightforward to show that

Iwil? = a7 Kyag,  [IWall? = a; Koz,
n+u
2
Z(WIXi — Wy X)) = (Kieg — Koo)' (Kuag — Kap),
i-1

where 6+ u) x (n+ u) matricesK; andK, are kernel matrices from two views.
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The optimization probleni(33) can be reformulated as

. ~ 1
m|§n§ Fo = é(aIKlal + (L’;—Kza’z) + Cz(Kla’l — Kz(lz)T(Kla’l — Kza’z) +
@1,02,61,62

Ci ) (€ +8)
i=1

s.t. y(i}@qmm»zl—g,i:Ln,m
=1

n+u

yi(chékz(xj,xi)) > 1—§i2, i=1---,n,

=1
&,6>0 i=1---,n (35)

The derivation of the dual optimization formulation is dktd in AppendiXG. Tablgl2

summarizes the SMvSVM algorithm.

Table 2: The SMvSVM Algorithm

Input:
A training set withn examples((x;, y;)}i., (each example has two views)
andu unlabeled examples.
Kernel functionk, (-, -) andky(:, -) for two views, respectively.
Regularization coicientsC,, C,.
Algorithm:
1 Calculate Gram matricdsé; andK, from two views.
2 CalculateA, B, D according to[(64).
3 Solve the quadratic optimization probleml(65) to ggtd,.
4 Calculatar; anda, using [60) and(G1).
Output: Classifier parameters; anda, used by[(34).
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8. Experiments

The new bounds are evaluated on one synthetic and five re&d-wulti-view data
sets where the learning task is binary classification. Bel@nfivst introduce the used
data and the experimental settings. Then we report thenessef the involved variants
of the SVM algorithms, and evaluate the usefulness andvelperformance of the new
PAC-Bayes bounds.

8.1. Data Sets

The six multi-view data sets are introduced as follows.

Synthetic

The synthetic data include 2000 examples half of which lgelonthe positive class.
The dimensionality for each of the two views is 50. We firsteyate two random direction
vectors one for each view, and then for each view sample 200Qgpto make the inner
products between the direction and the feature vector éofi&the points be positive and
the inner products for the other half of the points be negatikor the same point, the
corresponding inner products calculated from the two viavesmade identical. Finally,

we add Gaussian white noise to the generated data to fornynltieesic data set.

Handwritten

The handwritten digit data set is taken from the UCI machiaenlimg repository. [27],
which includes features of ten handwritten digits§) extracted from a collection of
Dutch utility maps. It consists of 2000 examples (200 exampler class) with the first
view being the 76 Fourier céiécients, and the second view being the 64 Karhunegévieo
codficients of each image. Binary classification between digit2(1B) and (4, 5, 6) is

used for experiments.
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Ads

The ads data are used for classifying web images into ads@ndas|[28]. This data
set consists of 3279 examples with 459 of them being ads. by attributes (weights
of text terms related to an image using Boolean model) are fasexassification, whose
values can be 0 and 1. These attributes are divided into t@wsvione view describes the
image itself (terms in the image’s caption, URL and alt text) ¢he other view contains
features from other information (terms in the page and dastin URLS). The two views

have 587 and 967 features, respectively.

Course

The course data set consists of 1051 two-view web pagesctadldrom computer
science department web sites at four universities: Cornaltdssity, University of Wash-
ington, University of Wisconsin, and University of Texashere are 230 course pages
and 821 non-course pages. The two views are words occurriagveb page and words
appearing in the links pointing to that page![29, 4]. The doent vectors are normalized
totf-idf (term frequency-inverse document frequency) featurestaenl principal com-
ponent analysis is used to perform dimensionality redactithe dimensions of the two

views are 500 and 87, respectively.

Wisconsin

The Wisconsin data set is a subset of the course data sentéigs 122 student web
pages and 143 non-student pages. The two views are wordsageagnd words in the
links referring to it. The dimension of the first view is 17@®#\d that of the second one is
265.
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Cora

The cora data set [30] consists of 2708 scientific publicatioelonging to seven cat-
egories, of which the one with the most publications is sdiddhe positive class, and
the rest the negative. Each publication is described by sviorthe content view, and the
numbers of citation links between other publications agdlitin the citation view. The

dimensions are 1433 and 2708, respectively.

8.2. Experimental Settings

Our experiments include algorithm test error evaluaticshRAC-Bayes bound evalua-
tion for single-view learning, multi-view learning, supesed learning and semi-supervised
learning. For single-view learning, SVMs are trained safey on each of the two views
and the third view (concatenating the previous two viewtonfa long view), providing
three supervised classifiers which are called SVM-1, SVMy@ 8VM-3, respectively.
Evaluating the performance of the third view is interestiogcompare single-view and
multi-view learning methods, since single-view learnimgtbe third view can exploit the
same data as the usual multi-view learning algorithms. Th&WMs and SMvSVMs
are supervised multi-view learning and semi-supervisetitview learning algorithms,
respectively. The linear kernel is used for all the alganish

For each data set, four experimental settings are usedh@bBettings use 20% of all
the examples as the unlabeled examples. For the remainargpdes, the four settings
use 20%, 40%, 60% and 80% of them as the labeled trainingesgiectively, and the
rest forms the test set. Supervised algorithms will not heeunlabeled training data.
For multi-view PAC-Bayes bound 5 and 6, we use 20% of the lab&kading set to
calculate the prior, and evaluate the bounds on the rentaB0f% of training set. Each
setting involves 10 random partitions of the above subsEte reported performance is

the average test error and standard deviation over thedemapartitions.
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Model parameters, i.eC in SVMs, andC,, C, in MvSVMs and SMvSVMs, are se-
lected by three-fold cross-validation on each labelechingi set, whereC,,C, are se-
lected from{107°,10%, 102, 1, 10,100 andC is selected from108,5x 108,107, 5 x
1077,105,5%x10°5,105,5x 10°,10%,5x 104,103,5x 103,102,5x 102,10,5 %
101, 1,5, 10,20, 25,30, 40,50, 55, 60, 70, 80, 85,90, 100 300 50Q 70Q 90Q 100Q. All the
PAC-Bayes bounds are evaluated with a confidence ©f0.05. We normalizev in the
posterior when we calculate the bounds. For multi-view PA@eBaboundser is fixed
to 100,7n is set to 1, andR is equal to 1 which is clear from the augmented feature rep-
resentation and data normalization preprocessing (alirieing examples after feature
augmentation are divided by a common value to make the mamifeature vector length
be one).

We evaluate the following eleven PAC-Bayes bounds where 8teelght bounds are

presented in this paper.

e PB-1: The PAC-Bayes bound given by Theorem 2 and the SVM algorith the

first view.

e PB-2: The PAC-Bayes bound given by Theorem 2 and the SVM algorith the

second view.

e PB-3: The PAC-Bayes bound given by Theorem 2 and the SVM algorith the

third view.
e MvPB-1: Multi-view PAC-Bayes bound 1 with the MvSVM algorithm.
e MvPB-2: Multi-view PAC-Bayes bound 2 with the MvSVM algorithm.
e MvPB-3: Multi-view PAC-Bayes bound 3 with the MvSVM algorithm.
e MvPB-4: Multi-view PAC-Bayes bound 4 with the MvSVM algorithm.
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MvPB-5: Multi-view PAC-Bayes bound 5 with the MvSVM algorithm.

MvPB-6: Multi-view PAC-Bayes bound 6 with the MvSVM algorithm.

SMvPB-1: Semi-supervised multi-view PAC-Bayes bound 1 with 8MvSVM

algorithm.

SMvPB-2: Semi-supervised multi-view PAC-Bayes bound 2 with 8MvSVM

algorithm.

8.3. Test Errors

The prediction performances of SVMs, MvSVMs and SMvSVMstfar four exper-
imental settings are reported in Table 3, TdBle 4, Table 5Tade[6, respectively. For
each data set, the best performance is indicated with lm@dfambers. From all of these
results, we see that MvSVMS and SMvSVMs have the best oygeibrmance and some-
times single-view SVMs can have the best performances. SsSoften perform better
than MvSVMS since additional unlabeled examples are usgebatally when the labeled
training data set is small. Moreover, as expected, with ntapeled training data the

prediction performance of the algorithms will usually iease.

8.4. PAC-Bayes Bounds

Table[T, Tabl€8, Tablg 9 and Tallg 10 show the values of v@R&C-Bayes bounds
under diferent settings, where for each data set the best bound ¢atediin bold and the
best multi-view bound is indicated with underline.

From all the bound results, we find that the best single-viewnla is usually tighter
than the best multi-view bound, except on the synthetic skettand the Wisconsin data set.
One possible explanation for this is that, the synthetia dat is ideal and in accordance

with the assumptions for multi-view learning encoded in piner, while the real world
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data sets are often not. This also indicates that there if1repace and possibility for
further developments of multi-view PAC-Bayes analysis. Idiadn, with more labeled
training data the corresponding bound will usually becoigbktér. We observe that on
two real-world data sets, namely, the ads data set and theow#s data set, the best
multi-view bound is comparable with the best single-viewaihd. We perform paired t-
tests for the best multi-view bound with the best singlesimund on these two data sets
under diferent experimental settings, respectively. THeéedénce is not significant at the
95% confidence level under all the settings. Last but not,Jeasong the eight presented
multi-view PAC-Bayes bounds on real world data sets, the égthbne is often the first
semi-supervised multi-view bound which exploits unlabedata to calculate the function
\7(u1, u,) and needs no further relaxation. The results also shovittaatecond multi-view
PAC-Bayes bound (dimensionality-independent bound witlptia distribution centered

at the origin) is sometimes very good.

9. Conclusion

The paper lays the foundation of a theoretical and practreahework for defining

priors that encode non-trivial interactions between da&iutions and classifiers and

Test Error| Synthetic | Handwritten Ads Course Wisconsin Cora
SVM-1 | 1720+ 139 | 566+094 | 584+ 056 | 1915+ 154 | 1645+ 3.37 | 1739+ 1.19
SVM-2 | 1998+0.76 | 3.98+0.68 | 525+ 0.79 | 1015+ 1.60 | 36.27+4.28 | 1940+ 1.09
SVM-3 | 1655+ 2.04 | 1.65+ 053 | 462+ 0.80 | 1033+ 1.34 | 1645+ 390 | 1511+ 0.81

MvSVM | 1054+ 0.73 | 217+ 0.64 | 455+ 0.66 | 1055+ 1.47 | 16.39+4.62 | 1545+ 1.65

SMvSVM | 10.30+0.79 | 2.04+0.69 | 470+0.70 | 1028+ 163 | 17.69+ 3.76 | 1467+ 1.01

Table 3: Average error rates (%) and standard deviationdifferent learning algorithms under the 20%

training setting.
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Test Error| Synthetic | Handwritten Ads Course Wisconsin Cora
SVM-1 | 1449+098 | 557+0.41 | 504+0.83 | 1423+ 127 | 1213+ 244 | 1528+ 1.09
SVM-2 | 1688+106| 3.75+0.99 | 414+ 040 | 7.64+0.80 | 3575+2.80 | 1617+ 142
SVM-3 | 1031+0.82| 1.51+0.39 | 361+ 054 | 7.68+0.97 | 1213+ 3.38 | 1316+ 1.20
MvSVM 7.72+0.78 | 1.98+0.61 | 3.56+054 | 7.00+093 | 1291+ 269 | 1265+ 0.83

SMvVSVM | 7.48+0.66 | 203+0.61 | 3.44+ 054 | 6.81+0.98 | 1291+ 2.69 | 1222+ 0.60

Table 4: Average error rates (%) and standard deviationdiffarent learning algorithms under the 40%

training setting.

Test Error| Synthetic | Handwritten Ads Course Wisconsin Cora
SVM-1 | 1423+124| 516+0.61 | 432+050 | 1128+ 130 | 9.29+3.14 | 1346+1.14
SVM-2 | 1611+0.94 | 346+094 | 390+ 058 | 6.53+1.44 | 3548+ 368 | 1425+ 0.47
SVM-3 | 9.08+1.07 | 1.77+0.85 | 343+ 051 | 6.62+1.33 | 9.64+2.79 | 11.33+0.86

MvSVM | 7.30+0.85 | 1..67+0.63 | 345+ 0.32 | 582+ 1.73 | 1060+ 3.82 | 10.66+ 0.65

SMvSVM | 7.31+0.80 | 1.82+0.70 | 3.36+0.38 | 593+ 163 | 1214+ 2.70 | 10.70+ 0.55

Table 5: Average error rates (%) and standard deviationdifferent learning algorithms under the 60%

training setting.

Test Error| Synthetic | Handwritten Ads Course Wisconsin Cora
SVM-1 | 1306+200| 542+151 | 447+0.60 | 9.70+1.64 | 1000+ 350 | 1215+ 1.13
SVM-2 | 16.03+1.73 | 354+1.33 | 3.59+0.66 | 5.62+1.68 | 3238+ 853 | 1347+ 1.29
SVM-3 8.06+1.11 | 1.93+0.66 | 296+ 0.51 | 556+ 1.72 | 1095+ 3.87 | 9.68+1.10

MvSVM 6.28+ 120 | 1.82+0.75 | 319+ 063 | 420+ 151 | 1214+ 270 | 9.14+0.85

SMVSVM | 6.28+1.19 | 1.93+0.77 | 315+ 0.75 | 3.96+ 159 | 1214+ 270 | 9.35+0.84

Table 6: Average error rates (%) and standard deviationdifterent learning algorithms under the 80%

training setting.

31




PAC-Bayes Bound Synthetic | Handwritten Ads Course Wisconsin Cora
PB-1 60.58+0.12 | 5461+ 1.59 | 4049+ 2.09 | 5893+ 890 | 6647+ 1.91 | 50.13+ 2.09
PB-2 60.72+0.09 | 4517+ 3.74 | 4044+ 212 | 6164+1.49 | 7044+ 141 | 5136+ 0.17
PB-3 60.49+0.12 | 4762+ 342 | 4375+ 3.15 | 5967+ 232 | 6651+ 241 | 5221+ 1.76

MvPB-1 6127+ 0.07 | 5163+2.89 | 40.87+2.77 | 6354+ 0.45| 7108+ 3.69 | 5838+ 0.31
MvPB-2 6104+ 0.07 | 5145+ 289 | 40.80+2.77 | 6326+ 0.47 | 7054+ 3.66 | 5821+ 0.30
MvPB-3 6235+ 0.01 | 6344+ 0.62 | 56.38+1.49 | 66.37+0.06 | 7816+ 0.37 | 60.64+ 0.09
MvPB-4 6217+ 0.01 | 6323+0.61 | 56.29+ 148 | 66.14+ 0.06 | 77.75+ 0.37 | 60.50+ 0.09
MvPB-5 6184+ 0.09 | 5252+ 3.01 | 4321+294 | 6436+ 0.43 | 8032+ 0.33 | 6180+ 0.06
MvPB-6 63.74+0.08 | 5865+ 7.09 | 5494+ 4.68 | 67.75+0.25 | 7983+ 0.87 | 6174+ 0.17
SMVPB-1 60.60+ 0.06 | 49.84+2.87 | 4065+ 3.25 | 6277+ 0.49 | 6950+ 3.78 | 57.94+ 0.26
SMvPB-2 6217+ 0.01 | 6294+ 0.62 | 56.28+1.30 | 66.14+ 0.06 | 77.74+ 0.40 | 60.52+ 0.09

Table 7: Average PAC-Bayes bounds (%) and standard dengaftio diferent learning algorithms under the

20% training setting.
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PAC-Bayes Bound Synthetic | Handwritten Ads Course Wisconsin Cora
PB-1 5720+ 0.05 | 4526+ 1.48 | 3311+ 3.89 | 59.68+ 0.52 | 60.52+ 2.66 | 4593+ 2.15
PB-2 5740+ 0.11 | 3545+ 3.22 | 2885+ 3.26 | 5526+ 1.97 | 6487+ 1.63 | 5397+ 0.78
PB-3 5715+ 0.07 | 3548+ 226 | 3274+ 4.29 | 5612+ 0.78 | 60.10+ 2.08 | 4888+ 2.00

MvPB-1 57.69+0.09 | 4085+3.23 | 3336+ 217 | 5917+ 0.51 | 6112+ 4.79 | 5500+ 0.24
MvPB-2 5754+ 0.08 | 40.76+3.22 | 3332+ 2.17 | 5899+ 0.50 | 60.77+4.74 | 5512+ 0.84
MvPB-3 5897+ 0.02 | 57.26+1.17 | 5168+ 1.38 | 6191+ 0.07 | 70.69+ 0.62 | 57.57 + 0.03
MvPB-4 5885+ 0.02 | 5715+ 1.16 | 51.62+1.37 | 6177+ 0.10 | 7037+ 0.62 | 57.48+ 0.03
MvPB-5 5744+ 0.13 | 4256+ 3.36 | 3586+ 2.23 | 5991+ 048 | 7315+ 0.43 | 5856 + 0.03
MvPB-6 5267+236 | 4257+ 593 | 47.34+ 3.05 | 6286+ 0.09 | 7238+ 1.15 | 5843+ 0.03
SMvPB-1 57.27+0.06 | 40.76+ 3.26 | 3426+ 3.00 | 5869+ 0.44 | 60.14+4.64 | 5463+ 0.31
SMvPB-2 5885+ 0.01 | 5722+ 118 | 5216+ 1.50 | 6177+ 0.09 | 70.37+ 0.62 | 57.46+ 0.05

Table 8: Average PAC-Bayes bounds (%) and standard dengaftio diferent learning algorithms under the

40% training setting.
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PAC-Bayes Bound Synthetic | Handwritten Ads Course Wisconsin Cora
PB-1 5545+ 0.08 | 4207+ 235 | 2965+ 1.93 | 5752+ 0.22 | 5718+ 263 | 4271+ 1.24
PB-2 5571+ 0.08 | 30.70+2.05 | 2859+ 3.71 | 5371+ 2.27 | 6261+ 212 | 5272+ 0.37
PB-3 5539+ 0.16 | 30.50+3.31 | 3049+4.35| 5378+ 1.01 | 5808+ 3.05 | 4462+ 1.14

MvPB-1 5589+ 0.08 | 3416+ 188 | 3172+ 4.13 | 5690+ 0.46 | 57.62+ 4.67 | 53.08+ 0.35
MvPB-2 5578+ 0.07 | 3409+ 188 | 31.69+4.13 | 56.75+0.45 | 57.36+ 4.63 | 53.03+ 0.35
MvPB-3 57.38+0.01 | 5282+ 1.08 | 4977+ 249 | 5982+ 0.07 | 67.11+ 0.66 | 56.23+ 0.16
MvPB-4 5729+ 0.01 | 5273+ 1.07 | 49.74+ 248 | 59.69+ 0.07 | 6685+ 0.65 | 56.12+ 0.12
MvPB-5 5560+ 0.08 | 3617+ 188 | 3411+ 4.26 | 57.56+ 0.42 | 6957+ 0.36 | 57.05+ 0.05
MvPB-6 3920+ 5.03 | 3L76+4.17 | 4756+ 3.81 | 60.67+ 0.05 | 6746+ 2.27 | 56.95+ 0.03
SMvPB-1 5558+ 0.06 | 3393+2.00 | 3233+ 3.37 | 5653+ 0.43 | 56.89+ 4.53 | 53.00+ 0.60
SMvPB-2 5728+ 0.01 | 5276+ 1.15 | 5051+ 1.64 | 59.69+ 0.07 | 66.85+ 0.65 | 56.10+ 0.07

Table 9: Average PAC-Bayes bounds (%) and standard dengaftio diferent learning algorithms under the

60% training setting.
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PAC-Bayes Bound Synthetic | Handwritten Ads Course Wisconsin Cora
PB-1 5464+ 0.77 | 3752+ 142 | 2897+151 | 5621+ 0.18 | 5332+ 2.72 | 40.22+ 1.53
PB-2 5459+ 0.04 | 2847+ 207 | 3028+ 1.83 | 51.28+2.97 | 5982+ 1.66 | 5136+ 0.17
PB-3 5421+ 0.08 | 2650+ 215 | 2974+ 3.42 | 5200+ 0.85 | 5412+ 2.40 | 4202+ 1.67

MvPB-1 54.65+ 0.05 | 3025+ 0.86 | 29.69+0.84 | 5577+ 1.09 | 5283+ 4.06 | 50.54 + 0.38
MvPB-2 54.63+0.05| 3019+ 0.86 | 29.67+0.84 | 5538+ 0.50 | 5263+ 4.02 | 5050+ 0.38
MvPB-3 5641+ 0.00 | 4951+052 | 4812+ 0.94 | 5855+ 0.07 | 6448+ 0.61 | 5519+ 0.04
MvPB-4 56.32+0.01 | 4943+ 0.54 | 48.09+0.92 | 5844+ 0.07 | 64.26+ 0.61 | 5513+ 0.04
MvPB-5 5436+ 0.05 | 3239+ 0.88 | 3144+ 0.98 | 56.22+ 0.41 | 66.95+ 0.39 | 56.03+ 0.04
MvPB-6 26.89+205| 3152+ 3.33 | 4631+ 1.50 | 5923+ 0.18 | 6385+ 3.51 | 5598+ 0.03
SMvPB-1 5441+ 0.03 | 3015+ 0.79 | 3055+ 2.28 | 5524+ 0.43 | 5365+ 523 | 5101+ 1.14
SMvPB-2 56.32+0.01 | 4943+ 046 | 4877+ 1.38 | 5844+ 0.06 | 6447+ 0.80 | 5518+ 0.11

Table 10: Average PAC-Bayes bounds (%) and standard dewgafor diferent learning algorithms under

the 80% training setting.
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translating them into sophisticated regularization sat®e@nd associated generalization
bounds. Specifically, we have presented eight new mulirRAC-Bayes bounds, which
integrate the view agreement as a key measure to modulapeithelistributions of clas-
sifiers. As the first extensions of PAC-Bayes analysis to theiie\w learning scenario,
the proposed theoretical results are promising to fill the lgetween the developments in
theory and practice of multi-view learning, and are alsosgus to serve as the underpin-
nings to explain theféectiveness of multi-view learning. We have validated tteotitical
superiority of multi-view learning in the ideal case of dyettic data, though this is not so
evident for some real-world data which may not well meet @suanptions on the priors
for multi-view learning.

The usefulness of the proposed bounds has been shown. glthadten the current
bounds are not the tightest, they indeed open the posgibflapplying PAC-Bayes anal-
ysis to multi-view learning. We think the set of bounds cobkl further tightened in
the future by adopting other techniques. It is also possdbiudy algorithms whose co-
regularization term pushes towards the minimization ofloéti-view PAC-Bayes bounds.
In addition, we may use the work in this paper to motivate PA@e3aanalysis for other
learning tasks such as multi-task learning, domain adaptaind multi-view learning
with more than two views, since these tasks are closelyaelat the current multi-view

learning.
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A. Proof of Theorem[§

Define

.. Ko Z‘ ”d.

Since the rank of matriX;X" /o is 1 with the nonzero eigenvalue beiltig||?/o and the

determinant of a positive semi-definite matrix is equal ® phoduct of its eigenvalues, it

follows that

Sup |f(xl,---,$(m) - f(s‘(l’-"’)?i’l)“(Hl,---’s‘(m)l
Kooy xmx.

Tiyd
- —H |+

< m(\/(R/O’)Z +1- 1)

XiX;" 1/d’

o2

By McDiarmid’s inequality [31], we have for ad > O,

XXT
‘I + —
O'

Setting the right hand size equal te-B, we have with probability at least-1,

o2
/]>f(f(l,...,im)—e}zl—exp( 2me )

XK |1/

/ o o 1 3
EHI+? |2t %) — (VRO +1- 1) i,

and

E(xxT)

< -dIn[f(&.....%m) - (V(R/0)2+1-1) —In§]+,

where to reacH (36) we have uséd (4) and defiflgd{ max(, 0).

DenoteHn, = £ 2™ [X%; + u2(W'%i)?]. Itis clear that

=1

E[Hn] = E{ i[xr % + ﬂz(wai)z]} = E[X"X + 12(WR).
i=1
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RecallR = sup ||X||. By McDiarmid’s inequality, we have for al > 0,

)
P{E[Hm] < Hn+ €} > 1- eXp(m)

Setting the right hand size equal t&]%, we have with probability at least-1¢,

) 1 3
E[Hm] < Hm+ (1 + ®)R? —mln S (37)

In addition, from Lemmall, we have

KL(QIP) + In (%3 )> 83 (38)

Prs.on| ¥Q(0) : KL.(EqslEqp) < -

According to the union bound{(A or B or C) < Pr(A) + Pr(B) + Pr(C)), the prob-
ability that at least one of the inequalities [n (36).1(3704dB88) fails is no larger than
6/3+06/3+6/3 = 6. Hence, the probability that all of the three inequalitiefdhs no less
than 1- 6. That is, with probability at least 2 § overS ~ D™, the following inequality
holds

VW,,U . KL+(EQ,S||EQ,D) <

Hm 1+u?)R? 2
—g|n[fm—(€/(R/a)2+1—1),/%n|ng]++@+%,/%n|ng+%+|n(@7+;
m

b

wheref, is a shorthand fof (X, ..., Xy), and|jw|| =

B. Proof of Theorem[6

Now the KL divergence between the posterior and prior become

KL(QU)IP(W) B )

_In ('I

)+ —]E[x %+ pA(WTR)?] + )

T

—Eln‘l + 22

+ —]E[x %+ (iAW) + u )

)+yﬂ.

%X
E(Ppﬁ + iAW) — In ‘| + =

IA
NI NI NI
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Define

~ ~

F(% < 150 (L ore L 20mon? XX’
f(Xl,--.,Xm)=5;((§[xi i + p(w xi)]—ln'l+?).

RecallR = sup, |IX|l. Since the rank of matri% X' /o2 is 1 with the nonzero eigenvalue be-
ing |IXi||2/0? and the determinant of a positive semi-definite matrix isab¢pithe product
of its eigenvalues, it follows that

SUp 1F(Kas . Zon) = FRao s Koo Kot 2 S
K1, s XmoXi

1 ((1+#2)R2
m o2

+In(1+ ;)).

By McDiarmid’s inequality, we have for ad > 0,

2

AZ

1 TS 260 TS\2 XX" £

P E(—z[x X+ u“(w x)]—In'I+—2')§f+e >1-exp , (39)
o (oA

wheref is short forf (X, . . ., %m), andA = (“(’;ﬁ +In(1+ ). Setting the right hand size

of (39) equal to 1 §, we have with probability at least-13,

~ 1 2
)< Frays-ins,
2m 6

1 T
E(;[ﬁ + 12WT%)? - In ‘I 4

o2
Meanwhile, from Lemmall, we have

KL(Q|IP) + In (2

0/2

Prs-om |VQ(C) : KL, (EqgsllEqp) <

According to the union bound, we can complete the proof fer dimensionality-

independent PAC-Bayes bound.

C. Proof of Theorem[7

Itis clear that fronR = sup, [[X||, we have sup||x|| = Rand sug,,, lIlyxl| = R.
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From [386), it follows that with probability at least-12,

o
“In \| ( ) < ~dIn|fm— (VRGP + 1~ 1) —|n—].
With reference to a boundlng result on estimating the cerftenass|[31], it follows
that with probability at least % 6/4 the following inequality holds

R 4
W, — Wyl < — 12 w/2In— .
[IWp pll < \/m[ + 5]

DenoteHy = 2 3™ [KT%; — 2nuo?yi(WTx;) + u2(WT%;)2]. It is clear that

E[Hp] = E[X"% — 27uc?y(WTX) + u®(W'X)?].
By McDiarmid’s inequality, we have for all > 0,

R - —2me?
P{E[Hm] <Hn+ e} >1- exp((R2 = ,uZRZ)Z)'

Setting the right hand size equal t&]%, we have with probability at least4¢,

l 4
E[Hm] < Hm + (R + 1R + dquo?R) 4/ — In 5

In addition, according to Lemnia 1, we have

. KL(QIIP) + In (%
Prs_pm (VQ(C) : KL, (EoslEop) < - 7> 1-6/4.

Therefore, from the union bound, we get the result.

D. Proof of Theorem[8

Applying (B) to (12), we obtain

SoT

1 XX 1 n A
KLQWIPW) < =ZEIN |l + = + = (Umwp = mivl + iy — ] + p)? +
1

2
vaKk. 2 T 200 T )2 H
TrzE[x X = 2nuocy(w'x) + u“(w'X) ]+E

= é(nnwp — Wl + [IpWp — W] + 1) +

ITY _ 2 T 2 T¥)2 veval
%E[X X — 2nuo y(W2 X) + u?(WTX) —In‘l LT

a
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Following Shawe-Taylor and Cristianini [31], we have witlopability at least +6/3

R / 3
—Wy|| < —|2 2In=].
[IWp — Wpl| < \/ﬁ[ + n5]

KT % — 2002y (W X;)+u2 (W' %)? %%
! Xi—2nu Y|(2|)ﬂ( i) —ln'l‘i‘#

DenoteHy, = 2 3™

]. Itis clear that

[oa

TS _ 2 T 2T ¥)2 ‘vaval
B[A,] = 55X 22T y((vaz X) + W) in|i + % 1.
By McDiarmid’s inequality, we have for ad > 0,
. ~ —2me?
P{E[Hm] <Hn+ E} >1- exp{(RZMWZszsz FIn(L+ %))2] .

Setting the right hand size equal t&]%, we have with probability at least4 ¢,

R? + dnuo?R + u?R2 R? 1 3
> +|n(1+?)) %ln 5

E[Hm] < Hm + (

g
In addition, from Lemmall, we have

KL(Q|IP) + In (22

6/3

Prs-om | VQ(C) : KL, (EqsllEqp) <

m )21—6/3.

By applying the union bound, we complete the proof.

E. Proof of Theorem[12

We already have syfix|| = Rand sup,,, [lyxl| = R from the definitionR = sup [IX]I.
Following Shawe-Taylor and Cristianini [31], we have witlopability at least +6/3

R 3
- Wyl £ —12 2In=1{.
lIwp — Wpl| < \/ﬁ[ + 4/ nd]
DenoteSy, = L S [~nuyi(w™xi)]. Itis clear that

E[Sm] = —nuE [y(wTX)].
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By McDiarmid’s inequality, we have for al > 0,

— _ —2I’n€2 )
(E[Sw] + €} exp((ZWR)2

Setting the right hand size equal t&]%, we have with probability at least4¢,

~ ~ [2 3
E[Sm] < Sm + T]ILlR a In 5

In addition, from Lemmall, we have
KL(Q|IP) + In (22

6/3

Prs-pon | YQ(C) : KL, (EqslEqp) < ] >1-6/3.

m

After applying the union bound, the proof is completed.

F. Dual Optimization Derivation for MvSVMs

To optimize [32), here we derive the Lagrange dual function.
Let A}, 25, v,,v, > 0 be the Lagrange multipliers associated with the inequatin-

straints of problem (32). The Lagrangiw,, a», &1, &>, A1, A2, v1, Vo) can be written as

n

L= Fo- )[4 alka(x, X)) -1+ &) +

i=1 j=1
n
L) adko(x, X)) = 1+ &) +vidh + vheh].
j=1
To obtain the Lagrangian dual functioh,has to be minimized with respect to the
primal variablesy,, a,, &1, &>. To eliminate these variables, we compute the correspgndin

partial derivatives and set them to 0, obtaining the follgywonditions

(K1 + 2C,K Kq)ag — 2C,K 1 Koap = Ay, (40)
(Ko + 2CKoKo)ap — 2C,KoKya = Ay, (41)
A +vh =Cy, (42)
A, + v, =Cy, (43)
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where we have defined

>

n
Ar 2 AyiKa(i),
i=1

>

n
Az 2 > WKa(i),
i=1

with Kq(:,1) andK;(:, 1) being theith columns of the corresponding Gram matrices.

Substituting [(4D} (43) into L results in the following expression of the Lagrangian
dual functiong(Ay, A2, v1, v5)

1
g = E((II Kia; + a; Koap) + Co(a; KiKiag — 2a] K Koas +

n
(Z;Ksza'z) - (}'IA]_ - Q’;—Az + Z(/lll + /llz)
i=1

1 1 n, . .
= EG’IAl + Ea’;—Az - G’IAl - a’;—Az + Z(/lll + /1'2)
i=1
1 T 1 T C i i
i=1

Define
Ky = Ky + 2CKiKy,  Kp = 2C,K Ko,
Ky = Ko + 2CoKoK,, Ky = 2C,K,K ;.
Then, [40) and(41) become
Kiay — Ko = A, (45)
Koy — Koay = Ao. (46)
From (45%) and[(46), we have
(Ky — KiK5 Ko)ay = KK AL + Ay
(Kz — KKK, = KoK TP AL + Ao,
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DefineM; £ K; — KiK;1K; andM; £ K, — KoK1K;. It follows that

1 = MIl[Kle_lAz + Al], (47)

ar = Mgl[K_zK:flAl + Az] (48)

Now with @; anda, substituted into[(44), the Lagrange dual funct@gff,, Ao, v, v»)

«©
Il

1 1 o
inf L=—-—=a/A;1—=atA,+ A+ A
erandis 2“’1 1 2“2 2 ;( 1 5)

1 I 1 I U .
= —EAIMll[KlelAz + A - EAgl\/lzl[KzKllAl +Ag|+ Y (A + 4.
i=1

The Lagrange dual problem is given by

max
1,42 g

0<A,<C;, i=1,...,n
s.t. (49)

0<A,<C;, i=1,...,n

As Lagrange dual functions are concave, we can formulateabeange dual problem

as a convex optimization problem

e
0< ] <Cy, i=1...,n

s.t. ) (50)
0<A4,<Cy, i=1...,n

Define matrixY = diagf,...,yn). Then,A; = K;YA; andA, = KyYA, with A, =
(A7, .., ADT, and A, = (43, ..., 45)". Itis clear that<; andK, are symmetric matrices, and

Ky = K_ZT. Therefore, it follows that matricdgl; andM, are also symmetric.
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We have

-g = EAIMll[Kle Ao+ Aq + i M KR A + Ao = 3 (23 + 25)
i=1

1 — ~
- E{,1;[\( KM K YA + ATTY K MK KT, Y] A, +
ALY KoM KoK TK Y] Ay + AZ[Y KzMgleY]/lz} - 172y + Ap)

T
A B 4 A1

- 12n )
B" DJ| 14, A2

A= YKMKY, B2 YK MK KKY, D2 YKM;K,Y, (51)

1
= 5(/11 ;)

where

Ln=(1,...,12n)", and we have used the fact that
Y Ky MK KT K,Y = [Y KoM KoK K Y]

B

Because of the convexity of functiong, we dlirm that matrix[
B" D

J IS positive
semi-definite.

Hence, the optimization problem in_(50) can be rewritten as

T
. 1 A B 4 A

min (4] 43) o 0 R I P

A1,A2 2 BT D /12 /12

0<1; <xCi1,

s.t. (52)
0<2,<Cl

After solving this problem, we can then obtain classifierapagtersy; anda, using

(417) and[(48), which are finally used by (31).

G. Dual Optimization Derivation for SMvSVMs

To optimize [(35), we first derive the Lagrange dual functioltofving the same line of

optimization derivations for MvSVMs. Although here sometloé derivations are similar
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to those for MVvSVMs, for completeness we include them.
Let 2}, 4,,v},v, > 0 be the Lagrange multipliers associated with the inequatin-

straints of problem (35). The Lagrangiafuy, ay, &1, &2, A1, A2, v, v2) can be formulated

as
L= Fom [0 adkatx, x) - 1+6) +
i=1 j=1

B abka(x;, X)) = 1+ &) + Vi) +vhéh].

j=1
To obtain the Lagrangian dual functiob,will be minimized with respect to the pri-
mal variablesyy, a,, &1, &>. To eliminate these variables, setting the correspondamntigb

derivatives to O results in the following conditions

(K1 + 2CK 1 Ky)ay — 2CK  Koan = Ay, (53)
(K2 + 2C, Ksz)a’z - 2CKoKia1 = Ay, (54)
/lll + Vil = Cl, (55)
/1'2 + Viz = Cl, (56)
where we have defined
n .
A 2 AyiKa(, i),
i=1
n .
Az 2 ) AyiKa( i),
i=1

with Ky(:,1) andKj(:, i) being theith columns of the corresponding Gram matrices.
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Substituting[(5BY(56) into L results in the Lagrangian dual functigtiy, A2, v1, v,)
1 T T T T
g = E(Q’l Klal + a, Kza’z) + Cz(a’l KlKlal — 20’1 K1K20’2 +

n
a;Kszaz) — (}'IA]_ - CU;AZ + Z()’Il + /7.'2)
i=1

1 1 n. )
- EaIAl n éa';Az —alAL—aAr + ;u; + b)

1 1 n. . .
- —EaIAl — Ea;Az + ;(x'l + ). (57)

Define
Kl = Kl + 2C2K1K1, IZ]_ = 2C2K1K2,

Kz =Ky + 2C2K2K2, K_z = 2C2K2K1.

Then, [(53) and_.(84) become

Kiay - Kiaz = Ay, (58)
Rza’z - K_za’l = A2. (59)

From (58) and[(59), we have

(Kl - K_]_KZ_]'K_z)Q’l = |Z1K2_1A2 + Al

(Rz - K_2|211|<_1)CUZ = KzKIlAl + Ao.
DefineM; £ K; — KiK;1K; andM; £ K, — KoK K. Itis clear that

@ = M]__l[lzl}zz_l/\z + A]_], (60)
r = Mgl[lzzRilAl + Az] (61)
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With @, anda; substituted intd (37), the Lagrange dual functigay, 1,, v1, v,) is then

. 1 1 N
g inf L=-Sa]A1-S03A0+ ) (A + )
i=1

@1,@2,£1,62 2 2

1 — 1 — N
_EAIMI:L[K]-KZ_:LAZ + Al] - EA;—MZ_l[KzKilAl + Az] + Z(/lll + /llz)
i=1
The Lagrange dual problem is given by

e
0<A,<C;, i=1,...,n

s.t. _ (62)
0<4,<Cy, i=1...,n

As Lagrange dual functions are concave, below we formuketd.agrange dual prob-

lem as a convex optimization problem

A
0<A<Cy;, i=1,...,n

s.t. ) (63)
0<,<Cy, i=1,...,n.

Define matrixY = diagfys,...,Y¥n). Then,A; = K1 YA; andA;, = K YA, with Ky =
Ki(h1:n), Kz = Ko(, 1), A3 = (43, ...,ADT, anda, = (43,...,A0)7. ltis clear that;
andK, are symmetric matrices, amﬂ = IZZT. Therefore, it follows that matricdsl, and
M, are also symmetric.

We have

1 — 1 — PRI
-0 = —AIMIl[Kle_lAz + A]_] + _A‘2|' Mz_l[KzKl_lAl + Az] - Z(/lll + /llz)

2 2 i=1
1 —
= E{AI[Y KnTlMIlKnlY]/ll + A, [Y KrTlMIlKle_lanY]/lz +

LY KLM; KoK YK Y] Ay + A[Y KrTZMglanY]AZ} —17(A1 + A)

T
A B 4 A1

- 12”5
B" D J| 14 Ap
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where
A< YKIMKy,Y, B2 YKIMI'KIK;KpY, D2 YKLM;YK LY, (64)
Ln=(1,...,12n)", and we have used the fact that

Y K, MK K YK Y = [Y KL M5 KoK K Y]

Because of the convexity of functiorg, we dfirm that matrix[ J is positive

B"™ D
semi-definite.

Hence, the optimization problem in{63) can be rewritten as

-
. 1 A B A A

min (4] A7) o I I P

41,42 2 BT D /12 /12

0<4;,<xCq1,
s.t. (65)
0<AL=<xCl

After solving this problem, we can then obtain classifiergpagtersy; anda, using
(&0) and[(6L), which are finally used Hy (34).
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