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Abstract 

Recent brain imaging studies have found changes in subcortical regions in presymptomatic 

autosomal dominant Alzheimer’s disease (ADAD). These regions are also affected in sporadic 

Alzheimer’s disease (sAD), but whether such changes are seen in early-stage disease is still 

uncertain. In this review, we discuss imaging studies published in the past 12 years that have 

found evidence of subcortical involvement in early-stage ADAD and/or sAD. Several papers have 

reported amyloid deposition in the striatum of presymptomatic ADAD mutation carriers, prior to 

amyloid deposition elsewhere. Altered caudate volume has also been implicated in early-stage 

ADAD, but findings have been variable. Less is known about subcortical involvement in sAD: the 

thalamus and striatum have been found to be atrophied in symptomatic patients, but their 

involvement in the preclinical phase remains unclear, in part due to the difficulties of studying this 
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stage in sporadic disease. Longitudinal imaging studies comparing ADAD mutation carriers with 

individuals at high-risk for sAD may be needed to elucidate the significance of subcortical 

involvement in different AD clinical stages. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia in all age groups (Knapp, et al., 

2007) and it is estimated that over 36 million people are living with dementia worldwide (Prince, et 

al., 2013). Being such a common cause of dementia, AD has thus become a matter of high 

importance for public health and the global economy. There is currently no disease-modifying 

treatment for AD, but research is ongoing to find reliable markers to improve diagnosis and to use 

as outcome measures in clinical trials of potential new treatments. 

The hallmark pathological features of AD are neuronal loss, neuritic plaques of amyloid-beta (Aβ), 

and neurofibrillary tangles (NFTs) of hyperphosphorylated tau (Hyman, et al., 2012). These are 

quantified by criteria put forward by Braak and Braak, Thal, and the ‘Consortium to Establish a 

Registry for AD’ (CERAD) (Braak, et al., 2006,Mirra, et al., 1991,Thal, et al., 2002) for the 

neuropathological diagnosis of AD. Typical imaging features of AD include atrophy of the medial 

temporal lobe, precuneus, ventrolateral temporal, lateral parietal, and posterior cingulate cortices, 

the amygdala, and the anterior hippocampus. Furthermore, hypometabolism and amyloid 

deposition in these regions can be detected using fluorodeoxyglucose and Pittsburgh compound B 

positron emission tomography (FDG-PET and PiB-PET) respectively (Johnson, et al., 2012). 

Current diagnostic and classification criteria by the International Working Group (IWG) and the 

National Institute on Aging and Alzheimer’s Association (NIA-AA) support the inclusion of imaging 

markers from both structural MRI and PET images (Cummings, et al., 2013,Dubois, et al., 

2014,McKhann, et al., 2011). Clinical diagnosis of AD can be challenging, particularly in the early 

stages, and there is overlap between the phenotypes of AD and other neurodegenerative 

diseases. There is thus a great need for specific imaging markers that can detect AD pathology in 

vivo as early as possible. In this review, we discuss studies that have used neuroimaging 

techniques to study structural and functional alterations in subcortical regions of interest (ROIs) in 

sporadic or autosomal dominantly inherited AD (sAD or ADAD) providing information about the 

potential utility of such markers in future AD research including clinical trials. 
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2. Exploring beyond the hippocampus 

While presymptomatic intervention trials are already underway, the search continues for the best 

imaging biomarkers in the early stages of AD. Hippocampal atrophy derived from MRI is currently 

used in AD therapeutic trials as an outcome measure, and most imaging studies in sAD and 

ADAD have focused on the ‘AD signature’ regions (Dickerson, et al., 2011): the medial temporal 

lobe, inferolateral temporal regions, and medial parietal and frontal cortices. However, amyloid 

imaging studies using PiB-PET in ADAD mutation carriers (MC) have identified subcortical 

deposition in the striatum during presymptomatic and early disease, to a greater extent than the 

signature cortical regions (Klunk, et al., 2007,Villemagne, et al., 2009). Although these subcortical 

structures have previously received relatively little attention in studies of AD, interest in these 

regions has grown over the recent years, with a number of related studies published. 

The thalamus and basal ganglia exhibit AD pathology (Braak and Braak, 1990,Braak and Braak, 

1991), but historically these subcortical structures have not tended to be used as ROIs in imaging 

studies of AD patients. The role of structural and functional abnormalities in these regions is widely 

recognized in motor disorders (Rothwell, 2011), but there is also evidence to support their 

involvement in cognitive functions, including memory (Liljeholm and O'Doherty, 2012,Packard and 

Knowlton, 2002,White, 2009). Brain networks involving the thalamus – as well as limbic regions – 

may play a more important role in AD than was previously thought (Aggleton, et al., 2016). 

Here, we review studies of preclinical/presymptomatic or early/mildly symptomatic stages of sAD 

or ADAD published since 2004, reporting on changes identified using neuroimaging techniques in 

five subcortical ROIs: thalamus, caudate, putamen, nucleus accumbens, and globus pallidus. 

Studies of atypical or mixed AD, as defined by (Dubois, et al., 2010), have not been included. 

ADAD is the main focus of this review, owing to the certainty with which preclinical disease can be 

studied in carriers of mutations in the APP, PSEN1 and PSEN2 genes, as opposed to the sporadic 
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form of AD. Findings in these ROIs during the early stages of sAD are also included, in an effort to 

illustrate what has been done so far, and to motivate and inform future research.  

Although early-onset AD accounts for only a small percentage of all AD (Campion, et al., 1999), 

and its autosomal dominant forms are even rarer, ADAD – unlike sAD – can be studied 

presymptomatically in individuals destined to develop AD. Reliable presymptomatic diagnosis 

based on genetics can provide unique insights into the changes during the earliest disease stages, 

when sporadic disease cannot yet be diagnosed with certainty. Studies of early-stage sAD also 

face uncertainty in predicting conversion rates from amnestic MCI (aMCI) to AD. Amnestic MCI is 

thought to be a much stronger risk factor of conversion to AD than non-amnestic MCI (naMCI), but 

conversion rates in the clinical setting are still relatively low (Tifratene, et al., 2015). For these 

reasons, this review will focus mostly on studies of ADAD, while also discussing the possible 

implications of the findings in ADAD for increased understanding of early-stage sAD. 

 

3. Method of systematic literature review 

The literature search was performed using PubMed (US National Library of Medicine) and OvidSP 

Embase, on 11/11/2015. We searched for original research papers published (in English) between 

01/01/2004 and the search date. The following keywords were used: Alzheimer*, imaging, mri, 

fmri, pet, spect, diffusion, subcortical, thalamus, basal ganglia, striat*, putamen, globus pallidus, 

caudate, nucleus accumbens, early, asymptomatic, presymptomatic, preclinical, mci, amci, mild, 

prodromal. The reference lists of the papers thus found were also searched for potential 

publications of interest. Based on title and abstract, we then excluded studies of atypical or mixed 

AD, AD with significant co-morbidities, other forms of dementia, and studies without appropriate 

control groups. For selection into the final set, we reviewed the studies’ methods and results, 

selecting only those that investigated our ROIs in presymptomatic or early symptomatic ADAD 

(Clinical Dementia Rating ≤ 1; (Morris, 1993) or in preclinical or early-stage/mild sAD (CDR ≤ 1 or 
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Mini Mental State Examination score ≥ 20; Folstein et al., 1975). Figure 1 illustrates the article 

selection procedure. 

 

 

 

 

 

 

 

4. Imaging findings in autosomal dominant AD  

4.1 PiB-PET 

The results of the literature search on relevant studies in ADAD are presented in Table 1. A 

number of studies have demonstrated amyloid deposition in subcortical regions in ADAD mutation 

carriers (Benzinger, et al., 2013,Klunk, et al., 2007,Knight, et al., 2011,Shi, et al., 2015,Villemagne, 

et al., 2009). Amyloid deposition has been reported in most of the subcortical ROIs that are the 

focus of this review, particularly in the caudate, putamen and globus pallidus. Importantly, amyloid 

deposits in these regions were often greater than deposits observed elsewhere in the brain. 

(Klunk, et al., 2007) and (Villemagne, et al., 2009) were the first to demonstrate striatal amyloid 

deposition in presymptomatic ADAD MC (Figure 2). Similar findings were subsequently reported 

by (Knight, et al., 2011); however, the pattern of deposition in different individuals was more 

heterogeneous, perhaps reflecting the larger variety of different PSEN1 mutations represented in 

the cohort. In an initial longitudinal analysis of a large ADAD cohort from the Dominantly Inherited 

Alzheimer Network (DIAN), (Benzinger, et al., 2013) found increased PiB retention in all 

subcortical regions investigated (including the thalamus and corpus striatum) in presymptomatic 

MCs, before hippocampal involvement, but not before cortical amyloid deposits (Figure 3). 
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Table 1. Results in ADAD. s/pMC: symptomatic/presymptomatic mutation carriers (where 

available, average years from expected onset is shown in parentheses), sAD: sporadic AD, HC: 

healthy controls, MD: mean diffusivity. 

Author Modality Cohort type 
 

Main relevant findings 

(Klunk, et al., 
2007) 

PiB-PET PSEN1 pMC 
(C410Y), sMC 
(A426P), sAD, 
HC 

Increased amyloid deposition in the striatum in pMC compared to HC. 

(Villemagne, et 
al., 2009) 

PiB-
PET, 
FDG-
PET 

PSEN1, APP 
pMC + sMC, 
sAD, HC 

High PiB uptake in the striatum of all MC. Some of the pMC also had 
thalamic and cortical PiB uptake, but to a lesser degree. Lower global 
and regional FDG uptake in various regions; no common patterns 
among groups. 

(Knight, et al., 
2011) 

PiB-PET Mixed PSEN1 
pMC (-7.2 
years), sMC, 
sAD, HC 

Increased PiB retention in cortical and subcortical areas in pMC (with 
pons as the reference point). Heterogeneous patterns of uptake. 

(Scholl, et al., 
2011) 

FDG-
PET, 
PiB-PET 

PSEN1 (H163Y) 
pMC, sAD, HC 

Reduced glucose metabolism in thalami of pMC, especially on the 
right. For one MC, PiB-PET was performed after disease onset. This 
showed an otherwise similar pattern of uptake as in sAD controls, but 
with greater uptake in the striatum. 

(Scholl, et al., 
2012) 

FDG-
PET, 
PiB-
PET, 
MRI 

APParc 
(E693G), 
PSEN1(H163Y), 
APPswe pMC, 
sMC, sAD, HC 

Low PiB retention in APParc carriers and non-carriers. Retention in a 
symptomatic PSEN1 carrier, similar to sAD, but higher uptake in 
striatum. APPswe carrier with MCI had higher uptake in striatum, 
thalamus and hippocampus than sAD. 

(Benzinger, et 
al., 2013) 

PiB-
PET, 
FDG-
PET, 
MRI 

Mixed PSEN1, 
PSEN2, APP 
MC, HC 

Increased amyloid uptake in accumbens, caudate, putamen and 
cortical areas earlier than in hippocampus. Subcortical areas did not 
exhibit reduced glucose metabolism, unlike the hippocampus. 
Significant atrophy in all regions except for the caudate and pallidum. 

(Fortea, et al., 
2010) 

MRI, 
DWI 

PSEN1 pMC (-
9.9 years) + 
sMC, HC 

Increased caudate size bilaterally in pMC, decreased size in sMC 
compared with HC. Decreased MD in caudate of pMC compared with 
HC, but increased in sMC. 

(Lee, et al., 
2013) 

MRI Mixed PSEN1, 
APP pMC (-15.5 
years), early-
stage sMC, 
demented sMC, 
HC 

Significantly lower thalamus, caudate and putamen volumes in pMC 
compared with controls; for early-stage sMC reduced thalamus 
volume only. 

(Ryan, et al., 
2013) 

MRI, DTI PSEN1 pMC (-
5.6 years) + 
sMC, HC 

Caudate and thalamus atrophy pMC compared with HC; volume loss 
in all ROIs in sMC compared with HC, with greatest losses in 
thalamus and bilateral striatum; decreased MD in pMC and increased 
MD in sMC compared with HC. 

(McDade, et 
al., 2014) 

fMRI - 
ASL 

PSEN1 and 
APP pMC, sMC, 
HC 

Relative to HC, decreased perfusion in the caudate and inferior 
striatum in MCs analyzed as one group, controlling for CDR. 

(Shi, et al., 
2015) 

PiB-
PET, 
FDG-
PET 

PSEN2, sMC Cortical and striatal amyloid deposits in 2/3 early-stage sMC. 

(Sala-Llonch, 
et al., 2015) 

MRI PSEN1 pMC (-
16.2 years) + 
sMC, HC 

pMC: Trend of reduced volume of left caudate compared to HC. 
sMC: Reduced thalamus, putamen, amygdala and nucleus 
accumbens volumes bilaterally, compared to HC. 
Longitudinally: Volumetric reductions in right caudate and right 
putamen volumes for pMC; in the thalamus, nucleus accumbens and 
putamen for sMC. 
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4.2 FDG-PET 

Evidence relating to reduced glucose metabolism from FDG-PET studies is less 

consistent. (Scholl, et al., 2011) found lower thalamic metabolism in six carriers of 

the p.His163Tyr PSEN1 mutation than controls at baseline, with further reductions 

over a two-year follow-up. Interestingly, although (Benzinger, et al., 2013) reported 

subcortical amyloid deposition presymptomatically, there was no concurrent 

hypometabolism (which was observed in the cortical regions).  

4.3 Structural MRI and variability in caudate volumes 

Structural MRI studies in ADAD have reported particularly variable findings in the 

caudate. Using T1-weighted MRI volumetry, (Fortea, et al., 2010) observed 

significantly increased caudate volume bilaterally in their group of six pMC (mean-

adjusted -9.9 years from estimated symptom onset) compared to mutation non-

carriers (NC). By contrast, early symptomatic MC (esMC) showed decreased 

caudate volumes relative to NC. On diffusion imaging, mean diffusivity in the caudate 

of the pMC was slightly decreased relative to NC values, whereas – conversely – the 

esMC had increased mean diffusivity. (Lee, et al., 2013) showed the opposite picture 

using volumetric MRI: volume loss in the caudate and putamen of pMC correlated 

positively with relative age before the diagnosis of dementia. This volume loss was 

not evident in the esMC. The pMC studied by Lee et al., however, were on average 

further from expected symptom onset (-15.5 years) than those studied by Fortea et 

al. (-9.9 years). In fact, the esMC (-10.4 years) in the study by Lee et al. were, on 

average, at a similar time from predicted age at symptom onset as the pMC in the 

study by Fortea and colleagues. However, a more recent study from the latter group 

(Sala-Llonch, et al., 2015), did not find any differences in caudate volume between 
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controls and either sMC or pMC, attributing the discrepancy between their studies to 

differences in the mean relative age of the mutation carriers (the sMC group was 

closer to symptom onset in the 2015 study) and/or to differences in the PSEN1 

mutations included in each study.   

(Ryan, et al., 2013) demonstrated reduced volumes of the left thalamus and bilateral 

caudate in a group of pMC on average -5.5 years from expected onset compared 

with NC using ROI analysis, a finding that was more pronounced in sMCs. In the 

same study, the automated image analysis technique voxel-based morphemetry 

(VBM) was also used to provide whole-brain assessments of group differences. This 

demonstrated grey matter volume loss in bilateral hippocampus and posterior 

cortical areas in the SMC group compared to controls but showed that the most 

significant volume loss was in bilateral thalamic and striatal regions (Figure 4). 

Widespread loss of white matter volume was also seen in the SMC group. In a study 

of the DIAN cohort (Benzinger, et al., 2013) found volumetric reductions for the MC 

relative to NC in all other subcortical regions studied, but not in the caudate or 

globus pallidus (Figure 3). All MC – far presymptomatic and those nearer and 

beyond symptom onset  – were analyzed as one group. 

 
Apart from differences in image segmentation techniques between studies, 

participant group stratification, statistical analysis methods, small sample sizes, the 

different mutations involved, and age differences could contribute to the differing 

results, which have been particularly contradictory for the caudate. With the caudate 

located directly adjacent to the lateral ventricles, CSF artifacts/partial volume effects 

may partly explain some of the unexpected and variable results involving this 

structure. 
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These surprising and contradictory results have been discussed previously (Ryan 

and Fox, 2013,Vishnu, 2013). Atrophy has been hypothesized to manifest relatively 

late in the pathogenesis of AD, which is why observing subcortical volume changes 

at such early disease stages raises important questions. For example, the changes 

could potentially reflect glial involvement and immune-mediated processes.  Apart 

from neuronal loss, the decreased volumes observed in these regions could be due 

to synaptic and dendritic changes or reduced axons and/or glia. Moreover, initial 

effect triggering mechanisms (such as inflammation or amyloid accumulation) that 

cause an increase in a region’s size, could later result in more pronounced atrophy. 

There is not yet enough evidence to strongly support any of these hypotheses, but 

they are interesting nonetheless. From the evidence so far, it appears that 

presymptomatic and early symptomatic mutation carriers exhibit both caudate 

atrophy and/or increased volume compared to age-matched controls at different 

points in early-stage disease. Volumes in key cortical regions for AD have been 

suggested to follow an inverted U-shape pattern over time, as the disease 

progresses from preclinical through to symptomatic phases. This may also be the 

case for subcortical structures (Fortea, et al., 2010,Sala-Llonch, et al., 2015).  

While the thalamo-striatal region could undergo dynamic changes during disease 

progression, drawing firm conclusions from the studies so far is complicated by 

differences in published study designs and inevitable variability in the compositions 

of the participant groups. Most previous MRI findings are from cross-sectional 

studies with mostly very small samples. Individual participants grouped together can 

differ markedly in both their estimated years from symptom onset and samples in 

different studies have different compositions of the various ADAD mutations. To 

further complicate matters, different methods to calculate years from symptom onset 
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have been used in these studies. Well-designed longitudinal studies could mitigate 

some of the confounding factors in the cross-sectional designs, and provide clearer 

answers. Results from the longitudinal analysis of the DIAN cohort will be interesting 

in this regard. 

Conflicting results may also very well be due to the small sample sizes. In addition, 

some of the findings could be specific to a particular mutation, which studies with 

participants carrying different mutations would not detect. Conversely, findings from 

studies focusing on one type of mutation may not generalize to other mutations. A 

well-designed longitudinal study with large numbers of carriers of different mutations 

and tracking regional volumes could provide answers to the caudate controversy and 

evaluate the hypothesis that regional atrophy patterns are evolving dynamically over 

time. 

Diffusion MRI may be able to shed some light on the finer structural abnormalities 

underlying the volumetric changes observed on MRI. However, the interpretation of 

changes observed in diffusion measures is still difficult because of the relative 

immaturity of diffusion imaging technology and limitations of the most commonly 

used implementations. Two studies so far fulfilled the search criteria, (Fortea, et al., 

2010,Ryan, et al., 2013), with similar findings: increased mean diffusivity in the 

caudate of sMC compared with controls but interestingly also reduced mean 

diffusivity in pMC relative to controls. In the thalamus, higher fractional anisotropy 

was observed for pMC compared with non-carriers (Ryan, et al., 2013). Conclusions 

from these studies must remain speculative, but diffusion MRI appears to be a 

promising method to study subcortical structures during early-stage ADAD.  
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4.4 Relevance of ADAD findings and genetic heterogeneity 

The main message arising from the ADAD literature review is that early striatal 

involvement – in presymptomatic stages and before other regions – does appear to 

occur in the form of amyloid deposition, at least for some mutations. Striatal deposits 

in presymptomatic mutation carriers were more common, and were greater than 

deposits in other regions of the brain, when present. The pattern of deposition seems 

to differ from that seen in symptomatic sAD patients. However, most of the ADAD 

studies published so far have been on PSEN1 carriers, or have involved mixed 

groups of carriers of various mutations. Imaging findings may also be gene- or 

mutation-specific (Kinnunen, et al., 2013,Scahill, et al., 2013). In the (Scholl, et al., 

2012) study for example, no significant amyloid deposits were found for carriers of 

the Arctic APP (p.Glu693Gly) mutation, while the opposite was true for Swedish APP  

(p.Lys670Asn;Met671Leu) and PSEN1 (p.His163Tyr) mutation carriers. However, 

the sample size was extremely small for these mutations (N=1 for each). The 

(Fleisher, et al., 2012) study of the Colombian PSEN1 p.Glu280Ala kindred, found no 

striatal deposits. Imaging in this study was performed using the Florbetapir (18F) 

compound, binding to beta-amyloid like PiB. Finally, the (Shi, et al., 2015) case 

series of four PSEN2 mutation carriers discovered striatal deposits in only some of 

the individuals investigated. Striatal amyloid deposition does not seem to be present 

in all cases of PSEN1 ADAD, nor does it seem to be exclusive to PSEN1 mutations. 

It seems that mutations in APP and PSEN2 can also lead to a similar picture. It is 

clear that more and larger quantitative, longitudinal studies are needed to shed light 

on the similarities and differences among the different genetic causes of ADAD.  

Amyloid imaging studies of individuals with Down syndrome provide interesting 

complementary evidence. These individuals have three copies of chromosome 21, 
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and very often develop AD early in their life (Hartley, et al., 2015) due to 

overexpression of the APP gene that resides on chromosome 21. Like in ADAD, in 

cases of Down syndrome early amyloid deposits have been discovered in striatal 

regions (Annus, et al., 2015,Handen, et al., 2012,Lao, et al., 2015,Price, et al., 

2011). It is an attractive theory to postulate that the development of dementia in 

ADAD and Down syndrome relies on some shared steps to the protein accumulation 

and propagation, and that subcortical regions may therefore be the first to show 

observable deposits of amyloid in both forms of dementia. Longitudinal results from 

the Neurodegeneration in Aging Down Syndrome (NiAD) and Down Alzheimer 

Barcelona Neuroimaging Initiative (DABNI; Fortea, et al., 2016) studies will be of 

great interest here. 

In summary, presymptomatic imaging changes in ADAD seem to occur in subcortical 

regions, especially in the caudate and thalamus. The evidence reviewed here points 

to early accumulation of amyloid and regional atrophy, with dynamic changes 

possible. Large-scale longitudinal investigations of ADAD, particularly the DIAN 

study, can help to determine how these regions change structurally and functionally 

during the long disease process, from early presymptomatic to mild and then late 

symptomatic stages.  
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5. Imaging findings in sporadic AD 

It is difficult to study sAD in its early stages due to the vast heterogeneity, the close 

relationship with advancing age, and the difficulty of reliably identifying patients who 

will develop clinical AD dementia while they are still very mildly or mildly affected. 

Many studies not only use different terminology, but also use different definitions and 

classifications for MCI and AD, and varying Clinical Dementia Rating or Mini Mental 

State Examination cut-off points. Another important factor is Apolipoprotein E (ApoE) 

status; some studies use it in an effort to study AD during preclinical stages, but 

others perform no such group stratification. These differences have contributed to a 

much hazier picture of subcortical involvement in preclinical and mild sAD than in 

ADAD. Despite these important difficulties, an effort is made here to group the 

various findings according to imaging modality (Table 2). 
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Table 2. Results in sporadic AD. HC: healthy controls, aMCI: amnestic mild cognitive impairment, MCI-C/NC: 
MCI converters/non-converters, sAD: sporadic AD. 

    

Author Modality Cohort type Main relevant findings 

(Klunk, et 
al., 2004) 

PiB-PET, 
FDG-PET 

Early sAD, HC Increased striatal deposition (PiB-PET) in early-stage 
sAD compared with HC. FDG-PET did not focus on our 
ROIs. 

(Reiman, 
et al., 
2009) 

PiB-PET Asymptomatic, 
w/ sAD family 
history, 
genotyped for 
ApoE status 

Striatal deposition in cognitively normal homozygote 
carriers of APOE4 allele(s) compared with non-carriers, 
but not earlier than in other regions. 

(Koivunen, 
et al., 
2011) 

PiB-PET MCI-C, MCI-
NC, HC 

Increased striatal deposition in MCI to dementia 
converters, but not different from other regions. 

(Koivunen, 
et al., 
2012) 

PiB-PET aMCI-C, 
aMCI-NC 

Increased amyloid deposition in the caudate and 
putamen for aMCI converters compared with controls. 

(Bruck, et 
al., 2013) 

PiB-PET, 
FDG-PET, 
MRI 

MCI-C, MCI-
NC, HC 

Significantly increased amyloid deposition in MCI 
converters vs. non-converters and controls. 

(Nordberg, 
et al., 
2013) 

PiB-PET Early sAD, HC Increased striatal deposition in early-stage sAD in all 
subcortical regions studied. 

(Morbelli, 
et al., 
2010) 

FDG-PET, 
MRI 

aMCI-C, 
aMCI-NC, HC 

Lower grey matter density in bilateral thalami of aMCI 
converters; no significant differences between groups in 
thalamus metabolism. 

(Dukart, et 
al., 2013b) 

FDG-PET, 
MRI 

MCI-C, MCI-
NC, early 
sAD, HC 

In early-stage sAD and MCI converters compared with 
HC: concurrent bilateral volume loss and reduced 
glucose metabolism in the thalami bilaterally; reduced 
glucose metabolism also in the right caudate.  

(Chen, et 
al., 2013) 

Resting 
fMRI, MRI 

Early sAD, HC Abnormal insular region connectivity in early-stage sAD 
compared with HC, including with the putamen and 
globus pallidus. 

(Cai, et al., 
2015) 

Resting 
fMRI, 
connectivity 

Early aMCI, 
late aMCI, HC 

In both early and late aMCI compared with HC: 
decreased functional connectivity in some thalamic 
networks; other thalamic networks showed increased 
connectivity. Patients with late aMCI showed more 
abnormal functional connectivity of the thalamus than 
those with early aMCI. 

(Chetelat, 
et al., 
2005) 

MRI MCI-C, MCI-
NC, no HC 

Both converters and non-converters showed left 
thalamus volume loss during an 18-month follow-up. 

(Liu, et al., 
2010) 

MRI sAD, MCI-C, 
MCI-NC, HC 

Reduced caudate volume in MCI converters compared 
with non-converters. 

(Madsen, 
et al., 
2010) 

MRI (3D) MCI-C, MCI-
NC, early sAD 

More caudate atrophy at baseline in MCI converters 
compared with non-converters. Caudate atrophy in the 
sAD group was more pronounced than in the MCI 
groups. Reduced volume of right caudate was 
associated with conversion from MCI to AD. 

(Cho, et 
al., 2014) 

MRI 
(shape) 

Early sAD, HC At baseline, lower volumes in the putamen bilaterally and 
in the right caudate for early-stage sAD relative to HC. 
Atrophy progression over time was observed in these 
regions. 
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(Tang, et 
al., 2014) 

MRI 
(shape) 

Early sAD, 
MCI-C, MCI-
NC 

Shape changes in basal ganglia structures (caudate, 
putamen, globus pallidus) in all MCI and early sAD 
compared with controls. Shape differences between 
MCI-C and MCI-NC only in the hippocampus, amygdala 
and lateral ventricles. 

(Tang, et 
al., 2015) 

MRI 
(shape) 

MCI-C, MCI-
NC, sAD, HC 

A model-based approach to study shape 
diffeomorphometry patterns of 14 regions, including the 
right thalamus, right caudate, and bilateral putamen. The 
combined model incorporating these subcortical ROIs 
was superior to single structure approaches in predicting 
conversion from MCI to AD.  

(H.A. Yi, et 
al., 2015) 

MRI MCI-C, MCI-
NC, sAD, HC 

All structures apart from globus pallidus showed 
decreased volume in all MCI groups compared with HC. 
The volumes were further reduced in sAD. MCI to AD 
conversion was associated with smaller hippocampal 
and nucleus accumbens volumes. Severity of cognitive 
symptoms was associated with subcortical volume 
losses. 

(Leh, et 
al., 2015) 

MRI (VBM, 
shape, 
cortical 
thickness) 

aMCI, HC Reduced putamen volumes in aMCI and significant 
shape differences between aMCI and HC in the 
thalamus and striatum bilaterally (without but no 
volumetric differences). 

(Hirao, et 
al., 2005) 

SPECT MCI-C, MCI-
NC, HC 

Significantly reduced regional cerebral blood flow (rCBF) 
in the right caudate of MCI-NC compared to HC. No 
findings in our ROIs for converters. 

(Trollor, et 
al., 2006) 

SPECT  
memory 
task 

Early sAD, NC Decreased rCBF in the right thalamus of early-stage sAD 
patients compared with NC, but this was not specific to 
the memory task. 

    

 

 

 

 

 

5.1 PiB-PET 

Striatal and thalamic amyloid deposits are known to exist in most sporadic AD 

patients post-mortem (Braak and Braak, 1990,Brilliant, et al., 1997,Thal, et al., 

2002), and have also been observed in vivo in PET studies of sAD cohorts (Price, et 

al., 2005). As always, the difficulty resides in identifying if these deposits occur 

before other abnormalities. The first human PiB-PET study in early-stage sAD 

(Klunk, et al., 2004) found striatal deposits. However, the sAD participants 

represented various levels of dementia severity, but were grouped together for 

comparison with healthy controls. Since then, a number of studies have been 
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conducted (Bruck, et al., 2013,Koivunen, et al., 2012,Koivunen, et al., 

2011,Nordberg, et al., 2013,Reiman, et al., 2009), finding amyloid deposits in the 

striatum or the caudate, but not earlier than in other, more typical AD regions. It 

appears that the thalamo-striatal ROIs do show amyloid deposition in early-stage 

AD, but given the evidence, it is unclear whether other regions develop deposits 

earlier in disease. However, these results are not directly comparable to those from 

ADAD, as naturally there are no studies investigating truly presymptomatic sAD 

stages.  

 

5.2 FDG-PET and SPECT 

Very few FDG-PET studies met the inclusion criteria and investigated subcortical 

ROIs during early-stage sAD. Of those that did, (Dukart, et al., 2013b) and ,Morbelli, 

et al., 2010), looked at the thalamus and caudate as regions of particular interest. 

While (Dukart, et al., 2013b) reported hypometabolism in the thalamus and caudate 

in early sAD and in MCI converters compared with healthy controls, an earlier study 

from the same group postulated that this pattern may be due to changes related to 

aging (Dukart, et al., 2013a). We additionally found two SPECT studies that had 

investigated our ROIs. (Trollor, et al., 2006) demonstrated reduced regional cerebral 

blood flow (rCBF) in the thalamus during early-stage sAD. (Hirao, et al., 2005) 

studied rCBF of the caudate, but found no reductions in MCI converters.  

5.3 Structural and functional MRI 

As in ADAD, the thalamo-striatal regions seem to undergo early atrophic changes in 

sAD, but the evidence so far is inconclusive. Loss of caudate volume is the most 

common finding in MCI converters (Liu, et al., 2010,Madsen, et al., 2010), with 
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losses of normal caudate asymmetry as the disease progresses (Madsen, et al., 

2010). (Dukart, et al., 2013b) reported thalamic volume losses in AD converters, 

while (Chetelat, et al., 2005) found this in both converters and non-converters alike. 

(Zhao, et al., 2015) reported decreased putamen volume in sAD relative to both MCI 

and HC, but found no significant losses of caudate or thalamic volume in either sAD 

or MCI. The MCI group in this study included both converters and non-converters. 

A number of recent studies have used shape measurement techniques (Cho, et al., 

2014,Tang, et al., 2014,Tang, et al., 2015). For example, (Leh, et al., 2015) found 

significant shape alterations in aMCI in the thalamus and striatal regions, which 

perhaps could be used as complementary measures to distinguish between aMCI to 

AD converters and non-converters. 

It is important to note that structural changes, including some of those discussed in 

the current review, are found in other forms of dementia, and are not exclusive to AD 

(L.Y. Yi, et al., 2015). This, again, adds to the difficulty of finding imaging biomarkers 

that could help to reliably identify early-stage sAD. 

As far as functional MRI studies are concerned, resting-state fMRI findings on our 

ROIs include abnormal insula-putamen and insula-globus pallidus connectivity in 

early-stage sAD compared with healthy controls (Chen, et al., 2013), and decreased 

connectivity in thalamic networks in both early and late aMC relative to healthy 

controls (Cai, et al., 2015). 
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5.4 Relevance of sAD findings 

The sAD literature identified using the current search terms and inclusion/exclusion 

criteria indicates that the ROIs for this review are affected in the early stages of sAD, 

but perhaps not as centrally involved as they are in ADAD. In addition, the pattern of 

early-stage amyloid accumulation and regional atrophy does not seem to be any 

more focused on the striatum than on other, more typical AD regions. Again, the 

strongest evidence regarding the early disease stages pertains to amyloid 

deposition, consistent with the proposed staging of biomarker progression in AD 

(Jack, et al., 2013). Interestingly, it was suggested in 2008 that reduced thalamus 

and putamen volumes may contribute to cognitive decline in sAD (de Jong et al., 

2008). Although firm conclusions cannot be drawn based on the studies reviewed 

here, the aMCI findings by (Leh, et al., 2015) imply that further study of subcortical 

regions in sAD could be worthwhile. This notion was recently further reinforced in a 

review by (Aggleton, et al., 2016), suggesting particular involvement of the anterior 

“limbic thalamus” in early-stage AD. Specifically, they postulated that the 

participation of cognitively relevant thalamic nuclei in multiple networks could 

underpin the changes observed in many of the studies they reviewed. Whether the 

thalamo-striatal changes in sAD are a downstream effect of medial temporal 

degeneration, or develop before the medial temporal lobe changes remains an open 

question. 

When attempting to investigate pre-clinical and early sAD, it is also important to 

consider changes associated with healthy aging. However, in any aging study, no 

matter how strict the exclusion criteria, it is impossible to determine early on which 
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participants will eventually develop AD. In a study by (Oh, et al., 2014), putamen 

volume was positively associated with cognitive performance in both PIB+ and PIB- 

individuals, whereas hippocampal volume was positively associated with cognitive 

performance in PIB+ individuals only. Interestingly, (Fjell, et al., 2010) found the 

strongest relationships between CSF Aβ1-42 levels and atrophy (more pronounced 

in individuals with low levels of Aβ1-42) in areas including the caudate and thalamus. 

If these regions, then considered to be “not especially vulnerable to AD pathology”, 

do indeed play a role in early-stage sAD, some of the individuals in the low Aβ1-42 

subgroup might have been on an AD trajectory. 

New longitudinal studies of sAD, implementing the recently updated diagnostic 

criteria and disease classification by two international working groups (IWG and NIA-

AA, could provide a clearer picture of the progression of subcortical changes through 

different disease stages. 
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6. Limitations 

A range of papers has been published in both ADAD and sAD reporting on the 

thalamus, caudate, putamen, nucleus accumbens, and globus pallidus.  However, 

the reporting of negative results is unfortunately rare. It is possible that some studies 

with interest in these subcortical regions have been conducted without finding 

significant results, but such negative results may not be mentioned in the title, 

abstracts, or methods sections (included in our initial selection of relevant studies). 

This may have introduced a bias into the evaluation of the results described in this 

review.  

Another important factor to consider is the various imaging techniques and image 

processing methods used in the publications reviewed, a factor that becomes 

integral to extrapolating useful conclusions, especially when the number of studies 

published is still relatively low. 

 

 

7. Conclusion 

To summarize, the literature seems to suggest that subcortical regions may be 

involved in the early stages of AD. The most conclusive among the findings was the 

evidence of amyloid deposition in the striatum in ADAD presymptomatically, before 

deposition is observed in other regions. Some evidence also exists to suggest 

volumetric abnormalities and changes in glucose metabolism, but these findings 

have been less consistent. The same conclusions cannot yet be drawn for sAD. For 

some time, it has been known that the thalamo-striatal regions show AD pathology 

post mortem. It also seems that these regions are involved in aMCI and early-stage 
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sAD. They do not, however, seem to stand out from other brain regions, at least at 

the point of the disease process that current imaging methods supporting in vivo 

diagnosis of sAD allow. Furthermore, it is not yet safe to say whether these 

subcortical regions are more relevant to ADAD and sAD than other forms of 

dementia, or, in fact are seen across different neurodegenerative diseases. The 

review of the literature nevertheless indicates that there could be merit in further 

investigating these regions, rather than solely focusing on the AD signature medial 

and inferolateral temporal and parietal and frontal cortical areas. Well-designed 

imaging studies of the thalamus and corpus striatum could provide useful 

complementary measures of early-stage neurodegeneration in AD. 
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Captions 

Figure 1. Flow diagram of article selection following literature search. 

Figure 2. Presence of striatal amyloid deposits in five cognitively normal PS1C410Y 

mutation carriers, and their absence in the non-carrier cousin (CY-C(35). Reprinted 

from Klunk et al., Amyloid deposition begins in the striatum of presenilin-1 mutation 

carriers from two unrelated pedigrees, The Journal of neuroscience, 2007, 27(23), 

6174-84. 

Figure 3. Subcortical amyloid deposits (PiB-PET) and volumetric losses (MRI) in 

ADAD mutation carriers from the DIAN cohort. Reprinted from Benzinger et al., 

Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s 

disease, PNAS, 2013, 110(47), E4502-9. 

Figure 4. Voxel-based morphometry results showing (top) grey matter volume loss 

and (bottom) white matter volume loss in symptomatic ADAD mutation carriers 

compared to controls. Reprinted from Ryan et al., Magnetic resonance imaging 

evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's 

disease, Brain, 2013, 136(Pt 5), 1399-414, by permission of Oxford University Press. 

 

 

Highlights 

 Subcortical regions may play an important role in AD development. 

 The most consistent finding was striatal amyloid deposition in presymptomatic 

ADAD. 

 Thalamo-striatal regions may also be involved in early-stage sAD. 

 Targeted research will show if measures from these regions are useful in AD 

models. 
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