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Abstract 

 

The work presented in this thesis collates a selection of mass spectrometry-based techniques 

which have been applied to skin samples in order to identify biochemical changes expressed in 

the skin in health and disease. 

 

The results of an immunohistochemical study into the distribution of proteins within the skin 

revealed calmodulin-like protein 5 (CLP5) as having a different staining pattern between control 

and eczema samples. Further investigation revealed the role of CLP5 as a marker of 

keratinocyte differentiation and highlighted the importance of the calcium ion gradient in the skin 

for correct transport of proteases, protease inhibitors and antimicrobial proteins. Skin protease 

inhibitor and protease binding studies suggested that cystatin A could be a key player in 

manifestations of atopic eczema in susceptible children alongside two of its binding partners: 

dermcidin and caspase-14. 

 

Skin is a challenging tissue to analyse using traditional proteomic techniques due to the high 

lipid content, insolubility and extensive cross-linking of proteins. However, this thesis presents a 

mass spectrometry compatible method for its analysis and how that method has been applied to 

the study of hypertrophic scarring and post-operative morbidity. For hypertrophic scarring the 

most interesting and clinically significant perspective of this investigation was that there are 

changes in the endogenous profile of healthy skin that could predict whether a healthy scar or a 

hypertrophic scar will form after surgical injury. For the second clinical outcome (post-operative 

morbidity) we identified pre-operative hypoxia, antioxidant levels and reactive oxygen species 

(ROS) as indicators of post-operative morbidity. 

 

To conclude this thesis presents the work of a range of mass spectrometry techniques and has 

applied them to the study of human skin in health and disease. It demonstrates the versatility of 

mass spectrometry and has highlighted areas of clinical medicine where proteomics and a 

personalised medicine approach could be further investigated. 
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The title of this PhD thesis is “the application of mass spectrometry-based techniques to full 

thickness skin tissue: method development and biochemical analysis in health and disease”. 

This introduction explains the concepts of mass spectrometry, skin analysis and how they can 

be applied to health and diseases in humans. 

 

1.1 Mass spectrometry 

The concept of mass spectrometry began in the late nineteenth century when scientists 

observed canal rays. These are beams of positively charged ions which can be generated in an 

anode ray tube.
1; 2

 Further observations led to the discovery that the path of these canal rays of 

charged ions would be deflected when in the presence of a magnetic field relative to the 

particles’ mass-to-charge ratio (m/z)
3
. J. J. Thomson was awarded the Nobel Prize in Physics in 

1906 for his work on the conduction of electricity by gasses
4
. Since that time developments in 

mass spectrometry techniques and abilities have continued to grow. Today mass spectrometry 

can not only be used for the measurement of electrons and charged elements, but also 

macromolecules, such as small mass metabolites, lipid molecules, peptides and even large 

mass compounds such as whole proteins. Mass spectrometers have not changed much from 

the same three principles of the first basic instrument designed by Thompson. Although mass 

spectrometers now are significantly more sophisticated and sensitive, they all rely on the same 

principles of creation of ions or charged particles (ionisation), separation of those ions in a 

vacuum (mass analyser) and detection of those ions. 

 

1.1.1 Ionisation techniques 

In order to measure the mass-to-charge ratio of a compound using either a quadrupole or a 

time-of-flight (ToF) mass analyser as described in sections 1.1.3 and 1.1.4 the analyte must first 

be ionised, i.e. become charged. There are many different ways of ionising a compound, before 

being subjected to a magnetic or electric field within the mass analyser. 

 

1.1.1.1 Electrospray ionisation (ESI) 

Electrospray ionisation (ESI) is an ionisation technique that can produce either positively or 

negatively charged ions. It was first described in 1984 by Masamichi Yamashita and John 

Fenn
5
; the latter was awarded the Noble Prize in Chemistry in 2002 for his work developing ESI 

and its application to macromolecules
6
. The technique involves delivering the analyte in liquid 

form through a fine needle, into the mass spectrometer. A potential difference is applied across 

the gap between the tip of the needle and the entrance to the mass spectrometer. The charge 

at the tip of the needle causes the liquid to become polarised and disperses away in a cone-like 

formation from the tip of the needle in droplets. A jet of nitrogen gas is used to counteract the 
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condensable vapour produced and also to increase the rate of solvent evaporation from the 

charged droplets. ESI produces a range of charged species, not just singly charged molecules. 

It is termed a “soft” ionisation technique because it does not cause analyte fragmentation in the 

same way that other “hard” ionisation techniques might. 

 

1.1.1.2 Matrix-assisted laser desorption ionisation (MALDI) 

Matrix-assisted laser desorption ionisation (MALDI) is another form of “soft” ionisation that is 

used mainly with time-of-flight mass analysers (section 1.1.4). It differs from ESI by producing 

predominantly singly charged ions rather than multiply charged ions which are more often 

observed in ESI. For MALDI, the samples need to be mixed with a specific matrix and applied to 

the surface of a metal plate. Ionisation occurs when a laser beam pulsates across the plate, the 

laser’s energy is absorbed by the matrix crystals causing ionisation. Once ionised, a series of 

oppositely charged plates are used to attract and then accelerate each ion into the time-of-flight 

mass analyser. Each ion is given the same amount of energy, so the ions with a lower mass-to-

charge ratio travel further than the ions with a greater mass-to-charge ratio. Hence, the mass-to-

charge ratio of the ion can be determined by measuring its time-of-flight. 

 

1.1.1.3 Electron ionisation (EI) 

EI is an example of a ‘hard’ ionisation technique, described as such due to the highly energetic 

electrons used to interact with the gas or liquid analyte for ionisation. The electrons are 

generated from a heated metal wire in an electric circuit by thermionic emission, which are then 

accelerated towards the analyte. When one of these electrons collides with an analyte 

compound it knocks out an electron from the compound, creating a positively charged ion. This 

type of ionisation also simultaneously results in extensive fragmentation of the analyte 

compound. 

 

1.1.2 Peptide sequencing using tandem mass spectrometry 

fragmentation 

Modern mass spectrometry usually uses two mass spectrometers in conjunction and is more 

commonly referred to as tandem mass spectrometry. This can be two of the same type of mass 

analyser in tandem or two different types of mass analyser for example a quadrupole (section 

1.1.3) and a time-of-flight (section 1.1.4) mass analyser in tandem. When two mass analysers of 

the same configuration are used, for example triple quadrupole-based platforms, they are 

generally designated as tandem mass spectrometry (MS/MS) systems (although technically 

quadrupole time-of-flight and ion trap systems also fit this label). After isolation of a precursor 

ion mass spectrometry can also be used to fragment that precursor ion into product ions, in 
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order to interrogate the composition of that precursor ion. In order to achieve this there is a 

fragmentation cell between the two mass analysers. Different fragmentation techniques are 

employed in depending on the configuration of the mass analysers. 

 

Collision-induced dissociation (CID) uses an inert gas, such as argon to collide and fragment 

the ionised precursor. Electron-transfer dissociation (ETD) fragments positively charged 

molecules of ≥2+ charge, an electron is transferred to the precursor ion which destabilises the 

ion and causes fragmentation. Peptide sequencing by fragmentation of peptides into product 

ions is a very common technique used in the study of proteins by mass spectrometry. It is used 

to determine the specific amino acid sequence which makes up the protein of interest. 

Depending on the type of fragmentation used peptides will fragment at slightly different 

positions. 

 

 

Figure 1.1. Figure illustrating how a, b, c and x, y, z ions are formed when 
fragmenting a peptide sequence. When a peptide sequence is fragmented for mass 
spectrometry a ions are associated with x ions, b with y and c with z. Depending on the 
type of fragmentation either a and x, b and y or c and z ions will be generated, depending 
on which bond of the peptide backbone is fragmented. a, b and c ions describe the N-
terminus fragments and x, y and z ions describe the C-terminus fragments. 

CID fragmentation produces b and y ions because the dissociation encourages fragmentation 

along the peptide bond (between the carboxyl group of one amino acid and the amino group of 

the adjacent amino acid) and ETD generates c and z ions because the dissociation encourages 

the protein backbone to fragment at the C-terminus side of the amine group
7
. 
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1.1.3 Quadrupole mass analyser 

A quadrupole describes a type of mass analyser, of ranging size depending on the mass-to-

charge range for that quadrupole. A quadrupole is used to select ions of a specific mass-to-

charge ratio and to divert any ions of a different mass-to-charge ratio. It comprises of four 

cylindrical metal rods, parallel to each other in a square formation. An oscillating radio 

frequency and direct current electric field are applied to the four rods this makes the ions 

travelling through the space between the rods oscillate in a similar manner, however only ions 

of the specific mass-to-charge ratio will be able to maintain their trajectory within the 

quadrupole. 

 

1.1.4 Time-of-flight mass analyser 

Time-of-flight (ToF) describes an analyser used in mass spectrometry to determine accurate 

mass of ionised compounds. This is based upon the time it takes for ions to travel a set distance 

within an electric field. The speed at which an ion travels the distance is determined by its 

mass-to-charge ratio, “lighter” ions will travel faster than “heavier” ones. The longer the path the 

ions need to take, the more accurate the mass measurement. Often a reflectron is used at one 

end of the ToF tube to redirect the ions back to the original end, thus doubling the flight path; 

this is described as ‘V’ mode. If the ions are reflected a total of three times it is described as ‘W’ 

mode. Operating in ‘W’ mode increases the resolution, however there is an approximate 50% 

reduction in sensitivity compared with ‘V’ mode. 

 

The reflectron is a series of 12-20 lenses which creates an increasing ion-retarding field, the 

energy of the travelling ions will determine at which depth of the reflectron they will be 

redirected. Those ions travelling faster will penetrate further before being redirected and those 

ions travelling less fast will not penetrate as far before being redirected by the reflectron. 

 

1.1.5 Post-translational modifications of proteins 

Post-translational modifications (PTMs) describe any modification made to a protein after it has 

been transcribed. These range from minor mass changes such as the addition of a hydroxyl 

group (~15.99 Da), to large mass changes such as the addition of a glycan (~2000 Da). PTMs 

change the mass of the precursor ion and associated product ions, this needs to be taken into 

account when using mass spectrometry as mass changes of the analytes will affect the mass-

to-charge ratio. 
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1.1.6 Liquid chromatography systems 

Very simple pure samples can be injected directly into a mass spectrometer to determine the 

mass-to-charge ratio and fragmentation pattern. However, the more complex a sample, the 

greater the chance of other compounds having similar or the same mass-to-charge ratio as the 

analyte of interest in the sample. Those compounds will act in a similar manner in the magnetic 

or electric field so it becomes increasingly difficult to separate the individual mass-to-charge 

ratio information for those similar compounds. 

 

In order to reduce the complexity of a sample a liquid chromatography (LC) separating unit may 

be used before the mass spectrometer. The path of a sample mixture would be that it is first 

injected into the LC system as a solution, adsorbed onto a stationary phase and eluted using a 

gradient between aqueous and organic mobile phases. Depending on the polarity of 

compounds within the sample mix they will elute from the stationary phase at different points on 

the aqueous/organic gradient. If the aqueous/organic gradient is extended for a longer period of 

time, there will be greater separation between compounds, ensuring that the likelihood of two 

compounds with the same mass-to-charge ratio entering the mass spectrometer at the same 

moment in time is reduced. Ionisation of the compounds will take place at the end of the LC 

system just before the ions enter the mass spectrometer, however with MALDI there is not 

usually a coupled LC system. 

 

1.1.6.1 Two-dimensional liquid chromatography separation 

Mass spectrometry can be used to analyse highly complex samples containing tens of 

thousands of molecules that would be observed in biological samples. However, this complexity 

can saturate the capacity of a mass spectrometer. To overcome this liquid chromatography 

systems (section 1.1.6) are used to reduce the complexity of samples entering the mass 

spectrometer at any one time. An additional dimension of separation can also be applied for 

very complex samples. 

 

Two-dimensional liquid chromatography (2D-LC) separation further reduces the complexity of a 

sample by dividing it into multiple fractions using an additional column. In our laboratory these 

fractions are separated using two C18 reverse phase columns; one separates peptides using a 

high pH aqueous/organic gradient into fractions that are then eluted onto the second C18 

reverse phase column and separated by a low pH aqueous/organic gradient.  
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Figure 1.2. Diagram illustrating the difference between the standard “1D” and the 
“2D”-LC setups. In red the traditional “1D” setup of the LC system as described in 
section 1.1.6. The sample would be injected into the sampling loop, then desalted on the 
trapping column, before being chromatographically separated on the analytical column. In 
green, the “2D”-LC setup described here in section 1.1.6.1, includes the additional 
fractionation column where the original samples is separated into fractions according to 
pH, prior to desalting and chromatographic separation. 

 

1.1.7 Label-free mass spectrometry (MSE) 

Label-free mass spectrometry (MS
E
) analysis describes a method of quantifying data generated 

from a mass spectrometer such as a QToF mass spectrometer. It is called label-free because 

unlike similar techniques that require the addition of heavy labelled isotopes, MS
E
 does not in 

order to obtain quantitative results. 

 

For MS analysis of proteins, they need to be digested into peptide fragments of suitable length 

(typically 6-25 amino acids long or 400-2500 m/z). Most intact proteins are too large for analysis 

with most commercially available mass spectrometers because they exceed the mass range 

and are too large to be fragmented (with the exception of low molecular weight proteins such as 

haemoglobin). Peptides are introduced into the mass spectrometer using liquid chromatography 

separation as described in sections 1.1.6 and 1.1.6.1. In MS
E
 mode the mass-to-charge ratio 

information about the ionised precursor peptide as well as the generated product ions from 

fragmentation are recorded. This information is obtained by using rapidly alternating low and 

high collision energy modes. Data from both collision energy states is acquired simultaneously, 

alternating between quantitation (of the precursor ion) and identification (from product ions and 

therefore fragmentation data) scans. The amino acid sequence from mass-to-charge ratio 

differences of the product ions is then “blast” searched against protein sequence databases and 

the protein from which the analysed peptide came from can be correctly identified. 

 



  

27 
 

1.1.7.1 Ion mobility mass spectrometry (IMS) 

Ion mobility separation (IMS) is a technique which introduces an additional dimension of 

separation within the mass spectrometer for compounds which co-elute from the liquid 

chromatography system. There are different approaches to achieve IMS, here travelling-wave 

ion mobility (TW IMS) will be presented. In TW IMS the flow of ions enter the ion mobility cell 

where a helium gas is travelling against the ion flow. The ions meet the travelling waves of 

helium gas and co-eluting compounds are separated according to shape and size. Differences 

in shape and size of the ions mean that they pass through or over the waves of helium gas at 

different rates. Each ion will have a unique ‘drift time’ which is the time it took for that ion to pass 

through the ion mobility cell
8; 9

. 

 

When IMS is used in conjunction with MS
E
 it is described as high-definition label-free mass 

spectrometry (HDMS
E
). IMS can be applied before or after precursor ion fragmentation 

depending on the application. If IMS is being used to separate out co-eluting precursors from 

the LC system then IMS will be applied before fragmentation. However, if it is being used to 

separate product ions of the same mass-to-charge ratio then IMS will be applied after 

fragmentation. 

 

1.1.7.2 Ultra-high definition label-free mass spectrometry 

(UDMSE) 

Ultra-high definition label-free mass spectrometry (UDMS
E
) is similar to HDMS

E
 apart from the 

collision energy ramp. The nature of MS
E
 means that in the collision cell the collision energy is 

rapidly alternating between high and low collision energies: low energy maintains the intact 

precursor ion for quantitation and high energy to fragment the precursor into product ions for 

identification. Different peptide bonds require different amounts of energy to be broken, in MS
E
 

(section 1.1.7) and HDMS
E
 (section 1.1.7.1) a linear collision energy ramp is used during the 

high collision energy phase in order to achieve best fragmentation. In UDMS
E
 it is possible to 

customise a non-linear gradient of collision energies during the high energy state based on the 

optimum fragmentation collision energy of a reference sample. 

 

1.1.8 Tandem or triple quadrupole mass spectrometry (MS/MS) 

Tandem or triple quadrupole mass spectrometry can be separated into three parts: MS1, 

collision cell and MS2. MS1 and MS2 are the same as the quadrupoles described in section 

1.1.3. This type of tandem mass spectrometry is suited to a ‘targeted’ analysis more so than 

QToFs. Tandem mass spectrometry has superior quantitative ability compared to ToF 

analysers. Therefore, triple quadrupole mass spectrometers are the standard quantitative MS 
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used in medical and pharmaceutical industries. Tandem mass spectrometers can be operated 

in a variety of different scan modes: product-ion scan, precursor-ion scan, neutral-loss scan and 

multiple reaction monitoring (MRM). Due to the ‘targeted’ nature of tandem mass spectrometry 

analysis prior knowledge of ion masses for the compound or class of compounds being studied 

is required. 

 

Product-ion scans are where the first mass analyser (MS1) is fixed to select an ion of a specific 

mass-to-charge ratio, that ion is then fragmented and all the product ions detected. MRM is 

when MS1 is fixed at a specific mass-to-charge ratio, that ion is fragmented and the second 

mass analyser (MS2) is fixed at a second specific mass-to-charge ratio to allow a single 

fragment ion through. A precursor-ion scan is where MS2 is fixed at a specific fragment ion 

mass-to-charge ratio and the precursor ions that fragment into that specific fragment ion are 

recorded. Finally a neutral-loss scan is where a neutral value x is selected and MS2 is off-set by 

x m/z to detect fragment ions of x m/z less than their precursor ion. 

 

Internal standards (ISs) can be used to enable quantification when using tandem mass 

spectrometry. An IS is usually of the same class as the analyte of interest but with a slightly 

different mass. The best ISs are those that are heavily or isotope-labelled versions of the 

compound being quantitated. These ISs behave exactly the same during preparation and liquid 

chromatography separation (they elute ever so slightly later on the chromatographic gradient) 

compensating for losses, changes in chromatography and ion suppression. A known amount of 

IS is added as early in the sample preparation process as possible. The IS can be differentiated 

from the compound of interest by mass difference detected by MS. Calibration curves can be 

used to calculate the exact amount of the analyte of interest. 

 

1.2 Background to the skin 

The skin is the largest organ covering the external surface of our body. It provides a barrier 

protecting the body from excessive water loss, microorganisms, physical trauma and ultra violet 

(UV) radiation. It is adapted highly to the environment such that individuals in equatorial regions 

have darker skin protecting them from UV radiation conversely individuals nearer the poles 

have lighter skin. Skin also thickens providing protection at sites of friction or repeated trauma, 

such as the feet and hands. Not only is the skin able to adapt to long term environmental 

factors, but it also responds to short term changes such as sweating in hot temperatures.
10

 The 

skin has this multi-purpose ability due to its complex structure. The skin has three main layers: 

epidermis (uppermost layer), dermis and subcutaneous (lowermost layer). 
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Figure 1.3. Image showing the three major layers of skin. The epidermis, dermis and 
subcutaneous layer can be distinguished using a microscope when stained using 
haematoxylin and eosin. The subcutaneous layer is largely fat and appears here at the 
bottom largely as membrane surrounded fat vacuoles. The dermis is highly innervate, 
contains hair follicles, glandular tissue and blood vessels. The epidermis is the most 
superficial and undulating layer. It is most darkly stained here due to the density of 
proteins in that area. The black bar represents 1mm. 

The subcutaneous layer is largely fat and plays a major role in insulation. The dermis is highly 

vascularised, containing nervous and glandular tissue. The epidermis is the thinnest, most 

superficial layer. The epidermis comprises the “skin barrier” which is critical for protection from 

the external environment and is composed of multi-layered squamous epithelial cells. The 

epidermis is further subdivided into four or five layers: stratum corneum (uppermost layer), 

stratum lucidum (only found on the palms of the hands and the soles of the feet), stratum 

granulosum, stratum spinosum and stratum basale (lowermost layer). 
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Figure 1.4. Image showing the five layers of the epidermis. The stratum corneum, 
stratum lucidum, stratum granulosum, stratum spinosum and stratum basale can be 
distinguished using a microscope when stained for using haematoxylin and eosin. The 
stratum corneum is the layer which is continuously shed, here layers of cells can be seen 
separating themselves from the rest of the epidermis. The stratum basale contains the 
germinal cells which are undifferentiated keratinocytes, these cells have a large dark 
nucleus. In the stratum spinosum those germinal cells become differentiated: the nucleus 
becomes less densely stained and eventually the cells become anucleated. The black bar 
represents 50µm. 

 

1.3 The skin barrier 

The term “skin barrier” refers to the epidermis and more specifically the stratum corneum. This 

is where the keratinocytes, which are the predominant cell type in the epidermis have become 

terminally differentiated into corneocytes which form a tight network through cross-linking bonds 

(covalent and non-covalent) as well as junctions (desmosomes) between the cells. 

Desmosomes are molecular complexes made up of keratin cytoskeletal filaments that have a 

role in adherence to neighbouring cells. This is important for the prevention of excessive water 

loss
11

 and to provide a supportive framework for the lipid network within the skin
12

. Such lipids 

are fundamental in reducing water loss
13

 and proper barrier function
14

.
15

 

 

When barrier function is disrupted it leads to disease as the skin fails to fulfil its roles. Examples 

of such diseases include ichthyosis vulgaris and Netherton syndrome. Ichthyosis vulgaris is a 

largely autosomal dominant disease presenting as a dry, scaly rash caused by a filaggrin loss of 

function mutation
16

. Filaggrin is a protein involved in protein assembly in the stratum corneum 

and binding keratins and microfibrils
17

. Mutations in this gene lead to breakdown of structure 

within the stratum corneum and therefore increased permeability of the skin barrier allowing 
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excessive water loss which in turn leads to the clinical symptoms of ichthyosis vulgaris
18

. 

Netherton syndrome is characterised by excessive skin cell shedding, redness and brittle hairs. 

It is caused by a mutation in the serine protease inhibitor Kazal-type 5 (SPINK5) gene which 

codes for the protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI)
19

. It is 

postulated that the mutation in the serine protease inhibitor gene leads to an imbalance in the 

protease:protease inhibitor ratio in the skin, leading to excessive protein cleavage in the stratum 

corneum disrupting the skin barrier, thus reducing its functionality
20

. There are no cures for 

these diseases and treatment is focused on relieving symptoms and attempts to restore skin 

barrier function with emollients.  

 

1.4 Biochemistry of the skin 

Skin biochemistry is diverse and varies according to the specific part being studied. In the 

epidermis lipids play a role in the extracellular matrix. The stratum corneum largely comprises 

ceramides, cholesterol and long chain saturated fatty acids
21

. In the granular cell layer, the lipid 

matrix contains more phospholipids and cholesterol, alongside significant quantities of 

glucosylceramides and ceramides. The lipid matrix in the basal layer is mainly 

phosphoglycerides and sphingomyelin with a small amount of cholesterol.
22

 Between the 

uppermost granular cells and the bottom of the stratum corneum secretory organelles called 

lamellar granules are found. These organelles are responsible for lipid secretion into 

intercellular spaces which form a network of multilamellar sheets surrounding the 

keratinocytes.
23

 An unusual ceramide, abbreviated as Cer[EOS] (30-linoyloxytriacontanoic acid-

[(2S, 3R)-1,3-dihydroxyoctadec-4-en-zyl]-amide) has been identified as playing a vital role in 

lipid organisation in the intracellular space of the stratum corneum
24

. This ceramide has been 

shown to be involved in diseases of the skin barrier. A study investigated the relationship 

between epidermal lipids and skin barrier impairment in 47 patients with atopic eczema (AE) 

and 20 age and sex-matched controls, the ceramide:cholesterol ratio was significantly lower in 

the AE cohort compared with controls. Patients with AE that did not have active lesions at the 

time of study had intermediate ceramide and cholesterol levels.
25

 

 

Another epidermal lipid is cholesterol sulphate ( CS), which regulates desquamation
26

. In 

culture, keratinocytes accumulate CS during maturation, differentiation-defective cell lines do 

not conform to this pattern
27

. One study investigated how CS is essential for keratinisation 

acting as a transcriptional activator for transglutaminase 1 which forms the cornified envelope
27; 

28
. CS regulates the activity of serine proteases which play a fundamental role in the skin for 

epidermal cell adhesion and the production of antimicrobial peptides
28; 29

 and it inhibits 

proteases which slow desquamation
30

. Its role in skin barrier diseases such as AE has been 

described previously along with Cer[EOS]
25

 however, one study reported no significant change 

between CS in controls compared with AE patients
25

. It has been suggested that not only do 
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patients with AE suffer from a ceramide disorder but also from altered fatty acid metabolism in 

the epidermis
31

. 

 

Biochemistry of the skin is complex, involving intricate relationships between lipids, enzymes 

and proteins within and surrounding keratinocytes. Despite investigations into the role of 

cholesterols and ceramides, other lipids and proteins are poorly studied.  

 

1.5 The skin disease eczema 

The disease of the skin barrier that is of particular interest to this project is eczema. Eczema 

affects approximately 15-20% of children in the UK and 2-10% of the adult population
32

, 

although in most cases this disease is not life threatening it can have serious psychosocial 

implications both for the child affected and their family. Atopic eczema (AE), also known as 

atopic dermatitis is the most common of all the eczemas and affects up to 15% of children in the 

UK before the age of 7.
33

 AE is a chronic inflammatory skin condition characterised by episodic 

outbreaks of an itchy, dry, red rash, which often presents on hands, face and skin folds. The 

increasing prevalence of AE is a financial burden on the NHS due to the chronic nature of the 

disease and secondary psychosocial implications that it can have on the patient and their 

family
34

. The cause of AE is still unknown, different patients report different triggers such as 

stress or UV light and other patients that can identify no pattern to their outbreaks. 

 

 

Figure 1.5. Figure showing the histological differences between control and 
eczematous skin. Figure showing the presence of more infiltrating immune cells in 
eczema and the ‘halo’-ing effect of oedema surrounding the cells in the epidermis which 
is not observed in control skin. In eczema the Rete pegs are elongated and the epidermis 
is thicker. Tissue stained with haematoxylin and eosin, bars represent 100 µm. 
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Figure 1.5 shows characteristic histological differences between healthy and eczematous skin. 

Notably, hyperplasia, where there are increased numbers of cells in the epidermis of the 

eczema sample making it a thicker layer compared with the control. Rete pegs (natural 

undulations in the epidermal-dermal boundary) are elongated in eczema and spongiosis is 

observed, illustrated here as ‘halo’-ing around the keratinocytes in the epidermis. This occurs 

due to localised oedema (fluid build-up), the ‘halo’-ing is the space created between 

keratinocytes by the exuded fluid. Parakeratosis is also observed, which is the presence of 

keratinocyte nuclei in the stratum corneum, normally in the stratum corneum keratinocytes are 

terminally differentiated and therefore anucleated (without a nucleus) corneocytes. Nuclei in the 

stratum corneum suggest inefficient keratinocyte differentiation. Finally in eczema there are a 

greater number of inflammatory cells and they have infiltrated the epidermis which is not 

observed in controls. 

 

1.5.1 Current causation hypotheses for eczema 

One theory for the increasing prevalence of AE is that it is a disease arising from an impaired 

skin barrier, likening it to milder forms of the rare diseases described previously (section 1.3). It 

has been reported that the skin barrier is compromised even at unaffected sites in children 

prone to AE
35

 and patients who have been disease-free for 5 years show resolved barrier 

function
36

. For the skin barrier to be functioning optimally it requires the correct lipid 

composition, maintained by the appropriate protein scaffold.  

 

Other theories for the causation of AE include immunological dysregulation, the hygiene 

hypothesis and increased susceptibility to foreign pathogens
34

. The susceptibility to foreign 

pathogens hypothesis arose after observations that compared with the unaffected population, 

AE sufferers experience more frequent fungal and bacterial infections even at non-lesional 

sites. Bacterial infections such as Staphylococcus aureus could trigger AE through the 

subsequent immunological cascade that staphylococcal super-antigens can initiate.
37

 The 

hygiene hypothesis is in response to observations that AE prevalence has increased in the past 

few decades, particularly in developed countries
38

. This is attributed to children’s access to 

‘cleaner’ lifestyles. In the first few hours, days and weeks of a child’s life they are exposed to 

fewer foreign antigens that they would have been previously. This could cause environmental 

allergens to provoke abnormal immunological responses later on in life because tolerance was 

not established in early life. Immune dysregulation, also referred to as ‘inside-outside’ pathology 

is characterised by elevated serum immunoglobulin E (IgE) levels. This means that the skin is in 

a perpetual state of sub-clinical inflammation and IgE receptors are overstimulated therefore 

more likely to trigger an immune response to external antigens.
34

 Finally loss of function 

mutations in the gene that code for filaggrin are found in 10% of the population
39

 and are found 
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in 40% of patients with moderate to severe AE
40

 suggestive that this could be the cause of AE 

in some patients
41

. 

 

1.5.2 Current treatment for AE 

AE remains a challenging disease to treat and manage despite research into finding a cause. 

Common treatments include moisturising creams which relieve dryness and maintain skin 

hydration and topical corticosteroids which act to suppress the immune system response. The 

drawback of steroid treatment is that they can only be used in acute flare-ups and not for long-

term treatment, due to the systemic side-effects
42; 43

. There are other less common therapies 

such as phototherapy, tar preparations, anti-bacterial/fungal/viral treatment and in extreme 

cases systemic immunosuppressive therapies are used
34

. Treatments can be effective in some 

cases, especially when managed closely, yet upon discharge from hospital patient compliance 

can decrease leading to exacerbation of the condition. 

 

1.6 Skin aesthetics 

Our skin covers the surface of our bodies, diseases affecting our skin are often noticeable. In a 

media-driven society, that is increasingly aesthetic and image-conscious, the psychosocial 

repercussions of skin disease and abnormalities are also increasing. 

 

1.6.1 Scarring 

Scarring is a healthy process that the body uses to heal after injury. However, scars can be 

noticeable or the wound may not heal properly and this can be challenging to deal with. Healthy, 

unscarred skin is macroscopically and microscopically different to scarred skin. There are 

various types of abnormal scar such as hypertrophic and keloid, they both present when the 

natural healing cessation does not happen at the end of the remodelling phase. This would 

normally stop further collagen production at the scar site. 

 

1.7 What else can we learn from the skin? 

Not only can the skin indicate skin disease status, but it can also be used to identify other 

diseases and monitor bodily processes. Jaundice can indicate liver disease, fatty depositions 

can indicate hyperlipidaemia and infections may indicate diabetes mellitus. The skin is highly 

perfused and systematic changes may be reflected in the biochemical equilibrium of the skin in 

real-time. For example during major surgical procedures there is concern that the body may not 
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be sufficiently oxygenated and this could lead to post-surgical morbidity, the skin could be used 

to indicate what is happening throughout the rest of the body
44

. 

 

1.8 Application of mass spectrometry to the study of skin 

Mass spectrometry is an expanding and versatile technique, the applications are seemingly 

limitless. In the field of medical sciences, there is not a biological fluid or tissue that has not 

been studied by mass spectrometry. Where genetics can study genes, mass spectrometry can 

study the proteins, lipids or small molecules of a sample. This gives a different perspective on 

the data analysis, for example mass spectrometry can measure the amount of protein in a 

sample and take into account potential PTMs of that protein. Genetic information is not always 

directly correlated with amount of functional in vivo protein. 

 

1.8.1 Previous studies using mass spectrometry to analyse skin 

tissue 

There are relatively few human skin proteomic studies and datasets currently available in the 

literature
45; 46

 compared with other human tissues or fluids. A human-specific PubMed search 

showed three times as many publications for “liver AND proteomics”
47

 and twelve times as 

many for “blood AND proteomics”
48

  compared with “skin AND proteomics”
49

. Skin is a 

challenging tissue to analyse using traditional proteomic techniques due to the high lipid 

content, insolubility and extensive cross-linking of proteins. This can complicate isolation and 

digestion of proteins. Other research groups studying skin proteomics
49

 have used techniques 

including gel-based protein fractionation
50; 51

, heavy isotope labelled assays to identify 

phosphorylated proteins
52

 and studying secreted skin proteins, rather than skin tissue itself
53

. 

The latter two techniques are specific to a particular aspect of the skin proteome and do not 

represent the composition of the tissue as a whole. 

 

Investigations into the skin’s lipid content are similarly sparse compared with other tissues, 

however there are many publications documenting the major classes of lipid in the skin: MALDI-

MS/MS was used to identify glycerophospholipids and sphingolipids as the major lipid 

component of skin
54

. Glycerophospholipids and sphingolipids were also found to be the two 

major lipid classes in skin by LC-MS/MS
55

 and finally ceramide (a member of the sphingolipid 

class), free fatty acids and cholesterol were identified as the predominant lipids in the stratum 

corneum of the skin using a LC-MS method
56

. 
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1.8.2 Using mass spectrometry to study human skin 

Mass spectrometry is an invaluable method for assessing the composition of proteins and lipids 

in a biological sample. It is versatile as it can search for the most abundant proteins/lipids in a 

sample or it can be targeted to identify specific species of interest. Mass spectrometry can 

generate information about a biological samples that is not currently available by any other 

technique. The skin is an important organ, often overlooked in science and medicine, however, 

it can teach us about biological processes and underlying mechanisms of disease. Most mass 

spectrometry and skin analysis techniques described in this thesis have been used to study 

invasive skin biopsies or surgical incision sites. However, further assays would be developed 

into targeted tests, which are more sensitive and would require less clinical sample, such as a 

skin scraping or taping. 
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2  Aims of this thesis 

 

 

The aims of this thesis were to use mass spectrometry to investigate and explore further skin 

tissue in health and disease. We wanted to understand more about the underlying mechanisms 

causing the skin disease eczema in order to improve treatment options for patients. We also 

wanted to study the roles of protease inhibitors and proteases in the skin as dysregulation 

between certain protease proteinase inhibitor partners have already been described in other 

skin diseases such as Netherton’s syndrome so perhaps similar mechanisms could be 

disturbed in other skin conditions. Mass spectrometry was also used to investigate whether it is 

possible to identify differences in unscarred healthy tissue of individuals who will and will not 

develop a hypertrophic scar post-surgery. And finally to elucidate markers in the skin that may 

be suggestive of post-operative morbidity post-major surgery. 
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The aim of this thesis was to develop methods to screen skin and apply those methods to 

investigate disease. Prior to starting this project preliminary work in our laboratory
57; 58

 identified 

changes in proteins present in the uppermost layer of the skin in patients with eczema, and 

ichthyosis compared with controls. That preliminary work involved taking skin scraping samples 

from healthy volunteers who had eczema and those who did not, extracting the proteins, 

digesting them and identifying them by QToF MS. The proteins that were differentially 

expressed were collated and other candidates from the literature were added to form a list of 

proteins to be validated in this thesis. The data in this chapter validates the protein changes 

identified in the preliminary work using immunohistochemistry (IHC). Two skin conditions were 

used as models for testing this hypothesis: eczema and ichthyosis. Eczema is a common 

childhood disease whereby the creases of the body develop a red, itchy and raised rash. 

Ichthyosis covers a group of related diseases which is usually an inherited genetic disease, the 

affected children present early in life with an accumulation of rough scaly skin on their body. 

 

3.1 Atopic eczema (AE) 

AE as detailed in the introduction (section 1.5) is a chronic inflammatory skin condition 

characterised by episodic outbreaks of an itchy, dry, red rash, which often presents on hands, 

face and skin folds. It can be burdensome with incessant itching and repeated treatment
59

. 

Neither cause nor disease mechanism are entirely understood
60; 61

. In the absence of a cure
62

 

children persist with disease management until it subsides. The incidence of eczema is highest 

in children, with almost all patients no longer affected by adulthood
63; 64; 65

. 

 

3.2 Ichthyosis 

Ichthyosis covers a group of Mendelian disorders of cornification. The disease sub-categories 

are classified according to the degree of visible scaling and or hyperkeratosis of the skin as well 

as onset and mode of inheritance. This group of diseases usually presents as a burdensome 

disease due to the large proportion of affected skin, patients are routinely tested to identify 

which genetic mutations are responsible for their ichthyosis.
66

 

 

3.3 Causes of AE 

As detailed in section 1.5.1 there is no certainty regarding the underlying disease mechanism of 

AE. This affects treatment for AE because without understanding of the disease mechanism it 

can only be treated reactively, rather than proactively. In order to address the pathogenesis of 

AE a pilot project was carried before the start of this PhD project to investigate the differential 

protein expression between controls, people affected by AE and people affected by ichthyosis. 
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3.4 Results of the pilot study 

Skin scrapings reflect the composition of the outer epidermis and were taken from the elbows of 

volunteers for proteomic profiling, for this pilot study. The proteins were digested (method 

10.2.10), the peptides subject to MS
E
 analysis (method 10.2.4) and the variable protein 

expression interrogated (method 10.2.5). It was hoped that biomarkers of disease mechanism 

would be identified, several candidate proteins were found. Seven were selected based on 

involvement in skin barrier function, fold change and likelihood to being involved in disease 

pathology to be validated by immunohistochemistry (IHC). 

 

 

Table 3.1. Table showing the 7 proteins selected for IHC analysis. Table showing 
alpha-1-acid glycoprotein, calmodulin-like proteins 3 and 5 selected from the pilot mass 
spectrometry experiment, plus bleomycin hydrolase, caspase-14, cathepsin D and 
dermcidin which were selected from the literature to be included for IHC analysis. Fold 
changes for alpha-1-acid glycoprotein, calmodulin-like proteins 3 and 5 are expressed 
relative to the control group. 

 

3.5 Validation of selected proteins using immunohistochemistry 

As part of this PhD project IHC staining was selected to validate the proteins selected in Table 

3.1 as a complementary technique to the pilot mass spectrometry data. IHC staining is only a 

semi-quantitative technique however, unlike mass spectrometry it can show locational variation 

of the proteins within a skin section. IHC can detect changes of 10-100-fold, we predicted that 

some of the selected protein changes may be too subtle to detect. However, the location of 

each biomarker within the three-dimensional architecture of the skin could provide information 

on the integrity of the skin barrier in disease. Six histologically normal skin biopsies, 11 

eczematous samples and 3 ichthyosis samples were analysed in this IHC study. Results are 

presented and discussed below. 

 



  

43 
 

3.5.1 Immunohistochemical staining of alpha-1-acid glycoprotein 

Alpha-1-acid glycoprotein 2 (AGP2) is a highly glycosylated blood protein. The gene that codes 

for the protein AGP 2 is ORM2 there is also ORM1 which codes for alpha-1-acid glycoprotein 1 

(AGP1), these two genes and their respective proteins are highly homologous. The protein 

sequences have 90% sequence homology and are often referred to in the single term of AGP
67

. 

There was no specific commercial antibody available for AGP2, as identified in the MS data, so 

an AGP antibody was purchased and used. Due to the high sequence homology it was 

concluded that this would not interfere significantly with the analysis. AGP is a 40 kDa, type-1 

acute-phase protein with anti-inflammatory and immunomodulating properties
67

 it binds 

protease inhibitors and is thought to alter protein binding
68

. However, its precise biological 

function remains unknown
69

. The glycosylation state of AGP has been linked to cancer, along 

with other heavily glycosylated acute phase proteins such as haptoglobin
70

. 
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Figure 3.1. Images showing the results of IHC staining for AGP in control, eczema 
and ichthyosis patients. AGP protein is stained brown following the IHC protocol 
(10.2.2), the nuclei have been counterstained blue with haematoxylin solution (Mayer’s), 
the black bar represents 100 µm. 
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Figure 3.2. Skin sections shown in Figure 3.1 at a higher magnification. This series 
of images is at higher magnification to illustrate some of the intracellular and more subtle 
differences in staining patterns. Bar represents 50 µm. 

These images show that in controls most of the AGP staining appears in the stratum basale, 

more specifically clustered around the nuclear envelope or on the peripheral chromatin within 

the nucleus. The eczema samples show a slightly different pattern of staining, less staining in 

the stratum basale and more staining as the keratinocytes become more differentiated. For 
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ichthyosis the staining is generally more diffuse, but there is noticeably no staining in the 

thickened layer of superficial skin. 

 

It is difficult to interpret whether such differences represent disease cause or effect. AGP is a 

blood protein so elevated levels of AGP closer to the surface of the skin may reflect increased 

permeability of the skin barrier in these diseases. Furthermore,  AGP is an acute phase protein 

whose concentration increases at sites of inflammation
71

. In the pilot MS study it was detected 

in unaffected skin regions of patients known to suffer from AE, suggesting that inflammation is 

increased throughout the skin of people who are susceptible to AE, rather than limited to 

lesional sites. AE is an inflammatory disease, so it would be likely that these lesions are 

showing signs of inflammation, whereas ichthyosis is not described as an inflammatory disease. 

Ichthyotic skin may cause discomfort with secondary scratching or rubbing which would trigger a 

local inflammatory response, increasing local levels of acute phase proteins such as AGP. 

AGP2 was elevated in the pilot proteomic data 13.7-fold in eczema and 7.7-fold in ichthyosis, 

concurring with the IHC data. It may also reflect the level of inflammation. Of the three groups 

most inflammation is seen in eczema patients. 

 

3.5.2 Immunohistochemical staining of bleomycin hydrolase 

Bleomycin hydrolase (BH) is a is a cysteine protease which is thought to have roles in tumour 

suppression, preparation of peptides for antigen presentation
72

 and involvement in filaggrin 

citrullination which occurs in the stratum corneum alongside the protease calpain I. Citrullination 

is the process by which filaggrin is broken down into amino acids. The amino acids produced 

are responsible for maintaining and facilitating epidermal moisturisation.
73
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Figure 3.3. Images showing the results of IHC staining for BH in control, eczema 
and ichthyosis patients. BH protein is stained brown according to the IHC protocol 
(10.2.2), the nuclei have been counterstained blue with haematoxylin solution (Mayer’s), 
the black bar represents 100 µm. 
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Figure 3.4. Skin sections showing the images in Figure 3.3 in higher magnification. 
This series of images is at higher magnification to illustrate some of the intracellular and 
more subtle differences in staining patterns. Bar represents 50 µm. 

These images show generally consistent staining in controls throughout the whole epidermis, 

there is no nuclear staining apart from concentrates around the nucleus. The eczematous 

samples show staining around the nucleus in a nuclear envelope/peripheral chromatin 

distribution and particularly dark staining in the stratum granulosum. The ichthyosis samples 
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show staining around the nucleus in a nuclear envelope/peripheral chromatin distribution and 

very dark staining of the stratum corneum. There is even distribution of staining in controls 

which is not observed in eczema or ichthyosis samples. Skin proteases, such as BH are 

important to ensure correct desquamation which in turn maintains proper barrier function
74

 (as 

discussed further in chapter 4 ). The IHC images show differential expression of BH in these 

samples due to its intrinsic role in skin maintenance. It is unsurprising that the protein 

expression is different in these two skin barrier diseases compared with controls. The Human 

Protein Atlas BH database (http://www.proteinatlas.org/) details BH staining as mostly limited to 

the cytoplasm, nucleus, but not nucleolus
75

. This correlates with our data. The images shown on 

the Human Protein Atlas database are of fibroblasts and do not show such dark staining around 

the nucleus, this could be attributed to the fact that we are looking at differentiating 

keratinocytes in tissue rather than fibroblasts in culture, the protein expression could be 

different. Of the BH roles, the most pertinent to the skin is its role in citrullination of filaggrin. 

 

An immunofluorescence study investigating the roles of BH and filaggrin in AE showed different 

co-localisation of BH and filaggrin in controls compared with AE samples for AE affected skin 

regions and unaffected regions. They demonstrated that BH and filaggrin are co-localised in the 

superficial epidermis in controls, yet in AE lesional and non-lesional sites filaggrin expression is 

not as superficial resulting in reduced co-localisation in AE patients. They also described 

reduced BH expression in affected and unaffected skin regions of AE patients.
76

 We have not 

investigated filaggrin distribution here, however, the distribution we observed of BH (Figure 3.3) 

does not agree with those published. The BH results described by Kamata et al. show varied 

BH expression in controls across the epidermis with more concentrated expression nearer the 

surface, whereas our results show a widespread, but diffuse staining across the whole 

epidermis. Kamata et al. show staining of both lesion and non-lesion sites which is difficult to 

see due to lack of staining. In contrast our observations show a distinct band of staining in the 

stratum granulosum (Figure 3.3). 

 

Eczema patients have dry skin, it could be inferred that there is less citrullination of filaggrin. A 

reduction of BH could lead to reduced citrullination, but equally it could be a reduction of calpain 

I that is responsible for reducing the citrullination of filaggrin, or even genetic mutations in 

filaggrin resulting in it being less susceptible to citrullination. The MS data demonstrated no 

change between controls and eczema samples for BH and a 3.6-fold increase in ichthyosis 

patients. It is unsurprising that no significant changes were observed between controls and 

eczema patients.  

 

3.5.3 Immunohistochemical staining of calmodulin-like protein 3 

Calmodulin-like protein 3 (CLP3) is a 17 kDa, 149 amino acids long protein made up of helixes 

and beta strands described as having a role in myosin-X binding
77

. The calmodulin family of 

http://www.proteinatlas.org/
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proteins are responsible for regulating calcium transport and function in the skin
78

, CLP3 itself is 

an epithelial-specific calcium ion (Ca
2+

) binding protein and an in vivo study shows its 

importance during would healing in keratinocytes
79

.  

 

 

Figure 3.5. Images showing the results of IHC staining for CLP3 in control, eczema 
and ichthyosis patients. CLP3 protein is stained brown following the IHC protocol 
(10.2.2), the nuclei have been counterstained blue with haematoxylin solution (Mayer’s), 
the black bar represents 100 µm. 
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For CLP3 controls show darkest staining in the stratum granulosum, with diffuse staining 

throughout the rest of the epidermis. The staining is specific to cell membranes. For eczema 

samples staining is largely similar to that of controls; cell membrane staining, predominantly in 

the stratum granulosum. Ichthyosis samples show specific staining to cell membranes in the 

stratum granulosum, but not as pronounced as the eczema samples. 

 

 

Figure 3.6. Panel of IHC stained skin samples for CLP3 for three control samples 
and three eczema samples. Panel shows the variation between three different control 
and three different eczema samples for the CLP3 staining. Bar represents 100 µm. 

CLP3 is a light chain regulator of the unconventional myosin-X
79

. Myosin-X belongs to the family 

of myosins which are ATP-dependent motors largely made up of actin. Myosin-X is an 

unconventional myosins because it has a role in intracellular rather than extracellular 
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movements. Myosins are structurally made up of two light chains and two heavy chains, CLP3 

regulates the light chain of myosin-X and has many roles in cell movement, growth and 

intracellular transport
80

. The pilot mass spectrometry data showed a 16-fold decrease in protein 

expression in eczema samples compared with controls and a 58.8-fold decrease in ichthyosis 

patients compared to controls. It is surprising that a more significant change was not observed 

here (Figure 3.5). However, the MS data was acquired from surface skin scraping whereas IHC 

analysis interrogates the full thickness of the epidermis which could account for this 

discrepancy. Controls have dark staining in the stratum granulosum with more diffuse staining in 

the stratum spinosum. Eczema samples do not have such intense staining in the stratum 

granulosum. CLP3 has not been associated previously with AE, which is surprising when the 

pilot MS data was so significant, there are some changes in the IHC results too. Bennett et al., 

describe CLP3 in keratinocytes
79

, its role with Ca
2+

 in wound healing and concludes that CLP3 

upregulation in keratinocytes stimulates myosin-X to re-epitheliate wounds in vivo. As CLP3 has 

an intrinsic role with myosin-X it is inconceivable that myosin-X may be involved in skin barrier 

function, which in turn could explain the reduced protein expression identified in the pilot MS 

data. 

 

3.5.4 Immunohistochemical staining of calmodulin-like protein 5 

Calmodulin-like protein 5 (CLP5) or calmodulin-like skin protein is a 16 kDa protein comprising 

helixes, beta strands and Ca
2+

 binding domains. It is secreted by keratinocytes and released 

into the circulation
81

. CLP5 is expressed exclusively in the stratum granulosum and lower layers 

of the stratum corneum. It has been described in neuronal cell death
81

, breast cancer
82

, 

psoriasis
83

 and to have cation- and peptide-binding properties
84

. In psoriasis the Ca
2+

 gradient 

within the epidermis is disturbed
85

, which would affect the family of calmodulins in the skin. If the 

Ca
2+

 gradient is disturbed in psoriasis it could be disturbed in other skin diseases such as 

eczema. If the Ca
2+

 gradient is disrupted in AE a change in calmodulin expression and other 

calcium-dependent or modulating proteins would be observed. 
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Figure 3.7. Images showing the results of IHC staining for CLP5 in control, eczema 
and ichthyosis patients. CLP5 is stained brown following the IHC protocol (10.2.2), the 
nuclei have been counterstained blue with haematoxylin solution (Mayer’s), the black bar 
represents 100 µm. 

The staining results show intense staining of the stratum granulosum in controls, with limited 

staining elsewhere. In the eczema samples there is distinct staining in the stratum granulosum, 

but there is further diffuse staining in the stratum spinosum. The ichthyosis samples show 
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stratum granulosum staining with some staining in the stratum spinosum and stratum corneum, 

but not to as diffuse as observed in the eczema samples. 
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Figure 3.8. Panel of IHC stained skin samples for CLP5 for four control samples and 
four eczema samples. Panel shows the consistency of the CLP5 staining in controls and 
more variation between the eczema samples. Bar represents 100 µm. 
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Keratinocyte maturation is Ca
2+ 

dependent
86

, with a Ca
2+

 gradient across the epidermis, with 

highest Ca
2+ 

concentrations at the surface of the skin. The low Ca
2+

 concentration in the stratum 

basale favours proliferation of keratinocytes, whereas higher concentrations in the stratum 

corneum favour terminal differentiation.
87

 CLP5 is Ca
2+ 

dependent and involved in keratinocyte 

differentiation
78

 the same research group demonstrated immunofluorescence and IHC staining 

of CLP5 which correlated with keratinocyte differentiation
88

. This theory is supported by the 

control IHC images shown here illustrating CLP5 staining correlating with differentiated 

keratinocytes in the stratum granulosum. 

 

A link between CLP5 and AE has already been described
89

 through IHC, western blot and 

ELISA analyses demonstrating that CLP5 expression is increased in the upper epidermis of AE 

compared to controls. This contradicts our findings which demonstrate that there is a different 

expression profile rather than a difference in intensity of the stain and in fact that appears to be 

increased CLP5 staining in the upper epidermis of controls. It could be postulated that in 

eczema the skin barrier defects are initiated by poor keratinocyte differentiation. It is difficult to 

know the cause of a change based on IHC staining, whether a poor Ca
2+

 gradient causes CLP5 

to be expressed in the stratum spinosum, or if another factor has interfered with keratinocyte 

differentiation, having a knock-on effect for the Ca
2+

 gradient and therefore CLP5. Irrespective 

of the cause and effect order, there is a difference in CLP5 expression in controls compared 

with eczema samples. Ichthyosis patients are expressing a similar pattern to eczema samples. 

The same conclusions could be drawn that there is disruption of keratinocyte differentiation that 

is affecting the Ca
2+

 gradient and therefore CLP5 expression. 

 

The pilot MS data for this protein showed a 3-fold decrease in expression for eczema samples 

compared with controls and an 11.1-fold increase in ichthyosis samples (Table 3.1). Comparing 

the stratum corneum of controls and eczema samples it can be seen that the staining is less 

intense for the eczema patients than the controls which corroborates the skin scraping MS 

findings. 

 

3.5.5 Immunohistochemical staining of caspase-14 

Caspase-14 is a cysteine protease
90

 involved in regulation of keratinocyte differentiation and is 

a non-apoptotic caspase
91

. It has roles in epidermal cornification
92; 93

, filaggrin and prosaposin 

processing
94

, DNA degradation in differentiated keratinocytes
95

 and protects the skin from UV 

rays
96; 97

. Caspase-14 is a known cysteine protease that has been shown to be inhibited by 

LEKTI which is a serine protease inhibitor. Recessive mutations in the SPINK5 gene which 

codes for the full length LEKTI protein gives rise to the chronic skin barrier disease called 

Netherton syndrome. Polymorphisms in the SPINK5 gene have also been associated with 

susceptibility to AE
98; 99; 100

, this could suggest that changes may be observed in LEKTI and 

associated proteases in AE. 
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Figure 3.9. Images showing the results of IHC staining for caspase-14 in control, 
eczema and ichthyosis patients. Caspase-14 protein is stained brown following the IHC 
protocol (10.2.2), the nuclei have been counterstained blue with haematoxylin solution 
(Mayer’s), the black bar represents 100 µm. 

Staining of caspase-14 in controls shows cytoplasmic staining throughout the epidermis and 

darker nuclear staining in all layers of the epidermis apart from the stratum basale. Eczema 

samples show a similar distribution to controls; cytoplasmic staining throughout the epidermis 

and darker nuclear staining in all layers of the epidermis apart from the stratum basale. 
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Ichthyosis samples show the same distribution. There is no staining of the thickened stratum 

corneum, which is different to the control and eczema samples. No differences were observed 

in the location and distribution of caspase-14 in the skin of eczema and control samples, this 

finding demonstrates that not all proteins are affected equally by disease. For example CLP5 

(section 3.5.4) demonstrated diffuse staining in eczema which potentially illustrates the 

disruption in correct trafficking in the uppermost layers of the skin, however the trafficking of 

caspase-14 illustrated here appears unchanged in health and disease. 

 

Other studies show caspase-14 is down regulated in AE in affected and unaffected skin sites
101

 

and in other inflammatory skin diseases
91

. Secondary skin infections could be responsible for 

those changes as infection will affect cytokine secretion and thus the function of the skin barrier. 

In the pilot MS data we showed no change in caspase-14 for eczema samples compared with 

controls and a 2.3-fold decrease in ichthyosis samples compared with controls. This was 

supported by the IHC data presented here as there were no noticeable difference between the 

controls and eczema samples. However, a difference in the stratum corneum staining of 

ichthyosis patients compared with controls was observed. 

 

3.5.6 Immunohistochemical staining of cathepsin D 

Cathepsin D is a lysosomal acidic aspartic protease involved in intracellular breakdown of 

proteins. Its main role is to convert prosaposin to saposin A, B, C and D
102; 103

. These are 

natural detergent-like proteins and chaperones critical for degradation of glycosphingolipids in 

the lysosome.
104; 105

 Deficiencies in these saposins can lead to lysosomal storage defects
102

. 

Cathepsin D has been associated with many diseases including preeclampsia
106

,  cancers
107

 

including malignant melanoma
108

, breast carcinoma
109

 and pancreatic ductal 

adenocarcinoma
110

. Cathepsin D also plays a role in skin from hair follicle morphogenesis to 

dermal and epidermal cell proliferation apoptosis
111

. 
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Figure 3.10. Images showing the results of IHC staining for cathepsin D in control, 
eczema and ichthyosis patients. Cathepsin D protein is stained brown following the 
IHC protocol (10.2.2), the nuclei have been counterstained blue with haematoxylin 
solution (Mayer’s), the black bar represents 100 µm. 

IHC staining of cathepsin D shows most staining in the cytoplasm of keratinocytes in the stratum 

granulosum and spinosum with no nuclear staining for controls. Eczema samples show more 

diffuse staining throughout cytoplasm of keratinocytes in the epidermis. Ichthyosis samples 
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show diffuse staining throughout the cytoplasm of the epidermis and little staining in the 

thickened superficial layer of skin. 

 

There is sparse literature about research into cathepsin D in the skin, let alone in AE. Most 

research is focused on the involvement of cathepsin D in cancer. Cathepsins function best in 

slightly acidic conditions such as those found in solid tumours
112

, its optimum pH is 3.7, yet it is 

still active at pH 6.8
107

. The epidermal pH in these samples could be causing the differential 

distribution. Skin pH varies across the body and with gender (men have lower skin pH) human 

skin pH ranges from pH 4.05-5.66
113

. Studies have investigated the role of pH in AE and have 

shown that skin pH is higher in AE and severity of AE correlates with skin pH
114

. Skin pH only 

pertains to the stratum corneum pH. A disruption of pH is enough to affect lipid synthesis, 

protease activity and the skin microflora, all of which are affected in AE. 

 

The pilot MS data for cathepsin D showed no change in eczema samples compared with 

controls and a 100-fold increase in ichthyosis. The superficial layer of skin in the ichthyosis 

patients is quite darkly stained compared with the same layer in the controls (which would 

represent the skin scrapings taken from MS analysis). Changes in the ichthyosis and eczema 

samples could be attributed to pH changes, the pH change in eczema is thought to be caused 

by a deficiency of free amino acids, lactic acids and urocanic acids, making the skin 

environment more favourable to bacteria such as S. aureus which aggravate the condition
115

. 

 

3.5.7 Immunohistochemical staining of dermcidin 

Dermcidin has antimicrobial properties and limits skin infections after bacterial colonisation. It 

expresses proteolytic activity against peptide and protein substrates
116

. Dermcidin is a binding 

partner of LEKTI in which mutations are the cause of the chronic skin barrier disease Netherton 

syndrome
58

. As described with caspase-14 (section 3.5.5) the relationship between dermcidin 

and LEKTI could have a knock-on effect for AE. Seeing as polymorphisms in the gene 

(SPINK5) that codes for LEKTI have been associated with AE susceptibility
98; 99; 100

 proteins that 

interact with LEKTI could have altered expression in eczema. 
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Figure 3.11. Images showing the results of IHC staining for dermcidin in control, 
eczema and ichthyosis patients. Dermcidin is stained brown according to the IHC 
protocol (10.2.2), the nuclei have been counterstained blue with haematoxylin solution 
(Mayer’s), the black bar represents 100 µm. 

Dermcidin IHC staining shows an irregular, largely nuclear staining pattern for controls limited to 

the lower layers of the epidermis. Eczema samples show nuclear staining throughout the 

epidermis. Ichthyosis samples show faint nuclear staining, but not of all cells in the epidermis. 
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Dermcidin is present mainly in eccrine sweat glands. Its precursor is excreted in sweat and 

processed into peptides that exhibit broad-spectrum antimicrobial functions at the surface of the 

skin.
117

 Here however, dermcidin has been observed in the epidermis. The staining appears 

weak because skin dermcidin concentration is low, its presence in the epidermis may be due to 

leakage from eccrine sweat ducts, this may also explain why staining is not consistent within 

some of the groups. 

 

Dermcidin is involved in other diseases such as Netherton syndrome where dermcidin is a 

binding partner for LEKTI. The same paper describes the same phenomenon that has been 

observed here; that dermcidin is expressed throughout the epidermis.
58

 Perhaps dermcidin 

plays a role in other skin barrier diseases as it has been shown to do in Netherton syndrome. 

The pilot MS data did not show a change in expression for dermcidin in eczema samples 

compared with controls but a 5.8-fold increase was measured in ichthyosis (Table 3.1). This 

was not observed in the IHC staining, but may be due to small fold change. 

 

3.6 Further investigations into calmodulin-like protein 5 

3.6.1 Is the percentage coverage of calmodulin-like protein 5 stain 

different between controls and eczema? 

To establish whether there was a quantifiable difference in “amount” of CLP5 stain within the 

epidermis between control and eczema samples we used ImageJ densitometry software to 

determine percentage epidermal staining. The images were converted to black and white 

(Figure 3.12) and coverage of black (i.e. stain) calculated as a percentage of the epidermis. 

 

 

Figure 3.12. Figure of sections of converted images from Figure 3.7 to black and 
white using ImageJ. The whole images from Figure 3.7 of the control and eczema 
samples were converted into black and white images in order to calculate the percentage 
coverage of the stain within the epidermis a section of the epidermis is shown here. 
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Figure 3.13 shows significantly higher percentage coverage of the stain within the epidermis of 

eczema samples compared with the controls: 

 

 

Figure 3.13. Scatter plot of the percentage coverage of the IHC CLP5 stain. This 
scatter plot shows the differing percentage coverages of the CLP5 IHC stain within the 
epidermis of the 5 controls and 8 eczema samples, a two-tailed, Mann Whitney t-test was 
used to determine the significance of these data. 

ImageJ analysis demonstrated quantifiable changes in the staining pattern between controls 

and eczema samples (Figure 3.7) for CLP5 distribution in the epidermis. This secondary 

analysis demonstrates and confirms quantitative difference between the groups. 

 

3.6.2 Could calmodulin-like protein 5 be a new marker of 

keratinocyte differentiation? 

In order to investigate whether CLP5 could be a new marker of keratinocyte differentiation in the 

skin the staining pattern was compared to other established markers of keratinocyte 

differentiation: filaggrin and involucrin. Filaggrin and involucrin are markers of late keratinocyte 

differentiation. 
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Figure 3.14. Image showing filaggrin staining pattern. Images showing filaggrin 
staining pattern for eczema and control samples with negative controls (omitting primary 
antibody), the bar represents 100µm. 
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Figure 3.15. Image showing involucrin staining pattern. Images showing involucrin 
staining pattern for eczema and control samples with negative controls (omitting primary 
antibody), bar represents 100µm. 

Filaggrin staining in these images is faint, however involucrin staining shows the same pattern 

as we showed for CLP5 (Figure 3.7). This is evidence to suggest that CLP5 could be a marker 

of late keratinocyte differentiation because it shares the same staining pattern in controls and 

eczema as current known markers. 

 

3.6.3 Protein interaction study for calmodulin-like protein 5 

CLP5 was the most altered protein in the IHC data set between controls and eczema samples. 

To investigate CLP5 in the skin further we identified its protein binding partners using magnetic 

beads. The protein interaction experiments (method 10.2.3) was carried out using a bead array 

to immobilise CLP5 and to identify the other proteins with which it interacts in skin homogenate. 

The magnetic beads used in this experiment contain a surface epoxy group that reacts with 

amine bonds within proteins to form a covalent complex, as shown in Figure 3.16: 
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Figure 3.16. Illustration showing how the epoxy group of the Dynabead® binds to 
proteins. The proteins interact with the epoxy group which is bound to the magnetic bead 
and forms an amide covalent bond. 

Due to the magnetic properties of the beads a magnet can be used to extract the “bead-CLP5-

interacting proteins”-complex from the skin homogenate in order to isolate these proteins. 

 

3.6.4 Proteins found to interact with calmodulin-like protein 5 

A series of experiments were carried out to determine the best conditions as suggested in the 

manufacturer’s protocol. Negative control samples were included where no CLP5 was bound to 

the beads and incubated in the same skin homogenate and prepared at the same time as the 

study samples. Proteins identified in the negative control sample were excluded as they were 

likely to be non-specific interactions. A yeast enolase peptide standard sample was included 

before the negative control sample for two purposes: 

(i) to assess the chromatography quality such as peak shape, consistency of peptide 

retention times, signal intensity, lockmass accuracy 

(ii) to identify human proteins that may be in the system and could be carried into 

subsequent study samples 

Human proteins identified in the yeast enolase sample were also excluded. Finally, forty-two 

proteins were identified as interacting with CLP5, detailed in Table 3.2: 
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Table 3.2. Table listing the 42 proteins identified as interacting with CLP5. Table 
contains the 42 proteins found to interact with CLP5 in a bead ‘bait’ binding study. For 
further information such as protein score, number of peptides and amount of protein 
detected please see appendix 12.1. 

These proteins identified as interacting with CLP5 give an indication of CLP5’s role within the 

skin and how it could be a marker of keratinocyte differentiation as demonstrated in Figure 3.7. 

PANTHER (http://www.pantherdb.org/) was used to classify the proteins in Table 3.2. 

 

http://www.pantherdb.org/
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Figure 3.17. Pie chart showing the molecular function distribution of the proteins in 
Table 3.2. This pie chart shows the relative distribution of the proteins found to bind to 
CLP5 according to their molecular function. 

This shows that the majority of the proteins shown to bind to CLP5 have catalytic activity, 

binding or structural molecular activity. 

 

 

Figure 3.18. Pie chart showing the protein class distribution of the proteins in Table 
3.2. This pie chart shows the relative distribution of the proteins found to bind to CLP5 
according to protein class. 

This figure illustrates that there is a diverse range of protein classes represented in the list of 

proteins found to bind to CLP5. Calcium-binding proteins, cytoskeletal, structural and 

defence/immunity components are all represented. Other calcium-dependant proteins such as 
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annexins and CLP3 have been identified as interacting with CLP5. CLP3 was stained for in 

section 3.5.3 showing a similar staining pattern to CLP5. This is not surprising as both proteins 

are from the same family. One protease and two protease inhibitors were identified: caspase-

14, alpha-1-antitrypsin and serpin B5, respectively. This suggests that CLP5 could be involved 

in the mechanism that transports these proteins to the outer layers of the skin. This suggests 

that CLP5 is important in correct localisation of other proteins and the protease and protease 

inhibitor relationship in the skin. There is a critical balance within the skin between proteases 

and protease inhibitors, controlling the rate at which keratinocytes mature and in turn are shed. 

There are numerous skin diseases that arise from dysregulation in this balance. This indicates 

that the correct cellular trafficking of proteins may be disrupted in eczema and lead to defective 

barrier formation. This is important for barrier maintenance between host and the outside world. 

 

Three proteins with antimicrobial properties were identified: dermcidin, glyceraldehyde-3-

phosphate dehydrogenase and galectin-3. People who suffer from eczema are more 

susceptible to skin infections, the fact that antimicrobial proteins are associated with CLP5 and 

that CLP5 is found in the deeper layers of the epidermis in eczema compared with controls 

would support this. Maturation of keratinocytes is incomplete in eczema compared with controls, 

this allows microbes to penetrate deeper into the layers of the epidermis and therefore there is a 

greater need for antimicrobial proteins in those deeper layers in eczema. Or perhaps people 

with eczema are more prone to infection because anti-microbial proteins are not being trafficked 

to the outer layers of the skin where they are required for protection. Possibly CLP5 has a role 

in correct trafficking of proteins for skin barrier formation and defence, which is disrupted in 

eczema. 

 

There are structural proteins found to interact with CLP5 such as actins, collagens, histones, 

keratin and vimentin as well as associated proteins such as lumican and profillin-1. Together 

these proteins are responsible for structural foundations of the skin, linking with the eczema 

hypothesis that there is a structural breakdown in the epidermis in eczema with CLP5 playing a 

role in this process. 

 

3.7 Conclusions 

From the seven selected proteins, CLP5 showed the most significant differences between 

controls, where the staining is limited to the layers of the stratum granulosum, and eczema 

samples, where staining also involved the stratum spinosum. The results reported previously in 

the literature describe increased CLP5 expression in AE compared with controls
89

. However, 

this was not observed in this chapter. Unlike mass spectrometry, the relative intensity of IHC 

staining cannot be measured reliably, but the differential expression pattern can be visualised. 

Our quantitative data supported the observation that there was a greater coverage of the CLP5 

stain in the whole epidermis of the AE samples compared with controls. Further investigations 
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suggested that CLP5 could be a marker of keratinocyte differentiation due as it is comparable to 

the staining pattern of two other established markers of keratinocyte differentiation: filaggrin and 

involucrin. This correlation indicates the significance of CLP5 in differentiation and maintenance 

of the skin barrier in the epidermis. CLP3 shows less marked differences, but a similar 

distribution. They are both calmodulins and are linked with the skin’s Ca
2+

 gradient. IHC staining 

of BH also showed changes in expression. 

 

MS data results and IHC findings effectively provided different and complementary information. 

The MS data was obtained from skin scrapings of controls, eczema and lamellar ichthyosis 

patients. Skin scrapings will only obtain the uppermost layers of skin cells such as the stratum 

corneum. Whereas IHC was carried out on full thickness skin sections of which the stratum 

corneum only contributes a small percentage. IHC is less sensitive; MS analysis can detect 

changes of less than 2-fold whereas IHC detects changes of more than 10 orders of magnitude. 

Finally, the protein interaction study was designed to shed more light on the network of 

interactions involving CLP5 in the skin and proved to illustrate the complex network of 

relationships that CLP5 is involved with. CLP5 was shown to interact with structural proteins, 

proteases, proteases inhibitors and antimicrobial proteins. 
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Chapter 4 

 

Proteases and protease inhibitors in the 

skin, their roles and interactions with other 

proteins in the skin 
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4  Proteases and protease inhibitors in the 

skin, their roles and interactions with other 

proteins in the skin 
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4.1 Proteases 

Protease is a term that is used to describe a group of proteins or enzymes that act to cleave 

other proteins into peptides. An example is trypsin, an enzymatic protein that cleaves proteins at 

the carboxyl side of positively charged amino acids such as lysine or arginine provided that they 

are not followed by a proline residue. There are many proteases in the human body, some of 

which act similarly to trypsin, and others that act differently. Proteases can be split into six 

classes: serine proteases, cysteine proteases, aspartic proteases, metalloproteases
118

, 

threonine proteases and glutamic acid proteases. The protease classes are dictated by 

mechanism of action. For serine, cysteine, aspartic acid, threonine and glutamic acid protease 

classes the amino acid in the name describes where the protease’s active site is. For 

metalloproteases, this class contains proteases whose catalytic activity is dependent on a metal 

as a cofactor. 

 

4.1.1 Proteases in the skin 

Proteases and their regulation by inhibitors are extremely important for the correct formation 

and function of the skin barrier. In the skin proteases from the serine, metallo, aspartic and 

cysteine protease classes have been described previously. Protease classes can be further 

divided into families. A table of proteases present in the skin is shown overleaf (Table 4.1): 
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Type Family Specific Protease Name 

Serine S1 

Human Kallikrein 1 (hK1)
119  

Human Kallikrein 5 (hK5) 
Human Kallikrein 6 (hK6)

120 
Human Kallikrein 7 (hK7) 
Human Kallikrein 8 (hK8)

121  
Human Kallikrein 9 (hK9) 
Human Kallikrein 10 (hK10) 
Human Kallikrein 11 (hK11) 
Human Kallikrein 13 (hK13)

122 
Human Kallikrein 14 (hK14)

123 
chymotrypsin 
trypsin

124 
elastase 2/neutrophil elastase

125 
chymase 
Transmembrane protease serine 11E 
plasminogen126 
coagulation factor II/thrombin 

Metallo 
M10 

matrix metallopeptidase-1
127 

matrix metallopeptidase-2
128 

matrix metallopeptidase-3
129 

matrix metallopeptidase-8
130 

matrix metallopeptidase-9 
matrix metallopeptidase-10 
matrix metallopeptidase-11

131 
matrix metallopeptidase-12

132 
matrix metallopeptidase-13

133 
matrix metallopeptidase-19 
matrix metallopeptidase-28

134 
membrane-type matrix metallopeptidase-1

135 
membrane-type matrix metallopeptidase-2

136 
membrane-type matrix metallopeptidase-3

137 
M12 ADAM10 
M48 farnesylated-protein converting enzyme 1 

Aspartic 
A1 cathepsin D

138 
cathepsin E139 

A2 retroviral-like aspartic protease 1
140 

A22 presenilin 1
141 

Cysteine 

C1 

cathepsin B 
cathepsin C 
cathepsin F

142 
cathepsin H

143 
cathepsin K

144 
cathepsin L 
cathepsin S 

C13 legumain
145 

C14 

caspase-1
146 

caspase-3
147 

caspase-4
148 

caspase-5
149 

caspase-6
150 

caspase-7
151 

caspase-8
152 

caspase-9 
caspase-14

95 

Table 4.1. Table listing the proteases described in skin. This table shows the names 
and classes of proteases that have been described previously to be present in human 
skin.  

In the skin proteases act to cleave proteins into smaller fragments. The purpose can be to 

degrade or modify a protein or to activate a cellular pathway. In the skin proteases are most 

active in the epidermis. The expression of proteases is different within each layers of the 

epidermis.
153

 Proteases are synthesised as inactive precursor proteins, they have an additional 
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amino acid sequence at the N-terminus. Once this amino acid sequence or pro-peptide has 

been cleaved, the protease it becomes active, as illustrated in Figure 4.1: 

 

 

Figure 4.1. Figure illustrating how a protease becomes activated after synthesis. 
This figure represents the inactive precursor protein which is originally synthesised and 
then cleaved to release the active protease protein. 

These proteases found in the skin have a role in the development of the epidermis. The 

activation cascades that these proteases are involved in dictates keratinocyte differentiation.
153

 

Experiments demonstrate that knocking out a single protease in mice can disturb the whole 

protease network and result in mice with a poorly developed skin phenotype
154

. Despite the 

fundamental role of proteases in the development and maintenance of the epidermis, their 

activity must be controlled and this is performed by protease inhibitors. 

 

4.2 Protease inhibitors 

Protease inhibitors inhibit and therefore regulate the activity of proteases. Similarly to proteases 

there are different classes of protease inhibitor depending on protease class affinity. The six 

classes of protease inhibitor are: serine protease inhibitors, cysteine protease inhibitors, 

aspartic protease inhibitors, metalloprotease inhibitors, threonine protease inhibitors and 

glutamic acid protease inhibitors. Not all protease inhibitors are proteins, some may be metal 

ions or lipid molecules for example zinc ions or cholesterol sulphate
155

.  

 

4.2.1 Protease inhibitors in the skin 

In the skin, protease inhibitors control protease activity, particularly in the epidermis where 

proteases act to cleave proteins as part of the keratinocyte maturation process. A table of 
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protein protease inhibitors alongside the proteases they are known to inhibit in the skin is shown 

(Table 4.2): 

 

 

Table 4.2. Table listing the protease inhibitors described in the skin and the 
respective proteases they inhibit. This table shows the protein protease inhibitors 
described in human skin alongside the proteases that they inhibit. 

 

4.3 The role and function of proteases and protease inhibitors in the 

skin 

Proteases and protease inhibitors work together in balance to control development and 

maturation of keratinocytes in the epidermis. Proteases trigger activation cascades responsible 

for desquamation
156

, terminal differentiation
157

 and cross-linkages within the extracellular 

matrix
138; 158

. However, these processes require controlling by protease inhibitors to prevent 

‘over’-desquamation, differentiation and/or cross-linking which leads to disease. 

 

Undifferentiated pluripotent cells are found in the basal layer of the epidermis, here proteases 

associated with early stage differentiation are found: ADAMs (a disintegrin and 

metalloproteases), notably ADAM10. The activation cascade that ADAM10 induces modulates 

transcription
159

 and expression of target genes within the nucleus of the basal cells
160; 161

. 

ADAM17 is activated at a later stage where it maintains the skin barrier
162

 and regulates 

shedding of mature keratinocytes
163

. Caspases (cysteine proteases) are responsible for healthy 

maturation of skin in the central epidermal layers. A caspase-14 knock-out mouse presented a 

range of skin abnormalities such as parakeratosis, delayed cornification and incomplete filaggrin 

processing
92; 94

. Caspase-8 plays a role in regulation of keratinocyte differentiation, an absence 

of which leads to hyper-proliferation and a state of persistent inflammation
152

. Cathepsins span 

the cysteine and aspartic protease classes, cathepsins D and L are responsible for correct 
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cornification and hair follicle formation respectively, an insufficiency of either is associated with 

epidermal over-growth
138; 164

. 

 

During keratinocyte terminal differentiation the sequential shortening of filaggrin is initiated. 

Filaggrin is a large protein comprising mostly of repeating amino acid units, it is shortened by 

proteases as it moves up the layers of skin towards the surface of the epidermis. When filaggrin 

has been completely cleaved into single sub-units those units moisturise and protect the skin.
153

 

Finally, at the epithelial surface keratinocytes are fully differentiated desquamation occurs; 

corneocytes are shed from the surface of the skin. Proteases are responsible for cleaving and 

degrading the internal and external structural components to facilitate this. The main group of 

proteases involved are kallikreins (serine proteases). Desquamation by kallikreins is regulated 

by LEKTI (serine protease inhibitor) to avoid ‘over’-desquamation
165

. Cytokine transforming 

growth factor beta (TGF-β) has roles in fibrosis and scarring of the skin. There are three 

subtypes: TGF-β1, TGF-β2 and TGF-β3, each have slightly different roles in maintenance of the 

epidermal skin barrier following injury.
166

 

 

 

4.4 Under- or over-expression of key proteases, protease inhibitors 

and other proteins in the skin can lead to a range of skin 

disease phenotypes 

When the balance between proteases and protease inhibitors in the skin becomes disturbed, 

normal development and maintenance does not continue and disease phenotypes develop. 

 

4.4.1 Loss of function mutations in ADAM10 

As mentioned in section 4.3 ADAM10 plays a role initiating differentiation in the basal layer of 

the epidermis. It has been shown that a loss of function mutation in the gene coding for the 

ADAM10 protease causes a disease called reticulate acropigmentation of Kitamura
167

. 

Reticulate acropigmentation of Kitamura (RAC) is a rare autosomal dominant disease with fewer 

than 200 cases reported, there are other associated diseases: Dowling Dego’s disease, 

reticulate acropigmentation of Dohi, Haber’s syndrome and Galli-Galli disease. This condition 

presents before the third decade of life when brown areas of skin appear, often on the backs of 

hands and feet. The lesions continue to grow for many decades.
168; 169

 Histopathology shows 

the epidermis is thinner and the rete pegs are more elongated and thinner than in controls
167

 

demonstrating the changes that can result from the loss of function of a protease. 
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4.4.2 Loss of function mutations in ADAM17 

Another ADAM protease mentioned in section 4.3 was ADAM17. It is activated at a later stage 

of differentiation and is responsible for maintaining the skin barrier. A loss of function deletion in 

the ADAM17 gene causes inflammatory skin and bowel disease
170

. There are many 

inflammatory diseases such as psoriasis, coeliac disease or eczema, that have been associated 

with disturbances in barrier function, be it of the skin or gut lining, as these two surfaces share 

common barrier properties. In a case report of two siblings, they both developed barrier 

symptoms within a few days of life, the symptoms were not confined to the skin, they also 

displayed gastrointestinal and cardiac pathologies. The skin lesions were rash-like, dry, 

blistering, red distributions around the mouth and anus. Both children were susceptible to 

frequent skin infections. The symptoms suggest a severe breakdown of barrier function, leading 

to increased risk of Staphylococcus aureus infection, which are otherwise uncommon. Both 

children had a homozygous deletion in ADAM17; the resulting ADAM17 protein was predicted 

to have no functioning properties.
170

 This finding is supported by a mouse knock-out model of 

ADAM17 which presented with a systemic phenotype including impaired epithelial cell 

differentiation and maturation
171

. 

 

4.4.3 Loss of function mutations in cathepsin C 

Papillon-Lefèvre syndrome (PLS) is an autosomal recessive disease arising from a loss of 

function mutation in the cathepsin C (cysteine protease) gene. PLS presents with dental growth 

abnormalities and skin complications: thickening of the stratum corneum on the backs of hands 

and feet.
172

 Cathepsin C triggers enzyme cascades in epithelia throughout the body and 

degrade proteins
173

. Demonstrated in PLS, without cathepsin C the skin is unable to regulate 

growth of keratinocytes in the stratum corneum, because mature corneocytes are not being 

degraded at the same rate at which they are being produced. The underlying mechanism linking 

cathepsin C and desquamation in the skin is not fully known
45; 153

. 

 

4.4.4 Loss of function mutations in filaggrin 

Filaggrin is not a protease like the three described previously (sections 4.4.1-4.4.3), but is a 

protein involved in the healthy development of the epidermis. Mutations in filaggrin have been 

associated with multiple skin diseases, notably AE. Despite the range and diversity of AE 

pathologies, a filaggrin mutation is the single greatest risk factor for the development of AE
174

. 

AE symptoms and the link to filaggrin mutations illustrate how fundamental filaggrin is in the 

skin.
153
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4.4.5 Loss of function mutations in cystatin A 

Cystatin A (cysteine protease inhibitor) is found in the cornified envelope of the epidermis and 

inhibits cathepsin L, cathepsin V and the production of interleukin 8 by keratinocytes
175; 176

. Loss 

of function mutations in the cystatin A gene have shown to cause two diseases: exfoliating 

ichthyosis and acral peeling syndrome. Both of these diseases are characterised by excessive 

shedding or peeling of the skin predominantly affecting the hands and feet.
177; 178

 These 

diseases differ from those described in sections 4.4.1-4.4.3, which were characterised by 

epidermal thickening due reduced protease cleaving, however, the reverse is true of exfoliating 

ichthyosis and acral peeling syndrome, there is too much epithelial degradation because of a 

lack of protease inhibitor to control the protease activity, leading to excessive skin cell shedding. 

 

4.4.6 Loss of function mutation in LEKTI 

LEKTI is a protease inhibitor that regulates desquamation it limits the proteolytic activity of 

kallikreins (serine proteases) which break down junctions linking adjacent. Netherton syndrome 

is a severe skin disease where there is excessive skin cell shedding, malformation of hair shafts 

and reddened skin. It is caused by a loss of function mutation in the LEKTI gene, there is no 

longer control of the rate at which kallikreins break apart corneocytes such that skin cells are 

constantly being shed.
153; 165

 

 

4.5 When new roles for protease inhibitors are discovered 

There are many unknowns associated with various cascades, pathways and interactions within 

the epidermis. Many of the protein roles discussed above were only determined when found to 

be mutated or deficient in disease (section 4.4). One such example is the case of LEKTI 

involvement in Netherton syndrome (section 4.4.6). Netherton syndrome was the first skin 

disease to be discovered as arising from mutations in a protease inhibitor in the skin. This 

discovery sparked new research in the field to uncover further roles of protease inhibitors in the 

skin and in disease.
45

 Experiments were carried out on Netherton syndrome mouse models to 

investigate the causative mechanism of action in Netherton syndrome due to the LEKTI 

mutation. Mouse models demonstrated the link between Netherton syndrome and impaired 

desmosome function in the epidermis as well as LEKTI’s crucial role in desquamation, hair 

formation, keratinisation and barrier formation.
179; 180

 Further investigations into LEKTI and its 

relationship with other proteases in the skin led to the discovery that it may not be specific to 

serine proteases
45

. Proteomic investigations discovered that caspase-14 (cysteine protease), 

bound LEKTI fragments in in vitro experiments
57; 58

. 
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The discovery that protease inhibitors, may not be strictly confined to their “class” as previously 

predicted, led to the postulation that other protease inhibitors may have binding sites for 

different proteases from different classes throughout their length. In this chapter we test the 

hypothesis that the protease:protease inhibitor balance is critical for correct maturation of the 

skin barrier. Using a series of immobilised ‘bait’ protease inhibitor arrays we identified potentially 

critical proteins/proteases in the skin responsible for the correct development of the skin barrier. 

 

4.6 Selecting protease inhibitors in the skin for proteomic analysis 

Table 4.2 lists the protease inhibitors known to be present in the skin, that list was interrogated 

to identify protease inhibitors commercially available, in full-length human sequence form and 

produced in a way compatible with the downstream processes. The resulting list of protease 

inhibitors is shown (Table 4.3): 

 

 

Table 4.3. Table showing the protease inhibitors selected for further proteomic 
analysis. These protease inhibitors were selected from the list in Table 4.2 according to 
their commercial availability and suitability for subsequent experiments. 

To test this hypothesis and to identify critical skin proteases a series of experiments were 

carried out to determine the best experimental conditions (method 10.2.3). These protein 

interaction experiments used bead arrays to immobilise the protease inhibitors and to 

investigate the proteins with which they interact in skin homogenate. We aimed to determine 

whether there were other protease inhibitors that have a role in correct desquamation of the 

skin in a similar way to LEKTI. The magnetic beads used in these experiments contain an 

activated surface epoxy group that reacts with amine bonds within proteins to form a covalent 

complex, as shown in Figure 3.16 and proteins were isolated. Negative control samples were 

included where no protease inhibitor was bound and incubated in the same skin homogenate 

used for the study samples and they were prepared at the same time. Proteins identified in the 

negative control sample were excluded from further results as they were likely to be non-

specific interactions. A yeast enolase peptide standard sample was included before the 

negative control sample for two purposes: 

(i) to assess the chromatography quality such as peak shape, consistency of peptide 

retention times, signal intensity, lockmass accuracy 

(ii) to identify human proteins that may be contaminating the system and could be 

carried over into subsequent samples 
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Human proteins identified in the yeast enolase sample were excluded from further results.   

 

4.6.1 Immobilising alpha-1-antitrypsin using magnetic beads to 

investigate its interactions with other proteins in the skin 

Alpha-1-antitrypsin is a well-characterised serine protease inhibitor it was expected to interact 

with serine proteases in the skin such as neutrophil elastase as well as other members of the 

trypsin family such as chymotrypsin-like proteases
181

.  However, the results from our protein 

interaction experiment using magnetic beads did not demonstrate this. From the experimental 

data 35 proteins were identified as shown in Table 4.4: 

 

 

Table 4.4. Table listing proteins identified from the protein interaction study of 
alpha-1-antitrypsin. This table lists the 35 proteins identified as interacting with alpha-1-
antitrypsin in this protein binding study. For further mass spectrometry information such 
as protein score, number of peptides and amount of protein detected please see 
appendix 12.2. 
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Although this does not show the results that we were expecting, it does demonstrate the role of 

alpha-1-antitrypsin in the processing of proteins. It is shown to interact with proteins covering a 

diverse set of roles from cellular responses to protein folding, phospholipid binding and proteins 

involved in monosaccharide catabolism. Suprabasin is the only protein with unknown function, 

there are only 5 publications on PubMed with suprabasin in the title
182

 the oldest of which was 

published in 2002 and indicates it could be a substrate for transglutamase 2 and 3 and that it 

plays a role in epidermal differentiation as demonstrated in human and murine keratinocyte cell 

lines
183

. Perhaps suprabasin’s role in binding here to alpha-1-antitrypsin in the skin expands on 

its role in the skin. Three papers outline suprabasin’s role as a candidate oncogene marker in 

salivary gland adenoid cystic carcinoma
184

, tumour endothelial cells
185

 and oesophageal 

squamous cell carcinoma
186

. Finally it is also documented that suprabasin may have a role in 

vein graft failure
187

. However, it is possible that some of these interactions were non-specific. 

 

4.6.2 Immobilisation of cystatin A and cystatin C using magnetic 

beads to investigate their interactions with other proteins in 

the skin 

Cystatin A and cystatin C come from the same family of cysteine protease inhibitors and are 

predicted to interact with cysteine proteases such as cathepsins. Despite being closely related 

there is actually only 12.3% homology between their amino acid sequences
188

. The resulting 

proteins shown to interact with cystatin A and cystatin C are shown overleaf in Table 4.5 and 

Table 4.6, respectively: 
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Continued overleaf 
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Table 4.5. Table listing the proteins found to interact with cystatin A. This table 
details the 71 proteins found to interact with cystatin A from this protein binding study. For 
further mass spectrometry information such as protein score, number of peptides and 
amount of protein detected please see appendix 12.3. 
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Table 4.6. Table listing the proteins found to interact with cystatin C. This table lists 
the 30 proteins found to interact with the protease inhibitor cystatin C in this protein 
binding study. For further mass spectrometry information such as protein score, number 
of peptides and amount of protein detected please see appendix 12.4. 

The most noteworthy observation is that caspase-14 (cystatin protease) has been identified as 

interacting with both cystatin A and cystatin C protease inhibitors. Two other interesting proteins 

detected were the serine protease inhibitors alpha-1-antitrypsin and serpin B5, which were both 

detected as interacting with cystatin A and cystatin C. Cystatin C has already been described as 

interacting with serum albumin in a serum “interactome” study
189

. Overall proteins shown to 

interact with cystatin A show prominent roles in glucose processing, extracellular structural roles 

such as collagen and matrix organisation proteins as well as transport of proteins to and 

maintenance of the mitochondrial membranes. And overall the proteins identified as interacting 

with cystatin C show some similarities with cystatin A such as transport of proteins to and 

maintenance of the mitochondrial membranes as well as regulating mitochondrial membrane 

permeability and internal mitochondrial organisation. However, in common with alpha-1-
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antitrypsin analysis it is possible that the long list of proteins identified may indicate some non-

specific bindings; proteins that have a high affinity to bind to any proteins, or interacting with the 

bead surface and alternatively they could be interacting indirectly with the protease inhibitors. 

For example cystatin A and cystatin C have been shown to bind serum albumin, which itself is a 

transporter protein in the blood and therefore itself binds to several other types of protein. 

 

4.6.3 Immobilising elafin using magnetic beads to investigate its 

interactions with other proteins in the skin 

Elafin is a serine protease inhibitor, which was predicted to interact with serine proteases 

though it has not been extensively studied in the literature. Elafin plays a crucial role in the skin, 

particularly in the skin barrier, where it acts against the protease neutrophil elastase
190

. The 

results of our protein interaction study are shown for elafin in Table 4.7. 

 

 

Table 4.7. Table listing the proteins found to interact with elafin. This table lists the 
24 proteins found to interact with the protease inhibitor elafin in this protein binding 
experiment. For further mass spectrometry information such as protein score, number of 
peptides and amount of protein detected please see appendix 12.5. 

This experiment demonstrated that elafin interacts with have a predominant role in microfibrils, 

in particular actin and myosin structure and assembly. 
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4.7 What the proteins identified as interacting with the protease 

inhibitors of interest indicate 

The aim of this chapter was to investigate the roles of different protease inhibitors in the skin 

similarly to Bennett et al., in 2010
57

 with LEKTI. In order to do so we bound selected protease 

inhibitors to immobilised magnetic bead arrays individually and incubated them in skin 

homogenate before removing the bead-protease inhibitor-interacting protein complex. By doing 

so we hoped to understand more about the role of protease inhibitors and proteases in the skin. 

These findings can be applied to other skin diseases as potential drug therapy targets. Using 

this technique we were able to identify some undescribed interactions with protease inhibitors. 

 

4.7.1 How the results from cystatin A and cystatin C binding 

experiments suggest new binding roles for these protease 

inhibitors 

Cystatin C has been described previously as interacting with serum albumin
191

 which 

corroborates with our results as we also identified serum albumin as an interactor. Both cystatin 

A and cystatin C protease inhibitors demonstrated an interaction with caspase-14, which is a 

cysteine protease. Caspase-14, unlike most of the other cysteine proteases is largely confined 

to the skin and more specifically the stratum corneum
192

. It is pivotal in the terminal 

differentiation of keratinocytes, correct maturation of the skin barrier, skin hydration and 

protection from UV radiation.
95

 Caspase-14 is one of the main enzymes responsible for filaggrin 

break-down in the stratum granulosum and stratum corneum. In disease caspase-14 is absent 

in psoriatic lesions, but not in unaffected skin areas of the same patients
193

. However, caspase-

14 deficient mice did not develop skin abnormalities
97

. Perhaps low levels of caspase-14 in 

psoriasis is a downstream effect of a signal triggering over-activity of cysteine protease 

inhibitors, such as cystatin A and cystatin C in the lesional area. Caspase-14 has also been 

described as interacting with LEKTI which revealed that LEKTI played a role in skin barrier 

development.
57

 

 

Other proteins previously found to be associated with cystatin A include dermcidin, calcium-

dependent proteins, structural proteins, protein S100-A6 and vitamin D3 binding protein, all of 

which have roles in the skin. Dermcidin is an antimicrobial peptide secreted from sweat glands 

and plays a role in protecting the skin barrier from infection. Calcium-dependent proteins include 

calmodulin and calmodulin-like proteins, their concentration in the skin increases with calcium 

ion concentration and thus proximity to the surface of the skin. As discussed in chapter 3 we 

propose that calmodulin-like protein 5 could be a marker of keratinocyte differentiation and 

demonstrates the lack of differentiation in AE. Protein S100-A6 belongs to a larger group of 

S100 proteins two of which (protein S100-A7 and protein S100-A15) have been linked to 
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psoriasis.
194

 There were not as many interacting proteins identified for cystatin C, but similarly to 

cystatin A several structural proteins were detected, including actins and collagen as well as 

regulatory signalling molecules.  

 

4.7.2 How the results of the alpha-1-antitrypsin binding experiment 

differ from our expectations  

Alpha-1-antitrypsin is renowned for being particularly “sticky”, it binds to and interacts with many 

proteins. There are reports of alpha-1-antitrypsin interacting with kallikrein proteins
195

. This is of 

interest as kallikreins are serine proteases, we might expect to find them interacting with the 

serine protease inhibitor alpha-1-antitrypsin. However, kallikreins were not detected in this 

series of experiments, this was also true when another group were looking for kallikreins from 

human skin tissue
57

. Kallikreins play a key role in initiating a cascade to control desquamation of 

the skin. There are many potential reasons why we were unable to identify kallikreins. In the 

stratum granulosum, kallikreins are stored in lamellar bodies within the granular cell, these 

lamellar bodies contain lipids and are impermeable and highly hydrophobic. It would be unlikely 

that the mass spectrometry technique used here would identify proteins in highly lipophilic 

regions. In order to study those proteins a modified approach would be required.
196

 

 

4.7.3 How the results from the elafin binding experiment differ from 

our expectations 

Elafin showed a similar interacting profile to the previous protease inhibitors (sections 4.6.1 and 

4.6.2) with a large number of structural/cytoskeletal proteins, protein modification enzymes, 

glucose processing and DNA packaging proteins. We were expecting to identify elastase 

(serine protease) (Table 4.2). Elastase is an enzyme responsible for breaking down elastin, one 

of the major connective tissue components. However, due to the low levels of elastase in 

healthy skin we were unable to detect it
197

. Elafin also controls the serine protease neutrophil 

elastase within the skin
198

. Neutrophil elastase destroys pathogens that have been 

phagocytosed as part of the inflammatory response and elafin acts to quench the inflammatory 

reaction
190; 199

. Elafin also has antimicrobial properties; antiviral
200; 201

, antibacterial
202; 203

 and 

antifungal
204

. To further interrogate the dataset generated in Table 4.7, blast searched against 

two bacterial proteomes: Proprionbacteria and Staphylococcus. These are the two most 

abundant bacteria found on the skin’s surface and within the uppermost layers of the epidermis. 

Only one bacterial protein was identified and that was a phosphocarrier protein of 

Staphylococcus aureus. This is a protein involved in the carbohydrate metabolism pathway. 
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4.8 Conclusions from the protein binding experiments discussed in 

this chapter 

The work carried out in this chapter describes an isolation technique combined with mass 

spectrometry to identify proteins from skin homogenate interacting with protease inhibitors. 

Within that remit we hoped to identify new proteases within the skin that may be therapeutic 

targets or importance to skin barrier formation. We studied the protease inhibitors alpha-1-

antitrypsin, cystatin A, cystatin C and elafin. This method designed to identify proteases and 

their interactions with isolated protease inhibitors in the skin successfully identified cystatin A 

and cystatin C as inhibitors or the serine protease caspase-14 (Table 4.5 and Table 4.6). 

Dermcidin, an antimicrobial peptide, was also found to bind to cystatin A (Table 4.5). 

 

AE is a skin disease caused by a defective skin barrier. We thought that investigation into 

protease inhibitors and proteases in the skin would shed more light on their roles, and thus be 

of potential used as therapeutic targets in skin disease. Caspase-14 is a protein responsible for 

the breakdown and processing of filaggrin monomers into free amino acids
205

. A deficiency of 

caspase-14 in mice leads to accumulation of filaggrin monomers, unable to be processed to 

free amino acids
94

. Not only is caspase-14 a fundamental protease required for correct 

processing of filaggrin and therefore moisturising of the skin, it has also been found that there is 

reduced caspase-14 expression in patients with AE
91; 101

. 

 

Dermcidin is an antimicrobial peptide expressed in eccrine sweat glands protecting epithelial 

surfaces of the body. Unlike other antimicrobial proteins, dermcidin is not produced by 

keratinocytes.
206; 207

 It does however, play a role in triggering keratinocytes to release cytokines 

and chemokines
208

. Patients with AE suffer more frequent skin microbial infections compared 

with controls and they have reduced amounts of dermcidin peptides in their sweat. Furthermore, 

patients with AE who have a long history of skin infections had an even lower amount of 

dermcidin peptides
209

. 

 

In this chapter cystatin A was found to interact with both caspase-14 and dermcidin. This has 

interesting implications for AE. Dermcidin and caspase-14 have both shown to be 

downregulated in AE, suggesting that there could be over-activity of cystatin A in patients with 

AE leading to over-suppression of dermcidin and caspase-14. There is only one publication 

linking both cystatin A and AE
210

. They found a significant association between polymorphisms 

in cystatin A and AE
211

. The results in this chapter appear compelling enough to suggest that 

cystatin A could be a key player in manifestations of AE in susceptible children alongside two of 

its binding partners: dermcidin and caspase-14. 
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Chapter 5 

 

Optimisation of protocols for the 

proteomic analysis of full-thickness skin 

biopsies 
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5.1 Introduction 

The analysis of full thickness skin as a sample tissue type has never been studied before in the 

UCL Biological Mass Spectrometry Centre therefore extensive optimisation was required. 

Additionally, there is a paucity of research available for the analysis of full thickness skin using 

proteomics. This is probably due to the high complexity of skin; containing extensive cross-

linkage bonds between proteins and protein-lipid complexes which make the skin insoluble and 

resistant to digestion with MS compatible proteases (particularly trypsin, which is the most 

commonly used in mass spectrometry, due to the use of lysine residues in cross-link bonds). 

Secondly, the high lipid content in skin contributes to its insolubility and consequently a high 

number of proteins are membrane bound and therefore largely hydrophobic. 

 

The first step in the analysis of tissue for proteomics involves a homogenisation step, 

preliminary work for this thesis suggested that in order to get the solid mass of skin tissue into 

solution it would be first crushed under liquid nitrogen using a pestle and mortar. A 

homogenisation buffer was then added and the mixture homogenised by hand in a glass 

homogeniser. Skin is a complex sample containing lipids, salts as well as the proteins of 

interest, there are also salt and buffer contaminants introduced by the homogenisation step that 

need to be removed. Prior to analysis method development was required to optimise conditions 

for analysis. Optimisation was necessary because an analysis method for skin had not been 

optimised in our laboratory. In order to purify the skin samples two techniques were evaluated: 

(i) Desalting and purification of proteins using ultra-centrifugal filtration 3 kDa units 

(method 10.2.6) 

(ii) Protein precipitation using organic solvents (chloroform:methanol) (method 10.2.7) 

Initial optimisation experiments were performed on the less sensitive QToF Premier in our 

laboratory. Once the optimised extraction methods were determined all further analyses were 

carried out on the more sensitive SYNAPT G2-Si QToF-MS. 

 

5.2 Purification of proteins from skin using ultra-centrifugal 

filtration techniques 

Size exclusion filters were used to evaluate removal of lower molecular weight compounds from 

the skin homogenate, illustrated in Figure 5.1, step 5: 
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Figure 5.1. Diagram showing the generic workflow for preparing skin punch 
biopsies for MS analysis, including a 3 kDa clean-up step. Points 1-12 show the 
sample preparation procedure that was used at this stage of the project. The samples 
was initially snap frozen, crushed under liquid nitrogen with a pestle and mortar, further 
homogenised using a glass homogeniser, sonicated, low molecular (<3 kDa) weight 
species filtered, the samples trypsin digested and transferred to vials for MS analysis. 

The principle of ultra-centrifugal filtration is a membrane which only allows molecules of a 

certain size to pass through it whilst being centrifuged at a specific speed. In this case, we 

chose 3 kDa filters as most salts, lipids, small molecules and peptides are less than 3 kDa. 

Proteins would be retained as their mass is greater than 3 kDa. The manufacturer’s 

recommended protocol suggested that a series of wash steps may be required to increase 

purification and desalting capacity of the columns. We evaluated this by performing experiments 

that included 1, 2 and 3 wash steps. In each case the retained protein and eluent was analysed 

to determine the protein content. Both fractions were analysed on a Waters QToF Premier mass 
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spectrometer: the flow through containing the <3 kDa species (i.e. contaminants such as salts) 

and the concentrate containing the >3 kDa species. 

 

 

Figure 5.2. Graph showing the number of proteins identified by MS analysis with a 
variable number of washes after filtration. The bars in green show the proteins 
recovered from the concentrate (>3 kDa fraction) and in red show the proteins recovered 
from the flow through (<3 kDa fraction) for no wash after filtration up to 3 washes. 

The results from this experiment were somewhat surprising as they show that with additional 

washes the protein content of the concentrated fraction (>3 kDa) decreases and the protein 

content of the flow through fraction (<3 kDa) increases. This indicates that the additional 

washes are damaging the 3 kDa filter therefore allowing proteins to be forced through the 

membrane. To recover as much protein as possible no wash steps were included for all further 

experiments using 3 kDa filtration. 

 

5.3 The evaluation of organic solvent and protein precipitation as a 

method for the purification of proteins from skin 

Precipitation, using chloroform and methanol in a 1:2 v/v extracts lipids from a sample without 

interfering with the proteins as described by Folch in 1957
212

. This is illustrated in, steps 5-7: 
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Figure 5.3. Diagram showing the generic workflow for preparing skin punch 
biopsies for MS analysis, including an organic and protein precipitation step. Points 
1-9 show the sample preparation procedure that was used at this stage of the project. 
The sample was snap frozen and crushed under liquid nitrogen. Homogenised in a glass 
homogeniser, sonicated, lipids extracted in chloroform/methanol, proteins trypsin 
digested and transferred to vials for MS analysis. 
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To evaluate protein precipitation as a purification method the workflow in Figure 5.3 was used to 

evaluate whether precipitation after homogenisation would increase protein recovery. 

 

 

Figure 5.4. Graph showing the number of proteins identified by MS analysis when 
comparing 1:2 v/v CHCl3:MeOH extraction and no extraction. A slight decrease in 
proteins recovered after extraction with 1:2 v/v CHCl3:MeOH solution was observed. 

Figure 5.4 shows a slight loss of protein content (~10%) when this lipid extraction technique was 

used. It is most likely that this is loss of hydrophobic proteins or proteins that have interactions 

or are conjugated with lipids and therefore soluble in CHCl3:MeOH. The rationale behind 

delipidating after homogenisation was to extract the lipids from the same sample as the proteins 

for lipidomic MS analysis. However, this data indicates that protein recovery is compromised 

post-delipidation (purple bar), compared with an untreated sample (blue bar). We concluded 

that delipidation at this stage was not favourable in light of the 10% protein loss. 

 

5.4 Homogenisation buffer optimisation for frozen skin samples and 

MS analysis 

The homogenisation buffer used at step 3 of Figure 5.1 and Figure 5.3 was optimised. It was 

based on solubilisation of skin proteins and compatibility with downstream MS analysis. Ten 

milligrams wet weight of the same skin tissue was homogenised in seven different buffers, the 

protein hits were assessed by MS analysis. 
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Figure 5.5. Graph showing the number of proteins identified by LC-MS when 
comparing 7 different homogenisation buffers. Seven different homogenisation 
buffers were used to determine which was most appropriate: A) 50 mM Tris, pH 8, 
containing 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, B) 50 mM Tris-HCl, pH 7.4, 
containing 25 mM NaCl, 25 mM EDTA, C) 50 mM AmBic, pH 7.8, containing 2% ASB-14, 
D) 8 M urea, 2% CHAPS, 65 mM DTE, E) 6 M urea, 2 M thiourea, 65 mM DTE, F) 4 M 
guanidine HCl, 65 mM DTE, 10 mM EDTA, 50 mM sodium acetate, pH 5.8 and G) 150 
mM PBS. 

This experiment showed that homogenisation buffer C (50 mM AmBic, pH7.4, containing 2% 

ASB-14) yielded the most proteins (~50% greater than buffer B). In addition, the protein in this 

sample showed greatest diversity of cellular components than the other buffers. 
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Figure 5.6. Pie charts showing the cellular components represented by the proteins 
identified for six of the homogenisation buffers. Using PANTHER Classification 
System (www.pantherdb.org), the proteins identified in Figure 5.5 are represented by 
cellular compartment. A-E and G represents the different homogenisation buffers: A) 50 
mM Tris, pH 8, containing 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, B) 50 mM Tris-
HCl, pH 7.4, containing 25 mM NaCl, 25 mM EDTA, C) 50 mM AmBic, pH 7.8, containing 
2% ASB-14, D) 8 M urea, 2% CHAPS, 65 mM DTE, E) 6 M urea, 2 M thiourea, 65 mM 
DTE and G) 150 mM PBS. 

The PANTHER cellular component analysis indicated that buffer C (50 mM AmBic, pH 7.8, 

containing 2% ASB-14) covered proteins from seven different cellular components: cell junction, 

cell part, extracellular membrane, extracellular region, macromolecular complex, membrane and 

organelle, with at least 5% of proteins represented in each section. 

 

http://www.pantherdb.org/
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5.5 LC-MS/MS parameter optimisation to optimise chromatography 

parameters for increased protein coverage 

The MS analyses described previously in this chapter involve samples being analysed by LC-

MS/MS using a single chromatographic separation column, separating peptides over 1 h. To 

increase proteomic coverage in mass spectrometry, offline two-dimensional chromatographic 

separation or fractionation may be used. Fractionation is when a single sample is separated into 

multiple fractions according to molecular weight or pKa, for example, in this case we used a 

high pH acetonitrile gradient. When a sample has been fractionated into 10 fractions in theory, 

there is ~1/10
th
 of the complexity in each fraction. Each fraction is separated by the same 1 h 

LC gradient and analysed by MS individually, totalling 10 h of LC time. This will increase the 

proteome coverage (for combined fractions) due to decreased complexity of individual fractions 

and increased MS acquisition time. 

 

Using buffer C (50 mM AmBic, pH 7.8, containing 2% ASB-14), two fractionation experiments 

were compared. Separation based on protein molecular weight (MW) using 1D SDS-PAGE, 

fractionating the gel column into 10 bands (method 10.2.9), and fractionation using high pH C18 

chromatography (method 10.2.11). 

 

 

Figure 5.7. Graph showing the number of proteins identified for shotgun analysis 
compared with two different fractionation techniques. Shotgun refers to analysis of 
the whole sample in one single acquisition, 1D in-gel digestion is the fractionation by 
separating proteins by MW (10 bands) and 2D-LC fractionating by hydrophobicity using a 
high pH ACN gradient (10 fractions). 

Figure 5.7 illustrates how fractionating increases the number of proteins identified compared 

with shotgun analysis. This is unsurprising due to reasons discussed previously that decreased 
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complexity of individual fractions and increased MS acquisition time for all fractions combined 

will increase proteomic coverage. The 2D-LC method detected in excess of 250 proteins, an 

improvement on the initial experiments. 

 

5.5.1 Distribution of proteins detected according to protein class 

depending on the LC-MS/MS parameters applied 
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Figure 5.8. Pie charts showing protein class representation by the fractionation 
methods. Using PANTHER Classification System (www.pantherdb.org) the proteins 
represented in Figure 5.5 were analysed to identify their protein class. 1) shotgun 
analysis, 2) 1D in-gel digestion and 3) 2D-LC. 

http://www.pantherdb.org/
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These pie charts show a range of protein classes, it is interesting to note that 2D-LC shows the 

most even distribution between all the classes compared with the other two methods. 

Irrespective of the LC-MS/MS method used, structural and cytoskeletal proteins are abundant in 

Figure 5.8. We want to apply these LC-MS/MS methods to skin samples in health and disease. 

The structural infrastructure of the skin is a key part of the skin’s role in protecting the body from 

the external environment. In order to study changes in the skin, it is important that our method is 

able to identify proteins from the key protein classes, such as structural and cytoskeletal. Other 

key protein classes in the skin are cell adhesion and cell junction molecules, they are 

responsible for tight junctions between keratinocytes of the epidermis and in turn prevent 

excessive water loss from between cells which is a key role of the skin barrier. 

 

As detailed in chapter 3 calcium-dependent proteins have a role in correct maturation and 

progression of keratinocytes in the epidermis. It is important therefore, that the LC-MS/MS 

method selected in this chapter would be able to detect these proteins. In chapter 3 we also 

suggested that proteins responsible for initiating keratinocyte differentiation in the epidermis 

were not being transported to the correct location in order to fulfil their function. It is also 

therefore important that in Figure 5.8 we were able to identify proteins from the classes: 

membrane traffic, transfer/carrier and transporter proteins as these proteins could indicate 

whether there are trafficking defects in disease. 

 

5.6 Further optimisation of sample preparation to improve speed 

and reproducibility 

An automated homogeniser (Minilys, Bertin technologies) was made available to the Biological 

Mass Spectrometry Centre, which meant that the pestle and mortar and hand homogenisation 

steps (steps 2 and 3 of Figure 5.1 and Figure 5.3) could be substitute for an automated method. 

This reduced the preparation time for each sample. Despite the use of an automated 

homogeniser it remained a challenge to solubilise all of the protein in a skin sample. To 

increase the surface area of the skin pieces pre-homogenisation, the tissue was cut into 20 µm 

sections using a cryostat. 

 

The original method was changed to accommodate C18 column chemistry instead of 3 kDa 

filtration. Unlike the 3 kDa filters, C18 cartridges are available in a 96-well plate format which is 

amenable to up-scaling for higher-throughput. This optimised the protocol to reduce sample 

preparation time and to conform to requirements of the more sensitive SYNAPT G2-Si MS. The 

modified sample preparation procedure is shown: 

 



  

103 
 

 

Figure 5.9. Diagram showing the modified workflow for preparing skin punch 
biopsies for MS analysis. Points 1-7 show the modified sample preparation procedure, 
this reduced sample preparation time, compared with the previous workflow (Figure 5.1). 
The sample was snap frozen, sectioned using a cryostat, homogenised in a mechanical 
homogeniser, sonicated, purified using C18 cartridges, transferred to vials and MS 
analysed. 
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5.7 Assessment of the LC-MS/MS method using a higher resolution 

mass spectrometer 

The high resolution Waters SYNAPT G2-Si mass spectrometer is a high resolution/mass 

accuracy capable mass spectrometer. The main difference between the Waters QToF Premier 

and the Waters SYNAPT G2-Si is that the SYNAPT G2-Si has an additional degree of ion 

separation technology: ion mobility separation (IMS) (explained in the introduction section 

1.1.7.1), alongside higher resolution and ten-fold increase in sensitivity. We used IMS here to 

separate co-eluting ions before fragmentation. This is of value to the proteomic work in this 

chapter as high complexity samples and relatively short acquisition times increases the 

likelihood that similar peptides will elute from the LC at the same moment in time. It is then a 

challenging to isolate the fragment ions from these co-eluting precursor ions. With IMS these 

co-eluting precursor ions will be separated by drift time before fragmentation. To assess the 

capacities of this method it was transferred to the higher resolution Waters SYNAPT G2-Si MS. 

 

5.7.1 Optimisation of peptide loading amount 

In order to determine how much sample was required, a sample loading experiment was carried 

out. Skin samples were prepared as detailed in Figure 5.9 and varying amounts of protein 

between 50 and 400 ng was loaded onto the LC system to identify which amount yielded most 

protein hits. The results are displayed below: 

 

 

Figure 5.10. Graph showing the number of proteins identified from varying protein 
loading amounts onto the LC system. This graph shows that increasing the protein 
loaded onto the LC increases the number of proteins identified. 
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We decided that 300 ng of protein was appropriate; enough to ensure sufficient protein whilst 

avoiding the risk of overloading the system. 

 

 

Figure 5.11. Graph showing the comparison in number of proteins between the 
Waters QToF Premier and the SYNAPT G2-Si. This figure shows how the SYNAPT has 
increased the protein coverage by ~5 fold from a sample of full-thickness skin. 

There is a greater than 5-fold increase in protein coverage when using the Waters SYNAPT G2-

Si compared with the Waters QToF premier. This will likely be due to the IMS separating out co-

eluting compounds. 

 

5.7.2 Upgrading the nanoAcquity liquid chromatography system to 

include “in-line” fractionation capabilities 

The Waters nanoAcquity liquid chromatography system was upgraded to include an additional 

module capable of “in-line” fractionating (method 10.2.12). Instead of “off-line” fractionating 

(method 10.2.11) as described in section 5.5, this additional module and additional column 

enabled fractionation and application each fraction onto the analytical column to happen in one 

process. 
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Figure 5.12. Figure detailing the original “1D” setup of the nanoAcquity and the 
upgraded “2D” setup including an additional column and capacity for “in-line” 
fractionating. This figure shows how the original nanoAcquity LC “1D” setup involved the 
sample being injected into the sampling loop, desalted on the trapping column and 
chromatographically separated on the analytical column. In the upgraded “2D” setup an 
additional column after the sampling loop is where the sample is first fractionated. 

As detailed in Figure 5.12 the difference between the original “1D” setup of the Waters 

nanoAcquity and the “2D” version is an additional column which the peptides are sequentially 

eluted off in fractions of increasing high pH ACN concentrations. Post-fractionation desalting, 

concentrating and chromatographic separation of the peptides occurs in the same way as “1D”. 

This method of “in-line” fractionating increases the overall analysis time compared with “off-line” 

fractionation (for the sample number of fractions), followed by  the “1D” setup by ~20 min per 

fraction. However, it does reduce sample preparation time and lab consumables. 

 

To test whether “in-line” fractionation increases the number of proteins identified, skin samples 

were prepared as illustrated in Figure 5.9, using 300 ng of protein per fraction, 4, 6 and 8 

fractions were studied: 
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Figure 5.13. Graph showing proteins detected from “in-line” fractionation of a skin 
sample into 4, 6 and 8 fractions. This graph shows that with increasing number of 
fractions, the proteins identified also increase. 

It would have been a compromise between protein hits and running time to investigate the 

number of fractions further, for examples 10, 15, 20 fractions as inevitably the number of protein 

hits would have continued to increase. Increasing the number of fractions requires greater 

processing power to successfully analyse and merge the data files which was unavailable at the 

time (each file is ~3 GB). Eight fractions was the limit of processing capabilities, it was 

considered prudent not to attempt fractions beyond that. Figure 5.13 illustrates the increase in 

proteins detected as the number of fractions increases. 

 

5.8 Discussion of method development for mass spectral analysis 

of skin for proteomic coverage 

These results show that by adapting the sample preparation method, modifying the LC system 

and upgrading the MS that the number of proteins identified has increased to an excess of 2000 

proteins. In section 5.4, 50 mM AmBic and 2% w/v ASB-14 was selected as the most efficient 

homogenisation buffer. Many homogenising buffers are being used in the literature to solubilise 

various tissues for proteomic analysis. However, there is little agreement between research 

groups nor tissue types on which buffer to use, guanidine hydrochloride has been used to 

extract proteins from colorectal biopsies, PBS for extraction from rat liver and brain
213

 and a mix 

of acetonitrile and PBS for protein extraction from porcine muscle, liver, kidney and fat 

tissues
214

. The array of published homogenisation buffers illustrates the need to optimise for 

tissue type and downstream workflow. 
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It was expected that upgrading the LC and MS technologies that the number of proteins 

detected would increase. Shliaha et al. report up to a 60% increase in proteome coverage 

comparing with and without IMS
215

. In this thesis we see a greater increase in the proteome 

coverage when using IMS (Figure 5.11), because we are comparing two different generations of 

time-of-flight MS as well as a slightly modified sample preparation method. The same paper 

describes how less sample is required for the same result when using IMS, this was also 

observed in this project (section 5.7.1). Again loading amounts in this project differed between 

different machines; one with IMS and one without. 

 

In the introduction we discussed the challenges associated with analysing an insoluble and 

highly cross-linked tissue, this continued throughout the optimisation process and despite best 

efforts it was not possible to solubilise all the skin tissue. We attributed this to the heterogeneity 

of protein properties present in skin. For example, there are water insoluble proteins in the lipid 

bilayer and soluble proteins within the cytoplasm. It is challenging to create a homogenisation 

buffer that is capable of solubilising all extremes of solubility. A group in Maryland, targeted the 

solubilisation of membrane proteins in the epidermis using a 60% methanol solution
216; 217

, this 

would not be so amenable to the solubilisation of hydrophilic proteins. 

 

This method demonstrates an improvement on the original method and is able to cover the aim 

of this chapter in anticipation of clinical samples to investigate. This final optimised method has 

been published in Biological Procedures Online
218

. 

 

5.9 Conclusion and future research for the method development for 

mass spectral analysis of full thickness skin for proteome 

coverage chapter 

This method development chapter has enabled the optimisation and adaptation of a robust and 

much improved LC-MS/MS method for the analysis of full-thickness skin tissue, as shown in 

Figure 5.9. If the method were to be developed further the main area of focus should be tissue 

solubilisation. For skin, this would have to be split into multiple phases, for example one buffer 

to extract hydrophobic proteins and another for hydrophilic proteins. Whether these phases 

would be compatible with recombining to one sample at a later step or not would have to be 

determined, otherwise this would increase sample numbers two-fold. 
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Scarring is when fibrous collagen tissue replaces damaged tissue in wound repair. It is a 

common and healthy process in humans. Although not usually a medical problem, it can 

become a psychosocial problem especially if scars are exposed. As detailed in the introduction 

(chapter 1 ) the skin provides a vital barrier, protecting us from the external environment. The 

skin and the skin barrier can be damaged by trauma. If skin barrier function is impaired for 

prolonged periods of time microorganisms can colonise inside the body causing widespread 

infection. Consequently, the body has developed a process to manage and repair damage to 

the skin barrier as quickly as possible. A balance needs to be found between a “quick fix” barrier 

to seal off the exposed area, i.e. the initial scab and a “long-term” durable seal and the final, 

process of healing the defect is the scar tissue. Often superficial wounds will heal rapidly and 

will not require scar tissue formation to fully repair. More severe injuries require scar tissue 

formation in order to heal. 

 

6.1 Wound healing affecting the full thickness of skin 

If the wound penetrates the full thickness of the skin it will trigger epidermal and dermal repair. 

This is split into four phases: haemostasis, inflammation, proliferation and remodelling
219

. The 

haemostasis phase is when blood cells coagulate and blood vessels contract to reduce blood 

loss, at the same time from blood cells a matrix forms to recruit other cells to the wound site. 

This forms a fibrin plug is what is commonly called a scab. A complex cascade of signalling and 

recruitment of cells ensues. In the inflammatory phase an immune barrier is formed to prevent 

microorganisms that will have penetrated the wound from propagating. Neutrophils migrate 

towards the lesion to phagocytose foreign material
220

. In a second phase of migration 

macrophages move into the lesion site to continue phagocytosis and in the latter inflammatory 

phase lymphocytes are recruited to the wound
221

. The proliferative phase is when tissue repair 

starts. Re-epithelialisation, formation of new blood vessels, wound contraction and formation of 

a fibrous scar are triggered.
222

 Fibroblasts migrate to the wound site and synthesise 

extracellular matrix and collagen proteins
223

. Blood vessel growth promoting factors are 

released to re-vascularise the damaged tissue. Endothelial cells attach to extracellular matrix 

structures in order to initiate re-epithelialisation.
224

 Finally, the remodelling phase can take 

months or years during which time the dermis returns to its pre-injury state as final layers of scar 

tissue are laid down.
222; 225

 

 

6.2 Abnormal wound healing 

Usually scarring proceeds, however, sometimes wounds heal abnormally. This abnormal 

healing can have known causes for example smoking or diabetes, which alters the vasculature 

having a negative effect on wound healing due to compromised blood supply. Other causes of 

may be nutritional deficiency, metabolic disease, pre-existing medical conditions and 
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infection.
226

 There are other examples where excess collagen is produced during the scarring 

process and the scar tissue becomes larger and more pronounced. The main two types of this 

are hypertrophic scarring and keloid scarring. 

 

6.2.1 Hypertrophic scarring 

In healthy wound healing there is a stop signal at the end of the remodelling phase preventing 

further collagen deposition. In hypertrophic scars that stop signal is not effective. There are 

genetic and environmental factors that can affect this stop signal as well as unknown causes. 

Hypertrophic scars are visually distinct to healthy scars, the scar tissue is noticeably raised, yet 

remains within the original margins of the scar tissue.
227

 

 

6.3 Hypertrophic scars: a review of the literature, causes, 

associations and treatment 

This chapter focuses on hypertrophic scarring. In the final stage of wound healing macroscopic 

hypertrophic changes can be seen. It is during the remodelling phase that collagen tissue does 

not stop proliferating to form the hypertrophic scar, but it is thought that earlier stages of the 

wound healing process could be altered by the disease too. In the haemostasis stage a fibrin 

plug is formed to seal the wound, the fibrin proteins are bound together by fibronectin, a 

glycoprotein. Fibronectin is only expressed for a few days after injury, whereas in hypertrophic 

cell lines its expression remains high for up to a year after the trauma
228

. In the inflammatory 

phase macrophages are recruited to phagocytose foreign components and cell debris. It is 

hypothesised that macrophages could be responsible for secreting cytokines that promote 

fibroblasts to over-produce collagen in a hypertrophic mouse model
229

. The three TGF-β 

isoforms (section 4.3) are able to stimulate fibroblast proliferation, inflammatory cell and 

fibroblast cell migration, angiogenesis and extracellular matrix synthesis.
230

 TGF-β1 and TGF-

β2 promote hypertrophic scar formation and TGF-β3 has anti-fibrotic properties
231; 232

. 

Experiments in non-scarring foetal skin show that endogenous levels of TGF-β are lower than in 

adults and that when non-scarring foetal wounds are treated with TGF-β1 and TGF-β2 it leads 

to scarring
233; 234; 235

. Re-epithelialisation changes have been observed too, in health 

keratinocytes are activated for re-epithelialisation and deactivated once the wound has healed, 

however, in hypertrophic scar tissue the keratinocytes are not deactivated and continue to 

proliferate in an uncontrolled manner
236; 237; 238

. There are also other known associations with 

predisposition to hypertrophic scar formation for example hypertension, reduced collagenase 

gene expression and free radical damage
239; 240; 241

.  

 

A separate area of hypertrophic scarring is treatment and management. The most widely used 

treatment is silicone gel. These come in the form of gels or sheets applied to the wound site 
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after a surgical intervention or more commonly after a burns injury. Their mechanism of action is 

not yet established, research would suggest that hydration is a key factor
242; 243

. There are 

difficulties with patient compliance and wound management can be complicated outside of the 

hospital environment
244; 245; 246

. In hypertrophic scars, corticosteroid injections have been shown 

to be effective for reducing hypertrophic scar appearance
247

. Steroids are anti-inflammatory 

agents and through this mechanism they are thought to improve hypertrophic scar appearance. 

By supressing the inflammatory response steroids decrease fibroblast proliferation and in turn 

decrease collagen synthesis
248

. Treating hypertrophic scars with corticosteroid injections has 

been shown to be effective, however, it is not without side effects
247

, such as tissue wasting, 

loss of skin pigmentation and the appearance of dilated capillaries under the skin surface
249

. 

 

6.4 Significance of hypertrophic scarring 

Hypertrophic scars can be disfiguring other symptoms not shown in that image include 

discomfort, pain, itchiness and functional difficulties
250

. Despite research there are few results 

indicating causality or effective, quick and safe treatment. In this chapter we investigate disease 

mechanism or characteristic differences in pre-operative unscarred skin of children, this could 

be used as a predictive measure of pathological scar outcome. We aim to use the proteomics 

method developed in chapter 5 to profile endogenous differences in unscarred skin of children 

who will and will not, develop a hypertrophic scar. 

 

6.5 Investigating the biochemical skin differences in patients who 

will and will not develop hypertrophic scars 

This chapter is part of a collaboration with colleagues from the Dermatology Research Group at 

the UCL Great Ormond Street Institute of Child Health (Drs Benjamin Way and Ryan 

O’Shaughnessy). The study design, recruitment of patients and collection of samples was 

arranged by Dr Way who used transcriptomic techniques to try to find potential disease 

mechanisms in hypertrophic scarring. Our role was a complementary analysis to study changes 

in protein expression of the same tissues using mass spectrometry-based techniques. 

 

6.5.1 The study design 

Children who were undergoing surgical ear reconstructions for microtia were recruited into the 

study. Microtia is a birth defect whereby children are born with one or two of their external ears 

not fully formed. There is no single cause of this malformation and there have been several 

documented ranging from environmental factors, genetic mutations and causes associated with 

other systemic diseases
251; 252

. Surgical treatment is available and involves two operations 

approximately six months apart to reconstruct the external ear, both operations involve excision 
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of rib cartilage via the same thoracic incision
253

. In this study skin samples were taken from the 

thoracic surgical incision site and the scar tissue was excised at the second microtia operation. 

These tissues were used to collect paired samples of healthy and scar tissue. The quality of 

scar at the second operation was graded in order to determine whether individuals had a 

healthy or hypertrophic scar. Figure 6.1 illustrates the workflow for this study and Figure 6.2 

shows images of the scar of two patients included in this analysis. 

 

 

Figure 6.1. Figure illustrating the tissue acquisition and classification of samples in 
this study. This flowchart outlines the time line and points of tissue acquisition for the 
study. It also outlines how the healthy unscarred tissue is identified as skin that will heal 
to form a healthy of hypertrophic scar. T2 was approximately 6 months after T1. 
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Figure 6.2. Images illustrating scarred control (left) and scarred hypertrophic (right) 
of patients in this study. These images were taken of two patients recruited into this 
study and illustrate the difference in a control scar (left) and a hypertrophic scar (right) 
where the scar tissue is visibly raised compared with the control. 

This study design is unique in many ways, the most significant being that other hypertrophic 

scar studies focus on the scar tissue itself or individuals who are known to have scarred 

hypertrophically previously. In this study we have access to healthy skin of individuals with no 

history of hypertrophic scarring or other skin condition before a hypertrophic scar is observed. 

The terms used to refer to these samples in this thesis are “unscarred control”, “scarred control”, 

“unscarred hypertrophic” and “scarred hypertrophic” as illustrated below: 

 

 

Figure 6.3. Figure illustrating the sample groupings. “Unscarred control” and 
“unscarred hypertrophic” describe skin samples taken at T1 when the skin is 
macroscopically healthy and shows no differences between the groups. “Scarred control” 
and “scarred hypertrophic” describe the scar tissue excised at T2 that has been classified 
as either a normal scar or a hypertrophic scar, respectively. 
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6.6 Proteomic analysis of pre-scar tissue 

The most interesting and clinically significant perspective of this study was whether there were 

changes in the endogenous profile of healthy skin that could predict whether a healthy scar or a 

hypertrophic scar would form after surgical injury. Five samples from each group were prepared 

for analysis using the method developed in chapter 5 and analysed anonymously. These 

samples were “unscarred control” and “unscarred hypertrophic” (Figure 6.3). 

 

6.6.1 Quality control of samples prior to analysis 

Samples were prepared according to the method developed in chapter 5 : samples were snap 

frozen after collection, stored at -80 °C before being sectioned, homogenised, sonicated, 

digested, purified, fractionated and the MS data acquired. The size of the tissue sample varied, 

therefore protein content was standardised using a bicinchoninic acid protein assay (method 

10.2.8) after homogenisation. Twenty-five micrograms of protein solution was taken for tryptic 

digestion. Quality control samples (yeast enolase peptides) were analysed within the batches to 

ensure quality of data such as spray stability, chromatography performance and consistent 

protein identifications. 

 

6.6.2 Proteomic analysis of skin biopsies from patients who heal 

healthily compared with those who developed hypertrophic 

scars 

Five children who scarred normally and 5 who developed hypertrophic scars were included in 

this analysis. Their ages, skin tone as described according to the Fitzpatrick skin type scale and 

sex are summarised in Table 6.1.  
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Table 6.1. Table detailing clinical information of the samples in this study. This table 
shows the samples used in this analysis their age, sex and Fitzpatrick skin type. T1 refers 
to the first operation when the unscarred samples were taken and T2, the second 
operation approximately six months after T1 when the scar tissue was excised. 

The main difference between the control group and the group that had hypertrophic scars is 

illustrated in the ‘Fitzpatrick Skin Type’ column. Those individuals that scarred hypertrophically 

had on average a darker skin tone than those in the control group. It is documented that people 

from different ethnic groups have different tendencies to scar hypertrophically
254

. This may 

affect my results as there are different proteins (e.g. melanins) expressed in different skin tones. 

However, this is not of detriment to the study, the fact that people of darker skin tone are more 

susceptible to hypertrophic scarring may suggest that the cause of hypertrophic scarring is 

related to ethnicity. Both the scarred and unscarred tissues for children in both groups were 

prepared as described in chapter 5 . Over 5000 different skin proteins were detected. Figure 6.4 

shows a principle components analysis (PCA) plot of the four different groups in this analysis: 

 

 

Figure 6.4. A PCA plot detailing the proteins identified for the four different groups 
in this experiment. This PCA plot shows the distribution of the four groups with respect 
to proteins identified: unscarred control (green), scarred control (blue), unscarred 
hypertrophic (purple) and scarred hypertrophic (orange) tissue. 
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This PCA plot shows no significant or major proteomic differences between the 4 groups. 

However, a separation between the scarred and unscarred hypertrophic groups (orange and 

purple, respectively) and between unscarred control and scarred hypertrophic groups (green 

and orange, respectively) was observed. This is not surprising because scar and unscarred 

tissue are known to have slightly different protein compositions (more collagen in scar tissue). 

 

6.6.3 Significantly differentially expressed proteins between 

patients who heal healthily compared with those who 

developed hypertrophic scars 

In excess of 5000 proteins were identified in this experiment, 89 were differentially expressed 

with a minimum fold change of 2 and an ANOVA p-value of less than 0.05 between the 

unscarred skin of patients that went on to scar healthily compared with those who scarred 

hypertrophically. Of those proteins 30 were selected, shown in Table 6.2, these proteins were 

selected based on unique peptide count, Progenesis score and sequence coverage. 
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Figure 6.5. Figure illustrating selection of the 30 proteins listed in Table 6.2. Of the 
5158 proteins identified, 89 were significantly differentially expressed between the 
unscarred control and the unscarred hypertrophic samples, this was reduced to 30 when 
accounting for quality of the data. Although ANOVA p-value <0.05 is not a suitable 
measure to identify significance here because of multiple testing and the fact that we 
identified ~5000 proteins, it was just used as an aid to identify the strongest protein 
candidates. 
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Table 6.2. Table detailing the 30 proteins selected from the Progenesis analysis. 
These 30 proteins have a fold change of at least 2 (5

th
 column) and an ANOVA p-value of 

less than 0.05 (4
th
 column), from the Progeneis QI for proteomics analysis of the 

unscarred skin. The proteins in green were over-expressed in unscarred control samples 
and the proteins in red were over-expressed in unscarred hypertrophic samples. The list 
of 89 proteins and further mass spectrometry data for these 30 proteins can be found in 
appendices 12.6 and 12.7 respectively. 

Poly (ADP-ribose) glycohydrolase ARH3 was the protein of greatest increase in the control 

group compared with the hypertrophic group. It has not been described as playing a role in 

correct scar formation previously, however its inhibition has been linked to improved treatment 

of malignant melanoma of the skin
255

. It is an enzyme that hydrolyses poly (ADP) ribose, it is 

involved in cell cycle regeneration, mitotic spindle assembly, DNA repair, cell death, 

development and differentiation
256; 257; 258

. 

 

6.6.4  Bioinformatics: gene ontology analysis 

Gene Ontology is a tool for classification of genes and proteins, to construct pan-species gene 

and protein representations and vocabularies. The demand for these tools has increased with 

the surge in genome-wide studies and subsequent need to classify unrelated lists of genes. It is 

laborious to establish relationships between genes individually with regards to a specific 

biological question. These tools establish categories for genes and proteins such as protein 

function, cellular component and molecular function, they are increasingly accessible to classify 
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lists of genes or proteins from biomarker discovery experiments. Pathway analysis tools find 

biological pathway links between lists of genes or proteins. There are several freely available 

resources and programs providing this type of analysis. The main tools that were selected for 

use in this chapter were: PANTHER (http://pantherdb.org/), Webgestalt 

(http://bioinfo.vanderbilt.edu/webgestalt/) and GeneMANIA (http://www.genemania.org/). 

 

PANTHER gives an overall representation of the data set as far as molecular function, 

biological processes, cellular components, protein class and pathway components are 

concerned. This information can be represented in a pie chart format and was used initially to 

get an overview from which parts of the tissue matrix the proteins of interest originated. Figure 

6.6 shows this overview for the proteins in Table 6.2. 

 

 

Figure 6.6. Pie chart showing the cellular components of the protein in Table 6.2. 
This pie chart shows the proteins in Table 6.2 according to sub-cellular location. 

Figure 6.6 shows that most proteins in Table 6.2 belong to the cell part of the tissue. Together 

cell part, organelle and membrane proteins make up approximately 75% of all cellular 

components represented. Figure 6.7 and Figure 6.8 show pie charts for the 30 proteins in Table 

6.2 for molecular function and biological processes, respectively. 

 

http://pantherdb.org/
http://bioinfo.vanderbilt.edu/webgestalt/
http://www.genemania.org/
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Figure 6.7. Pie chart showing molecular function for proteins in Table 6.2. This pie 
chart separates the proteins listed in Table 6.2 according to their molecular function. 

 

 

Figure 6.8. Pie chart showing biological processes for the proteins in Table 6.2. This 
pie chart separates proteins in Table 6.2 into their respective biological processes. 

Molecular function data shows that structural, binding and receptor components are key aspects 

for the recovery and repair of skin tissue post-surgery. The categories identified in the biological 

processes analysis alone are not that informative. It would be useful to know more specifically 
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what immune system processes or multicellular organismal processes are represented. 

Webgestalt is a tool for further mining the data set, it can identify more specific roles, as 

illustrated in Figure 6.9, Figure 6.10 and Figure 6.11: 

. 
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Figure 6.9. Flow chart showing the cellular processes for the proteins in Table 6.2. 
Flow chart generated by Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/). 

http://bioinfo.vanderbilt.edu/webgestalt/
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Figure 6.9 highlights cellular components represented by the proteins identified as being 

significantly differentially expressed between the unscarred tissue of the children that went on to 

scar healthily compared with those that scarred hypertrophically. Cytoplasmic vesicles and 

cytoskeletal functions stand out as key components for healthy healing function. Vesicles are 

key for transport within the cytoplasm as well as expelling compounds from within the cell. 

Secondly, underlying skin structure is important for barrier formation and maintenance of 

structural integrity which is key for the skin to fulfil its function as a protective barrier. 

 

 

Figure 6.10. Flow chart showing the molecular function for the proteins in Table 6.2. 
Flow chart generated by Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/). 

Figure 6.10 illustrates the molecular functions represented by the proteins in Table 6.2. Protein 

transport activity is associated with two of the proteins. As described in chapters 3 and 4 , 

protein transport is crucial for correct barrier function and skin integrity. Binding represents a 

significant branch of this flow chart (Figure 6.10). The binding branch links to heparin binding. 

Heparin is a glycosaminoglycan, consisting of repeating sulphated disaccharide units. In 

medicine it is administered to reduce the formation of clots. It is also endogenously released 

http://bioinfo.vanderbilt.edu/webgestalt/
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from mast cells in the body. Its role within the body could be as a defence molecule
259

. Perhaps 

heparin has a role in wound healing and is dysregulated in individuals who develop hypertrophic 

scars. Finally, a group of oxidoreductase proteins have been identified. Oxidoreductases are a 

group of enzymes responsible for electron transfer between compounds. These reactive oxygen 

species (ROS) contribute to oxidative stress which in turn modifies DNA, lipids, proteins and 

carbohydrates within the body.
260

 This links to the antioxidant activity shown in Figure 6.7 and 

could suggest that underlying oxidative stress within the body influences predisposition to 

develop a hypertrophic scar. 
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Figure 6.11. Flow chart representing biological processes for the proteins in Table 
6.2.  Chart generated by Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/). 

http://bioinfo.vanderbilt.edu/webgestalt/
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Figure 6.11 shows the biological processes associated with the proteins significantly 

differentially expressed in patients that developed hypertrophic scars and those that did not. 

From those proteins (Table 6.2) eight genes are associated with epidermis development, this is 

unsurprising since the original tissue was skin. However, of the thousands of proteins present in 

skin for 8 of 30 to be involved in epidermal development is perhaps not just a result of 

proportional representation. This could suggest that there is a different composition of epidermal 

development proteins in those that have a predisposition to develop a hypertrophic scar. 

Secondly, Figure 6.11 shows differences in the immunological component between the two 

groups and more specifically antigen processing. 

 

Webgestalt also links the proteins to related diseases. Table 6.3 lists the associated diseases 

linked with proteins in Table 6.2. 

 

 

Table 6.3. A table listing the diseases associated with the proteins in Table 6.2. This 
table (generated by Webgestalt) lists the diseases known to be linked to the proteins from 
Table 6.2. C = the number of reference genes in the category, O = the number of genes 
in the gene set and also in the category, E = the expected number in the category, R = 
the ratio of enrichment, rawP = p-value from hypergeometric test, adjP = p-value adjusted 
by the multiple test adjustment. 

Most of the associated diseases in Table 6.3 are skin diseases, it is interesting to note that 

keratin 14 (EntrezGene 3861) has been associated with 6 of the 10 listed diseases, particularly 

with diseases of overgrowth such as parakeratosis and keratoderma where the epidermis 

continues to grow at a rate exceeding the rate at which skin cells are being shed. This is similar 

to the overgrowth of scar tissue described in hypertrophic scarring. 

 

Finally GeneMANIA was used to visualise and map the links between those selected proteins 

and to highlight pathways with specific functions as shown in Figure 6.12. 
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Figure 6.12. Figure illustrating protein interactions from Table 6.2. This figure 
illustrates the interactive network between the proteins of Table 6.2. Purple links = co-
expression, blue = co-localisation, pink = physical interaction, yellow = shared protein 
domains, green = genetic interactions. The protein nodes highlighted in red are involved 
with epidermal development and those in blue are associated with vesical membranes. 

This way of visualising the data helps to identify new links between proteins and. For example, it 

is interesting that keratins have a very central role, with more connections to other proteins than 

any other class. One protein of interest was HLA class I histocompatibility antigen, B-73 alpha 

chain, this figure identifies four other proteins from that list that associated with it: dynactin 

subunit 1, c-type lectin domain family 4 member k, legumain and AP-2 complex subunit alpha-2. 

C-type lectin domain family 4  member k helps to facilitate antigen uptake to lysosomes and 

transport vesicles, legumain acts to process proteins for antigen presentation and dynactin 

subunit 1 and AP-2 complex are involved in vesicle, early endosome and lysosome transport.
261
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6.6.5 Modified protein validation in the sample analysis 

After acquisition MS raw files contain all the mass ion information for that sample. These raw 

files can be re-analysed to interrogate different aspects of the data, for example possible 

changes in post-translational modifications (PTMs) of proteins. Most proteins in the body have 

some degree of post translational modification, proteins in the skin are no exception. Common 

skin PTMs include: deamidation, oxidation, hydroxylation, methylation, sulphation, carbonylation 

and citrullination. Deamidation is the removal of the amide functional group from asparagine or 

glutamine and is part of the protein degradation. Methionine oxidation is a reversible enzymatic 

electron releasing reaction that occurs as proteins age in vivo. Hydroxylation most commonly 

involves proline, but also affects aspartic acid, lysine and asparagine residues. During 

hydroxylation a hydrogen atom is enzymatically modified to a hydroxyl group and is commonly 

found in collagen. Methylation, the addition of a methyl group to an amino acid (-CH3) of 

aspartic acid, leucine, lysine, glycine and asparagine residues occurs frequently on histones. 

Sulphation, the addition of a sulpho group (-SO3H) to an amino acid is involved in a range of 

biological processes. Carbonylation occurs when carbon monoxide modifies or oxidises amino 

acids. Finally, citrullination is the conversion of arginine to a citrulline residue. Citrulline is an 

amino acid, but not coded for in DNA and only occurs as a result of this PTM. Citrullination 

occurs in inflammation and cell death. 

 

Macros were developed for the analysis of the PTMs described above and Progenesis QI for 

proteomics (Nonlinear Dynamics) was used to analyse data from all the patient samples in 

chromatographic fraction 5 of the experiment. Fraction 5 was selected because this was the 

fraction containing the greatest number of proteins. The quality of spectra data for modified 

peptides tends not to be as high as the respective unmodified peptide. Figure 6.13 and Figure 

6.14 illustrate this, they are both spectra for the peptide with sequence NMQDLVEDFK, 

however, Figure 6.13 shows the spectrum for the unmodified peptide and Figure 6.14 shows the 

spectrum for the same peptide, yet with a hydroxylasparagine (N) at the beginning of the 

sequence instead of a ‘standard’ asparagine (N). 

 

 

Figure 6.13. Figure showing the spectrum of an unmodified peptide NMQDLVEDFK. 
This spectrum shows the b and y ions for the unmodified peptide NMQDLVEDFK from 
keratin type II cytoskeletal 5. 



  

131 
 

 

Figure 6.14 Figure showing the spectrum of a modified peptide NMQDLVEDFK. This 
spectrum shows the b and y ions for the modified peptide NMQDLVEDFK from keratin 
type II cytoskeletal 5, where the N-terminal asparagine residue is hydroxylated. 

The unmodified spectrum (Figure 6.13) is of a higher quality than the modified one (Figure 

6.14); there are several y ions (red) at greater that 10% signal intensity and although not as 

intense there are also corresponding b ions (blue). The unmodified peptide (Figure 6.14) shows 

a high intensity y ion (red) peak for the unfragmented peptide (~1250 m/z) and low intensity b 

ion (blue) fragments. This is the nature of fragmented peptides that they tend to act slightly 

different to their unmodified counterparts and thus have poorer fragmentation and therefore less 

accurate identification. 

 

Of the selected PTMs, nitrosylation of cysteine (whereby nitric oxide is incorporated into the 

cysteine residue) showed the greatest difference in between the unscarred control and 

hypertrophic tissues as illustrated in Figure 6.15: 
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Figure 6.15. Scatter plot illustrating the mean number of nitrosylated cysteine per 
peptide. Scatter plot showing a higher number of modifications per peptide ion for the 
proteins in the unscarred hypertrophic tissue (purple) compared with the unscarred 
control tissue (blue). This type of analysis does not give statistical significance. 

Cysteine nitrosylation facilitates redox-dependent signalling and protein function regulation
262

. 

Figure 6.15 shows the lowest mean in the unscarred controls, the highest mean in the scarred 

hypertrophic tissue. Nitrosylation of cysteine residues occurs as a response to oxidative stress 

and ROS damage in cells
262

. 
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Figure 6.16 Scatter plot illustrating the mean number of trimethylated lysine per 
peptide. Scatter plot showing a higher number of modifications per peptide ion for the 
proteins in the unscarred hypertrophic tissue (purple) compared with the unscarred 
control tissue (blue). This type of analysis does not give statistical significance. 

Figure 6.16 shows lowest levels of trimethyllysines (whereby three methyl groups are added 

sequentially to a lysine residue) in unscarred hypertrophic tissue. There is a difference in the 

means of unscarred and scarred hypertrophic tissues. Lysines can be single, doubly or triply 

methylated, most often histones contain methyllysines
263

. Methylation is controlled by methyl 

transferases and demethyltransferases and regulates gene expression
264

. The small difference 

in methylation state between unscarred control and unscarred hypertrophic samples appears to 

have consequences for gene expression. Table 6.2 lists histone as a protein upregulated in 

unscarred hypertrophic tissue compared with controls from our proteomic analysis. This is not 

the same as the pattern shown by trimethyllysine in Figure 6.16. 
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Figure 6.17. Scatter plot illustrating the mean number of deamidated glutamines per 
peptide. Scatter plot showing a higher number of modifications per peptide ion for 
proteins in unscarred hypertrophic tissue (purple) compared with unscarred control tissue 
(blue). This type of analysis does not give statistical significance. 

Protein deamidation is a PTM found in ageing and age-related diseases
265; 266

. Glutamine 

deamidation describes the removal of an amide functional group from a glutamine amino 

acid
267

. Protein deamidation rate is influenced by factors such as protein shape
268

, exposed 

surface of the protein
269

 and surrounding environment
270; 271

. Figure 6.17 shows a greater 

amount of glutamine deamidation in hypertrophic samples compared with controls for both 

scarred and unscarred tissues. This suggests there a higher level of protein turnover in the 

children that develop hypertrophic scars. 

 

6.7 Targeted lipidomic analysis of glycosphingolipid isoforms in the 

skin of children in this study of hypertrophic scar outcomes 

Our results in Table 6.2 indicated differences in oxidative stress and free radical damage 

between the two groups. This was also indicated in Figure 6.7 showing antioxidant activity, 
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Figure 6.10 identified oxidoreductase activity and Figure 6.15 indicated free radical damage. 

Antioxidant and oxidoreductase activity suggests free oxygen within the skin is being converted 

by oxidoreductase to ROS. Antioxidants maintain ROS at a healthy level in the body and have 

can quench ROS reactions if their levels become too high. ROS includes hydroxyl radicals, 

hydrogen peroxide and superoxide anions
272

 these highly reactive species have a healthy role 

in the body as signalling molecules for regulatory processes within the body
273

 however, they 

also act to damage DNA, proteins and lipids
274

. When ROS species such as hydroxyl radicals 

interact with lipids they can initiate lipid peroxidation resulting in hydroxylated and peroxide 

lipids as intermediate species. Lipids are important in the skin, making up a large part of the 

skin barrier and protecting against excessive water loss
276

. The major lipid classes in the skin 

are cholesterols, free fatty acids and ceramides
277

. All these lipids are susceptible to 

peroxidation if the level of free radical species is high enough. We hypothesised that if 

proteomic and PTM data showed antioxidant and oxidoreductase activity there may be changes 

in lipid peroxidation in the skin. To test this, a glycosphingolipid (more specifically 

globotriaosylceramide) was characterised. 

 

 

Figure 6.18. The chemical structure of globotriaosylceramide (GB3). GB3 consists of 
a sphingoid base with a fatty acid chain of varying length and three sugar moieties. 

The length of the fatty acid component is variable in health, as illustrated in Figure 6.19: 
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Figure 6.19 The chemical structure of three globotriacylceramide isoforms: C24-
GB3, C20-GB3 and C16-GB3. These three GB3 isoforms differ only in fatty acid chain 
length, the sphingoid base and sugar moieties remain unchanged. 

Figure 6.19 shows three isoforms of GB3 in which the fatty acid chain is saturated (there are no 

C=C double bonds in the chain). GB3 is a precursor of ceramide, which is the most abundant 

intracellular lipid in the skin and plays a role in barrier function
278

. An 11 minute LC-MS/MS 

assay (method 10.2.17) was developed to quantitate GB3 and GB3 isoforms in skin tissue, to 

investigate evidence of lipid peroxidation and signs of oxidative stress damage in these 

samples. The assay included 14 GB3 isoforms: C16:0, C18:0, C20:0, C22:0, C24:0, C26:0, 

C22:1, C24:1, C24:2, C22:0-OH, C24:0-OH, C24:0-OH-OH, C24:2-OH and C24:2-OOH as 

illustrated in Figure 6.20 with their respective retention times: 
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Figure 6.20. Figure illustrating the GB3 isoforms quantified in this assay. This figure 
shows the combined chromatograms of the GB3 isoforms in this assay. The x-axis 
represents retention time and the y-axis shows relative abundance. 

Lipids were extracted from the same tissue homogenate that the proteomic analysis was carried 

out on in section 6.6. Lipids were extracted from 0.3mg of protein homogenate to standardise 

lipid content. The overall GB3 levels were slightly elevated in the hypertrophic samples, data 

shown in Figure 6.21: 



  

138 
 

 

Figure 6.21. Scatter plot for total GB3 levels, in the unscarred control and unscarred 
hypertrophic samples. This scatter plot shows the relative amounts of 
globotriacylceramide (GB3). ‘Controls’ (median = 19459) refers to the healthy pre-surgery 
skin tissue from the children who post-surgery went on to develop a healthy scar. 
‘Hypertrophs’ (median = 31478) refers to the healthy pre-surgery skin tissue from the 
children who post-surgery went on to develop a hypertrophic scar. 

The individual isoforms of GB3 showing most noticeable differences were C24:2, C24:2-OH and 

C24:0-OH-OH. The scatter graphs for these isoforms are shown in Figure 6.22, Figure 6.23 and 

Figure 6.24: 

 

Figure 6.22. This scatter plot shows the relative abundance of the C24:2 GB3 
isoform. This scatter plot shows the relative abundance and median of the C24:2 GB3 
isoform in the control (median = 1036) and hypertrophic (median = 1873) groups. 
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Figure 6.23. This scatter plot shows the relative abundance of the C24:2-OH GB3 
isoform. This scatter plot shows the relative abundance and median of the C24:2-OH 
GB3 isoform in the control (median = 261.1) and hypertrophic (median = 380.8) groups. 

 

Figure 6.24. This scatter plot shows the relative abundance of the C24:0-OH-OH 
GB3 isoform. This scatter plot shows the relative abundance and median of the C24:0-
OH-OH GB3 isoform in the control (median = 588.1) and hypertrophic (median = 723.1) 
groups. 

Figure 6.22, Figure 6.23 and Figure 6.24 support the trend illustrated in Figure 6.21 indicating 

higher levels of GB3 in hypertrophic samples compared with controls, standardised for protein 
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content. To investigate lipid peroxidation the ratios of saturated to unsaturated and oxygenated 

to saturated of fatty acid chains were compared in Figure 6.25 and Figure 6.26, respectively: 

 

Figure 6.25. Scatter plot illustrating the ratio of saturated to unsaturated fatty acid 
chains. This scatter plot shows the relative abundances for saturated and unsaturated 
fatty acid chains of GB3 for C22 and C24 GB3 isoforms. C22:0/C22:1 medians: controls = 
12.9 and hypertrophs = 16.0, C24:0/C24:1 medians: controls = 1.3 and hypertrophs = 1.4 
and C24:0/C24:2 medians: controls = 4.5 and hypertrophs = 3.7. 
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Figure 6.26. Scatter plot illustrating the ratio of oxygenated to unsaturated fatty acid 
chains. This scatter plot shows the relative abundances for oxygen-containing species 
and unsaturated fatty acid chains of GB3 for C22 and C24 GB3 isoforms. C24:2-
OOH/C24:2 medians: controls = 0.43 and hypertrophs = 0.32, C22:1-OOH/C22:1 
medians: controls = 3.06 and hypertrophs = 2.84 and C24:0-OH-OH/C24:2 medians: 
controls = 0.25 and hypertrophs = 0.25. 

These graphs suggests that despite there being slightly higher GB3 levels in the patients who 

scar hypertrophically the ratio between oxidised lipids and un-oxidised lipids is not significantly 

different, suggesting little difference in lipid oxidative stress damage between the two cohorts. 

 

6.8 Predisposing factors for the development of hypertrophic scars 

The aim of this chapter was to analyse these samples and to identify predisposing factors that 

could indicate pre-surgically whether someone would develop a hypertrophic scar. Two different 

techniques: proteomics and a targeted lipidomic assay were used. Each technique is able to 

highlight different changes in their respective aspect of the data. This study was a unique 

opportunity to understand the biochemical pathways involved in scarring (section 6.5.1). The 

concept of having healthy skin samples from patients before they develop a hypertrophic scar is 

novel. Instead of studying hypertrophic or healthy scar tissue itself, we studied pre-scar tissue. 

The aim was to investigate predisposing indicators for the development of hypertrophic scars. 
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6.8.1 Summary of the findings of the proteomic analyses 

Our proteomic profiling analysis took over fifteen hours per sample allowing identification of in 

excess of 5000 proteins. Thirty proteins were identified from the UDMS
E
 experiment (Table 6.2) 

and gene ontology and pathway analysis tools used to scrutinise these data, key themes and 

networks were identified and highlighted. Particularly Figure 6.6 showed over 75% of the 

proteins identified belonged to intracellular components rather than extracellular components. 

This could be due to the homogeneity of the extracellular matrix compared with the relative 

complexity of intracellular proteins, or perhaps due to intracellular protein solubility. Another 

element highlighted in Figure 6.7, Figure 6.9 and Figure 6.11 was the structural and 

developmental components of the proteins identified. This is important in the fundamental 

healing process, if there are irregularities in the structure of the pre-scar healthy tissue that 

could be the cause of impaired skin healing. The immunological component highlighted by a 

ten-fold upregulation or HLA class I histocompatibility antigen B-73 alpha chain in the children 

that went on to develop hypertrophic scars, suggests an underlying immune hyperactivity. The 

immune system plays a crucial role in healing and scar formation, an underlying upregulation of 

immune activity could conceivably affect the healing process. The was also evidence of free-

radical damage, such as the presence of anti-oxidants (Figure 6.7) in our proteomics data. 

 

6.8.2 Summary of findings from PTM investigations 

Our MS dataset was further interrogated to investigate roles of modified proteins. PTMs are 

critical for proper cell function as well as a role in cell signalling.
279

 Modified peptide analysis 

using mass spectrometry is challenging, they do not respond in the same was as their 

unmodified counterparts. The modification can not only changes the mass, but also the charge, 

polarity and/or three-dimensional shape. As demonstrated in Figure 6.13 and Figure 6.14 the 

quality of the spectrum was far superior for the unmodified peptide than the modified version. 

Modifications near trypsin cleavage sites may affect the ability of trypsin to cleave. 

 

We were able to identify subtle changes in the modification of amino acid residues between the 

patient groups for three modifications: cysteine nitrosylation, trimethyllysine and glutamine 

deamidation. These changes indicated ROS activity, changes in gene expression and protein 

ageing. A different type of MS fragmentation technique called electron transfer dissociation 

(ETD) as opposed to collision induced dissociation (CID) fragments peptides to form “c” and “z” 

ions. It is a less aggressive fragmentation type allowing for greater preservation of potentially 

labile modifications.
280

 With ETD scan time is increased and it identifies fewer proteins than 

CID
7
 , however for specific peptide modification analysis ETD may be preferential. 
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A more targeted analysis of modified peptides may be more suited, such as MRM. The 

precursor and product ion mass would be specifically selected, this is more suited to lower 

abundancy species within a mix of other more abundant species.  

 

6.8.3 Summary of findings from investigating lipid peroxidation in 

the skin samples using GB3 

The aim of the targeted lipid analyses was to investigate the degree of lipid peroxidation in fatty 

acid side chains of GB3 in skin (the proteomics data indicated that there may be differences in 

ROS between groups). In particular hydroxyl radical damage, forming hydroxylated fatty acids 

from unsaturated fatty acids. We chose to develop a method to study GB3, a precursor of 

ceramide in the skin and the degree of saturation and hydroxylation of its fatty acid chain. 

 

The most prominent observation was elevated levels of GB3 in the skin of children that 

developed a hypertrophic scar. This class of lipid was elevated in the hypertrophic samples 

however, that does not necessarily mean that all classes of lipid would be. GB3 is part of a 

network of glycosphingolipids, it is plausible that elevation of one class may be indicative of a 

reduction in a downstream component. There is a rare genetic lysosomal storage disorder, 

called Fabry disease caused by a deficiency in the enzyme that processes GB3 leading to an 

accumulation of GB3. There is no literature suggestive of abnormal scarring in Fabry disease, 

however patients with Fabry disease develop hypertrophic cardiomyopathy. Cardiomyopathy is 

a completely separate disease however, there are underlying similarities such as tissue 

overgrowth
281

. There are also skin abnormalities associated with Fabry disease such as 

angiokeratoma
282

, a cutaneous blood capillary abnormality. No Fabry disease findings correlate 

directly with hypertrophic scarring, they do suggest that high levels of GB3 can manifest in 

physiological changes such as hypertrophic growth and skin abnormalities. 

 

6.9 Conclusions 

This chapter demonstrates the biochemical differences in the skin of children who scar healthily 

and those that scar hypertrophically. These differences can be detected prior to injury. Our 

proteomic study identified potential disease mechanisms leading to the development of 

hypertrophic scars. A validatory secondary method was developed to analyse peroxidation of 

lipids to confirm these findings. With further work, this avenue could be probed further to create 

a predictive test for hypertrophic scar, also allowing for development of pre-surgical 

interventions and/or treatments to prevent post-operative negative scar outcomes. 

 



  

144 
 

6.10 Further work 

To continue this work it the protein biomarkers identified in Table 6.2 would be worth pursuing 

potentially using them to establish a targeted MRM-based assay. That assay would be used to 

analyse a larger cohort of samples identifying which markers are most sensitive and specific. 

Skin punch biopsies are invasive, the MRM method could be optimised to detect markers from 

skin scrapings which are less invasive or skin tapings. The final assay could be used as a 

predictive pre-operative test to identify individuals who are likely to develop a hypertrophic scar. 

 

It would also be interesting to investigate the lipid aspect, to study other classes of lipids in the 

skin to see if they follow the same trends as GB3. Not only that, but lipids could act as drug or 

treatment target for interventional therapy aimed at reducing hypertrophic scar outcomes. 
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Every year millions of operations or procedures are performed by the NHS, in the year March 

2015 to February 2016 there were 11.6 million finished consultant episodes (a continuous 

period during which a patient is under the care a single consultant within a single NHS trust) 

which included at least one procedure or operation
283

. These will range from minor elective 

procedures such as the removal of a benign mole to highly complex life-saving operations such 

organ transplantations. With any surgery or intervention there is an element of risk and that risk 

changes depending on the nature of the surgery. 

 

7.1 The risks associated with general anaesthetic 

Anaesthetic is required in most surgical cases to reduce discomfort. This may be local 

anaesthetic (LA) where the patient is still conscious and awake and the area involved in the 

surgery has been numbed or general anaesthetic (GA) when a patient is in a controlled 

unconscious state. There are more risks associated with GA compared with LA. With GA the 

body loses control of physiological functions so it is more complex for the body to recover 
284

. 

LA is not always a viable option because choice of anaesthetic is dictated by the length, 

complexity and nature of the surgery. Side-effects of GA can range from nausea and a sore 

throat to nerve damage and death, although sometimes it is difficult to separate the risks 

associated with GA and the risks associated with the procedure itself. 

 

7.2 The importance of peri-operative oxygen delivery 

7.2.1 The prevalence of post-operative morbidity 

Morbidity after major surgery involving GA is of increasing concern. An ageing population 

means that major operations are being performed on patients of increasing age. Prevalence of 

post-operative morbidity in the elderly is becoming a major healthcare challenge.
285

 Post-

operative morbidity presents in 15% of surgical inpatients and 50% of complications are classed 

as “serious”
286

. These figures are not restricted to one study, there are multiple studies 

worldwide investigating the risk of peri-operative morbidity with age and disease status
285

. A 

nine fold increase in relative risk for prolonged hospital stay and mortality was reported for 

patients undergoing hepatectomy and oesophagectomy (both high risk procedures) in 

Maryland
287

. Post-operative morbidity three days after surgery was identified in 74% of patients 

undergoing major elective surgery in a UK prospective cohort study, that figure reduced to 16% 

12 days later
288

. Another UK prospective cohort study identified post-operative complications in 

27% of patients undergoing routine, moderate-risk surgery
289

. These figures illustrate risk 

associated with operations requiring GA. 
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7.2.2 Maintaining peri-operative oxygen delivery using 

haemodynamic therapy 

 Low oxygen delivery is associated with increased risk of post-operative morbidity, although, the 

exact physiological mechanism remains unknown
44

. A technique to control oxygen delivery 

during and around surgery is called peri-operative haemodynamic therapy,  initially optimised by 

Shoemaker in 1982
290

. It was observed that patients who died after surgery had lower oxygen 

delivery and consumption than the post-surgery survivors
291

. Those who received and 

consumed less oxygen did not have the required physiological reserves to cope with the 

metabolic demand of GA and surgery. By controlling oxygen delivery and oxygen consumption 

patient morbidity was reduced
292; 293; 294

. Increasing oxygen delivery to reduce patient morbidity 

continues to be supported in systematic reviews
44; 295

.
296

 

 

The current understanding is that controlling oxygen delivery and consumption of a patient, 

before, during and after an operation, will reduce the oxygen debt and tissue injury so, the body 

will be better equipped to deal with the physiological challenges of operations thus reducing 

morbidity
297; 298

. Despite, positive results from some studies suggest that controlling oxygen 

delivery can reduce morbidity, this concept is still contended. An in depth systematic review 

suggested that reduction in renal impairment, respiratory failure and post-operative wound 

infection can be expected with haemodynamic therapy, however, reduction in mortality related 

to morbidities such as: arrhythmia, myocardial infarction, pulmonary oedema, congestive heart 

failure, generalised infection and venous thrombosis was not observed. Despite this the review 

highlighted a lack of recent studies with clear outcomes and a lack of stringent patient 

recruitemnt.
299

 

 

The underlying mechanism of haemodynamic therapy is still unknown and there is controversy 

pertaining to its effectiveness in reducing all types of post-operative morbidity. 

 

7.3 How can mass spectrometry be used to investigate the effects 

of major surgery and peri-operative oxygen delivery 

This chapter uses mass spectrometry as applied to proteomics and lipidomics to investigate 

biochemical changes in the skin as a result of major surgery and haemodynamic therapy. It is 

predicted that systemic changes occurring as a result of the surgery and related interventions 

could be expressed in the skin in a similar manner as would be the case in other systems, 

particularly with regards to oxygen perfusion. If more could be understood about the underlying 

biochemical changes during major surgery, treatment and management of post-operative 

complication could be specifically adapted to those changes. Pre-operative strategies may also 

be modified to better prepare the body physiologically for surgery to reduce morbidity. 
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7.4 Investigating the differences in biochemical composition of skin 

tissue after major surgery 

The work in this chapter was carried out in collaboration with Dr Gareth Ackland from the UCL 

Centre for Anaesthesia, Critical Care and Pain Management. As part of a controlled trial in 2014 

Ackland et al. investigated clinical outcomes of patients randomly assigned to the standardised 

post-operative regime compared with a personalised protocol
44

. As part of the investigations 

skin biopsies were taken before surgery and two days post-surgery. We used paired skin 

biopsies from 18 patients undergoing oesophagectomies. An oesophagectomy is a procedure 

whereby part of, or the entire oesophagus is removed, usually due to oesophageal cancer and 

part of the stomach must be used to bridge the gap created by the excised oesophageal 

section. Skin biopsies were taken from sites adjacent to the surgical wound. They were taken 

before and after surgery. Samples were prepared as described in chapter 5 and separated into 

four chromatographic fractions as detailed in method 10.2.12. This method identified in excess 

of 4000 proteins. 

 

7.5 Proteomic investigations into post-operative oxygen saturation 

levels 

In order to investigate the hypothesis discussed in the introduction (section 7.2) that 

achievement of pre-operative oxygen saturation levels after surgery would correlate with post-

operative morbidity, we used proteomics to investigate the skin tissue of patients undergoing 

oesophagectomy. Skin samples were taken before surgery to identify predictive markers for 

achievement of oxygen saturation. We identified 17 proteins as significantly differentially 

expressed between the two groups: achievers and non-achievers of pre-surgery oxygen 

saturation levels. 
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Table 7.1. Table listing the 17 proteins significantly differentially expressed 
between the achievers and non-achievers of pre-surgery oxygen saturation levels. 
These 17 proteins were identified due to a fold change greater than 2 and an ANOVA p-
value of less than 0.05 between the two groups. Proteins that were elevated in the group 
that achieved pre-surgery oxygen saturation levels are in blue and the protein elevated in 
the group that did not achieve pre-surgery oxygen saturation levels are displayed in red. 
Although ANOVA p-value <0.05 is not a suitable measure to identify significance here 
because of multiple testing and the fact that we identified ~5000 proteins, it was just used 
as an aid to identify the strongest protein candidates. Further mass spectrometry data 
can be found in appendix 12.8. 

There is little literature detailing the roles of CWF19-like protein 2, brain-enriched guanylate 

kinase-associated protein and synaptosomal-associated protein 47 apart from association with 

catalytic activity, kinase activity and intracellular membrane fusion, respectively as detailed in 

Table 7.1. Elongation factor Tu GTP-binding domain-containing protein 1 is involved in 

cytoplasmic maturation of ribosomes and is mutated in Shwachman-Diamond syndrome
301

, an 

autosomal recessive condition presenting in childhood with symptoms of bone marrow 

dysfunction, pancreatic insufficiency and growth abnormalities
302

. Tripartate motif-containing 

protein 72 binds phosphatidylserine and is a muscle-specific membrane repair protein. It is 

activated by intracellular ROS that penetrates damaged membranes from the extracellular 

environment
303

. Redox-regulatory protein FAM213A is an antioxidant that may be involved with 

bone maintenance, it is of relevance to this project because it has been described as enhanced 

in populations adapted to living at high altitude
304

, our results concur with the study that a 

greater amount of this proteins is present in those who were able to achieve their post-operative 

oxygen saturation levels compared with those who did not. Septin-6 is a member of the family of 

guanosine triphosphatases which are required for cytokinesis and organisation of the cell 

cytoskeleton. Tyrosine-protein kinase Blk is involved in cell proliferation and differentiation 

particularly in B-cells, it is also associated with insulin synthesis and secretion. MAP/microtubule 

affinity-regulating kinase 3 is activated by phosphorylation and acts to phosphorylate 

microtubule-associated proteins (MAPs) and is involved in signalling and immune regulation. 

Type II cytoskeletal keratins are arranged in chains and expressed during epithelial 
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differentiation, there is high homology between the sub-proteins of this group. DnaJ homolog 

subfamily C member 24 is a histone protein which stimulates adenosine triphosphatase activity 

of chaperone proteins and in turn enhances iron binding which acts as an electron carrier. 

Fermintin family homolog 2 is a scaffolding protein that binds to phospholipid membranes. 

Caveolin-1 is another scaffolding protein, the main component of the caveolae plasma 

membrane (a lipid raft invagination of the cell membrane) and promotes cell cycle 

progression
305

. Vascular endothelial growth factor receptor 2 is a growth factor for endothelial 

cells that regulates angiogenesis and vascular proliferation, it is associated with a range of 

diseases such as rheumatoid arthritis
306

, wound healing
307

 and erythroderma
308

. It plays a role in 

restoring oxygen flow to tissues during hypoxia so it is surprising to note that it is upregulated in 

the patients that did not achieve their post-operative oxygen saturation levels. Mitochondrial 

ATP synthase-coupling factor 6, is involved in the process of generating adenosine triphosphate 

(ATP) from adenosine diphosphate via the transfer of protons across the inner membrane of the 

mitochondria. Probable serine carboxypeptidase CPVL is a protease that acts to cleave amino 

acid residues from the carboxyl-terminus of proteins. Finally CD81 antigen is a transmembrane, 

cell surface protein of B- and T-cells that mediates signal transduction, it has also been 

associated with diseases such as cancer
309

, sclerosis
309

 and hepatitis C virus
310

. The largest 

group of proteins in Table 7.1 are associated with enzyme activity and secondly proteins 

associated with signalling pathways. Using online tools this dataset was further interrogated to 

identify relationships and similarities between the proteins identified. 

 

7.5.1 Using pathway analysis tools to understand the relationships 

between these proteins 

Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used to identify specific roles and 

interactions between the proteins in Table 7.1. 

 

http://bioinfo.vanderbilt.edu/webgestalt/
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Figure 7.1. Flow chart showing the biological processes for the proteins in Table 
7.1. Flow chart generated using Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/).  

Figure 7.1 highlights the biological processes represented by the proteins which were 

significantly differentially expressed in the pre-operative skin biopsy samples of patients that 

achieved and did not achieve their target oxygen saturation levels post-surgery. On the left of 

Figure 7.1 there are links to regulatory processes, this is unsurprising as oxygen is key for 

respiration and in turn providing energy for biological processes. When patients are not 

achieving their post-operative oxygen saturation target levels it would be understandable that 

oxygen-related regulatory processes would be affected. Similarly, developmental processes, 

such as epidermal cell proliferation and differentiation. There is also a circulatory and blood 

vessel development section, this could be due to a reduced ability to form vascular networks. 

There is an inflammatory component to Figure 7.1, it could be that patients who do not achieve 

their oxygen saturation target levels are more susceptible to infection or the reverse could be 

http://bioinfo.vanderbilt.edu/webgestalt/
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true and patients who have an underlying inflammatory response are less likely to achieve their 

oxygen saturation target levels. Finally, evidence of differences in protein modification has been 

identified.   

 

IMPaLA (http://impala.molgen.mpg.de/) is an on line pathway-based tool designed to analyse 

sets of genes/proteins using information compiled from a range of other databases
311

. From the 

list of proteins in Table 7.1 IMPaLA generated a list of pathways which have been described 

previously as being associated with the listed proteins: 

 

 

Table 7.2. Table showing the top 7 pathways associated with the proteins in Table 
7.1. This table lists pathways associated with the proteins in Table 7.1 which were 
significantly differentially expressed between the two groups of patients: those that 
achieved and those that did not achieve their oxygen saturation target levels. 

The most significant of these pathways is ‘vegf hypoxia and angiogenesis’, vascular endothelial 

growth factor (VEGF) is a growth factor that is involved in restoring oxygen supply to tissues 

during hypoxia by promoting growth of blood vessels. There are two proteins from Table 7.1 

that indicate involvement in this pathway they are caveolin-1 and VEGF receptor 2. Both were 

overexpressed in patients that did not achieve their oxygen saturation target levels. This 

suggests that those patients may actually already be in a slight state of hypoxia rendering them 

less able to reach their pre-surgery oxygen saturation levels. 

 

7.5.2 Modified protein validation in the sample analysis 

Figure 7.1 indicated evidence of differences in protein modification between the two 

experimental groups. As explained in section 6.6.5, this type of MS data can be interrogated to 

give information about PTMs. Similarly to chapter 6 , the experimental fraction with most 

proteins was selected to assess changes in PTMs, in this case it was the second fraction 

(section 6.6.5).  

 

http://impala.molgen.mpg.de/
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Figure 7.2. Scatter plot illustrating the mean number of carbonylated threonine per 
peptide. Scatter plot showing a higher number of carbonylated threonine modifications 
per peptide ion for the proteins in the pre-surgery sample of patients that achieved their 
oxygen saturation target levels (blue) compared with the pre-surgery sample for patients 
that did not achieve their oxygen saturation target levels (purple). This type of analysis 
does not give statistical significance. 

Carbonylation is a form of PTM where amino acid are oxidised by ROS
312

 and carbon monoxide 

is introduced to a threonine residue. As discussed previously, oxidative stress and reactions 

associated with ROS are not always detrimental as they also play a role in cell signalling
313; 314

. 
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Figure 7.3. Scatter plot illustrating the mean number of hydroxylated aspartic acid, 
lysine, asparagine and proline amino acids per peptide. Scatter plot showing a higher 
number of hydroxyl modifications per peptide ion for the proteins in the pre-surgery 
sample of patients who achieved their oxygen saturation target levels (blue) compared 
with pre-surgery samples of patients that did not achieve their oxygen saturation target 
levels (purple). This type of analysis does not give statistical significance. 

Hydroxylation is when a hydroxyl group (-OH) is introduced to an amino acid residue, to 

regulate gene expression
315

. Protein hydroxylation has been associated with cancer and poor 

prognosis
316

. However, the results here suggest the opposite – increased hydroxylation is 

indicated in the patients that achieved their target oxygenation levels compared with the group 

that did not. 
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Figure 7.4. Scatter plot illustrating the mean number of methylated amino acid 
residues per peptide. Scatter plot showing a higher number of methyl modifications per 
peptide ion for the proteins in the pre-surgery sample of patients that achieved their target 
oxygen saturation levels (blue) compared with the pre-surgery sample of patients that did 
not (purple). This type of analysis does not give statistical significance. 

As explained in section 6.6.5 methylation of proteins is controlled by methyl transferases and 

demethyltransferases. Similarly to hydroxylation, methylation is a signalling state used for gene 

expression regulation within tissues.
264

 Figure 7.4 shows a similar pattern to Figure 7.3; higher 

levels of protein methylation in the patients who achieved their target oxygenation levels 

compared with the patients that did not. 

 

7.5.3 Summary of investigating the effects of post-operative 

oxygen saturation levels 

In summary the results in section 7.5 show that the proteins differentially expressed between 

the patients who achieved their target oxygen saturation levels and those that did not are 
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predominantly enzymatic and signalling proteins, specifically, regulation of cell proliferation, 

circulatory development and viral interactions, illustrated in Figure 7.1. The PTM study indicated 

an increase in modified peptides in the group of patients who achieved their target oxygenation 

levels compared with those that did not. This was true specifically for threonine carbonylation, 

methylation and hydroxylation, suggesting changes in cell signalling and gene expression in the 

group of patients that did not go on to achieve their target oxygen saturation levels. 

 

7.6 Proteomic investigations to assess post-operative patient 

clinical outcomes 

Post-surgery patients were monitored and assessed for post-operative morbidity. The Clavien-

Dindo (CD) classification system is designed to assess the extent of intervention required post-

operatively for surgical complications. It is a scale that runs from grade I to grade V, where 

grade I represents minor complications and grade V is patient mortality as a result of post-

operative complications. This cohort of patients were assessed on post-operative day 2 and 

classified into two groups: CD grade <2 and CD grade ≥2. A summary of the clinical information 

for these samples is shown in Table 7.3 

 

 

Table 7.3. Baseline patient characteristics for CD<2 and CD≥2. Data presented as 

mean (SD), or n (%). % patients/group provided within each complication category.   
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Pre-surgery biopsies were analysed using Progenesis QI for proteomics (Nonlinear Dynamics) 

to assess for pre-operative biochemical indications that a patient may require post-operative 

interventions as a result of surgical complications. The analysis revealed 47 proteins were 

significantly differentially expressed between the CD <2 and the CD ≤2 groups with a fold 

change of greater than two and are listed in Table 7.4: 

 

 

Table 7.4. Table listing the 47 proteins that were differentially expressed between 

the CD <2 and the CD ≥2 groups. Proteins in blue were significantly (ANOVA <0.05) 

overexpressed (fold change >2) in the CD <2 group of patients. Proteins in red were 

significantly (ANOVA <0.05) overexpressed (fold change >2) in CD ≥2 group of patients. 

Further mass spectrometry data can be found in appendices 12.9. 

There are a large number of enzymatic proteins represented in this list as well as structural 

proteins. There is a greater than 200 fold increase in the human leucocyte antigen (HLA) class I 

histocompatibility antigen, Cw-16 alpha chain protein in the CD <2 group, these patients are 



  

159 
 

“healthier” in so far as they are not suffering serious post-operative complications as those in 

the CD ≥2. HLA class I is a heterodimer and the protein component detected here is the alpha 

chain, this chain is anchored to the membrane whilst presenting peptides to the immune 

system. 

 

PANTHER (http://pantherdb.org/) was used to generate the pie chart below detailing the 

classification of the proteins in Table 7.4 according to their molecular function: 

 

 

Figure 7.5. This pie chart illustrates the molecular function of the significantly 

differentially expressed proteins between the CD <2 and CD ≥2 patients. This pie 

chart shows the relative distribution of protein molecular function for the proteins 

identified as significantly different between CD <2 and CD ≥2 patients. 

This pie chart shows most of the proteins in Table 7.4 have either catalytic activity or binding 

functions. The other four functions represented are enzyme regulator activity, structural 

molecule activity, translational regulator activity and antioxidant activity. Another way of 

assessing the data is to determine how protein classes are represented: 

 

http://pantherdb.org/
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Figure 7.6. Pie chart illustrating the protein classes represented by the proteins in 
Table 7.4. This pie chart shows 20 protein classes that are represented by the proteins in 

Table 7.4, which were significantly differentially expressed between CD <2 and CD ≥2 

patients. 

The four most abundant classes from these proteins are enzyme modulators, cytoskeletal 

proteins, nucleic acid binding proteins and oxidoreductases. 
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Figure 7.7. Flow chart representing the molecular function for the proteins in Table 
7.4. Chart generated by Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/). 

Figure 7.7 shows that there is a significant presence of binding proteins in Table 7.4 and 

oxidoreductase activity. Oxidoreductases as discusses in section 6.6.4 describes a group of 

enzymes which convert oxygen to ROS, this usually occurs under conditions of oxidative stress. 

 

http://bioinfo.vanderbilt.edu/webgestalt/
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Reactome (http://www.reactome.org/) gives a visual representation of represented biochemical 

pathways: 

 

 

Figure 7.8. Figure illustrating which pathways are represented by the proteins in 
Table 7.4. Figure generated using Reactome highlighting in yellow pathways that are 
represented by the proteins in Table 7.4. 

This figure illustrates the diversity of the pathways covered by the 47 proteins in Table 7.4 and 

highlights the different extent to which they are represented. Signalling pathways are highlighted 

as well as immune system, cellular responses to stress and extracellular matrix organisation. 

 

Using the proteins in Table 7.4 and IMPaLA (http://impala.molgen.mpg.de/) the key pathways 

represented by these proteins were identified as follows: 

 

 

Table 7.5. The top 10 pathways represented by the proteins in Table 7.4. Pathways 
generated by IMPaLA (http://impala.molgen.mpg.de/) and ranked by significance. 

Table 7.5 identifies bacterial invasion of epithelial cells as the single most significantly 

represented pathway by the proteins in Table 7.4, the following four pathways are all related to 

oxygen either exchange or ROS and oxidative stress. This could suggest that these patients are 

more susceptible to infection, perhaps they have a slightly weaker immune system. 

 

http://www.reactome.org/
http://impala.molgen.mpg.de/
http://impala.molgen.mpg.de/
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7.6.1 PTM validation in sample analysis 

As discussed in chapter 6 and section 7.5.2 the MS data can be used to interrogate the PTMs. 

The modification studies here included: Carbonylation of lysine, proline, arginine and threonine, 

citrullination, deamidation of asparagine and glutamine, methylation, demethylation and 

trimethylation, nitrosylation of cysteine and tryptophan and finally sulphenylation of cysteine. 

 

 

Figure 7.9. Scatter plot illustrating the mean number of citrullinated amino acid 
residues per peptide. This indicates a higher number of citrulline modifications per 
peptide ion for the proteins in the pre-surgery sample of CD <2 patients (blue) compared 

with CD ≥2 patients (purple), this trend is similar for the post-operative biopsies (orange 

and green respectively). This type of analysis does not give statistical significance. 

Citrullination is a PTM where arginine is converted to citrulline peptidylarginine deiminases
317

. 

There are different isoforms of peptidylarginine deiminases, depending on their tissue 

location
318

. Peptidylarginine deiminases 4 has been associated with tumorigenesis and immune 

function
317

. Despite the fact that patients in this cohort have cancer, there will be differences in 
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cancer biochemistry meaning that some patients have fewer post-operative complications and 

therefore differences in citrullination status of their proteins. This figure shows a slight trend for 

increased citrullination in the CD <2 group. 

 

 

Figure 7.10. Scatter plot illustrating the mean number of deamidated glutamine 
amino acid residues per peptide. This shows a higher number of deamidated glutamine 
modifications per peptide ion for the proteins in the pre-surgery of CD <2 patients (blue) 

compared with CD ≥2 patients (purple), this trend is similar for the post-operative biopsies 

(orange and green respectively). This type of analysis does not give statistical 
significance. 

Figure 7.10 shows changes in glutamine deamidation, this was also observed in Figure 6.17, 

deamidation is a PTM observed in ageing and age-related conditions
265; 266

. The results shown 

here could suggest an increased rate of protein turnover in the CD <2 patients compared with 

the CD ≥2 group. In this case, there is a suggestion that increased protein turnover is protective 

against post-operative morbidity. 
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7.6.2 Summary of the findings to investigate post-operative patient 

clinical outcomes 

Our proteomic data revealed 47 proteins that were significantly differentially expressed between 

the two patient groups (Table 7.4). These proteins comprised enzymatic and structural proteins. 

Classification and pathway tools highlighted the catalytic, binding (Figure 7.5), cytoskeletal, 

oxidoreductase (Figure 7.6 and Figure 7.7) and immunological (Figure 7.8) differences. Further 

studies of PTMs revealed reduced citrullination and arginine deamidation in the CD ≥2 group of 

patients. 

 

7.7 Biochemical predisposing factors for negative post-operative 

outcomes in high-risk surgical patients 

The aim of this chapter was to biochemically analyse tissue samples from patient undergoing 

high-risk surgery, to determine factors associated with post-operative morbidity and with a view 

to using this data to review peri-operative care. This chapter focuses on two aspects: 

achievement or non-achievement of target oxygen saturation levels and post-operative 

complications. This was a unique study design designed to broaden our understanding of 

predictive risks of major surgery. This chapter has identified biochemical hallmarks associated 

with post-operative recovery. 

 

7.7.1 Discussion of the results pertaining to the achievement of 

post-operative oxygen saturation levels 

Section 7.5 of this chapter was based upon the theory that achievement of target oxygen 

saturation levels is a major contributing factor to reduction of post-operative morbidity
285; 319

. 

Thus by determining innate biochemical differences in individuals who did and did not achieve 

their target oxygen saturation levels, the relationship between post-operative oxygen saturation 

and morbidity could be probed and studied to identify whether pre-operative indicators of 

morbidity could be postulated. We identified differences in proteomic and PTM profiles between 

the two groups of patients (those that did achieve their post-operative oxygen saturation levels 

and those that did not). Further work is required, however, this work identifies differences in 

biochemical state between the groups that could be mined to improve patient outcomes. 

 

Many of the proteins identified in Table 7.1 are signalling molecules and associated with cell 

turnover. Neither class were restricted to upregulation in one group, however the differences do 

suggest changes in pathways that could account for the observed clinical outcome differences. 

GA and major surgery are burdens on the body’s homeostasis and subtle differences in the 
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underlying equilibrium would be of no clinical significance in health, but post-surgery may 

culminate in this divergence of clinical outcome. The focus of this section was tissue oxygen 

perfusion post-surgery, in order to quicken recovery of body tissues it is important that cells are 

able to regenerate quickly enough in the event of hypoxia, this could be why cell regeneration 

and proliferation capacities are shown to be different here. 

 

Table 7.2 shows the pathways identified as being differentially expressed between the two 

groups. This table also suggests that hypoxia plays a key role. The PTM work (Figure 7.2, 

Figure 7.3 and Figure 7.4) shows an increase in modified peptides in the group of patients that 

did achieve their target oxygen saturation levels. The key PTMs shown were: carbonylation 

(Figure 7.2), hydroxylation (Figure 7.3) and methylation (Figure 7.4). Both carbonylation and 

hydroxylation are associated with oxidative stress and ROS, whilst hydroxylation and 

methylation regulate gene expression within the cell. Oxidative stress is largely reported as 

having negative effects pertaining to modifications of biological compounds, too little ROS can 

also have negative effects as suggested here. 

 

Overall section 7.5 demonstrates biological differences between patients who achieve their 

target oxygen saturation levels and those that do not, with further work this data could be used 

to better manage peri-operative oxygen delivery. 

 

7.7.2 Discussion of the results pertaining to post-operative 

morbidity 

The second part of this chapter (section 7.6) probed other reasons for post-operative morbidity. 

Using the Clavien-Dindo classification system patients were assessed on post-surgery day 2 

according to post-operative complications requiring intervention. Those classified as CD≥2 were 

suffered post-operative complications of a severe nature. The aim was to identify predisposing 

biochemical indicators of post-operative morbidity that could be used in the future as aids to 

reduce post-operative morbidity through patient-centred peri-operative management. 

 

Forty-seven proteins were identified as significantly differentially expressed between the two 

groups of patients, listed in Table 7.4. Figure 7.5 shows the majority of those proteins were 

catalytic or binding proteins. There was also an oxidative stress component to the list of 

proteins, a common theme to both sections of this chapter. The PTM analysis identified more 

protein citrullination and deamidation in the CD <2 group. These modifications mimic previous 

findings of decreased cell turn-over and gene expression control in the CD ≥2 group, this could 

perhaps be due to reduced oxygenation of the cell. 
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Post-operative morbidity as described in this section is highly complex. Morbidity in this case 

can arise from infection, hypoxia, organ failure or co-morbidities. Not all patients in this cohort 

developed the same post-operative complication, some may have had multiple. The multi-

faceted nature of post-operative morbidity renders the drawing a single conclusion for the cause 

near impossible. However, despite the overwhelming complexity of this topic there are some 

key features that have been brought to light whilst studying CD <2 and CD ≥2 patients. Most 

noteworthy being pathways pertaining to oxidative stress, regulation of gene expression and cell 

proliferation. 

 

7.8 Conclusions 

This chapter illustrates pathways and differences in the underlying biochemistry between 

groups of patients with different peri-operative outcomes. This work highlights the opportunity to 

pre-operatively assess patients in the future to predict surgical outcome and in turn 

appropriately modify treatment and management to reduce peri-operative morbidity. A 

combination of mass spectrometry-based proteomic techniques have been implemented to 

assess skin-based tissue responses to the impact of high-risk major surgery. 

 

7.9 Further work 

There is still considerable work required before conclusive results can be used to improve 

patient outcomes post-major surgery, however this chapter presents early evidence suggesting 

clear pre-operative indications of differences between patient groups linked to likelihood of 

reducing post-operative morbidity. In order to continue this work effectively it would be of merit 

to pursue the oxidative stress and gene regulation pathways. To identify whether there are 

environmental factors contributing to these differences and whether there are interventions that 

can safely be implemented in those patients that have lower levels of oxidative stress or gene 

regulation. 
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The aims of this thesis were to validate protein biomarker expression in the skin of patients with 

atopic eczema (AE), to study the role of proteases and protease inhibitors as potential disease 

mechanisms in the skin, to develop methods to analyse protein expression in the skin and to 

apply these methods to disease. Chapters 3 to 7 present the major results from these 

investigations alongside discussions and conclusions pertaining to those specific chapters. This 

chapter will further expand on those results, find links between chapters and present the results 

in the wider context of theoretical and practical implications. 

 

8.1 Validation of protein biomarkers in AE 

The aim of chapter 3 was to use proteomic techniques to investigate roles of AE protein 

biomarkers in the skin. Biomarkers were identified using mass spectrometry (MS
E
) (method 

10.2.4) and literature searches. Immunohistochemistry was used to stain for proteins in health, 

AE and ichthyosis. The most striking staining difference was identified in CLP5 (Figure 3.7), 

where clear accumulation of CLP5 in the uppermost epidermal layer was observed in health 

and a sparser distribution in AE throughout the epidermis. CLP5 was shown to be a marker of 

keratinocyte differentiation in the skin and indicated that there could be disruption of the calcium 

ion gradient in AE contributing to poor trafficking of proteins required for correct keratinocyte 

differentiation and skin barrier maintenance. 

 

In the introduction (chapter 1 ) challenges of managing diseases such as AE for the patient and 

the health service provider were discussed. There is no cure, nor known cause for AE this 

disease continues to be a social and financial burden. It is important to investigate and research 

the underlying disease mechanism and biochemical changes to contribute towards improved 

understanding of AE, why it is so common and in turn identify better treatment and care options 

for patients. 

 

8.2 Alpha-1-acid glycoprotein (AGP), AE and the inflammatory 

response 

The initial MS findings identified AGP expression in skin scrapings of AE patients as increased 

14-fold compared with controls (Table 3.1). As detailed in section 3.5.1, AGP is a highly 

glycosylated, acute phase protein with anti-inflammatory and immunomodulatory properties
67

. 

Figure 3.1 shows images of AGP IHC staining in control, AE and ichthyosis. In controls staining 

was restricted to the cytoplasm and most pronounced in the stratum basale, in AE the staining 

was strongest in the nuclei of undifferentiated keratinocytes in the epidermis, throughout the 

epidermis. In ichthyosis staining more closely resembled the pattern observed in AE rather than 

controls, dark staining of keratinocyte nuclei throughout the epidermis with the exception of the 

stratum corneum. There is little literature concerning the localisation of AGP within cells and 
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even less within epithelial cells. However, it has been documented that nuclear AGP is 

increased during inflammation in rat livers. To produce more AGP, DNA in the nucleus will be 

translated to protein. Perhaps the increased staining peri-nucleus is not representing AGP 

within the nucleus, but AGP translation in AE and ichthyosis, surrounding the nucleus. AE is an 

inflammatory disease and both AE and ichthyosis present uncomfortable skin lesions which 

may be itchy of uncomfortable, scratching these lesions would illicit an immune response, in the 

absence of an increased baseline immunological activity in AE or ichthyosis. 

 

AGP has not been linked with AE previously, this could be because AGP is an acute phase 

protein and due to the immunological aspect of AE it may not be surprising to see changes in its 

expression. However, the role of acute phase proteins has been documented in other diseases: 

heart disease
320

, infectious disease
321

 and cancer
322

, but not AE. The glycosylation start of 

acute phase proteins is important in other inflammatory diseases
323

, but not specifically AE. The 

results presented in section 3.5.1 indicate a role of acute phase proteins and more specifically 

AGP in AE that has perhaps been overlooked. 

 

8.2.1 Calmodulin-like proteins and the calcium ion gradient in the 

skin 

Chapter 3 also detailed results from the calmodulin-like group of proteins, more specifically 

CLP3 and CLP5. Initial MS results showed a respective decreased expression in the AE 

samples compared with controls of 16 and 3-fold (Table 3.1). Sections 3.5.3 and 3.5.4 present 

the IHC staining results for both these proteins (Figure 3.5 and Figure 3.7), CLP3 and CLP5 

staining was similar, most pronounced differences were observed for CLP5. Dark condensed 

CLP5 staining was observed in controls in the stratum corneum, however, the staining was far 

more diffuse in AE with continued staining in the deeper epidermal layers. Ichthyosis staining 

was not confined to the stratum corneum either and there was staining in deeper epidermal 

layers. 

 

CLP3 has not been described associated with AE. CLP5, however, has been associated with 

AE once. The study documents the discovery of protein biomarkers from the vernix (fluid 

covering the baby’s body at birth) and compared the protein profile of children who developed 

AE at 2 years and those that did not. They quantified 203 proteins by LC-MS/MS and identified 

CLP5 and polyubiquitin-C as predictive markers of AE from the vernix.
324

 Vernix is produced by 

sebaceous glands as well as being contributed to by squamous cells
325

. If we assume that 

CLP5 in the vernix comes from squamous cells of the upper epidermis this supports our findings 

that there is more CLP5 at the surface of the epidermis in health compared with AE. Together 

these pieces of research support each other illustrating that CLP5 has role in AE that can be 

determined at birth. This is of great importance as it shows innate biochemical differences in the 
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skin of children who are predisposed to develop AE. It illustrates that for some people the post-

natal environment is not a sole contributing factor to AE susceptibility.  

 

To use this knowledge to contribute towards understanding of AE disease mechanism and in 

turn provide better disease management and treatment we investigated other roles for CLP5 by 

studying proteins interactions in the skin (Table 3.2). These results highlighted the importance 

of CLP5 in skin as it interacts with a protease and two protease inhibitors (caspase-14, alpha-1-

antitrypsin and serpin B5, respectively) and antimicrobial proteins (dermcidin, glyceraldehydr-3-

phosphate dehydrogenase and galectin-3). In health we propose these proteins are required to 

travel together towards the stratum corneum to carry out their function. Near the surface of the 

skin is where antimicrobial proteins are required to control microbial infiltration and protease-

protease inhibitor interactions are fundamental for normal desquamation of the skin. We 

hypothesise that the Ca
2+

 gradient across the epidermis encourages this movement of proteins 

towards the surface. The Ca
2+

 concentration is lowest in the basal layer and highest in the 

stratum corneum. Disturbances in the epidermal Ca
2+

 gradient been identified in other diseases 

such as psoriasis
326

. When the skin barrier is not maintained the Ca
2+

 gradient may not be 

maintained
327

, also high Ca
2+

 concentrations in the stratum corneum initiates skin barrier 

recovery
328

. These two discoveries appear to be contradictory and perhaps highlight the 

uncertainty surrounding the extent to which the Ca
2+

 gradient maintains the skin barrier or 

whether the skin barrier maintains the Ca
2+

 gradient within the epidermis. The main role of the 

Ca
2+

 gradient is to initiate keratinocyte differentiation. Maturation of keratinocytes in AE is 

disturbed, illustrated in Figure 1.5. Fewer keratinocytes achieve complete differentiation in AE, 

together this information confirms the Ca
2+

 gradient warrants further interrogation. 

 

8.3 Investigating proteases and protease inhibitors in the skin 

Chapter 4 aimed to investigate the roles of proteases and proteases inhibitors in the skin and to 

identify protease-proteases inhibitor relationships that could be utilised for treatment of skin 

disease. The chapter focused on the use of protein ‘bait’ arrays to isolate proteins interacting 

with selected skin protease inhibitors. The most significant finding was that caspase-14 

(protease) was identified as interacting with cystatin A and cystatin C (protease inhibitors). 

 

8.3.1 Caspase-14 and the protease inhibitors LEKTI, cystatin A 

and cystatin C 

Caspase-14 has roles in the epidermis including cleavage of filaggrin into monomers by 

citrullination
97

. Filaggrin is a Ca
2+

-dependent protein in the skin, caspase-14 is a proteases that 

cleaves profilaggrin
95

. The staining work presented in chapter 3 showed minor differences in 

caspase-14 staining between controls and eczema samples (Figure 3.9). The staining illustrated 
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the protein distribution, however, does not account for caspase-14 activity. Caspase-14 is a 

binding partner for the protease inhibitor LEKTI in the skin
57

 and this thesis shows its role as a 

binding partner for cystatin A and cystatin C (Table 4.5 and Table 4.6, respectively). This 

highlights the role that caspase-14 plays in correct differentiation and maturation of the skin 

barrier. There is currently no literature linking caspase-14 to either cystatin A or cystatin C
329

. 

 

No mutations in caspase-14 have been reported in human skin
330

 this could suggest that if 

caspase-14 is involved in skin disease mechanisms it could mean other upstream proteins are 

dysregulated instead, similarly to the role of filaggrin in ichthyosis vulgaris and AE. We predict 

that dysregulation of cystatin A or cystatin C could have a downstream effect on the 

protease:protease inhibitor ratio with caspase-14. Cystatin A expression in skin keratinocytes is 

induced by Ca
2+331

, we have already described dysregulation of Ca
2+

-dependent proteins in AE, 

perhaps there is also cystatin A dysregulation in these patients. 

 

8.4 Optimisation of a sample preparation method for use when 

analysing skin tissue 

In chapter 5 we developed a preparation method for the proteomic analysis of skin tissue, 

maximising protein solubilisation and incorporating MS analysis. This was achieved and the 

optimisation steps are presented in chapter 5 . As detailed in the introduction (chapter 1 ) we 

predicted skin tissue samples would be challenging to solubilise and analyse by mass 

spectrometry, due to the presence of many cross-linkage bonds and high lipid content. Despite 

the hurdles and limitations of analysing such a complex tissue such as skin the method (Figure 

5.9) was optimised to achieve maximum protein coverage. 

 

8.4.1 Homogenisation buffers for the solubilisation of skin tissue 

Figure 5.5 shows the different number of proteins identified from the same tissue when it was 

homogenised in seven different homogenisation buffers. From that data we concluded that 50 

mM AmBic, pH 7.8, containing 2% w/v ASB-14 solubilised most of the tissue proteins. Despite 

solubilising most skin proteins compared with the other six buffers, this homogenisation buffer is 

unlikely to solubilise all of the protein, after step 4 of Figure 5.9 an insolubilised pellet remained. 

Some of the insoluble matter will be lipids or small molecules, however, undoubtedly some will 

be insoluble protein matter. 

 

As discussed at the end of chapter 5 proteins in complex tissues such as skin present a range 

of properties; different sizes, abundance and solubility. The range in solubility makes 

solubilisation in a single solution challenging. To overcome this we propose the use of more 

than one homogenisation buffer to accommodate for a wider range of solubilities to increase 
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protein detection by MS. Protein solubilisation for mass spectrometry has been extensively 

studied, conventional detergents are often not compatible with mass spectrometers
332

. Despite 

this, techniques are application-specific, for example using MS-compatible degradable 

surfactant enriches solubilisation of membrane proteins
333

 and gel-separation first enriches for 

structural proteins
334

. In chapter 5 we designed a method to identify greatest number of different 

proteins within a sample, instead of enriching certain aspects of the proteome. It is challenging 

to assess to what extent the whole skin proteome is represented in the proteins we identified 

using our method detailed in chapter 5 without literature detailing the complete skin proteome. 

This method was applied to study disease and in chapter 6 it was noted (Figure 6.6) that the 

majority of proteins detected were intracellular. Proteins within the cell are more heterogeneous 

than extracellular proteins, however, it might reflect the relative solubilities of proteins in these 

two environments. Extracellular proteins may be more lipophilic and more extensively modified 

and cross-linked thus, hindering trypsin digestion. 

 

8.5 Application of the skin preparation method to disease 

The final aim of this thesis was to implement the developed sample preparation and MS 

technique to explore health and disease. Mass spectrometry is a powerful tool for biomarker 

discovery. We applied these methodologies to two clinical outcomes: hypertrophic scars and 

post-operative morbidity. 

 

8.5.1 Application of the skin method to hypertrophic scarring 

In chapter 6 we identified underlying biochemical differences in unscarred tissue of two distinct 

paediatric patient groups: those who would form a hypertrophic scar and those that would heal 

healthily post-surgical incision. We hypothesised that there would be physiological differences 

between the unscarred skin tissues of these patients. Further investigations could lead to the 

development of pre-surgical testing to predict scar outcome post-surgery. This precision 

medicine approach may lead to changes in patient management, such that treatment and 

management are tailored to the patient’s physiology. Presented in chapter 6 are the results of 

this investigation where we identified protein, PTM and lipid differences in unscarred skin tissue. 

 

8.5.1.1 TGF-ß and susceptibility to hypertrophic scarring 

TGF-ß is an established component of skin healing
335

, it has been implicated in abnormal 

wound healing, more specifically, keloid scars, where TGF-ß1 promotes keloid scar formation in 

fibroblasts
336

. We hypothesised that TGF-ß would be involved in hypertrophic scar formation as 

well. This hypothesis was supported by other research that identified a decreased expression of 

TGF-ß in hypertrophic scar fibroblasts
337

 and that topical application of a TGF-ß1 inhibitor 
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improved hypertrophic scar outcomes
338

. No TGF-ß proteins were significantly differentially 

expressed in our study (Table 6.2), TGF-ß1 was detected but not significantly. 

 

Most published studies investigating TGF-ß in hypertrophic scarring focus on hypertrophic scar 

cell lines and genetic expression of TGF-ß.  The results presented here suggest genetic 

changes are only relevant to hypertrophic scar tissue itself and that unscarred tissue does not 

demonstrate the same TGF-ß changes. Perhaps there is an upstream component which 

initiates the switch between healthy scarring and hypertrophic scarring. 

 

8.5.1.2 Protein expression and susceptibility to hypertrophic 

scarring 

Table 6.2 lists the proteins identified as significantly differentially expressed between unscarred 

skin samples of patients who either scarred healthily or hypertrophically. This data identified 

structural, developmental and immunological differences between the tissues of the two groups. 

There is pre-existing evidence suggestive of structural differences between hypertrophic scars 

and healthy scars for example there is a structural collagen nodule in hypertrophic scars, not 

found in healthy scars.
339

 There is also interest in the composition and structure of the 

extracellular matrix in abnormal scars
340

. The developmental component of the proteins 

identified as differentially expressed suggests that a component of the susceptibility for 

hypertrophic scar formation could be part of the underlying epidermal development. The 

epidermis is constantly renewing itself; the stratum basale contains progenitor cells which 

differentiate into keratinocytes progressing through the layers until they are fully differentiated 

corneocytes at stratum corneum, to be shed. There could be underlying developmental 

differences between that in health have no macroscopic clinical significance, yet when the 

system is traumatised the underlying differences may be exacerbated and lead to pathology. 

Finally the immunological component: HLA class I histocompatibility antigen, c-type lectin 

domain family and immunoglobulin gamma-2 were upregulated in the unscarred hypertrophic 

tissue (Table 6.2). No immunological proteins were upregulated in the control group. 

Immunological hypersensitivity has been suggestively linked to predisposition to hypertrophic 

scar formation
250; 341

. The mechanism of this association is unknown and raises queries about 

whether the observed differences are cause or consequence of the disease, but inflammatory 

mediators may play a role
342

. 

 

The implications of this work is reassurance that pre-operative biochemical differences between 

the unscarred tissues of individuals prone to develop a hypertrophic scar post-operatively can 

be detected. There is no conclusive evidence for a single cause, but given the complex nature 

of scarring it is perhaps unsurprising. However, these results support documented literature and 

provide insight into changes in unscarred tissue prior to disease. The uncertainty surrounding 

cause and consequence of changes in hypertrophic scar tissue and healthy scar tissue can be 
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broken down with study model such as the one used in this thesis. We have observed 

structural, developmental and immunological changes in unscarred skin samples. These 

changes therefore cannot be a consequence of hypertrophic scarring because no patients had 

a history of hypertrophic scarring. We cannot conclude that they are the cause but it is 

reasonable to eliminate them as sole consequences of the disease. 

 

8.5.1.3 PTMs and susceptibility to post-operative hypertrophic 

scarring 

Section 6.6.5 presents the results of PTM differences in unscarred skin tissue of patients that 

did and did not develop a post-operative hypertrophic scar. These results indicate increased 

oxidative stress, gene expression and protein ageing-related PTMs (Figure 6.15, Figure 6.16 

and Figure 6.17) in patients that developed hypertrophic scars. Oxidative stress and ROS have 

been presented relating to cellular responses of fibroblast cells from hypertrophic scar tissue
343

. 

Gene expression and protein ageing changes could be linked to developmental aspect 

discussed in section 8.5.1.2 following on from the hypothesis that underlying changes in 

epidermal development could be exacerbated by trauma. In this case increasing gene 

expression and as a consequence increased protein degradation could lead to elevated cell 

turnover in the epidermis of no clinical consequence in health. However, when tissue has been 

damaged and the wound repair process is initiated, this underlying hyper-proliferation may lead 

to hypertrophic scar formation. If this is the case, further understanding of the underlying 

mechanism and causes of hypertrophic scarring will influence prevention, treatment and 

management in the future. 

 

8.5.2 Application of the developed skin preparation method to 

post-operative morbidity and peri-operative oxygen delivery 

The skin preparation method was applied to another cohort investigating post-operative 

morbidity and peri-operative oxygen delivery. In chapter 7 we endeavoured to understand more 

about the biochemistry underlying predisposition for a patient to achieve their target oxygen 

saturation levels and in turn reduce their chance of suffering post-operative morbidity. 

 

8.5.2.1 Hypoxia and free radical damage associated with peri-

operative morbidity 

Table 7.1 and Table 7.4 list the proteins identified as significantly differentially expressed in the 

two experimental cohorts: achievement of target oxygen saturation levels and post-operative 

morbidity, respectively. These cohorts were analysed separately but are clinically linked, many 
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studies have investigated the effects of peri-operative oxygen saturation and morbidity. For 

example low pre-operative cerebral oxygen saturation
344

 and discrepancies between central 

venous oxygen saturation (percentage of oxygen bound to haemoglobin returning to the right 

side of the heart from the upper body) and mixed venous oxygen saturation (percentage of total 

oxygen bound to haemoglobin returning to the right side of the heart)
345

 have been associated 

with adverse post-operative outcomes. There is evidence to suggest that peri-operative decline 

in oxygen saturation is linked to post-operative morbidity such as stroke
346

, cognitive decline
347

 

and organ dysfunction
348

, however, the underlying causes of this remains unknown. By 

analysing these two patient cohorts investigating failure to achieve target oxygen saturation and 

post-operative morbidity we hoped to identify biochemical and metabolic predispositions to 

adverse post-operative outcomes. 

 

One result that corroborates published work
344

 is that prior to major surgery patients showing 

biochemical signs of tissue hypoxia are less likely to achieve their target oxygen saturation 

levels. We conclude that pre-operative hypoxia could reflect differences in basal metabolism. 

Some individuals will be in a continuous state of slight hypoxia and others a continuous state of 

slight hyperoxia, dictated by basal metabolic rate. In health these slight differences may be of 

no clinical significance, however, when under stress such as major surgery this could be 

exacerbated leading to post-operative morbidity, this theory is supported by findings associated 

with protein FAM213A, which is positively selected for in populations living at high altitude
304

.  

 

Oxidative stress was identified as a mechanism triggering post-operative atrial fibrillation
349; 350

 

and poor outcomes following coronary artery bypass surgery
351

. We identified indicators of 

oxidative stress and oxidoreductase activity, specifically a pre-operative increase in antioxidant 

proteins in the patients that did not develop post-operative morbidity. In a similar patient cohort 

administration of antioxidants reduced post-operative morbidity
352; 353

, they improved immune  

recovery post-major surgery
352

. 

 

If our conclusions are correct we show that hypoxia and oxidative stress are pre-operative 

markers of post-operative morbidity. There are already approved interventions that could be 

tested to further understand this hypothesis such as pre-surgical oxygen delivery and the 

administration of antioxidants. 

 

8.5.2.2 PTMs and peri-operative morbidity 

Sections 7.5.2 and 7.6.1 investigate PTMs identified by MS, these results indicated an increase 

in modifications associated with gene expression, cell signalling and cell turnover. No literature 

available suggests that these PTMs have been studied with respect to post-operative morbidity. 

However, these results can be linked to findings discussed in the previous section (8.5.2.1) 

where hypoxia and oxidative stress were identified as predictive factors for the development of 
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post-operative morbidity. Carbonylation was identified as more prevalent in the patients that did 

not develop post-operative complications. Carbonylation is important in cell signalling, more 

specifically oxidant signalling. Proteins are carbonylated by ROS. ROS is vital for cell signalling, 

however, excess ROS can lead to damage of proteins, lipids and DNA with catastrophic 

consequences such as cancer.
354

 There was a greater amount of carbonylated protein 

modifications alongside other cell signalling modifications (hydroxylation and methylation) in 

patients that did not develop post-operative complications. That would suggest that these 

modifications or pathways leading to their generation are preventative of peri-operative hypoxia 

and therefore post-operative morbidity. This knowledge, combined with the identification of 

increased antioxidant proteins suggests greater amounts of ROS in patients that do not develop 

post-operative morbidity, but at the same time increased amounts of antioxidant species. This 

supports the discussion points made in section 8.5.2.1 suggesting that oxidative stress and 

ROS could be intrinsic components susceptibility to post-operative morbidity.  
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9  Conclusions 

 

 

9.1 Major conclusion of this thesis 

This thesis presents the work of a range of mass spectrometry techniques and has applied 

them to the study of human skin in health and disease. IHC staining of control and AE samples 

revealed CLP5 as demonstrating a significantly different staining pattern (Figure 3.7). Further 

investigations into CLP5 revealed its role as a marker of keratinocyte differentiation (section 

3.6.2) and highlighted the importance of the Ca
2+

 gradient in the skin for correct transport of 

proteases, protease inhibitors and antimicrobial proteins. Protein “bait” arrays were used to 

identify new protease-protease inhibitor relationships that could be targeted for skin disease 

treatment, similarly to LEKTI and Netherton syndrome. A new relationship between cystatin A 

and cystatin C and the protease caspase-14 was identified and could be interrogated in skin 

diseases. Finally, a MS-compatible preparation method for the analysis of full-thickness skin 

tissue was developed and applied to two different clinical perspectives. Predisposition of 

paediatric patients to develop a hypertrophic scar post-operatively was investigated, a 

combination of structural, developmental and immunological aspects were identified. Similar 

changes have been observed in other studies. This was a novel study design with access to 

unscarred tissue pre-injury, so findings were able to confirm that differences identified were not 

a consequence of hypertrophic scar development, but associated with the underlying causes 

and predisposition to their manifestation. The second clinical outcome assessed was post-

operative morbidity post-oesophagectomy in adult patients. In this chapter we identified pre-

operative hypoxia, antioxidant levels and ROS as indicators of post-operative morbidity. 

 

9.2 Implications of this thesis for future research 

There is still considerable potential for further research into the topics investigated in this thesis. 

For example, Ca
2+

 gradients in the skin in diseases such as AE would be interesting to study 

and identify whether Ca
2+

 gradients are one of the underpinning factors contributing to AE and if 

so, whether that can be applied to treatment to encourage correct development of the epidermal 

Ca
2+

 gradient. Linked to the Ca
2+

 gradient in the skin was the discovery that caspase-14 

interacts with cystatin A, which in keratinocytes is Ca
2+

-dependent. It would be interesting to 

investigate the role of cystatin A in AE to identify whether that Ca
2+

-dependent protein is also 

dysregulated in the same way as CLP5. Discussed in section 8.4.1 are the limitations of the 

homogenisation buffer used in the method developed in chapter 5 . Although there no 

alternatives have the potential to solubilise more proteins, further study and an array of buffers 

could increase the proteomic coverage. To further develop the work investigating predisposition 

to hypertrophic scarring targeted MS analysis such as MRM could be used to further scrutinise 
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the protein markers in Table 6.2. A targeted assay such as that could be used as a pre-

operative panel test to assess patients’ predisposition to scar hypertrophically. Finally, there is 

compelling evidence to suggest pre-operative hypoxia and oxidative stress are intrinsically 

involved in predisposition for post-operative complications following oesophagectomy. 

Interventions are available and could be implemented in a clinical trial situation to further assess 

whether pre-operative interventions to increase tissue oxygenation and antioxidant availability 

are able to reduce post-operative morbidity in susceptible patients identified from analysis of 

whole skin samples pre operatively. 
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10.1 Materials 

All reagents and materials were purchased from Sigma-Aldrich, Poole, UK, unless stated 

otherwise. Solvents were of ultrahigh performance liquid chromatography (UPLC) or higher 

grade specification. 

 

10.2 Methods 

Throughout this thesis methods have been altered and optimised, described here are the most 

recent versions and relevant previous versions will have been described in previous chapters. 

 

10.2.1 Skin samples 

Skin samples used in immunohisotchemistry (IHC) staining (chapter 3 ) were formalin-fixed 

paraffin-embedded archival samples. Skin samples for MS-based proteomics were excess 

tissue surgically removed for disposal with no linked clinical information, as stated in the ethics 

statement thus consent was not required. Research was carried out according to the ethical 

agreement REC reference: 12/LO/0905, approved by the London – Bloomsbury NRES 

Committee.
218

 

 

10.2.2 Automated immunohistochemistry (IHC) 

IHC was performed using a Leica biosystems BOND-MAX automated immunostainer, 4 µm 

sections were cut from cold blocks using a microtome (Sakura® Finatek, USA), sections were 

transferred to glass slides and allowed to dry at 37 °C overnight before being transferred to a 60 

°C oven for 1 h. Slides were deparaffinised using Leica Novacastra Bond Dewax Solution. 

Depending on the antibody a different pre-treatment was used: 
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Table 10.1. Table showing the automated immunohistochemistry techniques used 
for the different antibodies. HIER: heat-induced epitope retrieval, ER1: epitope retrieval 
pre-made Leica solution, operated at pH 6 and ER2: operates at pH 9. The enzyme is a 
Leica pre-blended solution made up with 1 drop of enzyme to 7000 µL of Leica enzyme 
diluent. 

Endogenous peroxidases were blocked by 150 µL hydrogen peroxide for 10 min. Slides were 

incubated in 150 µL of primary antibody for 15 min at RT. Incubation in 150 µL of secondary 

antibody for 8 min at RT followed. One hundred and fifty microlitres of dextrose polymer 

containing 12 horseradish peroxidase molecules was added for 8 min at room temperature 

(RT), this amplifies the signal 12-fold. A mixed 3, 3’-diaminobenzidine (DAB) refine detection kit 

was used and slides stained with haematoxylin for 5 min. Between the addition of each reagent 

150 µL of Leica wash solution was applied. Reagents were supplied by Leica as part of the 

Novocastra Bind Polymer refine Detection Kit. Slides were dehydrated from water to 100% 

ethanol, to xylene and a coverslip added using a Leica CV5030 Autostainer XL, before 

visualisation on a microscope (Nikon Corporation). 

 

10.2.3 Immobilisation of proteins to a solid magnetic support 

Manufacturers’ guidelines were followed: life technologies, Dynabeads® Co-

Immunoprecipitation Kit (14321D, Thermo Fisher Scientific). For each experiment 1.5 mg of 

magnetic beads were used, the “Antibody Coupling Protocol” then “Co-IP Protocol for Western 

Blot or Silver Stain Analysis” were followed, beads were incubated in 100 µL of skin 

homogenate for 4 h at RT before collecting the interacting proteins. 

 

10.2.4 Label-free quantitative mass spectrometry for proteins (MSE) 

Peptides were analysed using a nanoAcquity ultrahigh definition liquid chromatography (UPLC) 

system coupled to a quadrupole time-of-flight (QToF) Premier mass spectrometer (MS) (Waters 

Corporation, Manchester, UK). Peptides were trapped and desalted before reverse phase 

separation using a 5 mm x 300 µm Symmetry C18 5 µL, pre-column. Peptides were separated 

using a 15 cm x 75 µm C18 reverse phase analytical column and loaded onto the pre-column in 

Antibody Purchased from Dilution factor Antigen retrieval

alpha-1-acid glycoprotein abcam®, ab58291 1 in 1000 HIER ER2, 20min

bleomycin hydrolase
santa cruz biotechnology®

sc-166777
1 in 500 HIER ER2, 20min

calmodulin-like protein 3 abcam®, ab155130 1 in 250 Enzyme 1, 10min

calmodulin-like protein 5 abcam®, ab122665 1 in 4000 Enzyme 1, 10min

caspase 14
santa cruz biotechnology®

sc-48336
1 in 1000 HIER ER1, 10min

cathepsin D abcam®, ab75852 1 in 500 HIER ER1, 10min

dermcidin abcam®, ab175519 1 in 100 HIER ER2, 20min
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a 3% acetonitrile (ACN) and 0.1% formic acid (FA) in ultrapure water solution (Fluka) at a flow 

rate of 4 µL/min for 4 min. Peptides were eluted from and separated on the analytical column 

using a 3-40% ACN gradient containing 0.1% FA in ultrapure water over 30 min at a flow rate of 

0.3 µL/min. The column was re-equilibrated to the starting conditions for 9 min, after removal of 

the non-polar and non-peptide material with 100% ACN containing 0.1% FA for 5 min at a flow 

rate of 0.4 µL/min. Columns were maintained at 35 °C and mass accuracy was maintained 

during the run using 0.3 nmol/L of [glutamic acid
1
]-fibrinopeptide B delivery through an auxiliary 

pump of the nanoAcquity at a flow rate of 0.3 µL/min
57; 355

. 

 

Peptides were analysed in positive ion mode using a QToF Premier (Waters Corporation, 

Manchester, UK), operated in V-mode, with a typical resolving power of 10000 fwhm. The ToF 

analyser was calibrated prior to analyses with [glutamic acid
1
]-fibrinopeptide B fragments over 

the mass range of 50-2000 m/z obtained using 25 eV of collision energy. Data files were mass-

corrected every 30 s using the doubly charged [glutamic acid
1
]-fibrinopeptide B species 

(785.84262 m/z). Accurate mass LC-MS data were collected in a data independent and 

alternating, low and high collision energy mode. Each low/high acquisition was 1.5 s in duration 

with a 0.1 s inter-scan delay. Low energy data collections were performed at constant collision 

energy of 4 eV, high collision energy acquisitions were performed across a 15−40 eV ramp over 

1.5 s and a complete low/high energy acquisition was achieved every 3.2 s. 

 

10.2.5 Analysis and quantification of raw MS files (ProteinLynx 

GlobalServer) 

Raw data were imported into Waters ProteinLynx GlobalServer version 3.0.1 to identify peptide 

masses corresponding to fragmentation ion data. Mass corrections was applied based on 

[glutamic acid1]-fibrinopeptide B delivered via an auxiliary pump. Processed spectra were 

merged prior to searching the UniProt reviewed human proteome. Search parameters were set 

to two fragment ions matched per peptide, four fragment ions per protein and two peptides per 

protein and one missed cleavage, fixed modifications were set to carbamidomethylation of 

cysteines and dynamic modifications of hydroxylation of aspartic acid, lysine, asparagine and 

proline and oxidation of methionine and the false discovery rate was 4 %.
218

 

 

10.2.6 Removal of <3 kDa mass impurities using filtration for 

proteomic analysis 

Amicon® Ultra-0.5 mL Centrifugal Filter Devices were used according to the manufacturer’s 

guidelines (Merck Millipore, Merck KGaA, Germany). The filter unit was placed inside the 

provided microcentrifuge tubes, 500 µL of sample added and the cap closed. The filter device 

was centrifuged (Heraeus™ BIofuge Pico™, Thermo Scientific) at 14,000 g for 30 min. The filter 
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was then inverted and placed inside a fresh microcentrifuge tube and centrifuged at 1,000 g for 

2 min. See Figure 5.1 steps 5-10 for a diagram. 

 

10.2.7 Lipid extraction from skin samples 

Lipids were extracted using a modified Folch extraction method, 1 mL of a 1:2 

chloroform:methanol solution was added and the samples vortexed (Fisons plc., UK) and 

incubated at RT on a benchtop shaker (IKR, UK) for 1 h. Samples were centrifuged at 16,000 g 

for 10 min. Lipids were found in the liquid phase. 

 

10.2.8 Bicinchoninic acid protein assay 

A modified Lowry
356

 protein assay was used. A seven point standard curve was made up to 10 

µL of a 0-1 mg/mL concentration of bovine serum albumin in a 96-well flat-bottomed plate. Two 

microlitres of sample was added to different wells and made up to 10 µL with Milli-Q water 

(Merck Millipore, Merck KGaA, Germany). Two hundred microlitres of bicinchoninic acid was 

added to each well, the plate vortexed briefly and incubated at 37 °C for 10 min. Then 4 µL of a 

4% w/v solution of copper sulphate solution was added, the plate vortexed briefly and incubated 

at 37 °C for 20 min. The absorption was measured at 555 nm. 

 

10.2.9 Separation of proteins according to molecular weight using 1-

dimensional gel electrophoresis 

Polyacrylamide gel electrophoresis was used to separate proteins according to mass. Precast 

Any kDa™ Mini-PROTEAN® TGX™ gels were purchased from Bio-Rad. Loading buffer was 

made up in a 1:1:2 ratio of 4x sodium dodecyl sulphate Sample Buffer (Merck Millipore, Merck 

KGaA, Germany):300 mM DTE:Milli-Q water and 30 µL of this solution was added to freeze 

dried protein pellets, samples were vortexed and incubated at RT for 1 h, 4.5 µL of a 1.94 M 2-

iodoacetamide solution was added, samples vortexed briefly and heated at 90 °C for 5 min. 

Samples were centrifuged at 16,000 g for 10 min and 20 µL of each sample added to separate 

wells of the gel. Four microlitres of GE Healthcare Rainbow Marker was used. Electrophoresis 

was performed at 200 V until the bromophenol blue line front was observed leaving the 

resolving gel (approximately 30-45 min). Gels were either Coomassie Brilliant Blue (Fisher 

Scientific, UK) stained immediately or stored in fixative. 

 

The gel track was cut into 10 bands and digestion in separate eppendorfs as described in the 

literature
357; 358

. Gel bands were washed 3 times with 1 mL of 50 mM ammonium bicarbonate 

(AmBic), pH 7.8 solution and washes discarded. Five hundred microlitres of LC-MS grade ACN 

(Merck, Germany) was added to each gel piece and incubated on a benchtop shaker for 30 min, 
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further dehydration was carried out by centrifugal evaporation (Jouan, France) for 1-2 h. Gel 

pieces were digested with 60 µL of a 12.5 mg/mL trypsin solution in 50 mM AmBic and 

incubated at 37 °C overnight. 

 

Peptides were extracted using an ACN gradient. Firstly 200 µL of 1% FA was added and the gel 

pieces incubated at RT on a benchtop shaker for 20 min. This was discarded, 300 µL of 50% 

ACN, containing 1% FA was then added, and the gel piece incubated at RT on a benchtop 

shaker for 20 min. This was removed and transferred to a clean eppendorf. This step was 

repeated with 200 µL of a 70% ACN, containing 1% FA solution to elute the final peptides. 

Peptides were dried using a centrifugal evaporator and reconstituted in 3% ACN, containing 

0.1% trifluoroacetic acid (TFA) solution for MS analysis. 

 

10.2.10 In-solution digestion of proteins 

Fifty micrograms of protein solution was taken and lyophilised, reconstituted in 20 µL of 100 

mmol/L tris, pH 7.8, containing 2 % w/v ASB-14, 6 mol/L urea and 2 mol/L thiourea. To this 1.5 

µL of 1.94 mol/L DTE in 100 mmol/L tris, pH 7.8 was added, samples vortexed, centrifuged 

briefly and incubated on a platform shaker at RT for 1 h. Three microlitres of 1.94 mol/L 2-

iodoacetamide in 100 mol/L tris, pH 7.8 was added, the sample vortexed, centrifuged briefly and 

incubated at RT on a platform shaker for 45 min. The reaction volume was made up to 190 µL 

with Milli-Q water. Ten microlitres of 0.1 mg/mL Sequencing Grade Modified Trypsin (Promega, 

Madison, USA) was added, samples vortexed briefly and incubated overnight at 37 °C.
218

 

 

10.2.11 Separation of peptides according to polarity using high pH 

carbon-18 chromatography 

Offline 2D-LC separation was carried out on ISOLUTE® C18 columns (Biotage) as described in 

the literature
359

. Columns were primed with 1 mL of 50% ACN containing 0.1% ammonia, 

followed by 2 mL of 0.1% ammonia solution. Peptides from an in-solution digest (method 3.12) 

were applied to the column and allowed to flow through, flow through was reapplied twice. 

Peptides were eluted into separate eppendorfs by increasing ACN concentrations containing 

0.1% ammonium from 3-50% ACN. Peptides were dried using a centrifugal evaporator and 

peptides reconstituted in 3% ACN, containing 0.1% TFA solution before MS analysis. 
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10.2.12 Two-dimensional high pH fractionation of sample peptides, 

followed by low pH chromatographic separation using an 

online nanoACQUITY UHPLC system 

Lypholised sample was reconstituted in 25 µL of 3 % v/v ACN containing 0.1 % v/v TFA and 50 

pmol/µL enolase peptides standard (MassPREP™, Waters) solution, centrifuged at 16,000 g for 

10 mins and the supernatant transferred to a vial (TruView™ LCMS Certified, Total Recovery 

Vial, Waters). The nanoACQUITY UPLC (Waters, Manchester) system was configured in 2D 

with dilution set-up to allow for the first dimension to online fractionate the sample using high pH 

mobile phases directly before individual fractions entered the second dimension of 

chromatographic separation using low pH mobile phases. The first dimension was performed at 

2 µL/min flow on an XBridge Peptide ethylene bridged hybrid C18 NanoEase Column (130 Å, 5 

µm, 300 µm X 50 mm, 1/pkg (PN: 186003682), Waters, Manchester) mobile phase A was a 20 

mmol/L ammonium formate, pH 9 solution and mobile phase B was 100 % acetonitrile. At the 

start of the first dimension the sample solution was loaded onto the XBridge Peptide column in 3 

% mobile phase B for 1 min before a 4 min gradient for each fraction after which the XBridge 

Peptide column is re-equilibrated at 3 % mobile phase B. 

 

 

Table 10.2. Table showing percentage composition of mobile phase B for each 
fraction. Percentage composition of mobile phase B for each fraction, depending on the 
total number of fractions (4, 6 or 8). 

After a fraction was eluted from the XBridge Peptide column it entered the second dimension 

constituting low pH reverse phase chromatographic separation at 400 nL/min flow on a 

ACQUITY UPLC Peptide ethylene bridged hybrid C18 nanoACQUITY Column (10 Kpsi, 130 Å, 

1.7 µm, 75 µm X 150 mm (PN: 186003543), Waters, Manchester) maintained at 35 °C, mobile 

phase A was 0.1 % v/v formic acid with 5 % v/v dimethyl sulphoxide and mobile phase B was 
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0.1 % v/v formic acid in 100 % ACN with 5 % v/v dimethyl sulphoxide. Before peptides from the 

first dimension were chromatographically separated they were diluted 1:10 during trapping with 

mobile phase A from the second dimension (20 µL/min 0.1 % formic acid with 5 % v/v dimethyl 

sulphoxide), concentrated and further desalted onto a nanoACQUITY UPLC Symmetry C18 

Trap Column (100 Å, 5 µm, 180 µm x 20 mm, 2G, V/M (PN:186006527), Waters, Manchester). 

The second dimension gradient started 20.5 min after the start of the first dimension at 3 % 

mobile phase B and increased to 40 % over 40 min, a further increase to 85 % mobile phase B 

occured over the next 2 min and was held there for 2 min further, before returning to starting 

conditions for 15 min of re-equilibration.
218

 

 

10.2.13 Label-free ultrahigh definition label free (UDMSE) mass 

spectrometry data acquisition 

For each fraction a 60 min mass spectrometry analysis was performed on a SYNAPT G2-Si 

(Waters, Manchester) MS in UDMS
E
, positive ion, electrospray ionisation (ESI) and operated in 

V-mode
360

. One second alternating high and low energy scans were performed at a capillary 

voltage of 3.0 kV, sampling cone voltage of 40 V, source temperature of 70 °C over a mass 

range of 50-2000 m/z in resolution analyser mode. Prior to fragmentation ion mobility separation 

(IMS) was performed at a wave velocity of 650 m/s and a wave height of 40 V. Low energy 

scans were performed at 0 V collision voltage and the high energy scans were on a gradient, 

from 0-20 ion mobility bins the collision voltage was 13.6 V increasing linearly to 49.1 V at 120 

mobility bins, followed by another linear gradient to 54.1 V at 200 mobility bins. Every 60 s lock 

mass of [glutamic acid1]-fibrinopeptide B was delivered via an auxiliary pump at 300 nL/min.
218

 

 

10.2.14 Skin preparation for mass spectrometry analysis 

Skin tissue was washed with 1x PBS before being snap frozen in liquid nitrogen, embedded in 

optimum cutting temperature (Cell Path, Fisher Scientific), cryosectioned into 10 µm rolled 

tissue sections (Leica CM1860) and collected in a clean tube. Curls were suspended in 500 µL 

of 50 mmol/L AmBic containing 2 % w/v ASB-14. Curls and solution were transferred to a 

homogenisation vial (Precellys 0.5 mL tube containing 1.4 mm diameter ceramic beads, peqlab, 

VWR) and mechanically homogenised for 20 s at high power (Minilys®, Bertin Technologies). 

The solution was then transferred to ice for 1 min to stop thermal degradation. This was 

repeated twice. The vial was incubated on ice for 1 h before a further three cycles of 

homogenisation. The homogenate was transferred to a clean tube and sonicated for 10 s using 

a Soniprep 150 sonicator (MSE UK). Sample was centrifuged at 16,000 g for 10 min and the 

supernatant removed to a clean tube.
218
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10.2.15 Analysis and quantification of raw mass spectrometry files 

(Progenesis QI for proteomics) 

Raw data were imported into Nonlinear Dynamics Progenesis QI for proteomics to identify 

peptide masses corresponding to the fragmentation ion data. Mass correction was based on 

[glutamic acid1]-fibrinopeptide B delivered via an auxiliary pump. Processed spectra were 

merged prior to searching the UniProt reviewed human proteome. Search parameters were set 

to two fragment ions matched per peptide, four fragment ions per protein and two peptides per 

protein and one missed cleavage, fixed modifications were carbamidomethylation of cysteines 

and dynamic modifications were hydroxylation of aspartic acid, lysine, asparagine and proline 

and oxidation of methionine and false discovery rate was 4  %. 

 

10.2.16 Analysis and identification of post-translational modifications 

(PTMs) 

Nonlinear Dynamics Progenesis QI for proteomics was used to search peptide masses acquired 

from UDMS
E
 mass spectrometry acquisition data to identify mass changes in peptides that 

could correlate with a PTM, mass changes shown in Table 10.3: 
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Table 10.3. This table lists the mass changes for a selection of PTMs. This table 
shows the mass changes used in this thesis to identify modified peptide sequences 
according to their mass from mass spectrometry data. 
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10.2.17 High performance liquid chromatography tandem mass 

spectrometry (HPLC-MS/MS) analysis of glycosphingolipids 

Protein concentrations were determined using the bicinchoninic acid protein assay (section 

10.2.8), 300 µg of protein was taken for glucosylceramide analysis. Compounds were extracted 

in 500 µL of chloroform:methanol solution (1:2 v/v) containing 200 ng/ml of d3-C16:0-

glucosylceramide internal standard, synthesised in house
361

. Samples were shaken for 30 min 

at RT. After 10 min centrifugation at 16,000 g the liquid phase was collected and dried under 

nitrogen gas flow. Samples were reconstituted in 100 µL chloroform:methanol solution (1:2 v/v) 

and two 5 µl injections of each sample were introduced to the HPLC-MS/MS system. 

Glycosphingolipid reference standards (Matreya, USA) was analysed to confirm analyte identity. 

 

Samples were injected onto Waters ACQUITY UPLC system (Manchester, UK) operated in 

partial loop mode and separated on Waters ACQUITY UPLC BEH C18 column (130Å, 1.7 µm, 

2.1 mm X 50 mm) under the following gradient conditions: 

 

 

Table 10.4. Table detailing the mobile phase composition throughout the gradient. 
Table detailing the relative compositions of mobile phase A and mobile phase B 
throughout the analytical gradient of this HPLC-MS/MS assay. 
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Figure 10.1. Figure illustrating the 11 minute gradient used for the 
globotriaosylceramide HPLC-MS/MS. Figure illustrating the composition of mobile 
phase A (red) and mobile phase B (green) over the 11 minute gradient of separation for 
the globotriaosylceramide isoforms. 

Mobile phase A was water containing 0.1% FA, mobile phase B was methanol and the flow rate 

was 0.65 mL/min throughout. Column and sample temperatures were maintained at 40°C and 

10°C respectively. Weak wash solvent was water containing 0.1% FA and strong wash solvent 

was acetonitrile:methanol:isopropanol:Milli-Q water (1:1:1:1 v/v). The eluting analytes were 

detected on a Waters XEVO TQ-S triple quadrupole mass spectrometer (Manchester, UK) 

which was equipped with ESI source and operated in multiple reaction monitoring (MRM) and 

positive ion mode (see Table 10.5 for MRM details) with the tune page parameters set to 

achieve the maximum sensitivity for glycosphingolipids as described previously
362

. The data 

was processed with MassLynx v4.1. 
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Table 10.5. Table detailing the transition mass-to-charge ratio values for the 
globotriaosylceramide isoforms. Precursor ion, fragment ion, cone voltage and 
collision voltage values for the globotriaosylceramide isoforms included in this MRM 
HPLC-MS/MS assay. 
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12.1 Full MS data for the 42 proteins identified as interacting with 

CLP5, presented in Table 3.2 

Protein entry and accession number are unique identifiers for each protein. Protein score is a 

software generated value taking into account the quality of the data used to identify that protein. 

Matched peptides to protein details the number of peptides detected in the sample mixture for 

that specific protein. Amount of protein indicates the relative abundance of each protein 

compared with a standard peptide spiked into the mixture. 
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12.2 Full MS data for the 35 proteins identified as interacting with 

alpha-1-antitrypsin, presented in Table 4.4 

Protein entry and accession number are unique identifiers for each protein. Protein score is a 

software generated value taking into account the quality of the data used to identify that protein. 

Matched peptides to protein details the number of peptides detected in the sample mixture for 

that specific protein. Amount of protein indicates the relative abundance of each protein 

compared with a standard peptide spiked into the mixture. 

 

 

 

12.3 Full MS data for the 71 proteins identified as interacting with 

cystatin A, presented in Table 4.5 

Protein entry and accession number are unique identifiers for each protein. Protein score is a 

software generated value taking into account the quality of the data used to identify that protein. 

Matched peptides to protein details the number of peptides detected in the sample mixture for 

that specific protein. Amount of protein indicates the relative abundance of each protein 

compared with a standard peptide spiked into the mixture. 
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12.4 Full MS data for the 30 proteins identified as interacting with 

cystatin C, presented in Table 4.6 

Protein entry and accession number are unique identifiers for each protein. Protein score is a 

software generated value taking into account the quality of the data used to identify that protein. 

Matched peptides to protein details the number of peptides detected in the sample mixture for 

that specific protein. Amount of protein indicates the relative abundance of each protein 

compared with a standard peptide spiked into the mixture. 
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12.5 Full MS data for the 24 proteins identified as interacting with 

elafin, presented in Table 4.7 

Protein entry and accession number are unique identifiers for each protein. Protein score is a 

software generated value taking into account the quality of the data used to identify that protein. 

Matched peptides to protein details the number of peptides detected in the sample mixture for 

that specific protein. Amount of protein indicates the relative abundance of each protein 

compared with a standard peptide spiked into the mixture. 

 

 

 

12.6 Full mass spectrometry data for the 89 proteins identified as 

being significantly differentially expressed in unscarred control 

compared with unscarred hypertrophic tissue 

Protein accession number is a unique identifier for each protein. Peptide count details the total 

number of peptides detected for that protein and unique peptides refers to the peptides that can 

only have come from that specific protein. Confidence score is a software generated value 

taking into account the quality of the data used to identify that protein. Maximum fold change is 

the greatest value difference between a single control and hypertrophic scar sample. Proteins 

highlighted in green were upregulated in the control samples and those that are highlighted in 

red were upregulated in the hypertrophic scar samples. 
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12.7 Full MS data for the 30 proteins identified as being significantly 

differentially expressed in unscarred control compared with 

unscarred hypertrophic tissue, presented in Table 6.2, selected 

from the longer list of 89 proteins 

Protein accession number is a unique identifier for each protein. Peptide count details the total 

number of peptides detected for that protein and unique peptides refers to the peptides that can 

only have come from that specific protein. Confidence score is a software generated value 

taking into account the quality of the data used to identify that protein. Maximum fold change is 

the greatest value difference between a single control and hypertrophic scar sample. Proteins 

highlighted in green were upregulated in the control samples and those that are highlighted in 

red were upregulated in the hypertrophic scar samples. 
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12.8 Full MS data for the 17 proteins significantly differentially 

expressed between the achievers and non-achievers of pre-

surgery oxygen saturation levels, presented in Table 7.1 

Protein accession number is a unique identifier for each protein. Maximum fold change is the 

greatest value difference between a single control and hypertrophic scar sample. Peptide count 

details the total number of peptides detected for that protein and unique peptides refers to the 

peptides that can only have come from that specific protein. Confidence score is a software 

generated value taking into account the quality of the data used to identify that protein. Proteins 

highlighted in blue were upregulated in the samples that did achieve their pre-operative oxygen 

saturation levels and those that are highlighted in red were upregulated in those that did not 

achieve their pre-operative oxygen saturation levels. 

 

 

 

12.9 Full MS data for the 47 proteins significantly differentially 

expressed between the CD <2 and the CD ≥2 groups, presented 

in Table 7.4 

Protein accession number is a unique identifier for each protein. Maximum fold change is the 

greatest value difference between a single control and hypertrophic scar sample. Peptide count 

details the total number of peptides detected for that protein and unique peptides refers to the 

peptides that can only have come from that specific protein. Confidence score is a software 

generated value taking into account the quality of the data used to identify that protein. Proteins 

highlighted in blue were upregulated in the samples that had minimal post-operative 

complications and those that are highlighted in red had serious post-operative complications. 
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