
Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy 

Emiliano Cortés1*, Paloma A. Huidobro1*, Hugo G. Sinclair2ǂ, Stina Guldbrand2, William J. 

Peveler3, Timothy Davies4, Simona Parrinello4, Frederik Görlitz2, Chris Dunsby2,5, Mark A. A. 

Neil2, Yonatan Sivan6, Ivan P. Parkin3, Paul M. W. French2, Stefan A. Maier1 

1- Experimental Solid State Group, Department of Physics, Imperial College London, SW7 
2AZ, UK  
2- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK 
3- Department of Chemistry, 20 Gordon Street, University College London, WC1H 0AJ, UK 
4- MRC Clinical Sciences Centre (CSC), Imperial College London, Du Cane Road, London, W12 
0NN, UK 
5- Centre for Pathology, Imperial College London, Du Cane Road, London, W12 0NN, UK 
6- Unit of Electro-optics Engineering, Ben-Gurion University, Beer-Sheba 8410501, Israel 
 
ǂ Present address: Institute of Structural and Molecular Biology, Darwin Building, Gower Street, 
University College London, WC1E 6BT, UK 
 
*Corresponding authors: E.C. e.cortes@imperial.ac.uk and P.A.H p.arroyo-huidobro@imperial.ac.uk  

 

Abstract  

Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to 

local enhancements of the illuminating radiation and the photonic density of states. Here, we use the 

plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited 

molecules for super-resolved nanoscopy. We demonstrate stimulated emission depletion (STED) 

nanoscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm that provide an 

enhancement of up to 50% of the resolution compared to fluorescent-only probes without plasmonic 

components irradiated with the same depletion power. The nanoparticle-assisted STED probes reported 

here represent a ~2x103 reduction in probe volume compared to previously used nanoparticles. Finally, 

we demonstrate their application toward plasmon-assisted STED cellular imaging at low-depletion 

powers and we also discuss their current limitations.  
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The diffraction limit has ceased to be a practical limit to resolution in far-field microscopy, following the 

demonstration of STED,1,2,3 RESOLFT4 and localisation microscopies5,6,7 and the subsequent development 

of a plethora of super-resolved nanoscopy techniques.8 In particular, stimulated emission depletion 

(STED) nanoscopy, which builds on the advantages of laser scanning confocal microscopy, is a powerful 

technique for super-resolved imaging in complex biological samples including live organisms.9,10 STED 

nanoscopy uses stimulated emission to turn off the spontaneous fluorescence emission of dye 

molecules, typically overlapping a focused excitation beam with a “doughnut” shaped beam that de-

excites emitters to the ground state everywhere except for the area within the centre of the doughnut, 

thus providing theoretically diffraction-unlimited resolution in the transverse plane by reducing the full-

width half-maximum (FWHM) of the point spread function. By increasing the power of the depletion 

beam the emission region can be can be drastically reduced - theoretically allowing for sub-nanometre 

resolution - with resolutions of less than 10 nm being demonstrated.11 The scaling of resolution with the 

square root of the depletion beam power means that relatively high-power lasers are typically used for 

STED nanoscopy. In practice, however, the use of high-power irradiation can result in problems such as 

photobleaching of the fluorophores and phototoxicity, and so the achievable resolution is compromised 

by the need to limit the intensity of the depletion laser radiation. Furthermore, high power lasers can 

add cost and complexity to STED microscopes and so the requirement for high power depletion beams 

presents challenges for parallelizing STED measurements12,13 in terms of the lasers required, thus, 

limiting the potential for faster super-resolved imaging.  

To some extent the issue of photobleaching can be addressed with the development of  more robust 

fluorescent labels such as quantum dots14 as labelling agents but they still require relatively intense 

depletion-beams and present concerns around phototoxicity. In order to reduce the required intensity 

of the depletion beam, we recently proposed the use of plasmonic nanoparticles (NPs) whose localized 

surface plasmon resonances (LSPRs) are spectrally tuned to the depletion beam wavelength.15,16,17 

Briefly, materials that present plasmonic resonances enable an intense sub-wavelength concentration of 

light to below the diffraction limit, mediating electromagnetic (EM) energy transfer either from the far 

to the near field or vice versa. Thus, these elements can be considered as optical nanoantennas and are 

key instruments in the conversion of free-space light to nanometre-scale volumes.18,19 For metal NPs at 

their LSPR, their scattering cross section can be much larger than their physical cross section, which 

allows them to efficiently capture light. This light is then concentrated in the vicinity of the nanoparticle 

and can be used, for example, to deplete excited fluorescent molecules, among others.20,21,22,23 Thus, if 

the LSPR of the metal NP is centred at the depletion-laser wavelength, the input depletion-power 

requirements for STED microscopy can be met at much lower intensities than normally used.  

Our recent demonstration of the proof of concept of nanoparticle-assisted STED (NP-STED) nanoscopy 

utilized 160 nm core@shell (silica@Au) spherical particles, with a plasmon resonance at ~800 nm and 

fluorescent dyes embedded in the silica core.17 However, such large NPs are not practically useful for 

most studies in biology. In order to facilitate their incorporation into cells and to best represent the 

underlying labeled structures of interest when using them to read out biological processes, the size of 

the plasmonic-fluorescent probes should be as small as possible.24 Typical resolution achieved in STED 

using fluorescent dyes for bio-imaging is below 50 nm, which can be taken as an upper limit for the sizes 



of experimentally useful plasmonic NP labels.25 A further issue for the core@shell nanoparticles used in 

our proof of concept demonstration was the observation of unwanted background light arising from 

gold luminescence. This limited the resolution achievable such that it was necessary to implement time-

gated detection in order to supress this unwanted background light.17  

For NP-STED microscopy implemented with a mode-locked Ti:Sapphire laser to provide the depletion 

radiation, plasmonic-probes utilising the fluorescence of the most popular near infrared STED dyes 

should be designed to have a plasmon resonance at ~780 nm and ideally be smaller than 50 nm. Au and 

Ag are the most common materials employed in plasmonics to achieve near-infrared and visible-

wavelength LSPRs, due to their well-behaved optical constants.26 By tuning the shape and size of the 

particles it is possible to shift their plasmon resonance over the whole visible and the near-infrared 

spectrum.27 However, as Ag and Au spheres of ~50 nm diameter have their plasmon resonances at ~450 

and ~550 nm respectively, achieving a LSPR at 780 nm with a 50 nm maximum-size for metallic (Ag or 

Au) particles requires the use of non-spherical particles. Anisotropic particles, such as gold nanorods 

(AuNRs), emerge as a suitable shape to fulfil these requirements as their plasmon resonance can be 

tuned by adjusting their aspect ratio (length/width).28 Specifically, AuNRs with an aspect ratio of ~3.25 

ensure a longitudinal plasmon resonance at 780 nm in oil; usually used as a refractive index matching 

media for microscopy measurements. Thus, if the length and width of the AuNRs are reduced while 

keeping this ratio constant, it is possible to achieve smaller plasmonic-probes suitable for STED 

nanoscopy.29 

Here, we demonstrate this extension of NP-STED to smaller, anisotropic particles by synthesizing 

plasmonic-probes based on 26x8 nm fluorescently-labelled AuNRs and show that we can achieve a 

resolution improvement of ~50% using STED microscopy at low depletion intensities (1.5 MW/cm2) for 

which a control experiment using fluorescent beads without plasmonic enhancement presents a much 

weaker (<10%) improvement in resolution. The plasmonic nanoprobes for STED reported here are ~2000 

times smaller in volume compared to the nanoparticles we reported previously17 and we have used 

them to label adult neural stem cells for STED nanoscopy at low depletion powers. We also note that the 

reduction (~1000x) in the amount of metal of these NP means that we no longer detect the unwanted 

background light from gold luminescence.  

 

Results and Discussion: 

We start by describing the functionalization and characterization of the small plasmonic probes, 

designed to perform as labelling agents for low-power STED super-resolution imaging. As already 

mentioned, we synthesized small, fluorophore-coated AuNRs, whose longitudinal plasmon resonance is 

matched with the depletion-beam wavelength (780 nm in our STED microscope, see Figure S1 for more 

information about the STED-FLIM set-up). In order to conjugate the fluorescent dye (STAR 635P) onto 

the surface of the AuNRs we used a biotin-streptavidin system (Figure 1(a)). This linker provides a 

separation of ~5 nm between the fluorophore and the metal surface of the nanorods in order to avoid 

fluorescence quenching.30,31 It also enables us to incorporate a molecule providing chemically specific 



binding such as phalloidin, which is used to provide tight and selective binding to actin in cells (for 

further details on the functionalization see the Methods section). Two centrifugation steps were carried 

out in order to fully purify the AuNRs. Spectral characterization of the supernatant and pellet confirmed 

the removal of excess dye.  

 

Figure 1: (a) Scheme of the functionalization procedure employed to synthesize the plasmonic-
fluorescent-probes. Streptavidin coated AuNRs, featuring approximately 15 streptavidin proteins per 
nanorod, were incubated with biotinylated phalloidin (20 μM in MeOH, 50 μL) and biotinylated STAR 
635P dye (0.1 mg/mL in DMSO, 14 μL). After 3 hours the mixture was centrifuged twice, before 
resuspending the pellet in H2O. (b) Representative TEM images of the AuNRs. Scale bars: 10 nm. (c) 
Optical characterization of the AuNRs. Green (blue) line is the absorption (emission) spectrum of the dye 
(STAR 635P). The blue dashed line shows the emission of the dye once bound to the AuNRs (excited at 
600 nm). The red line is the extinction spectrum of a STAR 635P-AuNRs thin film, measured in ProLong 
Gold media and showing the transversal and longitudinal plasmon resonances at 520 nm and 780 nm, 
respectively.  

The average size of our AuNRs (26±4 nm length and 8±1 nm width) was determined by TEM 

(N >100 particles - see Figure S2 for distributions). Figure 1(b) shows representative TEM images of the 

post-functionalized AuNRs. We estimate the total size of the probe – metal particle and capping layer – 

to be ~36x18 nm. The extinction spectrum of the ~3.25 aspect ratio AuNRs measured in ProLong Gold 



media shows LSPRs centered at 520 nm (transversal mode) and 780 nm (longitudinal mode) - see red 

line in Figure 1(c); in agreement with calculations (see Figure S3). We also present in Figure 1(c) the 

absorption (green line) and emission spectrum (dashed blue line; excited at 600 nm) of the STAR 635P 

conjugated to the AuNRs. The corresponding emission spectrum of the free STAR 635P dye is also shown 

(solid blue line). The fluorescence lifetime was found to be the same for the AuNR and the free dye (see 

Figure S4) and the emission spectra are similar apart from an apparent decrease at the red edge that we 

attribute to emitted photons being absorbed by the AuNRs at those wavelengths.  

In order to characterize the electromagnetic response of the employed AuNRs, their extinction cross 

section was calculated by means of finite element method simulations (see Methods section for more 

details). Figure 2(a) presents the calculated extinction cross section of an AuNR (under plane wave 

illumination), showing the longitudinal LSPR at 780 nm and the transverse LSPR at 520 nm, in close 

agreement with the measured spectrum (see Figure 1(c)). The inset panel (Figure 2(a)) confirms that the 

longitudinal LSPR supported by the AuNRs at 780 nm corresponds to a dipolar plasmon resonance 

excited by the electric field component of the incident wave parallel to the particle’s long axis. This 

panel exemplifies the large field enhancement at the LSPR, reaching values over 35 close to the rod’s 

tips surface, where the field enhancement is at its maximum. The spatial region of a few nm away from 

the metal is known to cause quenching of the dye through non-radiative decay channels in the metal. As 

discussed above, by linking the dyes to the AuNRs surface with the biotin/streptavidin conjugation, they 

are kept at an average distance of 5 nm from the metal, thus, avoiding the quenching of the plasmonic-

fluorescent nanoprobes.30,31 At this distance, the still-appreciable field enhancement produced by the 

AuNR (see Figure 2(b)) causes and enhancement of the depletion intensity experienced by the 

fluorophores. 

 

 



Figure 2: (a) Simulated spectrum of AuNRs (26x8 nm) in oil (n=1.47, to reproduce the experimental 
conditions). The solid lines show the extinction cross section for incident light polarized along the rod’s 
long axis (red), short axis (blue) and the corresponding for circularly polarized light (black). The 
absorption and scattering contributions to the extinction are given with dashed and dotted-dashed lines, 

respectively. Inset panel: on-resonance electric field enhancement (= 780 nm) for under excitation with 
the E component along the rod’s axis (note the wave’s power corresponds to a circularly polarized plane 
wave). (b) Field enhancement and vector field on a surface 5 nm away from the rod's surface, the 
average value of the fluorophore distance to the rod. (c) Orange line shows the calculated resolution 
improvement (%) curve 𝜒𝑇ℎ𝑒𝑜 as a function of the depletion (STED) average laser power densities using 
our fluorescent-AuNRs. The fluorescent dye STAR 635P was assumed for the calculations.  

 

To demonstrate the potential of the AuNRs for NP-STED, we functionalized a glass cover-slip to attach 

the AuNRs to the surface (see Methods for further details) and compared the resolution improvement 

relative to confocal microscopy for the AuNR and for 20 nm diameter crimson red beads as a function of 

the power of the depletion-beam. Assuming that the depletion beam pulse length, 𝜏𝑆𝑇𝐸𝐷, is much 

smaller than the fluorescence lifetime of the fluorophore, 𝜏𝑆1, the resolution achievable with pulsed 

STED depends on the wavelength, λ, the numerical aperture (NA) of the objective, the peak intensity of 

the depletion beam, 𝐼𝑆𝑇𝐸𝐷, and the saturation intensity of the fluorophore, 𝐼𝑠𝑎𝑡, as given by:16,32  

𝐹𝑊𝐻𝑀𝑆𝑇𝐸𝐷 =
𝐹𝑊𝐻𝑀0

√(1 +  ∅)
 

where  

𝐹𝑊𝐻𝑀0 =  
0.51 𝜆

𝑁𝐴
 

and 

∅ =  
𝐼𝑆𝑇𝐸𝐷 𝜏𝑆𝑇𝐸𝐷

𝐼𝑆𝑎𝑡 𝜏𝑆1
 

Hence, we can write the STED resolution improvement with respect to confocal microscopy as Γ𝑟𝑒𝑠 =

 √1 + ∅. In the case of NP-STED, we can introduce an extra factor describing the spatially-averaged 

improvement in resolution due to the nanoparticle. The resolution improvement factor of NP-STED 

nanoscopy16 can, therefore, be written as:  

Γ𝑟𝑒𝑠 = √1 + Γ𝑝∅ 

where  

Γ𝑝 =
ΓI

𝛾
 



Here, ΓI is the local increase of the depletion intensity at the fluorophores location due to the 

electromagnetic field enhancement (at the STED wavelength), and 𝛾 is the enhancement of the decay 

rate of the dye, which is modified due to the Purcell effect (at the emission wavelength). An increase in 

the fluorescent decay rate is detrimental as it reduces the total amount of collected photons. For this 

reason, the metal NPs were designed to be out of resonance at the dye emission wavelength, such that 

𝛾 ≈ 1, which was confirmed by the lifetime measurements of the sample (see Figure S4).33 

The resolution improvement of the NP−STED system is, therefore, estimated by means of the 

electromagnetic intensity enhancement, ΓI. Such enhancement factor can be calculated for the AuNRs 

under plane wave illumination. Indeed, it has been shown34 that such an estimate provides a crude but 

valuable and easy-to-implement alternative for exact numerical simulations, such as those performed in 

Ref 15. Those simulations have also shown that the doughnut’s beam shape is not significantly affected 

by the presence of the nanoparticles.15 On the other hand, since the fluorophores are randomly 

positioned over the rod at ~5 nm from its surface and with randomly oriented dipole moments, the 

averaged value of the local enhancement Γ̅I, has to be considered. As shown in Figure 2(b), the field 

enhancement at that distance from the rod ranges from 5 to 7. Averaging the local field intensity over 

the fluorophore’s positions and orientations yields an intensity enhancement factor Γ̅I ≈ 8.5 (see 

Methods). Yet, the effective enhancement is reduced because of the lower emission cross section of the 

hybrid STAR 635P-AuNR emitter with respect to the free dye, see Fig. 1(c), which gives rise to a higher 

saturation level. With this, we characterize the resolution improvement factor in percent via the 

expression.17  

𝜒𝑇ℎ𝑒𝑜 = 100 ∙ (1 −
1

Γ𝑟𝑒𝑠
) 

This calculated resolution improvement curve (𝜒𝑇ℎ𝑒𝑜) is shown in Figure 2(c) for the STAR 635P-AuNRs. 

This can be directly compared to the measured resolution improvement: 

𝜒𝐸𝑥𝑝 = 100 ∙ (1 −
𝐹𝑊𝐻𝑀𝑆𝑇𝐸𝐷

𝐹𝐻𝑀𝑊𝑐𝑜𝑛𝑓
 ) 

By comparing the FWHM of the bright spots (i.e. single fluorescent-AuNR or single fluorescence bead) 

observed from the AuNRs under confocal or STED imaging, it is possible to estimate this resolution 

improvement (%) factor, 𝜒𝐸𝑥𝑝, experimentally for a given STED depletion-power, as exemplified in 

Figure 3(b) (see Figures S6 and S7 for more examples). Figure 3(a) shows the experimental resolution 

improvement, 𝜒𝐸𝑥𝑝, for fluorescent-AuNRs (orange crosses) and for the non-plasmonic probes (20 nm 

crimson fluorescent beads - green crosses - see experimental methods for details). This was determined 

for selected AuNR/beads across the sample as a function of the power of the depletion beam; see 

examples in Figures 3(b) and 3(c). Normalized intensity profiles, for better comparison, are presented in 

Figure S8. 

 



 

Figure 3: (a) Orange/green crosses are experimental measurements for fluorescent-AuNRs/fluorescent 
beads at different depletion average power densities and orange/green open circles are the average 
resolution improvement for AuNRs-STED/fluorescent beads-STED. Lines are fits for the average 
behaviour. The dashed red line shows the resolution improvement based on the calculated field 
enhancement and emission cross section of the hybrid STAR 635P-AuNR emitter .(b) Fluorescent-AuNR 
confocal (top) and NP-STED (bottom) images and the corresponding fittings showing the resolution 
improvement for the selected rod (marked with lines in the images) using depletion laser intensities of 
0.2 MW/cm2. (c) Bottom panel: under the same conditions, using 20 nm fluorescent beads, there is little 
improvement in resolution for such a low depletion power (0.2 MW/cm2). ProLong Gold is used as index-
matching media for AuNRs and TDE (97%) for the fluorescent beads sample. Scale bars in images 
correspond to 500 nm. 

 

Although there is a significant dispersion in the measurements for both systems (which in the case of 

AuNRs may arise from clustering of the NPs, from a finite AuNRs size-distribution or from thermally-

induced motion of the AuNR as discussed below), there is a clear trend indicated by the average values 

found for each depletion power (open circles in Figure 3(a)). For depletion-powers as low as 1.5 

MW/cm2, we observed a resolution improvement of up to ~50% for the AuNRs with respect to the 

confocal resolution - in very good agreement with the numerical estimates of Figure 2(c) - while for the 

fluorescent beads this value is below 10% under the same experimental conditions. This implies an 

upper limit improvement of 44% for AuNR-STED compared to dye-based STED at this depletion power. 

Equivalently, when using the AuNRs, a given resolution improvement is attained by about 10 times 

lower intensity compared with the control measurement. In fact, since crimson beads have a lower 

saturation intensity than STAR 635P (see Methods section), a comparison of the AuNRs against beads 

labelled with STAR635P would be expected to show an even larger improvement in resolution.   

As well as these plasmonic probes for STED being ~2000 times smaller in volume than the previously 

used silica@Au particles,17 the average near field intensity experienced by the fluorophores in the case 

of the AuNRs is ~2 times larger at the depletion wavelength (see Methods section and Figure S5). The 



amount of gold in each AuNR is also greatly reduced (1000 times) compared to the Au shell of previously 

used particles. This reduces the gold luminescence below our detection limit and is not apparent in the 

emission decay profiles (see SI). Thus, we do not need to apply time-gated detection to prevent the 

spurious luminescence compromising the STED performance, as was necessary for the core@shell 

nanoparticles17 and which decreased the detected fluorescence signals. Unfortunately, while the shape 

and small size of the chosen NPs provides a large electric field enhancement and the possibility to 

incorporate them into cells (as shown next), this is accompanied by an increase in the absorption of the 

metal. In practice, this leads to heating and thermally induced movement of the AuNRs that becomes 

significantly challenging for STED nanoscopy with depletion powers over ~2 MW/cm2 (see further 

discussion in the SI). This clearly presents a practical challenge for NP-STED, as further discussed in the 

conclusions.  

Finally, we incorporated fluorescently labelled AuNRs into adult neural stem cells in order to perform 

super-resolution imaging inside the cell (see Methods for details). Figure 4 shows an initial study, where 

the resolution improvement for NP-STED can be clearly seen across the image for depletion powers as 

low as 0.5 MW/cm2. However, it is important to take into account the anisotropic nature of these AuNRs 

that would be bound to actin and the potential impact on the resolution improvement of out-of-plane 

orientations. In order to investigate this possibility, we performed calculations on the “effective” point 

spread function (PSF) of the depletion beam and the expected emission PSF, depending on the 3D 

orientation of the AuNRs (see Figures S10-S12). Our calculations show that the degree of improvement 

in resolution can vary depending on the specific orientation of the AuNRs. This last fact can account for 

the brighter/dimmer spots shown in Figure 4(c) compared to 4(b). Although further work is required to 

improve the labeling of relevant intracellular structures (see Figure S13), this proof of concept 

experiment nevertheless indicates the potential for lower power STED nanoscopy of biological 

samples.22 

 

Figure 4: a) AuNRs incorporation into adult neural stem cells. b) Confocal versus c) NP-STED images 
inside the cell (zoom from the marked region in a). Depletion-beam power for the NP-STED case was set 
at 0.5 MW/cm2. 

Conclusions: 



While many different types of nanoparticles (made out of, e.g. silica, carbon, polymers, quantum dots, 

etc.) have been utilised as probes for fluorescence imaging,35 super-resolved bioimaging with 

nanoparticles has only recently been accomplished - using quantum dots.14 In this report, we have 

shown the possibility to extend the NP-STED concept to significantly smaller nanometric plasmonic 

probes that we have shown are able to operate at low powers and can be incorporated into cells. 

Employing the near-field enhancement properties of fluorescently labelled 26x8 nm AuNRs, we achieve 

a resolution improvement of 50% compared to 10% for STED nanoscopy of fluorescent beads with the 

same depletion power. We further note that the smaller size of these AuNRs compared to the 

core@shell NPs17 eliminates the issue of unwanted background light from gold luminescence. This 

demonstrates the potential of plasmon-assisted STED to realize super-resolution at lower depletion 

powers. This could benefit rapid parallelized STED microscopy by reducing the total power required to 

realise the multiple-doughnut approach.12,13 Further advantages of performing STED at lower depletion 

powers (NP-STED) could include reducing unwanted autofluorescence background in cells excited by the 

depletion beam and reducing phototoxicity.  

Currently, the main challenge for NP-STED for bioimaging is the heating of the NPs and surrounding 

medium upon illumination, which has limited the resolution achieved with the AuNRs. In addition, 

heating can lead to thermally-induced motion of the NPs and ultimately their destruction at higher 

depletion powers.17 It may be possible to mitigate these issues to some extent by optimizing the 

duration and repetition rate of the STED pulses and taking advantage of the rapid equilibration of the 

NPs temperature, which we calculate to be ~6 ns (see figure S9).36 For instance, by increasing the 

duration of the pulses (i.e. 1 ns) while maintaining the total pulse energy, it is possible to reduce the 

peak temperature rise by over 50% (see Figure S9) – although time-gated detection may then be 

necessary to optimize the STED nanoscopy resolution. Another possibility would be to reduce the 

depletion intensity required to deplete the dye by working at shorter wavelengths.37,38 Specifically, 

designing anisotropic NPs with a LSPR centered at ~750 nm, where the cross-section for stimulated 

emission depletion of STAR635P is approximately 3 times higher than at 780nm, could reduce the 

intensity required to achieve a given STED resolution by the same factor of ~3, thus, further reducing the 

heat generated. Engineering smaller plasmonic particles could also reduce the amount of heat 

generated, however, the field-enhancements obtained with such particles would be lower.  This could 

be compensated by locating the emitters closer to the metal surface, at the cost of reducing their 

quantum yield and fluorescence lifetime. However, the lower photon output could be compensated by a 

concomitant reduction of photobleaching.47,48,49  

Finally, as a further development of the NP-STED concept, we envision the possibility of combining 

plasmonic particles with quantum dots (as fluorophores) in order to have a robust probe in terms of 

photobleaching14 with the plasmon modes enhancing the depletion of the emission,39,40 thus, requiring 

less power for STED nanoscopy.  

 

Methods: 



Synthesis and Functionalization of AuNRs: Streptavidin coated AuNRs (Nanopartz, 150 μL), featuring 

approximately 15 streptavidin proteins per nanorod, were incubated with phalloidin-xx- biotin (20 μM in 

MeOH, 50 μL) and biotinylated STAR 635P (Abberior) dye (0.1 mg/mL in DMSO, 14 μL). After 3 hours the 

mixture was centrifugally washed at 9660 x g twice before resuspending the pellet in 1 mL of H2O (18 

MΩ, ultrapure). Calculated molar quantities: Streptavidin – 2.28 x 10-10 moles; phalloidin-xx-biotin – 1 x 

10-9 moles; STAR 635P – 1 .1 x 10-9 moles. We estimate a labelling ratio of 7 fluorophores per nanorod.  

A control sample was made up in the same way without the dye, and with 150 μL of phalloidin-xx- biotin 

to ensure correct rejection from the excitation and STED lasers (no fluorophores) and discard 

interference (i.e. scattering) from the metallic nanoparticles. Absorption and emission spectra were 

measured in solution using water as solvent. 𝐼𝑠𝑎𝑡 ~15MW/cm2 was estimated for STAR 635P from 

its lifetime, τ, and extinction coefficient, σ, given by the data sheet [http://www.sigmaaldrich.com/life-

science/cell-biology/detection/abberior-dyes.html], as 𝐼𝑠𝑎𝑡 = 𝑘 ∙ ℎ ∙ 𝑐/(𝜆𝑆𝑇𝐸𝐷𝜎), where 𝑘 is the 

spontaneous decay rate, 𝑘 =1/τ, and σ is the extinction coefficient at the STED wavelength. 

Fixation of AuNRs to the substrate: AuNRs were fixed on glass substrates by soaking the substrates in 

PBS 3 times, 10 minutes each. After that, a mixture of 1mg/ml biotinylated BSA and 0.1 mg/ml BSA was 

left in contact with the substrates for 3 hours followed by 3 washing steps with PBS. AuNRs were diluted 

50 times in PBS (final OD close to 1) and then put in contact with substrate for 2 hours followed by 

washing 3 times with PBS. Finally, biotinylated STAR 635P (1 mM) was used to label the fixed rods in the 

substrate and then washed two times with PBS.  

Preparation of fluorescent bead sample: 20 nm diameter fluorescent beads (Crimson beads, Invitrogen, 

Carlsbad, CA, US) with excitation/emission maxima at 625/645 nm were diluted 1:1000 in MilliQ and 

applied to Poly-L-lysine coated coverslips. They were mounted in TDE (97%) in order to match the 

refractive index of 1.52 for the immersion oil. 𝐼𝑠𝑎𝑡 ~2 MW/cm2, was estimated for crimson beads from 

Ref 41. 

Scattering of gold nanoparticles: The electromagnetic response of the nanoparticles is characterized by 

the extinction cross section under plane wave incidence. Extinction is given by the sum of scattering and 

absorption, which were calculated using the finite element method [Comsol Multiphysics, 

https://www.comsol.com/comsol-multiphysics]. The scattering cross section is obtained from the power 

scattered by the nanorod and the absorption cross section from the electromagnetic energy absorbed 

by the particle. The calculation is performed for two different incident polarizations (electric field 

parallel to the long or short axis of the rod), and circular polarization is then considered. The results 

shown in Figure 2(a) correspond to cross sections normalized to the illuminated area of the particle. The 

permittivity of gold, 𝜀𝐴𝑢(𝜔), was taken from the data given in reference 42.  

Plasmonic enhancement factor of STED resolution:  As discussed in the main text, the NP-STED 

resolution improvement is given by Γ𝑟𝑒𝑠 ≈ √1 + Γ𝑃𝜙, where Γ𝑃 ≈ Γ̅𝐼. In order to calculate Γ̅𝐼 we 

perform a series of averages of the dipole orientations of the AuNR. We start from a simulation with a 

linearly polarized plane wave, since only the electric field component of the circularly polarized beam 

that lies along the rod’s long axis excites the longitudinal LSPR (note that we take the appropriate 

normalization factor into account and that all the field enhancement values given in this paper 



correspond to a circularly polarized wave). Next, we average the intensity enhancement at the 

fluorophore position, Γ𝐼(𝒓) = |𝝁 ∙ 𝑬𝑆𝑃(𝒓)|2, over random dipole orientations (𝝁 is the unit dipole 

moment in the direction of the fluorophore’s dipole and 𝑬𝑆𝑃(𝒓) the near field enhancement at the 

LSPR). Finally, in order to take into account the inhomogeneous field distribution provided by the AuNRs 

we average over random positions over the AuNR, Γ̅𝐼 = 1/𝐴 ∫ d𝑨 ∙ Γ𝐼(𝒓), with A being the area of the 

surface 5 nm away from the AuNR, as depicted in Fig. 2(b). After performing all the averages, we obtain 

a plasmonic intensity enhancement factor of 8.5, which corresponds to an average field enhancement 

for the fluorophores of 3. Note that in case not all the rods lie on the plane, as could potentially be for 

the bioimaging example shown in Figure 4, the averaged plasmonic intensity enhancement factor would 

change. This is discussed further in the SI.  

STED microscopy set-up: The STED-FLIM microscope employed in this study is a development of that 

described previously43,44 utilising a single 80 MHz repetition rate mode-locked Ti:Sapphire laser (Spectra-

Physics, Mai Tai HP) tuned to 780 nm to provide the depletion beam and to generate a supercontinuum 

in a microstructured fibre from which the excitation pulses were selected using a bandpass filter 

(628/40 nm). Further details on the experimental set-up are presented in the SI.  

STED microscopy: STED images were taken by first acquiring a confocal image by scanning 10 frames 

and adding them together to give a final image. The acquisition time was 0.41 s for each 64x64 frame, 

where the pixel size was 55.96 nm. Once the confocal image was acquired, the depletion beam was 

switched on and a STED image was acquired by scanning and summing 10 frames. The depletion laser 

pulses were set to arrive 10 ps after the excitation pulses. The average power of the depletion beam was 

measured before the tube lens of the microscope and the STED pulse intensity (ISTED) was calculated 

using I𝑆𝑇𝐸𝐷 = 𝑘
𝑃𝑆𝑇𝐸𝐷

𝐴𝑆𝑇𝐸𝐷
, where k = 0.3, ASTED is the STED focal area and PSTED the corresponding peak 

power45 obtained by dividing the pulse energy by τSTED.  

FLIM microscopy: FLIM (Fluorescence Lifetime IMaging) data was acquired in confocal imaging mode by 

accumulating five 64x64 frames, where the pixel size was 55.96 nm and the acquisition time was 0.41 s 

for each frame. Fluorescence intensity images were analyzed using Fiji and MatLab 2013a (The 

Mathworks, Inc, Natick, Massachusetts, US) and FLIM data was analyzed using our in-house open source 

tool, FLIMfit.46  

Cell stain, fixation and measurements: Adult neural stem cells were treated for 15 minutes with 4% 

paraformaldehyde (PFA) in PBS buffer and permeabilised for 10 minutes with 0.5% triton-x100 

detergent in PBS at room temperature. One litre of PBS buffer was made out of: 8g NaCl, 0.2g KCl, 0.2g 

KH2PO4, 1.15g Na2HPO4. After that the cells were blocked for 30 minutes with 3% bovine serum albumin 

(BSA) in PBS at room temperature. Finally, cell’s staining was carried out with a dilution of AuNRs-

Atto647-phalloidin probes (resonant at 820 nm in ProLong Gold media) in a solution of 3% BSA in PBS (in 

order to reach an optical density of ~1) for 1 hour at room temperature, washed 3 times for 10 minutes 

with PBS and mounted in ProLong Gold anti-fade reagent. Depletion wavelength was set to 820 nm in 

this case.  

 



Supplementary Information:  

The Supporting Information is available free of charge on the ACS Publications website 

www.pubs.acs.org   

STED set-up, Nanorods size-distribution, LSPR dependence on AuNRs aspect ratio and embedding 

medium, Lifetime measurements, Nanoshells vs. nanorods, Additional NP-STED images, Normalized 

intensity profiles, Photothermal effects, AuNRs-STED anisotropy, Actin labelling with AuNRs. 
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