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Abstract Visual textures have played a key role in image
understanding because they convey important semantics
of images, and because texture representations that pool
local image descriptors in an orderless manner have had a
tremendous impact in diverse applications. In this paper we
make several contributions to texture understanding. First,
instead of focusing on texture instance and material category
recognition, we propose a human-interpretable vocabulary
of texture attributes to describe common texture patterns,
complemented by a new describable texture dataset for
benchmarking. Second, we look at the problem of recog-
nizing materials and texture attributes in realistic imaging
conditions, including when textures appear in clutter, devel-
oping corresponding benchmarks on top of the recently
proposed OpenSurfaces dataset. Third, we revisit classic tex-
ture represenations, including bag-of-visual-words and the
Fisher vectors, in the context of deep learning and show
that these have excellent efficiency and generalization prop-
erties if the convolutional layers of a deep model are used as
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filter banks. We obtain in this manner state-of-the-art perfor-
mance in numerous datasetswell beyond textures, an efficient
method to apply deep features to image regions, as well as
benefit in transferring features from one domain to another.

Keywords Texture and material recognition · Visual
attributes · Convolutional neural networks · Filter banks ·
Fisher vectors · Datasets and benchmarks

1 Introduction

Visual representations based on orderless aggregations of
local features, which were originally developed as texture
descriptors, have had a widespread influence in image under-
standing. These models include cornerstones such as the
histograms of vector quantized filter responses of Leung and
Malik (1996) and later generalizations such as the bag-of-
visual-words model of Csurka et al. (2004) and the Fisher
vector of Perronnin and Dance (2007). These and other
texture models have been successfully applied to a huge
variety of visual domains, including problems closer to “tex-
ture understanding” such as material recognition, as well as
domains such as object categorization and face identification
that share little of the appearance of textures.

This paper makes three contributions to texture under-
standing. The first one is to add a new semantic dimension
to the problem. We depart from most of the previous works
on visual textures, which focused on texture identification
and material recognition, and look instead at the problem of
describing generic texture patterns. We do so by developing
a vocabulary of forty-seven texture attributes that describe
a wide range of texture patterns; we also introduce a large
dataset annotated with these attributes which we call the
describable texture dataset (Sect. 2). We then study whether
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texture attributes can be reliably estimated from images, and
for what tasks are they useful. We demonstrate in particular
two applications (Sect. 8.1): the first one is to use texture
attributes as dimensions to organise large collections of tex-
ture patterns, such as textile, wallpapers, and construction
materials for search and retrieval. The second one is to use
texture attributes as a compact basis of visual descriptors
applicable to other tasks such as material recognition.

The second contribution of the paper is to introduce new
data and benchmarks to study texture recognition in real-
istic settings. While most of the earlier work on texture
recognition was carried out in carefully controlled condi-
tions, more recent benchmarks such as the Flickr material
dataset (FMD) (Sharan et al. 2009) have emphasized the
importance of testing algorithms “in the wild”, for example
on Internet images. However, even these datasets are some-
what removed frompractical applications as they assume that
textures fill the field of view, whereas in applications they
are often observed in clutter. Here we leverage the excel-
lent OpenSurfaces dataset (Bell et al. (2013)) to create novel
benchmarks for materials and texture attributes where tex-
tures appear both in the wild and in clutter (Sect. 3), and
demonstrate promising recognition results in these challeng-
ing conditions. In Bell et al. (2015) the same authors have
also investigated material recognition using OpenSurfaces.

The third contribution is technical and revisits classi-
cal ideas in texture modeling in the light of modern local
feature descriptors and pooling encoders. While texture rep-
resentations were extensively used in most areas of image
understanding, since the breakthrough work of Krizhevsky
et al. (2012) they have been replaced by deep Convolutional
Neural Networks (CNNs). Often CNNs are applied to a prob-
lem by using transfer learning, in the sense that the network
is first trained on a large-scale image classification task such
as the ImageNet ILSVRC challenge (Deng et al. (2009)), and
then applied to another domain by exposing the output of a
so-called “fully connected layer” as a general-purpose image
representation. In this work we illustrate the many benefits
of truncating these CNNs earlier, at the level of the convolu-
tional layers (Sect. 4). In this manner, one obtains powerful
local image descriptors that, combined with traditional pool-
ing encoders developed for texture representations, result in
state-of-the-art recognition accuracy in a diverse set of visual
domains, from material and texture attribute recognition, to
coarse and fine grained object categorization and scene clas-
sification. We show that a benefit of this approach is that
features transfer easily across domains even without fine-
tuning the CNN on the target problem. Furthermore, pooling
allows us to efficiently evaluate descriptors in image subre-
gions, a fact that we exploit to recognize local image regions
without recomputing CNN features from scratch.

A symmetric approach, using SIFT as local features and
the IFV followed by fully-connected layers from a deep

neural network as a pooling mechanism, was proposed in
Perronnin and Larlus (2015), obtaining similar results on
VOC07.

This paper is the archival version of two previous pub-
lications Cimpoi et al. (2014) and Cimpoi et al. (2015).
Compared to these two papers, this new version adds a sig-
nificant number of new experiments and a substantial amount
of new discussion.

The code anddata for this paper are available on the project
page, at http://www.robots.ox.ac.uk/~vgg/research/deeptex.

2 Describing Textures with Attributes

This section looks at the problem of automatically describ-
ing texture patterns using a general-purpose vocabulary of
human-interpretable texture attributes, in a manner similar to
howwe can vividly characterize the textures shown in Fig. 1.
The goal is to design algorithms capable of generating and
understanding texture descriptions involving a combination
of describable attributes for each texture. Visual attributes
have been extensively used in search, to understand complex
user queries, in learning, to port textual information back
to the visual domain, and in image description, to produce
richer accounts of the content of images. Textural proper-
ties are an important component of the semantics of images,
particularly for objects that are best characterized by a pat-
tern, such as a scarf or the wings of a butterfly (Wang et al.
2009). Nevertheless, the attributes of visual textures have
been investigated only tangentially so far. Our aim is to fill
this gap.

Our first contribution is to introduce the describable
textures dataset (DTD) (Cimpoi et al. 2014), a collection

Fig. 1 We address the problem of describing textures by associating to
them a collection of attributes. Our goal is to understand and generate
automatically human-interpretable descriptions such as the examples
above
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Fig. 2 The 47 texture words in the describable texture dataset introduced in this paper. Two examples of each attribute are shown to illustrate the
significant amount of variability in the data

of real-world texture images annotated with one or more
adjectives selected in a vocabulary of forty-seven English
words. These adjectives, or describable texture attributes, are
illustrated in Fig. 2 and include words such as banded, cob-
webbed, freckled, knitted, and zigzagged. Sect. 2.1 describes
this data inmore detail. Sect. 2.2 discusses the technical chal-
lenges we addressed while designing and collecting DTD,
including how the forty-seven texture attributeswere selected
and how the problem of collecting numerous attributes for
a vast number of images was addressed. Sect. 2.3 defines a
number of benchmark tasks in DTD. Finally, Sect. 2.5 relates
DTD to existing texture datasets.

2.1 The Describable Texture Dataset

DTD investigates the problem of texture description, under-
stood as the recognition of describable texture attributes. This
problem is complementary to standard texture analysis tasks
such as texture identification and material recognition for the
following reasons.While describable attributes are correlated

with materials, attributes do not imply materials (e.g. veined
may equally apply to leaves or marble) and materials do not
imply attributes (not all marbles are veined). This distinction
is further elaborated in Sect. 2.4.

Describable attributes can be combined to create rich
descriptions (Fig. 3; marble can be veined, stratified and
cracked at the same time), whereas a typical assumption
is that textures are made of a single material. Describable
attributes are subjective properties that depend on the imaged
object as well as on human judgements, whereas materials
are objective. In short, attributes capture properties of tex-
tures complementary to materials, supporting human-centric
tasks where describing textures is important. At the same
time, we will show that texture attributes are also helpful in
material recognition (Sect. 8.1).

DTD contains textures in the wild, i.e. texture images
extracted from the web rather than captured or generated in
a controlled setting. Textures fill the entire image in order to
allow studying the problem of texture description indepen-
dently of texture segmentation, which is instead addressed in
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Fig. 3 Quality of sequential joint annotations. Each bar shows the
average number of occurrences of a given attribute in a DTD image.
The horizontal dashed line corresponds to a frequency of 1/47, the
minimum given the design of DTD (Sect. 2.2). The black portion of
each bar is the amount of attributes discovered by the sequential pro-
cedure, using only ten annotations per image (about one fifth of the

effort required for exhaustive annotation). The orange portion shows the
additional recall obtained by integrating cross-validation in the process.
Right: co-occurrence of attributes. The matrix shows the joint proba-
bility p(q, q ′) of two attributes occurring together (rows and columns
are sorted in the same way as the left image) (Color figure online)

Sect. 3.With 5640 annotated texture images, this dataset aims
at supporting real-world applications were the recognition
of texture properties is a key component. Collecting images
from the Internet is a common approach in categorization
and object recognition, and was adopted in material recogni-
tion in FMD. This choice trades-off the systematic sampling
of illumination and viewpoint variations existing in datasets
such as CUReT, KTH-TIPS, Outex, and Drexel to capture
real-world variations, reducing the gap with applications.
Furthermore, DTD captures empirically human judgements
regarding the invariance of describable texture attributes; this
invariance is not necessarily reflected in material properties.

2.2 Dataset Design and Collection

This section discusses howDTDwas designed and collected,
including: selecting the 47 attributes, finding at least 120
representative images for each attribute, and collecting all
the attribute labels for each image in the dataset.

2.2.1 Selecting the Describable Attributes

Psychological experiments suggest that, while there are a
few hundred words that people commonly use to describe
textures, this vocabulary is redundant and can be reduced
to a much smaller number of representative words. Our
starting point is the list of 98 words identified by Bhushan
et al. (1997). Their seminal work aimed to achieve for tex-
ture recognition the same that color words have achieved
for describing color spaces (Berlin and Kay 1991). How-
ever, their work mainly focuses on the cognitive aspects of
texture perception, including perceptual similarity and the
identification of directions of perceptual texture variabil-

ity. Since our interest is in the visual aspects of texture,
words such as “corrugated” that are more related to surface
shape or haptic properties were ignored. Other words such
as “messy” that are highly subjective and do not necessarily
correspond to well defined visual features were also ignored.
After this screening phase we analyzed the remaining words
and merged similar ones such as “coiled”, “spiraled” and
“corkscrewed” into a single term. This resulted in a set of 47
words, illustrated in Fig. 2.

2.2.2 Bootstrapping the Key Images

Given the 47 attributes, the next step consisted in collecting a
sufficient number (120) of example images representative of
each attribute. Initially, a large initial pool of about a hundred-
thousand images in total was downloaded from Google and
Flickr by entering the attributes and related terms as search
queries. Then Amazon Mechanical Turk (AMT) was used to
remove low resolution, poor quality, watermarked images,
or images that were not almost entirely filled with a texture.
Next, detailed annotation instructions were created for each
of the 47 attributes, including a dictionary definition of each
concept and examples of textures that did and did not match
the concept.Votes from threeAMTannotatorswere collected
for the candidate images of each attribute and a shortlist of
about 200highly-voted imageswas furthermanually checked
by the authors to eliminate remaining errors. The result was a
selection of 120 key representative images for each attribute.

2.2.3 Sequential Joint Annotation

So far only the key attribute of each image is known while
any of the remaining 46 attributes may apply as well.
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Exhaustively collecting annotations for 46 attributes and
5640 texture images is fairly expensive. To reduce this cost
we propose to exploit the correlation and sparsity of the
attribute occurrences (Fig. 3). For each attribute q, twelve
key images are annotated exhaustively and used to esti-
mate the probability p(q ′|q) that another attribute q ′ could
co-exist with q. Then for the remaining key images of
attribute q, only annotations for attributes q ′ with non negli-
gible probability are collected, assuming that the remaining
attributes would not apply. In practice, this requires anno-
tating around 10 attributes per texture instance, instead of
47. This procedure occasionallymisses attribute annotations;
Fig. 3 evaluates attribute recall by 12-fold cross-validation on
the 12 exhaustive annotations for a fixed budget of collecting
10 annotations per image.

A further refinement is to suggest which attributes q ′
to annotate not just based on the prior p(q ′|q), but also
based on the appearance of an image xi . This was done
by using the attribute classifier learned in Sect. 6; after
Platt’s calibration (Platt 2000) on a held-out test set, the
classifier score cq ′(xi ) ∈ R is transformed in a probabil-
ity p(q ′|xi ) = σ(cq ′(x)) where σ(z) = 1/(1 + e−z) is the
sigmoid function. By construction, Platt’s calibration reflects
the prior probability p(q ′) ≈ p0 = 1/47 of q ′ on the valida-
tion set. To reflect the probability p(q ′|q) instead, the score
is adjusted as

p(q ′|�i , q) ∝ σ(cq ′(�i )) × p(q ′|q)

1 − p(q ′|q)
× 1 − p0

p0

and used to findwhich attributes should be annotated for each
image. As shown in Fig. 3, for a fixed annotation budget this
method increases attribute recall.

Overall, with roughly 10 annotations per image it was
possible to recover all of the attributes for at least 75% of
the images, and miss one out of four (on average) for another
20%, while keeping the annotation cost to a reasonable level.
Toput this in perspective, directly annotating the5640 images
for 46 attributes and collecting five annotations per attributed
would have required 1.2M binary annotations, i.e. roughly
12K USD at the very low rate of 1¢ per annotation. Using
the proposed method, the cost would have been 546 USD. In
practice, we spent around 2.5K USD in order to pay annota-
tors better aswell as to account for occasional errors in setting
up experiments and the fact that, as explained above, boot-
strapping still relies on exhaustive annotations for a subset
of the data.

2.3 Benchmark Tasks

DTD is designed as a public benchmark. The data, including
images, annotations, and splits, is available on the web at

http://www.robots.ox.ac.uk/~vgg/data/dtd, along with code
for evaluation and reproducing the results in Sect. 6.

DTD defines two challenges. The first one, denoted DTD,
is the prediction of key attributes, where each image is
assigned a single label corresponding to the key attribute
defined above. The second one, denoted DTD-J, is the joint
prediction of multiple attributes. In this case each image
is assigned one or more labels, corresponding to all the
attributes that apply to that image.

The first task is evaluated both in term of classifica-
tion accuracy (acc) and in term of mean average precision
(mAP), while the second task only in term of mAP due to
the possibility of multiple labels. The classification accu-
racy is normalized per class: if ĉ(x), c(x) ∈ {1, . . . ,C} are
respectively the predicted and ground-truth label of image x,
accuracy is defined as

acc(ĉ) = 1

C

C∑

c̄=1

|{x : c(x) = c̄ ∧ ĉ(x) = c̄}|
|{x : c(x) = c̄}| . (1)

We define mAP as per the PASCAL VOC 2008 benchmark
onward Everingham et al. (2008).1

DTD contains 10 preset splits into equally-sized training,
validation and test subsets for easier algorithm comparison.
Results on any of the tasks are repeated for each split and
average accuracies are reported.

2.4 Attributes Versus Materials

As noted at the beginning of Sect. 2.1 and in Sharan et al.
(2013), texture attributes and materials are correlated, but
not equivalent. In this section we verify this quantitatively
on the FMD data (Sharan et al. 2009). Specifically, we man-
ually collected annotations for the 47 DTD attributes for the
1,000 images in the FMD dataset, which span ten different
materials. Each of the 47 attributes was considered in turn,
using a categorical random variable C ∈ {1, 2, . . . , 10} to
denote the texture material and a binary variable A ∈ {0, 1}
to indicate whether the attribute applies to the texture or not.
On average, the relative reduction in the entropy of the mate-
rial variable I (A,C)/H(C) given the attribute is of about
14%; vice-versa, the relative reduction in the entropy of the
attribute variable I (A,C)/H(A) given the material is just
0.5%. We conclude that knowing the material or attribute
of a texture provides little information on the attribute or
material, respectively. Note that combinations of attributes
can predict materials much more reliably, although this is
difficult to quantify from a small dataset.

1 PASCAL VOC 2007 uses instead an interpolated version of mAP.
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2.5 Related Work

This section relates DTD to the literature in texture under-
standing. Textures, due to their ubiquitousness and com-
plementarity to other visual properties such as shape, have
been studied in several contexts: texture perception (Adel-
son 2001; Amadasun and King 1989; Gårding 1992; Forsyth
2001), description (Ferrari and Zisserman 2007), material
recognition (Leung and Malik 2001; Sharan et al. 2013;
Schwartz and Nishino 2013; Varma and Zisserman 2005;
Ojala et al. 2002; Varma and Zisserman 2003; Leung and
Malik 2001, segmentation (Manjunath and Chellappa 1991;
Jain and Farrokhnia 1991; Chaudhuri and Sarkar 1995;
Manjunath and Chellappa 1991; Dunn et al. 1994), synthe-
sis (Efros and Leung 1999; Wei and Levoy 2000; Portilla
and Simoncelli 2000), and shape from texture (Gårding
1992; Forsyth 2001; Malik and Rosenholtz 1997). Most
related to DTD is the work on texture recognition, sum-
marized below as the recognition of perceptual properties
(Sect. 2.5.1) and recognition of identities and materials
(Sect. 2.5.2)

2.5.1 Recognition of Perceptual Properties

The study of perceptual properties of textures originated in
computer vision as well as in cognitive sciences. Some of
the earliest work on texture perception conducted by Julesz
(1981) focussed on pre-attentive aspects of perception. It
led to the concept of “textons,” primitives such as line-
terminators, crossings, intersections, etc., that are responsible
for pre-attentive discrimination of textures. In computer
vision, Tamura et al. (1978) identified six common directions
of variability of images in the Broadatz dataset; coarse ver-
sus fine; high-contrast versus low-contrast; directional versus
non-directional; linelike versus bloblike; regular versus irreg-
ular; and rough versus smooth. Similar perceptual attributes
of texture (Amadasun and King 1989; Bajcsy 1973) have
been found by other researchers.

Ourwork ismotivated by that ofRao andLohse (1996) and
Bhushan et al. (1997). Their experiments suggest that there is
a strong correlation between the structure of the lexical space
and perceptual properties of texture. While they studied the
psychological aspects of texture perception, the focus of this
paper is the challenge of estimating such properties from
images automatically. Their work Bhushan et al. (1997), in
particular, identified a set of words sufficient to describe a
wide variety of texture patterns; the same set of words was
used to bootstrap DTD.

While recent work in computer vision has been focussed
on texture identification and material recognition, notable
contributions to the recognition of perceptual properties
exist. Most of this work is part of the general research on
visual attributes (Farhadi et al. 2009; Parikh and Grauman

2011; Patterson and Hays 2012; Bourdev et al. 2011; Kumar
et al. 2011). Texture attributes have an important role in
describing objects, particularly for those that are best char-
acterized by a pattern, such as items of clothing and parts
of animals such as birds. Notably, the first work on modern
visual attributes by Ferrari and Zisserman (2007) focused
on the recognition of a few perceptual properties of tex-
tures. Later work, such as Berg et al. (2010) that mined
visual attributes from images on the Internet, also contain
some attributes that describe textures. Nevertheless, so far
the attributes of textures have been investigated only tangen-
tially. DTD address the question of whether there exists a
“universal” set of attributes that can describe a wide range
of texture patterns, whether these can be reliably estimated
from images, and for what tasks they are useful.

Datasets that focus on the recognition of subjective
properties of textures are less common. One example is Per-
tex (Clarke et al. 2011), containing 300 texture images taken
in a controlled setting (Lambertian renderings of 3D recon-
structions of real materials) as well as a semantic similarity
matrix obtained form human similarity judgments. The work
most related to ours is probably the one of Matthews et al.
(2013) that analyzed images in the Outex dataset (Ojala et al.
2002) using a subset of the texture attributes that we consider.
DTD differs in scope (containing more attributes) and, espe-
cially, in the nature of the data (controlled vs uncontrolled
conditions). In particular, working in uncontrolled conditions
allows us to transfer the texture attributes to real-world appli-
cations, including material recognition in the wild and in
clutter, as shown in the experiments.

2.5.2 Recognition of Texture Instances and Material
Categories

Most of the recent work in texture recognition focuses on the
recognition of texture instances and material categories, as
reflected by the development of corresponding benchmarks
(Fig. 4). The Brodatz (1966) catalogue was used in early
works on textures to study the problem of identifying tex-

Fig. 4 Datasets such as Brodatz (1966) and CUReT (Dana et al. 1999)
(left) addressed the problem of material instance identification and oth-
ers such as. KTH-T2b (Hayman et al. 2004) and FMD (Sharan et al.
2009) (right) addressed the problem of material category recognition.
Our DTD dataset addresses a very different problem: the one of describ-
ing a pattern using intuitive attributes (Fig. 1)
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Table 1 Comparison of existing texture datasets, in terms of size, collection condition, nature of the classes to be recognized, and whether each
class includes a single object/material instance or several instances of the same category

Dataset Size Condition Content (I)nstances /

Images Classes Splits Wild Clutter Controlled Attributes Materials Objects (C)ategories

Brodatz 999 111 – X X I

CUReT 5612 61 10 X X I

UIUC 1000 25 10 X X I

UMD 1000 25 10 X X I

KTH 810 11 10 X X I

Outex – – – X X X I

Drexel ∼40000 20 – X X I

ALOT 25000 250 10 X X I

FMD 1000 10 14 X X C

KTH-T2b 4752 11 X X C

DTD 5640 47 10 X X C

OS 10422 22 1 X X X (+A) X C

Note that Outex is a meta-collection of textures spanning different datasets and problems

ture instances (e.g. matching half of the texture image given
the other half). Others including CUReT (Dana et al. 1999),
UIUC (Lazebnik et al. 2005), KTH-TIPS (Caputo et al. 2005;
Hayman et al. 2004), Outex (Ojala et al. 2002), Drexel Tex-
ture Database (Oxholm et al. 2012), and ALOT (Burghouts
and Geusebroek 2009) address the recognition of specific
instances of one or more materials. UMD (Xu et al. 2009) is
similar, but the imaged objects are not necessarily composed
of a single material. As textures are imaged under variable
truncation, viewpoint, and illumination, these datasets have
stimulated the creation of texture representations that are
invariant to viewpoint and illumination changes (Varma and
Zisserman 2005; Ojala et al. 2002; Varma and Zisserman
2003; Leung and Malik 2001). Frequently, texture under-
standing is formulated as the problem of recognizing the
material of an object rather than a particular texture instance
(in this case any two slabs of marble would be considered
equal). KTH-T2b (Mallikarjuna et al. 2006) is one of the
first datasets to address this problem by grouping textures
not only by the instance, but also by the type of materials
(e.g. “wood”).

However, these datasets make the simplifying assumption
that textures fill images, and often, there is limited intra-class
variability, due to a single or limited number of instances,
captured under controlled scale, view-angle and illumination.
Thus, they are not representative of the problem of recog-
nizing materials in natural images, where textures appear
under poor viewing conditions, low resolution, and in clutter.
Addressing this limitation is themain goal of theFlickrMate-
rial Database (FMD) (Sharan et al. 2009). FMD samples just
one viewpoint and illumination per object, but containsmany
different object instances grouped in several different mate-

rial classes. Sect. 3 will introduce datasets addressing the
problem of clutter as well.

The performance of recognition algorithms on most of
this data is close to perfect, with classification accuracies
well above 95%; KTH-T2b and FMD are an exception due
to their increased complexity. A review of these datasets and
classification methodologies is presented in Timofte and Van
Gool (2012), who also propose a training-free framework to
classify textures, significantly improving on other methods.
Table 1 and Fig. 4 provides a summary of the nature and size
of various texture datasets that are used in our experiments.

3 Recognizing Textures in Clutter

This section looks at the second contribution of the paper,
namely studying the recognition ofmaterials and describable
textures attributes not only “in the wild,” but also “in clutter”.
Even in datasets such as FMD and DTD, in fact, each texture
instance fills the entire image, which doest not match most
applications. This section removes this limitation and looks
at the problem of recognizing textures imaged in the larger
context of a complex natural scene, including the challenging
task of automatically segmenting textured image regions.

Rather than collecting a new image dataset from scratch,
our starting point is the excellent open surfaces (OS) dataset
that was recently introduced by Bell et al. (2013). OS
comprises 25,357 images, each containing a number of high-
quality texture/material segments. Many of these segments
are annotated with additional attributes such as the material,
viewpoint, BRDF estimates, and object class. Experiments
focus on the 58,928 segments that contain material anno-
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tations. Since material classes are highly unbalanced, we
consider only thematerials that contain at least 400 examples.
This results in 53,915 annotated material segments in 10,422
images spanning23different classes.2 Images are split evenly
into training, validation, and test subsets with 3474 images
each. Segment sizes are highly variable, with half of them
being relatively small, with an area smaller than 64 × 64
pixels. One issue with crowdsourced collection of segmen-
tations is that not all the pixels in an image are labelled.
This makes it difficult to define a complete background class.
For our benchmark several less common materials (includ-
ing for example segments that annotators could not assign to
a material) were merged in an “other” class that acts as the
background.

This benchmark is similar to the one concurrently pro-
posed by Bell et al. (2015). However, in order to study
perceptual properties as well as materials, we also augment
the OS dataset with some of the describable attributes of
Sect. 2. Since the OS segments do not trigger with sufficient
frequency all the 47 attributes, the evaluation is restricted
to eleven of them for which it was possible to identify at
least 100 matching segments.3 The attributes were manually
labelled in the 53,915 segments retained for materials. We
refer to this data as OSA.

3.1 Benchmark Tasks

As for DTD, the aim is to define standardized image under-
standing tasks to be used as public benchmarks. The complete
list of images, segments, labels, and splits are publicly avail-
able at http://www.robots.ox.ac.uk/~vgg/data/wildtex/.

The benchmarks include two tasks on two complemen-
tary semantic domains. The first task is the recognition of
texture regions, given the region extent as ground truth infor-
mation. This task is instantiated for both material, denoted
OS+R, and describable texture attributes, denoted OSA+R.
Performance in OS+R is measured in term of classifi-
cation accuracy and mAP, using the same definition (1)
where images are replaced by image regions. Performance in
OSA+R uses instead mAP due to the possibility of multiple
labels.

The second task is the segmentation and recognition of
texture regions, which we also instantiate for materials (OS)
and describable texture attributes (OSA). Since not all image

2 The classes and correspondingnumber of example segments are: brick
(610), cardboard (423), carpet/rug (1975), ceramic (1643), concrete
(567), fabric/cloth (7484), food (1461), glass (4571), granite/marble
(1596), hair (443), other (2035), laminate (510), leather (957), metal
(4941), painted (7870), paper/tissue (1226), plastic/clear (586), plas-
tic/opaque (1800), stone (417), tile (3085), wallpaper (483), wood
(9232).
3 These are: banded, blotchy, checkered, flecked, gauzy, grid, marbled,
paisley, pleated, stratified, wrinkled.

pixels are labelled in the ground truth, the performance of
a predictor ĉ is measured in term of per-pixel classification
accuracy, pp-acc(ĉ). This is computed using the same for-
mula as (1) with two modification: first, the images x are
replacedbypixelsp (extracted fromall images in the dataset);
second, the ground truth label c(p) of a pixel may take an
additional value 0 to denote pixels that are not labelled in the
ground truth (the effect is to ignore them in the computation
of accuracy).

In the case ofOSA, the per-pixel accuracy ismodified such
that a class prediction is considered correct if it belongs to
any of the ground-truth pixel labels. Furthermore, accuracy
is not normalized per class as this is ill-defined, but by the
total number of pixels:

acc-osa(ĉ) = |{p : ĉ(p) ∈ c(p)}|
|{p : c(p) �= φ}| . (2)

where c(p) is the set of possible labels of pixel p and φ

denotes the empty set.

4 Texture Representations

Having presented our contributions to framing the problem
of texture description, we now turn to our technical advances
towards addressing the resulting problems.We start by revis-
iting the concept of texture representation and studies how
it relates to modern image descriptors based on CNNs. In
general, a visual representation is a map that takes an image
x to a vector φ(x) ∈ R

d that facilitates understanding the
image content. Understanding is often achieved by learning
a linear predictor 〈φ(x),w〉 scoring the strength of associa-
tion between the image and a particular concept, such as an
object category.

Among image representations, this paper is particularly
interested in the class of texture representations pioneered
by the works of Mallat (1989), Malik and Perona (1990),
Bovik et al. (1990), and Leung and Malik (2001). Textures
encompass a large diversity of visual patterns, from regular
repetitions such aswallpapers, to stochastic processes such as
fur, to intermediate cases such as pebbles. Distortions due to
viewpoint and other imaging factors further complicatemod-
eling textures. However, one can usually assume that, given
a particular texture, appearance variations are statistically
independent in the long range and can therefore be eliminated
by averaging local image statistics over a sufficiently large
texture sample. Hence, the defining characteristic of texture
representations is to pool information extracted locally and
uniformly from the image, by means of local descriptors, in
an orderless manner.

The importance of texture representations is in the fact that
they were found to be applicable well beyond textures. For
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example, until recentlymany of the best object categorization
methods in challenges such as PASCAL VOC (Evering-
ham et al. 2007) and ImageNet ILSVRC (Deng et al. 2009)
were based on variants of texture representations, developed
specifically for objects. One of the contributions of this work
is to show that these object-optimized texture representations
are in fact optimal for a large number of texture-specific prob-
lems too (Sect. 6.1.3).

More recently, texture representations have been signif-
icantly outperformed by Convolutional Neural Networks
(CNNs) in object categorization (Krizhevsky et al. 2012),
detection (Girshick et al. 2014), segmentation (Hariharan
et al. 2014), and in fact in almost all domains of image
understanding. Key to the success of CNNs is their ability
to leverage large labelled datasets to learn high-quality fea-
tures. Importantly, CNN features pre-trained on very large
datasets were found to transfer to many other domains with
a relatively modest adaptation effort (Jia 2013; Oquab et al.
2014; Razavin et al. 2014; Chatfield et al. 2014; Girshick
et al. 2014). Hence, CNNs provide general-purpose image
descriptors.

While CNNs generally outperform classical texture rep-
resentations, it is interesting to ask what is the relation
between these two methods and whether they can be fruit-
fully hybridized. Standard CNN-based methods such as Jia
(2013), Oquab et al. (2014), Razavin et al. (2014), Chatfield
et al. (2014), and Girshick et al. (2014) can be interpreted
as extracting local image descriptors (performed by the
the so called “convolutional layers”) followed by pooling
such features in a global image representation (performed
by the “Fully-Connected (FC) layers”). Here we will show
that replacing FC pooling with one of the many pooling
mechanisms developed in texture representations has several
advantages: (i) a much faster computation of the represen-
tation for image subregions accelerating applications such
as detection and segmentation (Girshick et al. 2014; He
et al. 2014; Gong et al. 2014), (ii) a significantly superior
recognition accuracy in several application domains and (iii)
the ability of achieving this superior performance without
fine-tuning CNNs by implicitly reducing the domain shift
problem.

In order to systematically study variants of texture repre-
sentations φ = φe ◦ φ f , we break them into local descriptor
extraction φ f followed by descriptor pooling φe. In this
manner, different combinations of each component can be
evaluated. Common local descriptors include linear filters,
local image patches, local binary patterns, densely-extracted
SIFT features, and many others. Since local descriptors are
extracted uniformly from the image, they can be seen as
banks of (non-linear) filters; we therefore refer to them as fil-
ter banks in honor of the pioneering works of Mallat (1989),
Bovik et al. (1990), Freeman and Adelson (1991), Leung and
Malik (2001) and others where descriptors were the output

of actual linear filters. Pooling methods include bag-of-
visual-words, variants using soft-assignment, or extracting
higher-order statistics as in the Fisher vector. Since these
methods encode the information contained in the local
descriptors in a single vector, we refer to them as pooling
encoders.

Sects. 4.1 and4.2 discussfilter banks andpooling encoders
in detail.

4.1 Local Image Descriptors

There is a vast choice of local image descriptors in texture
representations. Traditionally, these features were hand-
crafted , but with the latest generation of deep learning
methods it is now customary to learn them from data
(although often in an implicit form). Representative exam-
ples of these two families of local features are discussed in
Sects. 4.1.1 and 4.1.2, respectively.

4.1.1 Hand-Crafted Local Descriptors

Some of the earliest local image descriptors were developed
as linear filter banks in texture recognition. As an evolution
of earlier texture filters (Bovik et al. 1990; Malik and Per-
ona 1990), the filter bank of Leung Malik (LM) Leung and
Malik (2001) includes 48 filters matching bars, edges and
spots, at various scales and orientations. These filters are
first and second derivatives of Gaussians at 6 orientations
and 3 scales (36), 8 Laplacian of Gaussian (LOG) filters, and
4 Gaussians. Combinations of the filter responses, identified
by vector quantisation (Sect. 4.2.1), were used as the compu-
tational basis of the “textons” proposed by Julesz and Bergen
(1983). The filter bankMR8 of Varma and Zisserman (2003)
and Geusebroek et al. (2003) consists instead of 38 filters,
similar to LM. For two of the oriented filters, only the max-
imum response across the scales is recorded, reducing the
number of responses to 8 (3 scales for two oriented filters,
and two isotropic – Gaussian and Laplacian of Gaussian).

The importance of using linear filters as local features was
later questioned by Varma and Zisserman (2003). The VZ
descriptors are in fact small image patches which, remark-
ably, were shown to outperform LM and MR8 on earlier
texture benchmarks such as CuRET. However, as will be
demonstrated in the experiments, trivial local descriptors are
not competitive in harder tasks.

Another early local image descriptor are theLocal Binary
Patterns (LBP) of Ojala et al. (1996) and Ojala et al. (2002),
a special case of the texture units of Wang and He (1990). A
LBP di = (b1, . . . , bm) computed a pixel p0 is the sequence
of bits b j = [x(pi ) > x(p j )] comparing the intensity x(pi )
of the central pixel to the one of m neighbors p j (usually 8
in a circle). LBPs have specialized quantization schemes; the
most common onemaps the bit stringdi to one of a number of
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uniform patterns (Ojala et al. 2002). The quantized LBPs can
be averagedover the image to build a histogram; alternatively,
such histograms can be computed for small image patches
and used in turn as local image descriptors.

In the context of object recognition, the best known local
descriptor is undoubtedly Lowe’s SIFT (Lowe 1999). SIFT
is the histogram of the occurrences of image gradients quan-
tized with respect to their location within a patch as well
to their orientation. While SIFT was originally introduced
to match object instances, it was later applied to an impres-
sive diversity of tasks, from object categorization to semantic
segmentation and face recognition.

4.1.2 Learned Local Descriptors

Handcrafted image descriptors are nowadays outperformed
by features learned using the latest generation of deep
CNNs (Krizhevsky et al. 2012). A CNN can be seen as a
composition φK ◦ · · · ◦φ2 ◦φ1 of K functions or layers. The
output of each layer xk = (φk◦· · ·◦φ2◦φ1)(x) is a descriptor
field xk ∈ R

Wk×Hk×Dk , where Wk and Hk are the width and
height of the field and Dk is the number of feature channels.
By collecting the Dk responses at a certain spatial location,
one obtains a Dk dimensional descriptor vector. The network
is called convolutional if all the layers are implemented as
(non-linear) filters, in the sense that they act locally and uni-
formly on their input. If this is the case, since compositions of
filters are filters, the feature field xk is the result of applying
a non-linear filter bank to the image x.

As computation progresses, the resolution of the descrip-
tor fields decreases whereas the number of feature channels
increases.Often, the last several layersφk of aCNNare called
“fully connected” because, if seen as filters, their support is
the same as the size of the input field xk−1 and therefore lack
locality. By contrast, earlier layers that act locally will be
referred to as “convolutional”. If there are C convolutional
layers, the CNN φ = φe ◦φ f can be decomposed into a filter
bank (local descriptors) φ f = φC ◦ · · · ◦ φ1 followed by a
pooling encoder φe = φK ◦ · · · ◦ φC+1.

4.2 Pooling Encoders

A pooling encoder takes as input the local descriptors
extracted from an image x and produces as output a single
feature vector φ(x), suitable for tasks such as classification
with an SVM.Afirst important differentiating factor between
encoders is whether they discard the spatial configuration
of input features (orderless pooling; Sect. 4.2.1) or whether
they retain it (order-sensitive pooling; Sect. 4.2.2). A detail
of practical importance, furthermore, is the type of post-
processing applied to the pooled vectors (post-processing;
Sect. 4.2.3).

4.2.1 Orderless Pooling Encoders

An orderless pooling encoder φe maps a sequence F =
(f1, . . . , fn), fi ∈ R

D of local image descriptors to a feature
vector φe(F) ∈ R

d . The encoder is orderless in the sense
that the function φe is invariant to permutations of the input
F .4 Furthermore, the encoder can be applied to any number
of features; for example, the encoder can be applied to the
sub-sequenceF ′ ⊂ F of local descriptors contained in a tar-
get image region without recomputing the local descriptors
themselves.

All common orderless encoders are obtained by applying
a non-linear descriptor encoder η(fi ) ∈ R

d to individual
local descriptors and then aggregating the result by using a
commutative operator such as average or max. For example,
average-pooling yields φ̄e(F) = 1

n

∑n
i=1 η(fi ). The pooled

vector φ̄e(F) is post-processed to obtain the final represen-
tation φe(F) as discussed later.

The best-known orderless encoder is the Bag of Visual
Words (BoVW). This encoder starts by vector-quantizing
(VQ) the local features fi ∈ R

D by assigning them to their
closest visual word in a dictionary C = [

c1 . . . cd
] ∈ R

D×d

of d elements. Visual words can be thought of as “proto-
type features” and are obtained during training by clustering
example local features. The descriptor encoder η1(fi ) is the
one-hot vector indicating the visual word corresponding to
fi and average-pooling these one-hot vectors yields the his-
togram of visual words occurrences. BoVW was introduced
in the work of Leung and Malik (2001) to characterize the
distribution of textons, defined as configuration of local filter
responses, and then ported to object instance and category
understanding by Sivic and Zisserman (2003) and Csurka
et al. (2004) respectively. It was then extended in several
ways as described below.

The kernel codebook encoder (Philbin et al. 2008) assigns
each local feature to several visual words, weighted by a
degree of membership: [ηKC(fi )] j ∝ exp

(−λ‖fi − c j‖2
)
,

where λ is a parameter controlling the locality of the assign-
ment. The descriptor code ηKC(fi ) is L1 normalized before
aggregation, such that ‖ηKC(fi )‖1 = 1. Several related
methods used concepts from sparse coding to define the
local descriptor encoder (Zhou et al. 2010; Liu et al. 2011).
Locality constrained linear coding (LLC) (Wang et al.
2010), in particular, extends soft assignment by making the
assignments reconstructive, local, and sparse: the descriptor
encoder ηLLC(fi ) ∈ R

d+, ‖ηLLC(fi )‖1 = 1, ‖ηLLC(fi )‖0 ≤ r
is computed such that fi ≈ CηLLC(fi ) while allowing only
the r � d visual words closer to fi to have a non-zero coef-
fcient.

4 Note that F cannot be represented as a set as encoders are generally
sensitive to repetitions of feature descriptors. It could be defined as a
multiset or, as done here, as a sequence F .
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In theVector of locally-aggregated descriptors (VLAD)
(Jégou et al. 2010) the descriptor encoder is richer. Local
image descriptors are first assigned to their nearest neigh-
bor visual word in a dictionary of K elements like in
BoVW; then the descriptor encoder is given by ηVLAD(fi ) =
(fi − Cη1(fi )) ⊗ η1(fi ), where ⊗ is the Kronecker product.
Intuitively, this subtracts from fi the corresponding visual
word Cη1(fi ) and then copies the difference into one of
K possible subvectors, one for each visual word. Hence
average-pooling ηVLAD(fi ) accumulates first-order descrip-
tor statistics instead of simple occurrences as in BoVW.

VLAD can be seen as a variant of the Fisher vector
(FV) (Perronnin and Dance 2007). The FV differs from
VLAD as follows. First, the quantizer is not K -means
but a Gaussian Mixture Model (GMM) with components
(πk, μk, �k), k = 1, . . . , K , where πk ∈ R is the prior
probability of the component, μk ∈ R

D the Gaussian
mean and �k ∈ R

D×D the Gaussian covariance (assumed
diagonal). Second, hard-assignments η1(fi ) are replaced by
soft-assignments ηGMM(fi ) given by the posterior probability
of each GMM component. Third, the FV descriptor encoder

ηFV(fi ) includes both first �
− 1

2
k (fi − μk) and second order

�−1
k (fi −μk)�(fi −μk)−1 statistics, weighted by ηGMM(fi )

[see Perronnin and Dance (2007), Perronnin et al. (2010) and
Chatfield et al. (2011) for details]. Hence, average pooling
ηFV(fi ) accumulates both first and second order statistics of
the local image descriptors.

All the encoders discussed above use average pooling,
except LLC that uses max pooling.

4.2.2 Order-Sensitive Pooling Encoders

An order-sensitive encoder differs from an orderless encoder
in that the map φe(F) is not invariant to permutation of the
input F . Such an encoder can therefore reflect the layout
of the local image desctiptors, which may be ineffective or
even counter-productive in texture recognition, but is usually
helpful in the recognition of objects, scenes, and others.

The most common order-sensitive encoder method is the
spatial pyramid pooling (SPP) of Lazebnik et al. (2006).
SSP transforms any orderless encoder into one with (weak)
spatial sensitivity by dividing the image in subregions, com-
puting any encoder for each subregion, and stacking the
results. This encoder is only be sensitive to reassignments
of the local descriptors to different subregions.

The fully-connected layers (FC) in a CNN also form
an order-sensitive encoder. Compared to the encoders seen
above, FC are pre-trained discriminatively, which can be
either an advantage or disadvantage, depending on whether
the information that they captured can be transferred to the
domain of interest. FC poolers are much less flexible than the
encoders seen above as they work only with a particular type

of local descriptors, namely the corresponding CNN convo-
lutional layers. Furthermore, a standard FC pooler can only
operate on a well defined layout of local descriptors (e.g. a
6×6), which in turnmeans that the image needs to be resized
to a standard size before the FC encoder can be evaluated.
This is particularly expensive when, as in object detection or
image segmentation, many image subregions must be con-
sidered.

4.2.3 Post-processing

The vector y = φe(F) obtained by pooling local image
descriptors is usually post-processed before being used in
a classifier. In the simplest case, this amounts to performing
L2 normalization φe(F) = y/‖y‖2. However, this is usually
preceded by a non-linear transformation φK (y)which is best
understood in term of kernels. A kernel K (y′, y′′) specifies a
notion of similarity between data points y′ and y′′. If K is a
positive semidefinite function, then it can always be rewritten
as the inner product 〈φK (y′), φK (y′′)〉 where φK is a suit-
able pre-processing function called a kernel embedding (Maji
et al. 2008; Vedaldi and Zisserman 2010). Typical kernels
include the linear, Hellinger’s, additive-χ2, and exponential-
χ2 ones, given respectively by:

〈y′, y′′〉,
d∑

i=1

√
y′
i y

′′
i ,

d∑

i=1

2y′
i y

′′
i

y′
i + y′′

i
, exp

[
−λ

d∑

i=1

(y′
i − y′′

i )2

y′
i + y′′

i

]
.

In practice, the kernel embedding φK can be computed easily
only in a few cases, including the linear kernel (φK is the
identity) and Hellinger’s kernel (for each scalar component,
φHell.(y) = √

y). In the latter case, if y can take negative
values, then the embedding is extended to the so called signed
square rooting5 φHell.(y) = sign(y)

√|y|.
Even if φK is not explicitly computed, any kernel can be

used to learn a classifier such as an SVM (kernel trick). In this
case, L2 normalizing the kernel embedding φK (y) amounts
to normalizing the kernel as

K ′(y, y′′) = K (y′, y′′)√
K (y′, y′)K (y′′, y′′)

.

All the pooling encoders discussed above are usually fol-
lowed by post-processing. In particular, the Improved Fisher
Vector (IFV) (Perronnin et al. 2010) prescribes the use of
the signed-square root embedding followed by L2 normal-
ization. VLAD has several standard variants that differ in

5 This extension generalizes to all homogeneous kernels, including for
example χ2 (Vedaldi and Zisserman 2010).
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the post-processing; here we use the one that L2 normalizes
the individual VLAD subvectors (one for each visual word)
before L2 normalizing the whole vector (Arandjelovic and
Zisserman 2012).

5 Plan of Experiments and Highlights

The next several pages contain an extensive set of experimen-
tal results. This section provides a guide to these experiments
and summarizes the main findings.

The goal of the first block of experiments (Sect. 6.1) is
to determine which representations work bests on different
problems such as texture attribute, texture material, object,
and scene recognition. The main findings are:

– Orderless pooling of SIFT features (e.g. FV-SIFT) per-
forms better than specialized texture descriptors in many
texture recognition problems; performance is further
improved by switching from SIFT to CNN local descrip-
tors (FV-CNN; Sect. 6.1.3).

– Orderless pooling of CNN descriptors using the Fisher
Vector (FV-CNN) is often significantly superior than
fully-connected pooling of the same descriptors (FC-
CNN) in texture, scene, and object recognition
(Sect. 6.1.4). This difference is more marked for deeper
CNN architectures (Sect. 6.1.5) and can be partially
explained by the ability of FV pooling to overfit less and
to easily integrate information at multiple image scales
(Sect. 6.1.6).

– FV-CNN descriptors can be compressed to the same
dimensionality of FC-CNN descriptors while preserving
accuracy (Sect. 6.1.7).

Having determined good representations in Sect. 6.1, the
second block of experiments (Sect. 6.2) compares them to
the state of the art in texture, object, and scene recognition.
The main findings are:

– In texture recognition in the wild, for both materials
(FMD) and attributes (DTD), CNN-based descriptors
substantially outperform existing methods. Depending
on the dataset, FV pooling is a little or substantially bet-
ter than FC pooling of CNN descriptors (Sect. 6.2.1.4).
When textures are extracted from a larger cluttered
scene (instead of filling the whole image), the difference
between FV and FC pooling increases (Sect. 6.2.1.5).

– In coarse object recognition (PASCAL VOC), fine-
grained object recognition (CUB-200), scene recognition
(MIT Indoor), and recognition of things & stuff (MSRC)
fine-grained, the FV-CNN representation achieves results
that are close and sometimes superior to the state of

the art, while using a simple and fully generic pipeline
(Sect. 6.2.3).

– FV-CNN appears to be particularly effective in domain
transfer. Sect. 6.2.3 shows in fact that FV pooling com-
pensates for the domain gap caused by training a CNN
on two very different domains, namely scene and object
recognition.

Having addressed image classification in Sects. 6.1 and
6.2, The third block of experiments (Sect. 7) compare rep-
resentations on semantic segmentation. It shows that FV
pooling of CNN descriptors can be combined with a region
proposal generator to obtain high-quality segmentation of
materials in the OS and MSRC data. For example, combined
with a post-processing step using a CRF, FV-VGG-VD sur-
passes the state-of-the-art on the latter dataset. It is also shown
that, differently from FV-CNN, FC-CNN is too slow to be
practical in this scenario.

6 Experiments on Semantic Recognition

So far the paper has introduced novel problems in texture
understanding aswell as a number of old and new texture rep-
resentations. The goal of this section is to determine, through
extensive experiments, what representations work best for
which problem.

Representations are labelled as pairs X-Y, where X is a
pooling encoder and Y a local descriptor. For example, FV-
SIFT denotes the Fisher vector encoder applied to densely
extracted SIFT descriptors, whereas BoVW-CNN denotes
the bag-of-visual-words encoder applied on top of CNN con-
volutional descriptors. Note in particular that the CNN-based
image representations as commonly extracted in the litera-
ture Jia (2013), Razavin et al. (2014), and Chatfield et al.
(2014) implicitly use CNN-based descriptors and the FC
pooler, and therefore are denoted here as FC-CNN.

6.1 Local Image Descriptors and Encoders Evaluation

This section compares different local image descriptors and
pooling encoders (Sect. 6.1.1) on selected representative
tasks in texture recognition, object recognition, and scene
recognition (Sect. 6.1.2). In particular, Sect. 6.1.3 com-
pares different local descriptors, Sect. 6.1.4 different pooling
encoders, and Sect. 6.1.5 additional variants of the CNN-
based descriptors.

6.1.1 General Experimental Setup

The experiments are centered around two types of local
descriptors. The first type are SIFT descriptors extracted
densely from the image (denoted DSIFT ). SIFT descriptors
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are sampled with a step of two pixels and the support of
the descriptor is scaled such that a SIFT spatial bin has size
8 × 8 pixels. Since there are 4 × 4 spatial bins, the sup-
port or “receptive field” of each DSIFT descriptor is 40× 40
pixels, (including a border of half a bin due to bilinear inter-
polation). Descriptors are 128-dimensional (Lowe 1999), but
their dimensionality is further reduced to 80 using PCA, in
all experiments. Besides improving the classification accu-
racy, this significantly reduces the size of the Fisher Vector
and VLAD encodings.

The second type of local image descriptors are deep
convolutional features (denoted CNN) extracted from the
convolutional layers of CNNs pre-trained on ImageNet
ILSVRCdata.Most experiments build on theVGG-Mmodel
of Chatfield et al. (2014) as this network performs better than
standard networks such as the Caffe reference model (Jia
2013) and AlexNet (Krizhevsky et al. 2012) while having a
similar computational cost. The VGG-M convolutional fea-
tures are extracted as the output of the last convolutional
layer, directly from the linear filters excludingReLUandmax
pooling, which yields a field of 512-dimensional descrip-
tor vectors. In addition to VGG-M, experiments consider
the recent VGG-VD (very deep with 19 layers) model of
Simonyan and Zisserman (2014). The receptive field of CNN
descriptors is much larger compared to SIFT: 139×139 pix-
els for VGG-M and 252 × 252 for VGG-VD.

When combined with a pooling encoder, local descriptors
are extracted at multiple scales, obtained by rescaling the
image by factors 2s, s = −3,−2.5, . . . , 1.5 (but, for effi-
ciency, discarding scales that would make the image larger
than 10242 pixels).

The dimensionality of the final representation strongly
depends on the encoder type and parameters. For K visual
words, BoVW and LLC have K dimensions, VLAD has K D
and FV 2K D, where D is the dimension of the local descrip-
tors. For the FC encoder, the dimensionality is fixed by the
CNN architecture; here the representation is extracted from
the penultimate FC layer (before the final classification layer)
of the CNNs and happens to have 4096 dimensions for all the
CNNs considered. In practice, dimensions vary widely, with
BoVW, LLC, and FC having a comparable dimensionality,
andVLADandFVamuchhigher one. For example, FV-CNN
has � 64 · 103 dimensions with K = 64 Gaussian mixture
components, versus the 4096 of FC, BoVW, and LLC (when
used with K = 4096 visual words). In practice, however,
dimensions are hardly comparable as VLAD and FV vec-
tors are usually highly compressible (Parkhi et al. 2014). We
verified that by using PCA to reduce FV to 4096 dimensions
and observing only amarginal reduction in classification per-
formance in the PASCAL VOC object recognition task, as
described below.

Unless otherwise specified, learning uses a standard non-
linear SVM solver. Initially, cross-validation was used to

select the parameter C of the SVM in the range {0.1, 1, 10,
100}; however, after noting that performance was nearly
identical in this range (probably due to the data normaliza-
tion),C was simply set to the constant 1. Instead, it was found
that recalibrating the SVM scores for each class improves
classification accuracy (but of course not mAP). Recalibra-
tion is obtained by changing the SVM bias and rescaling the
SVM weight vector in such a way that the median scores of
the negative and positive training samples for each class are
mapped respectively to the values −1 and 1.

All the experiments in the paper use the VLFeat library
(Vedaldi and Fulkerson 2010) for the computation of SIFT
features and the pooling embedding (BoVW, VLAD, FV).
The MatConvNet (Vedaldi and Lenc 2014) library is used
instead for all the experiments involving CNNs. Further
details specific to the setup of each experiment are given
below as needed.

6.1.2 Datasets and Evaluation Measures

The evaluation is performed on a diversity of tasks: the new
describable attribute and material recognition benchmarks
in DTD and OpenSurfaces, existing ones in FMD and KTH-
T2b, object recognition in PASCAL VOC 2007, and scene
recognition in MIT Indoor. All experiments follow standard
evaluation protocols for each dataset, as detailed below.

DTD (Sect. 2) contains 47 texture classes, one per visual
attribute, containing 120 images each. Images are equally
spilt into train, test and validation, and include experi-
ments on the prediction of “key attributes” as well as “joint
attributes”, as as defined in Sect. 2.1, and reports accuracy
averaged over the 10 default splits providedwith the datasets.
OpenSurfaces (Bell et al. 2013) is used in the setupdescribed
in Sect. 3 and contains 25,357 images, out of which we
selected 10,422 images, spanning across 21 categories.When
segments are provided, the dataset is referred to as OS+R,
and recognition accuracy is reported on a per-segment basis.
We also annotated the segments with the attributes from
DTD, and called this subset OSA (and OSA+R for the setup
when segments are provided). For the recognition task on
OSA+Rwe report mean average precision, as this is a multi-
label dataset.

FMD (Sharan et al. 2009) consists of 1,000 images with
100 for each of ten material categories. The standard evalua-
tion protocol of Sharan et al. (2009) uses 50 images per class
for training and the remaining 50 for testing, and reports clas-
sification accuracy averaged over 14 splits. KTH-T2b [65]
contains 4,752 images, grouped into 11 material categories.
For each material category, images of four samples were
captured under various conditions, resulting in 108 images
per sample. Following the standard procedure (Caputo et al.
2005; Timofte and Van Gool 2012), images of one mater-
ial sample are used to train the model, and the other three
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samples for evaluating it, resulting in four possible splits
of the data, for which average per-class classification accu-
racy is reported.MIT Indoor Scenes (Quattoni and Torralba
2009) contains 6,700 images divided in 67 scene categories.
There is one split of the data into train (80%) and test
(20%), provided with the dataset, and the evaluation metric
is average per-class classification accuracy. PASCAL VOC
2007 (Everingham et al. 2007) contains 9963 images split
across 20 object categories. The dataset provides a stan-
dard split in training, validation and test data. Performance is
reported in term of mean average precision (mAP) computed
using theTRECVID11-point interpolation scheme (Evering-
ham et al. 2007).6

6.1.3 Local Image Descriptors and Kernels Comparison

The goal of this section is to establish which local image
descriptors work best in a texture representation. The ques-
tion is relevant because: (i) while SIFT is the de-facto
standard handcrafted-feature in object and scene recognition,
most authors use specialized descriptors for texture recogni-
tion and (ii) learned convolutional features in CNNs have not
yet been compared when used as local descriptors (instead,
they have been compared to classical image representations
when used in combination with their FC layers).

The experiments are carried on the the task of recogniz-
ing describable texture attributes in DTD (Sect. 2) using the
BoVW encoder. As a byproduct, the experiments determine
the relative difficulty of recognizing the different 47 percep-
tual attributes in DTD.

6.1.3.1 Experimental Setup The following local image
descriptors are compared: the linear filter banks of Leung and
Malik (LM) (Leung and Malik 2001) (48D descriptors) and
MR8 (8D descriptors) (Varma and Zisserman 2005; Geuse-
broek et al. 2003), the 3 × 3 and 7 × 7 raw image patches
of Varma and Zisserman (2003) (respectively 9D and 49D),
the local binary patterns (LBP) of Ojala et al. (2002) (58D),
SIFT (128D), and CNN features extracted from VGG-M and
VGG-VD (512D).

After the BoVW representation is extracted, it is used
to train a 1-vs-all SVM using the different kernels dis-
cussed in Sect. 4.2.3: linear, Hellinger, additive-χ2, and
exponential-χ2. Kernels are normalized as described before.
The exponential-χ2 kernel requires choosing the parameter
λ; this is set as the reciprocal of the mean of the χ2 distance
matrix of the training BoVW vectors. Before computing the
exponential-χ2 kernel, furthermore, BoVW vectors are L1

normalized. An important parameter in BoVW is the num-
ber of visual words selected. K was varied in the range of

6 The procedure for computing the AP was changed in later versions
of the benchmark.

256, 512, 1024, 2048, 4096 and performance evaluated on a
validation set. Regardless of the local feature and embedding,
performance was found to increase with K and to saturate
around K = 4096 (although the relative benefit of increasing
K was larger for features such as SIFT andCNNs). Therefore
K was set to this value in all experiments.

6.1.3.2 Analysis Table 2 reports the classification accuracy
for 47 1-vs-all SVM attribute classifiers, computed as (1). As
often found in the literature, the best kernel was found to be
exponential-χ2, followed by additive-χ2, Hellinger’s, and
linear kernels. Among the hand-crafted descriptors, dense
SIFT significantly outperforms the best specialized texture
descriptor on the DTD data (52.3% for BoVW-exp-χ2-
SIFTvs44%forBoVW-exp-χ2-LM).CNNlocal descriptors
handily outperformhandcrafted features by a 10–15% recog-
nition accuracy margin. It is also interesting to note that the
choice of kernel function has amuch stronger effect for image
patches and linear filters (e.g. accuracy nearly doubles mov-
ing from BoVW-linear-patches to BoVW-exp-χ2-patches)
and an almost negligible effect for the much stronger CNN
features.

Figure 5 reports the classification accuracy for each
attribute in DTD for the BoVW-SIFT, BoVW-VGG-M, and
BoVW-VGG-VD descriptors and the additive-χ2 kernel. As
itmay be expected, concepts such as chequered,waffled, knit-
ted, paisley achieve nearly perfect classification, while others
such as blotchy, smeared or stained are far harder.

6.1.3.3 Conclusions The conclusions are that (i) SIFT
descriptors outperform significantly texture-specific descrip-
tors such as linear filter banks, patches, and LBP on this
texture recognition task, and that (ii) learned convolutional
local descriptors significantly surpass SIFT.

6.1.4 Pooling Encoders

The previous section established the primacy of SIFT and
CNN local image descriptors on alternatives. The goal of this
section is to determine which pooling encoders (Sect. 4.2)
work best with these descriptors, comparing the orderless
BoVW, LLC, VLAD, FV encoders and the order-sensitive
FC encoder. The latter, in particular, reproduces the CNN
transfer learning setting commonly found in the literature
where CNN features are extracted in correspondence to the
FC layers of a network.

6.1.4.1 Experimental Setup The experimental setup is sim-
ilar to the previous experiment: the same SIFT and CNN
VGG-M descriptors are used; BoVW is used in combination
with the Hellinger kernel (the exponential variant is slightly
better, but much more expensive); the same K = 4096
codebook size is used with LLC. VLAD and FV use a
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Table 2 Comparison of local
features and kernels on the DTD
data

Local descr. Kernel

Linear Hellinger add-χ2 exp-χ2

MR8 20.8 ± 0.9 26.2 ± 0.8 29.7 ± 0.9 34.3 ± 1.1

LM 26.7 ± 0.9 34.8 ± 1.2 39.5 ± 1.4 44.0 ± 1.4

Patch3× 3 15.9 ± 0.5 24.4 ± 0.7 27.8 ± 0.8 30.9 ± 0.7

Patch7× 7 20.7 ± 0.8 30.6 ± 1.0 34.8 ± 1.0 37.9 ± 0.9

LBPu 8.5 ± 0.4 9.3 ± 0.5 12.5 ± 0.4 19.4 ± 0.7

LBP-VQ 26.2 ± 0.8 28.8 ± 0.9 32.7 ± 1.0 36.1 ± 1.3

SIFT 45.2 ± 1.0 49.1 ± 1.1 50.9 ± 1.0 52.3 ± 1.2

Conv VGG-M 55.9 ± 1.3 61.7 ± 0.9 61.9 ± 1.0 61.2 ± 1.0

Conv VGG-VD 64.1 ± 1.3 68.8 ± 1.3 69.0 ± 0.9 68.8 ± 0.9

The table reports classification accuracy, averaged over the predefined ten splits, provided with the dataset
We marked in bold the best performing descriptors, SIFT and convolutional features, which we will cover in
the following experiments and discussions
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Fig. 5 Per class classification accuracy in the DTD data comparing three local image descriptors: SIFT, VGG-M, and VGG-VD. For all three local
descriptors, BoVW with 4096 visual words was used. Classes are sorted by increasing BoVW-CNN-VD accuracy (this number is reported along
each bar)

much smaller codebook as these representations multiply the
dimensionality of the descriptors (Sect. 6.1.1). Since SIFT
and CNN features are respectively 128 and 512-dimensional,
K is set to 256 and 64 respectively. The impact of varying the
number of visual words in the FV representation is further
analyzed in Sect. 6.1.5.

Before pooling local descriptors with a FV, these are usu-
ally de-correlated by using PCA whitening. Here PCA is
applied to SIFT, additionally reducing its dimension to 80,
as this was empirically shown to improve recognition per-
formance. The effect of PCA-reduction to the convolutional

features is studied in Sect. 6.1.7. The improved version of the
FV is used in all the experiments (Sect. 3), and, similarly, for
VLAD, we applied signed square root to the resulting encod-
ing, which is then normalized component-wise (Sect. 4.2.3).

6.1.4.2 Analysis Results are reported in Table 3. In term of
orderless encoders, BoVW and LLC result in similar perfor-
mance for SIFT, while the difference is slightly larger and
in favor of LLC for CNN features. Note that BoVW is used
with the Hellinger kernel, which contributes to reducing the
gap between BoVW and LLC. IFV and VLAD significantly
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outperform BoVW and LLC in almost all tasks; FV is def-
initely better than VALD with SIFT features and about the
same with CNN features. CNN features maintain a healthy
lead on SIFT features regardless of the encoder used. Impor-
tantly, VLAD and FV (and to some extent BoVW and LLC)
perform either substantially better or as well as the original
FC encoders. Some of these observations can are confirmed
by other experiments such as Table 4.

Next, we compare using CNN features with an orderless
encoder (FV-CNN) as opposed to the standard FC layer (FC-
CNN). As seen in Tables 3 and 4, in PASCALVOC andMIT
Indoor the FC-CNN descriptor performs very well but in line
with previous results for this class ofmethods (Chatfield et al.
2014). FV-CNN performs similarly to FC-CNN in PASCAL
VOC, KTH-T2b and FMD, but substantially better for DTD,
OS+R, andMIT Indoor (e.g. for the latter+5% for VGG-M
and +13% for VGG-VD).

As a sanity check, results are within 1% of the ones
reported in Chatfield et al. (2011) and Chatfield et al. (2014)
for matching experiments on FV-SIFT and FC-VGG-M. The
differences in case of SIFT LLC and BoVW are easily
explained by the fact that, differently from Chatfield et al.
(2011), our present experiments do not use SPP and image
augmentation.

6.1.4.3 Conclusions The conclusions of these experiments
are that: (i) IFV and VLAD are preferable to other orderless
pooling encoders, that (ii) orderless pooling encoders such
as the FV are at least as good and often significantly better
than FC pooling with CNN features.

6.1.5 CNN Descriptor Variants Comparison

This section conducts additional experiments on CNN local
descriptors to find the best variants.

6.1.5.1 Experimental Setup The same setup of the previous
section is used.We compare the performance of FC-CNNand
FV-CNN local descriptors obtained fromVGG-M,VGG-VD
as well as the simpler AlexNet (Krizhevsky et al. 2012) CNN
which is widely adopted in the literature.

6.1.5.2 Analysis Results are presented in detail in Table 4.
Within that table, the analysis here focuses mainly on tex-
ture and material datasets, but conclusions are similar for the
other datasets. In general, VGG-M is better than AlexNet
and VGG-VD is substantially better than VGG-M (e.g.
on FMD, FC-AlexNet obtains 64.8%, FC-VGG-M obtains
70.3% (+5.5%), FC-VGG-VD obtains 77.4% (+7.1%)).
However, switching from FC to FV pooling improves the
performance more than switching to a better CNN (e.g. on
DTDgoing fromFC-VGG-M to FC-VGG-VDyields a 7.1%
improvement, while going from FC-VGG-M to FV-VGG-M
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Fig. 6 Effect of the depth on CNN features. The figure reports the per-
formance ofVGG-M(left) andVGG-VD(right) local image descriptors
pooled with the FV encoder. For each layer the figures shows the size
of the receptive field of the local descriptors (denoted [N × N ]]), as
well as, for some of the layers, the dimension D of the local descriptors

and the number K of visual words in the FV representation (denoted as
D × K ). Curves for PASCAL VOC, MIT Indoor, FMD, and DTD are
reported; the performance of using SIFT as local descriptors is reported
as a plus (+) mark

yields a 11.3% improvement). Combining FV-CNN and FC-
CNN (by stacking the corresponding image representations)
improves the accuracy by 1–2% for VGG-VD, and up to 3–
5% for VGG-M. There is no significant benefit from adding
FV-SIFT as well, as the improvement is at most 1%, and in
some cases (MIT, FMD) it degrades the performance.

Next, we analyze in detail the effect of depth on the con-
volutional features. Figure 6 reports the accuracy of VGG-M
and VGG-VD on several datasets for features extracted at
increasing depths. The pooling method is fixed to FV and
the number of Gaussian centers K is set such that the overall
dimensionality of the descriptor 2K Dk is constant. For both
VGG-M and VGG-VD, the improvement with increasing
depth is substantial and the best performance is obtained by
the deepest features (up to 32% absolute accuracy improve-
ment in VGG-M and up to 48% in VGG-VD). Performance
increases at a faster rate up to the third convolutional layer
(conv3) and then the rate tapers off somewhat. The perfor-
mance of the earlier levels in VGG-VD is much worse than
the corresponding layers inVGG-M. In fact, the performance
of VGG-VD matches the performance of the deepest (fifth)
layer in VGG-M in correspondence of conv5_1, which has
depth 13.

Finally, we look at the effect of the number of Gaussian
components (visual words) in the FV-CNN representation,
testing possible values in the range 1 to 128 in small (1-
16) increments. Results are presented in Fig. 7. While there
is a substantial improvement in moving from one Gaussian
component to about 64 (up to +15% on DTD and up to
6% on OS), there is little if any advantage at increasing the
number of components further.
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Fig. 7 Effect of the number ofGaussian components in theFVencoder.
The figure shows the performance of the FV-VGG-M and FV-VGG-
VD representations on the OS and DTD datasets when the number of
Gaussians components in the GMM is varied from 1 to 128. Note that
the abscissa is scaled logarithmically

6.1.5.3 Conclusions The conclusions of these experiments
are as follows: (i) deeper models substantially improve per-
formance; (ii) switching from FC to FV pooling has an ever
more substantial impact, particularly for deeper models; (iii)
combining FC and FV pooling has amodest benefit and there
is no benefit in integrating SIFT features; (iv) in very deep
models, most of the performance gain is realized in the very
last few layers.
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Table 5 The table the single and multi-scale variants of FC-CNN and FV-CNN using two deep CNN, VGG-M and VGG-VD, trained on the
ImageNet ILSVRC, and a number of representative target datasets

dataset Meas. VGG-M VGG-VD

(%) FC (SS) FC (MS) FV (SS) FV (MS) FC (SS) FC (MS) FV (SS) FV (MS)

KTH-T2b acc 71 ± 2.3 68.9 ± 3.9 69.0 ± 2.8 73.3 ± 4.7 75.4 ± 1.5 75.1 ± 3.8 74.5 ± 4.4 81.8 ± 2.5

FMD acc 70.3 ± 1.8 69.3 ± 1.8 71.6 ± 2.4 73.5 ± 2.0 77.4 ± 1.8 78.1 ± 1.7 79.4 ± 2.5 79.8 ± 1.8

DTD acc 58.8 ± 0.8 59.9 ± 1.1 62.8 ± 1.5 66.8 ± 1.6 62.9 ± 0.8 65.3 ± 1.5 69.2 ± 0.8 72.3 ± 1.0

VOC07 mAP11 76.8 78 74.8 76.4 81.7 83.2 84.7 84.9

MIT Ind. acc 62.5 66.1 68.1 74.2 67.6 75.3 76.8 81.0

The single scale variants are denoted FC (SS) and FV (SS) and the multi-scale variants as FC (MS) and FV (MS)

6.1.6 FV Pooling Versus FC Pooling

In the previous section, we have seen that switching from
FC to FV pooling may have a substantial impact in certain
problems. We could find three reasons that can explain this
difference.

The first reason is that orderless pooling in FV can be
more suitable for texture modeling than the order-sensitive
pooling in FC. However, this explains the advantage of FV
in texture recognition but not in object recognition.

The second reason is that FV pooling may reduce overfit-
ting in domain transfer. Pre-trained FC layers could be too
specialized for the source domain (e.g. ImageNet ILSVRC)
and there may not be enough training data in the target
domain to retrain them properly. On the contrary, a linear
classifier built on FV pooling is less prone to overfitting as
it encodes a simpler, smoother classification function than a
sequence of FC layers in a CNN. This is further investigated
in Sect. 6.2.3.

The third reason is the ability to easily incorporate infor-
mation from multiple image scales.

In order to investigate this hypothesis, we evaluated FV-
CNN by pooling CNN descriptors at a single scale instead of
multiple ones, for both VGG-M and VGG-VD models. For
datasets likeFMD,DTDandMIT Indoor, FV-CNNat a single
scale still generally outperforms FC-CNN (columns FC (SS)
and FV (SS) in Table 5), by up to 5.6% for VGG-M, and
by up to 9.1% for VGG-VD; however, the difference is less
marked as using a single scale in FV-CNN looses up to 3.8%
accuracy points and and in some cases the representations is
overtaken by FC-CNN.

The complementary experiment, namely using multiple
scales in FC pooling, is less obvious as, by construction,
FC-CNN resizes the input image to a fixed resolution. How-
ever, we can relax this restriction by computing multiple FC
representations in a sliding-window manner (also know as a
“fully-convolutional” network). Then individual representa-
tions computed at multiple locations and, after resizing the
image, at multiple scales can be averaged in a single repre-
sentation vector. We refer to this as multi-scale FC pooling.

Multi-scale FC codes perform slightly better than single-
scale FC in most (but not all) cases; however, the benefit
of using multiple scales is not as large as for multi-scale FV
pooling, which is still significantly better than multi-scale
FC.

6.1.7 Dimensionality Reduction of the CNN Descriptors

This section explores the effect of applying dimensionality
reduction to the CNN local descriptors before FV pooling.

This experiment investigates the effect of two parameters,
the number of Gaussians in the mixture model used by the
FV encoder, and the dimensionality of the convolutional fea-
tures, which we reduce using PCA. Various local descriptor
dimensions are evaluated, from 512 (no PCA) to 32, report-
ing mAP on PASCALVOC 2007, as a function of the pooled
descriptor dimension. The latter is equal to 2K D, where K
is the number of Gaussian centers, and D the dimensionality
of the local descriptor after PCA reduction.

Results are presented in Fig. 8 for VGG-M and VGG-VD.
It can be noted that, for similar values of the total representa-
tion dimensionality 2K D, the performance of PCA-reduced
descriptors is a little better than not using PCA, provided
that this is compensated by a large number of GMM compo-
nents. In particular, similar to what was observed for SIFT
in Perronnin et al. (2010), using PCA does improve the
performance by 1–2% mAP point; furthermore, reducing
descriptors to 64 or 80 dimensions appears to result in the
best performance.

6.1.8 Visualization of Descriptors

In this experiment we are interested in understanding which
GMM components in the FV-CNN representation code for
a particular concept, as well as in determining which areas
of the input image contribute the most to the classification
score.

In order to do so, let w be the weight vector learned by a
SVMclassifier for a target class using the FB-CNN represen-
tation as input. We partitionw in subvectorswk , one for each
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Fig. 8 PCA reduced FV-CNN. The figure reports the performance of
VGG-M(left) andVGG-VD(right) local descriptors, onPASCALVOC
2007, when reducing their dimensionality from 512 to up to 32 using
PCA in combination with a variable number of GMM components. The

horizontal axis report the total descriptor dimensionality, proportional
to the dimensionality of the local descriptors by the number of GMM
components

GMM component k, and rank components by decreasing
value ‖wk‖, matching the intuition that the GMM compo-
nent that is predictive of the target class will result in larger
weights. Having identified the top components for a target
concept, the CNN local descriptors are then extracted from a
test image, the descriptors that are assigned to a top compo-
nent are selected, and their location is marked on the image.
To simplify the visualization, features are extracted at a single
scale.

As can be noted in Fig. 9 for some indicative texture types
in DTD, the strongest GMM components do tend to fire in
correspondence to the characteristic features of each texture.
Hence, we conclude that GMM components, while trained
in an unsupervised manner, contain clusters that can consis-
tently localize features that capture distinctive characteristics
of different texture types.

6.2 Evaluating Texture Representations on Different
Domains

The previous section established optimal combinations of
local image descriptors and pooling encoders in texture rep-
resentations. This section investigates the applicability of
these representations to a variety of domains, from texture
(Sect. 6.2.1) to object and scene recognition (Sect. 6.2.3).
It also emphasizes several practical advantages of order-
less pooling compared to fully-connected pooling, including
helping with the problem of domain shift in learned descrip-
tors. This section focuses on problems where the goal is to
either classify an image as a whole or a known region of
an image, while texture segmentation is looked at later in
Sect. 7.3.

6.2.1 Texture Recognition

Experiments on textures are divided in recognition in con-
trolled conditions (Sect. 6.2.1.3), where the main sources of
variability are viewpoint and illumination, recognition in the
wild (Sect. 6.2.1.4), characterized by larger intra-class vari-
ations, and recognition in the wild and clutter (Sect. 6.2.1.5),
where textures are a small portion of a larger scene.

6.2.1.1 Datasets and Evaluation Measures In addition to
the datasets evaluated in Sect. 6.1, DTD, OS+R, FMD and
KTH-T2b,we consider here also the standard benchmarks for
texture recognition. CUReT (Dana et al. 1999) (5612 images,
61 classes), UIUC (Lazebnik et al. 2005) (1000 images, 25
classes), KTH-TIPS (Burghouts and Geusebroek 2009) (810
images, 10 classes) are collected in controlled conditions, by
photographing the same instance of a material, under vary-
ing scale, viewing angle and illumination. UMD (Xu et al.
2009) consists of 1000 images, spread across 25 classes, but
was collected in uncontrolled conditions. For these datasets,
we follow the standard evaluation procedures, that is, we are
using half of the images for training, and the remaining half
for testing, and we are reporting accuracy, averaged over 10
random splits. The ALOT dataset (Burghouts and Geuse-
broek 2009) is similar to the existing texture datasets, but
significantly larger, having 250 categories. For our experi-
ments we used the protocol of Sulc and Matas (2014), using
20 images per class for training and the rest for testing.

6.2.1.2 Experimental Setup For the recognition tasks
described in the following subsections, we compare SIFT,
VGG-M, and VGG-VD local descriptors and the FC and FV
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Fig. 9 FV-CNN descriptor visualization. First three rows each image
shows the location of theCNN local descriptors thatmap to the FV-CNN
components most strongly associated with the “wrinkled”, “studded”,
“swirly”, “bubbly”, and “sprinkled” classes for a number of example
images in DTD. Red, green and black marks correspond to the top three
components selected as described in the text. Last row each image was
obtained by combining two images, e.g. swirly and wrinkled, and we

marked the CNN local descriptors associated with the first class. Swirly
descriptors do not fire on the selected wrinkled images. The last pair,
studded and bubbly is a harder, as the two images are visually simi-
lar, and the descriptors corresponding to studded appear on the bubbly
image as well. In order to improve visibility, in these images, we show
only the most discriminative FV component (Color figure online)

pooling encoders as these were determined before to be some
of the best representative texture descriptors. Combinations
of such descriptors are evaluated as well.

6.2.1.3 Texture Recognition in Controlled Conditions This
paragraph evaluates texture representations ondatasetswhich
are collected under controlled condition (Table 4,
Sect. a).

For instance recognition, CUReT, UIMD, UIUC are satu-
rated by modern techniques such as Sifre and Mallat (2013);
Sharma et al. (2012) and Sulc and Matas (2014), with accu-
racies above ≥ 99%. There is little difference between
methods, and FV-SIFT, FV-CNN, and FC-CNN behave sim-
ilarly. KT is also saturated, although FC-CNN looses about
(3%) accuracy compared to FV-CNN.

In material recognition, KTH-T2b and ALOT offer a
somewhat more interesting challenge. First, there is a sig-
nificant difference between FC-CNN and FV-CNN (3–6%
absolute difference in KTH-T2b and 8–10% in ALOT), con-
sistent across all CNN evaluated. Second, CNN descriptors

are significantly better than SIFT on KTH-T2b and ALOT
with absolute accuracy gains of up to 11%.

Compared to the state of the art, FV-SIFT is generally very
competitive. In KTH-T2b, FV-SIFT outperforms all recent
methods (Cimpoi et al. 2014) with the exception of Sulc and
Matas (2014) which is based on a variant of LBP. The lat-
ter is very strong in ALOT too, but in this case FV-SIFT is
virtually as good. In the case of KTH-T2b, (Sulc and Matas
2014) is better than most of the deep descriptors as well, but
it is still significantly bested by FV-VGG-VD (+5.5%). Nev-
ertheless, this is an example in which a specialized texture
descriptor can be competitive with deep features, although of
course deep features apply unchanged to several other prob-
lems.

On ALOT, FV-CNN with VGG-VD is on par with the
result obtained by Badri et al. (2014)—98.45%—but their
model was trained with 30 images per class instead of 20.
The same paper reports even better results, but when training
with 50 images per class or by integrating additional synthetic
training data.
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6.2.1.4 Texture Recognition in the Wild This paragraph eval-
uates the texture representations on two texture datasets
collected “in the wild”: FMD (materials) and DTD (describ-
able attributes).

Texture recognition in the wild is more comparable, in
termof the type of intra-class variations, to object recognition
than to texture recognition in controlled conditions. Hence,
one can expect larger gains in moving from texture-specific
descriptors to general-purpose descriptors. This is confirmed
by the results. SIFT is competitivewithAlexNet andVGG-M
features in FMD (within 3% accuracy), but it is significantly
worse in DTD (+4.3% for FV-AlexNet and +8.2% for FV-
VGG-M). FV-CNN is a little better than FC-CNN (∼3%)
on FMD and substantially better in DTD (∼8%). Differ-
ent CNN architectures exhibit very different performance;
moving from AlexNet to VGG-VD, the accuracy absolute
improvement is more than 11% across the board.

Compared to the state of the art, FV-SIFT is generally very
competitive, outperforming the specialized texture descrip-
tors developed by Qi et al. (2014) and Sharan et al. (2013) in
FMD (and this without using ground-truth texture segmen-
tations as used by Sharan et al. (2013)). Yet FV-VGG-VD is
significantly better than all these descriptors (+24.7%).

In term of complementarity of the features, the combi-
nation of FC-CNN and FV-CNN improves performance by
about 3% across the board, but including FV-SIFT (labelled
FV-SIFT/FC+FV-VD in the table) as well does not seem to
improve performance further. This is in contrast with the fact
that SIFT was found to be fairly complementary to FC-CNN
on a variant of AlexNet in Cimpoi et al. (2014).

6.2.1.5 Texture Recognition Inclutter This section evaluates
texture representations on recognizing texture materials and
describable attributes in clutter. Since there is no standard
benchmark for this setting, we introduce here the first analy-
sis of this kind using the the OS+R and OSA+R datasets
of Sect. 3.1. Recall that the +R suffix indicates that, while
textures are imaged in clutter, the classifier is given the
ground-truth region segmentation; therefore, the goal of this
experiment is to evaluate the effect of realistic viewing con-
ditions on texture recognition, but the problem of segmenting
the textures is evaluated later, in Sect. 7.3.

Results are reported in Table 4 in sections b and c. As
before, performance improves with the depth of CNNs. For
example, in material recognition (OS+R) accuracy starts at
about 39.1% for FV-SIFT, is about the same for FC-VGG-
M (41.3%) and a little better for FC-VGG-VD (43.4%).
However, the benefit of switching from FC encoding to
FV encoding is now even more dramatic. For example, on
OS+R FV-VGG-M has accuracy 52.5% (+11.2%) while
FV-VGG-VD 59.5% (+16.1%). This clearly demonstrates
the advantage of orderless pooling of CNN local descriptors
on FC pooling when regions of different sizes and shapes

must be evaluated. There is also a significant computational
advantage (evaluated further in Sect. 6.2.3) if, as it is typ-
ical, several regions must be classified: in that case, CNN
features need not to be recomputed for each region. Results
on OSA+R are entirely analogous.

6.2.2 Object and Scene Recognition

This section evaluates texture descriptors on tasks other than
texture recognition, namely coarse and fine-grained object
categorization, scene recognition, and semantic region recog-
nition.

6.2.2.1 Datasets and EvaluationMeasures In addition to the
datasets seen before, here we experiment with fine grained
recognition in theCUB (Wah et al. 2011) dataset. This dataset
contains 11788 images, representing 200 species of birds.
The images are split approximately into half for training
and half for testing, according to the list that accompanies
the dataset. Image representations are either applied to the
whole image (denoted CUB) or on the region counting the
target bird using ground-truth bounding boxes (CUB+R).
Performance in CUB and CUB+R is reported as per-image
classification accuracy. For this dataset, the local descriptors
are again extracted at multiple scales, but now only for the
smaller range {0.5, 0.75, 1} which was found to work better
for this task.

Performance is also evaluated on the MSRC dataset,
designed to benchmark semantic segmentation algorithms.
The dataset contains 591 images, for which some pixels are
labelled with one of the 23 classes. In order to be consis-
tent with the results reported in the literature, performance is
reported in term of per-pixel classification accuracy, similar
to the measure used for the OS task as defined in Sect. 3.1.
However, this measure is further modified such that it is not
normalized per class:

acc-msrc(ĉ) = |{p : c(p) = ĉ(p)}|
|{p : c(p) �= 0}| . (3)

6.2.2.2 Analysis Results are reported in Table 4 section d. On
PASCAL VOC, MIT Indoor, CUB, and CUB+R the relative
performance of the different descriptors is similar to what
has been observed above for textures. Compared to the state-
of-the-art results in each dataset, FC-CNN and particularly
the FV-CNNdescriptors are very competitive. The best result
obtained in PASCALVOC is comparable to the current state-
of-the-art set by the deep learningmethod ofWei et al. (2014)
(85.2 vs 84.9% mAP), but using a much more straightfor-
ward pipeline. In MIT Places the best performance is also
substantially superior (+10%) to the current state-of-the-art
using deep convolutional networks learned on theMIT Place
dataset (Zhou et al. 2014) (this is discussed further below).
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In the CUB dataset, the best performance is short (∼6%) of
the state-of-the-art results of Zhang et al. (2014). However,
Zhang et al. (2014) uses a category-specific part detector and
corresponding part descriptor as well as a CNN fine-tuned
on the CUB data; by contrast, FV-CNN and FC-CNN are
used here as global image descriptors which, furthermore,
are the same for all the datasets considered. Compared to
the results of Zhang et al. (2014) without part-based descrip-
tors (but still using a part-based object detector), the best
of our global image descriptors perform substantially better
(62.1 vs 67.3%).

Results on MSRC+R for semantic segmentation are
entirely analogous; it is worth noting that, although ground-
truth segments are used in this experiment and hence this
number is not comparable with other reported in the litera-
ture, the best model achieves an outstanding 99.1% per-pixel
classification rate in this dataset.

6.2.2.3 Conclusions The conclusion of this section is that
FV-CNN, although inspired by texture representations, are
superior to many alternative descriptors in object and scene
recognition, includingmore elaborate constructions. Further-
more, FV-CNN is significantly superior to FC-CNN in this
case as well.

6.2.3 Domain Transfer

This section investigates in more detail the problem of
domain transfer in CNN-based features. So far, the same
underlying CNN features, trained on the ImageNet’s
ILSVCR data, were used in all cases. To investigate the effect
of the source domainonperformance, this section consider, in
addition to these networks, new ones trained on the PLACES
dataset (Zhou et al. 2014) to recognize scenes on a dataset of
about 2.5 million labeled images. Zhou et al. (2014) showed
that, applied to the task of scene recognition in MIT Indoor,
these features outperform similar ones trained on ILSVCR
[denoted CAFFE (Jia 2013) below]—a fact explained by
the similarity of domains. We repeat this experiment using
FC- and FV-CNN descriptors on top of VGG-M, VGG-VD,
PLACES, and CAFFE.

Results are shown in Table 6. The FC-CNN performance
is in line with those reported in Zhou et al. (2014)—in scene
recognition with FC-CNN the same CNN architecture per-
forms better if trained on the Places dataset instead of the
ImageNet data (58.6 vs 65.0% accuracy7). Nevertheless,
stronger CNN architectures such as VGG-M and VGG-VD

7 Zhou et al. (2014) report 68.3% for PLACES applied to MIT Indoor,
a small difference explained by implementation details such as the fact
that, for all the methods, we do not perform data augmentation by jit-
tering.

Table 6 Accuracy of various CNNs on the MIT indoor dataset

CNN Accuracy (%)

FC-CNN FV-CNN FC+FV-CNN

PLACES 65.0 67.6 73.1

CAFFE 58.6 69.7 71.6

VGG-M 62.5 74.2 74.4

VGG-VD 67.6 81.0 80.3

PLACES and CAFFE are the same CNN architecture (“AlexNet”) but
trained on different datasets (PLACES and ImageNet resp)
The domain specific advantage of training on PLACES dissapears when
the convolutional features are used with FV pooling. For all architec-
tures FV CNN outperformns FC and better architectures lead to better
overall performance

can approach and outperform PLACES even if trained on
ImageNet data (65.0 vs 62.5/67.6%).

However, when it comes to using the filter banks with
FV-CNN, conclusions are very different. First, FV-CNN
outperforms FC-CNN in all cases, with substantial gains
up to ∼11–12% in correspondence of a domain transfer
from ImageNet to MIT Indoor. The gap between FC-CNN
and FV-CNN is the highest for VGG-VD models (67.6 vs
81.0%, nearly 14% difference), a trend also exhibited by
other datasets as seen in Table 4. Second, the advantage of
using domain-specific CNNs disappears. In fact, the same
CAFFE model that is 6.4% worse than PLACES with FC-
CNN, is actually 2.1% better when used in FV-CNN. The
conclusion is that FV-CNN appears to be immune, or at least
substantially less sensitive, to domain shifts.

Our explanation of this phenomenon is that the convolu-
tional features are substantially less committed to a specific
dataset than the fully connected layers.Hence, byusing those,
FV-CNN tends to be a lot more general than FC-CNN. A
second explanation is that PLACES CNN may learn filters
that tend to capture the overall spatial structure of the image,
whereas CNNs trained on ImageNet tend to focus on local-
ized attributes which may work well with orderless pooling.

Finally, we compare FV-CNN to alternative CNN pool-
ing techniques in the literature. The closest method is the
one of Gong et al. (2014), which uses a similar underlying
CNN to extract local image descriptors and VLAD instead of
FV for pooling. Notably, however, FV-CNN results on MIT
Indoor are markedly better than theirs for both VGG-M and
VGG-VD (68.8 vs 74.2 %/ 81.0% resp.) and marginally bet-
ter (69.7%—Tables 4 and 6) when the same CAFFE CNN
is used. Also, when using VLAD instead of FV for pooling
the convolutional layer descriptors, the performance of our
method is still better (68.8% vs 71.2%), as seen in Table 3.
The key difference is that FV-CNN pools convolutional fea-
tures, whereas (Gong et al. 2014) pools fully connected
descriptors extracted from square image patches. Thus, even
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without spatial information as used byGong et al. (2014), FV-
CNN is not only substantially faster—8.5× speedup when
using the same network and three scales, but at least as accu-
rate.

7 Experiments on Semantic Segmentation

The previous sections considered the problem of recogniz-
ing given image regions. This section explores instead the
problem of automatically recognizing as well as segmenting
such regions in the image.

7.1 Experimental Setup

Inspired by Cimpoi et al. (2014) that successfully ported
object description methods to texture descriptors, here we
propose a segmentation technique building on ideas from
object detection. An increasingly popular method for object
detection, followed for example by FC-CNN (Girshick et al.
2014), is to first propose a number of candidate object regions
using low-level image cues, and then verifying a shortlist of
such regions using a powerful classifier. Applied to textures,
this requires a low-level mechanism to generate textured
region proposals, followed by a region classifier. A key
advantage of this approach is that it allows applying object-
(FC-CNN) and texture-like (FV-CNN) descriptors alike.
After proposal classification, each pixel can be assignedmore
than one label; this is solved with a simple voting schemes,
also inspired by object detections methods.

The paper explores two such region generation methods:
the crisp regions of Isola et al. (2014) and the Multi-scale
Combinatorial Grouping (MCG) of Arbeláez et al. (2014).
In both cases, region proposals are generated using low-level
image cues, such as color or texture consistency, as speci-
fied by the original methods. It would of course be possible
to incorporate FC-CNN and FV-CNN among these energy
terms to potentially strengthen the region generation mecha-
nism itself. However, this contradicts partially the logic of the
scheme, which breaks down the problem into cheaply gener-
ating tentative segmentations and then verifying them using
a more powerful (and likely expensive) model. Furthermore,
and more importantly, these cues focus on separating texture
instances, as presented in each particular image,whereas FC-
CNN and FV-CNN are meant to identify a texture class. It is
reasonable to expect instance-specific cues (say the color of
a painted wall) to be better for segmentation.

The crisp regionmethod generates a single partition of the
image; hence, individual pixels are labelled by transferring
the label of the corresponding region, as determined by the
learned predictor. By contrast, MCG generates many thou-
sands overlapping region proposals in an image and requires
a mechanism to resolve potentially ambiguous pixel label-

ings. This is done using the following simple scheme. For
each proposed region, its label is set to the the highest scor-
ing class based on the multi-class SVM, and its score to the
corresponding class score divided by the region area. Propos-
als are then sorted by increasing score and “pasted” to the
image sequentially. This has the effect of considering larger
regions before smaller ones and more confident regions after
less confident ones for regions of the same area.

7.2 Dense-CRF Post-processing

The segmentation results delivered by the previous methods
can potentially be hampered by the occasional failures of the
respective front-end superpixel segmentation modules. But
we can see the front-end segmentation as providing as a con-
venient way of pooling discriminative information, which
can then be refined post-hoc through a pixel-level segmenta-
tion algorithm.

In particular, a series of recent works Chen et al. (2014),
Bell et al. (2014) and Zheng et al. (2015) have reported that
substantial gains can be obtained by combining CNN classi-
fication scores with the densely-connected Conditional Ran-
dom Field (Dense-CRF) of Krähenbühl and Koltun (2011).
Apart from its ability to incorporate information pertaining
to image boundaries and color similarity, the Dense-CRF is
particularly efficient when used in conjunction with approx-
imate probabilistic inference: the message passing updates
under a fully decomposable mean field approximation can
be expressed as convolutions with a Gaussian kernel in fea-
ture space, implemented efficiently using high-dimensional
filtering (Adams et al. 2010).

Inspired by these advances, we have employed the Dense-
CRF segmentation algorithm post-hoc, with the aim of
enhancing our algorithm’s ability to localize region bound-
aries by taking context and low-level image information into
account. For this we turn the superpixel classification scores
into pixel-level unary terms, interpeting the SVM classi-
fier’s scores as indicating the negative energy associated to
labelling each pixel with the respective labels. Even though
Platt scaling could be used to turn the SVM scores into
log-probability estimates, we prefer to estimate the trans-
formation by jointly cross-validating the SVM-Dense-CRF
cascade’s parameters. In particular, similarly to Krähenbühl
and Koltun (2011) and Chen et al. (2014), we set the dense
CRF hyperparameters by cross-validation, performing grid
search to find the values that perform best on a validation set.

7.3 Analysis

Results are reported in Table 7. Two datasets are evaluated:
OS for material recognition and MSRC for things & stuff.
Compared to OS+R, classifying crisp regions results in a
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Table 7 Segmentation and recognition using crisp region proposals of materials (OS) and things & stuff (MSRC)

Dataset Measure (%) VGG-M VGG-VD

FC-CNN FV-CNN FV+FC-CNN FC-CNN FV-CNN FC+FV-CNN CRF SoA

OS pp-acc 36.0 48.6 (46.9) 49.8 38.5 55.5 (55.7) 55.9 56.5 –

OSA acc-osa (2) 42.8 66.0 63.4 42.1 67.9 64.6 68.9 –

MSRC acc-msrc (3) 56.1 82.3 75.2 57.7 86.9 81.5 90.2 86.5 Ladicky
et al. (2010)

Per-pixel accuracies are reported, using the MSRC variant (see text) for the MSRC dataset. Results using MCG proposals (Arbeláez et al. 2014)
are reported in brackets for FV-CNN

(a) (b) (c) (d) (e) (f)

Fig. 10 OS material recognition results. Example test image with
material recognition and segmentation on the OS dataset. a Original
image. bGround truth segmentations from theOpenSurfaces repository
(note that not all pixels are annotated). c FC-CNN and crisp-region pro-

posals segmentation results. d Correctly (green) and incorrectly (red)
predicted pixels (restricted to the ones annotated). e–f the same, but for
FV-CNN (Color figure online)

drop of about 10% per-pixel classification accuracy for all
descriptors.

At the same time, it shows that there is ample space for
future improvements. In MSRC, the best accuracy is 87.0%,
just a hair above the best published result 86.5% (Ladicky
et al. 2010). Remarkably, these algorithms do not use
any dataset-specific training, nor CRF-regularised semantic
inference: they simply greedily classify regions as obtained
from a general-purpose segmentation algorithms. CRF post-
processing improves the results even further, up to 90.2%
in MSRC. Qualitative segmentation results (sampled at ran-
dom) are given in Figs. 10 and 11.

Results using FV-CNN shown in Table 7 in brackets
(due to the requirement of computing CNN features from

scratch for every region, it was impractical to use FC-CNN
with MCG proposals). The results are comparable to those
using crisp regions, resulting in 55.7% accuracy on the OS
dataset. Other schemes such as non-maximumsuppression of
overlapping regions that are quite successful for object seg-
mentation (Hariharan et al. 2014) performed rather poorly in
this case. This is probably because, unlike objects, texture
information is fairly localized and highly irregularly shaped
in an image.

While for recognizing textures, materials or objects cov-
ering the entire image, the advantage in computational cost
of FV-CNN on FC-CNN and was not significant, the lat-
ter consisting in evaluating few layers less, the advantage of
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11 MSRC object segmentation results. a Image, b ground-truth, c–d FC-CNN segmentation and errors, e–f FV-CNN segmentation and errors
(in red), g–h segmentation and errors after Dense CRF post-processing (Color figure online)

Table 8 DTD for material
recognition

DTD classifier KTH-T2b FMD

Method Linear RBF Linear RBF

FV-SIFT 64.74 ± 2.36 67.75 ± 2.89 49.24 ± 1.73 52.53 ± 1.26

FV-CNN 67.39 ± 3.75 67.66 ± 3.30 62.81 ± 1.33 64.69 ± 1.41

FV-CNN-VD 74.59 ± 2.45 74.71 ± 1.96 70.81 ± 1.39 73.09 ± 1.35

FV-SIFT + FC-CNN 73.98 ± 1.24 74.53 ± 1.14 64.20 ± 1.65 67.13 ± 1.95

FV-SIFT + FC-CNN-VD 74.52 ± 2.31 77.14 ± 1.36 69.21 ± 1.77 72.17 ± 1.66

Previous best 76.0 ± 2.9 Sulc and Matas (2014) 57.7 ± 1.7 Sharan et al.
(2013) and Qi et al. (2014)

Accuracy on material recognition on the KTH-T2b and FMD benchmarks obtained by using as image
representation the predictions of the 47 DTD attributes by different methods: FV-SIFT, FV-CNN (using
either VGG-M or VGG-VD) or combinations
Accuracies are compared to published state of the art results
Bold values indicate the best results achieved by the compared methods

FV-CNN becomes clear for segmentation tasks, as FC-CNN
requires recomputing the features for every region proposal.

8 Applications of Describable Texture Attributes

This section explores two applications of the DTD attributes:
using them as general-purpose texture descriptors (Sect. 8.1)
and as a tool for search and visualization (Sect.8.2).

8.1 Describable Attributes as Generic Texture
Descriptors

This section explores using the 47 describable attributes of
Sect. 2 as a general-purpose texture descriptor. The first step
in this construction is to learn a multi-class predictor for the

47 attributes; this predictor is trained on DTD using a tex-
ture representation of choice and a multi-class linear SVM
as before. The second step is to evaluate the multi-class pre-
dictor to obtain a 47-dimensional descriptor (of class scores)
for each image in a target dataset. In this manner, one obtains
a novel and very compact representation which is then used
to learn a multi-class non-linear SVM classifier, for example
for material recognition.

Results are reported in Table 8 for material recognition in
FMD and KTH-T2b. There are two important factors in this
experiment. The first one is the choice of the DTD attributes
predictor. Here the best texture representations found before
are evaluated: FV-SIFT, FC-CNN, and FV-CNN (using either
VGG-MorVGG-VD local descriptors), as well as their com-
binations. The second one is the choice of classifier used to
predict a texture material based on the 47-dimensional vector
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of describable attributes. This is done using either a linear or
RBF SVM.

Using a linear SVM and FV-SIFT to predict the DTD
attributes yields promising results: 64.7% classification
accuracy on KTH-T2b and 49.2% on FMD. The latter out-
performs the specialized aLDAmodel of Sharan et al. (2013)
combining color, SIFT and edge-slice features, whose accu-
racy is 44.6%. Replacing SIFT with CNN image descriptors
(FV-CNN) improves results significantly for FMD (49.2 vs
62.8% for VGG-M and 70.8% for VGG-VD) as well as
KTH-T2b (64.7 vs 67.4 and 74.6% respectively). While
these results are not as good as using the best texture
representations directly on these datasets, remarkably the
dimensionality of the DTD descriptors is two orders of mag-
nitude smaller than all the other alternatives (Sharan et al.
2013; Qi et al. 2014).

An advantage of the small dimensionality of the DTD
descriptors is that using anRBF classifier instead of the linear
one is relatively cheap. Doing so improves the performance
by 1–3% on both FMD and KTH-T2b across experiments.
Overall, the best result of the DTD features on KTH-T2b
is 77.1% accuracy, slightly better than the state-of-the-art
accuracy rate of 76.0% of Sulc and Matas (2014). On FMD
the DTD features outperform significantly the state of the art
[]: 72.17% accuracy vs. 57.7%, an improvement of about
15%.

The final experiment compares the semantic attributes
of Matthews et al. (2013) on the Outex data. Using FV-SIFT
and a linear classifier to predict the DTD attributes, perfor-
mance on the retrieval experiment of Matthews et al. (2013)
is 49.82% mAP which is not competitive with their result of
63.3% obtained using LBPu (Sect. 4.1). To verify whether
this was due to LBPu being particularly optimized for the

Outex data, the DTD attributes where trained again using
FV on top of the LBPu local image descriptors; by doing
so, using the 47 attributes on Outex results in an accuracy of
64.5% mAP; at the same time, Table 2 shows that LBPu is
not a competitive predictor on DTD itself. This confirms the
advantage of the LBPu on the Outex dataset.

8.2 Search and Visualization

This section includes a short qualitative evaluation of the
DTD attributes. Perhaps their most appealing property is
interpretability; to verify that semantics transfer in a reason-
ableway across domains, Fig. 12 shows an excellent semantic
correlation between the ten categories in KTH-T2b and the
attributes in DTD. For example, aluminum foil is found to
be wrinkled, while bread is found be bumpy, pitted, porous
and flecked.

As an additional application of our describable texture
attributes we compute them on a large dataset of 10,000wall-
papers and bedding sets from houzz.com. The 47 attribute
classifiers are learned as in Sect. 6 using the FV-SIFT repre-
sentation and then applied to the 10,000 images to predict the
strength of association of each attribute and image. Classi-
fier scores are re-calibrated on the target data and converted
to probabilities by rescaling the scores to have a maximum
value of one on the whole dataset. Figure 13 shows some
example attribute predictions, selecting for each of a number
of attributes an image that has a score close to 1 (excluding
images used for calibrating the scores), and then including
additional top two attribute matches. The top two matches
tend to be a very good description of each texture or pat-
tern, while the third is a good match in about half of the
cases.

Fig. 12 Descriptions ofmaterials fromKTH-T2b dataset. Thesewords
are the most frequent top scoring texture attributes (from the list of 47
we proposed), when classifying the images from the KTH-T2b dataset.

The descriptions are obtained by considering the whole material cate-
gory, while a single image per material is shown for visualization

Fig. 13 Bedding sets (top) and wallpapers (bottom) with the top 3 attributes predicted by our classifier and normalized classification score in
brackets
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9 Conclusions

In this paper we have introduced a dataset of 5640 images
collected “in the wild” that have been jointly labelled with
47 describable texture attributes and have used this dataset
to study the problem of extracting semantic properties of
textures and patterns, addressing real-world human-centric
applications. We have also introduced a novel analysis of
material and texture attribute recognition in a large dataset
of textures in clutter derived from the excellentOpenSurfaces
dataset. Finally, we have analyzed texture representation in
relation to modern deep neural networks. Themain finding is
that orderless pooling of convolutional neural network fea-
tures is a remarkably good texture descriptor, sufficiently
versatile to dub as a scene and object descriptor too and
resulting in the new state-of-the-art performance in several
benchmarks.
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