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The diffusion signal in breast tissue has primarily been modelled using apparent diffusion coeffi-

cient (ADC), intravoxel incoherent motion (IVIM) and diffusion tensor (DT) models, which may be

too simplistic to describe the underlying tissue microstructure. Formalin‐fixed breast cancer sam-

ples were scanned using a wide range of gradient strengths, durations, separations and orienta-

tions. A variety of one‐ and two‐compartment models were tested to determine which best

described the data. Models with restricted diffusion components and anisotropy were selected

in most cancerous regions and there were no regions in which conventional ADC or DT models

were selected. Maps of ADC generally related to cellularity on histology, but maps of parameters

from more complex models suggest that both overall cell volume fraction and individual cell size

can contribute to the diffusion signal, affecting the specificity of ADC to the tissue microstruc-

ture. The areas of coherence in diffusion anisotropy images were small, approximately 1 mm,

but the orientation corresponded to stromal orientation patterns on histology.
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1 | INTRODUCTION

Breast cancer screening allows the early detection of cancerous

lesions, but improved technology increases the likelihood of detecting

small, slow‐growing cancers that do not require aggressive treatment.

It is estimated that 10% of women who have mammographically

detected cancers would not have required treatment in their lifetime

(‘overdiagnosis’),1,2 and that post‐surgical radiation treatment may

not improve 5‐year overall survival in some groups of women (a form

of ‘overtreatment’).3
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There is therefore a need for further tumour characterisation, i.e.

beyond cancer detection, to identify patients in whom overdiagnosis

and overtreatment are likely; magnetic resonance imaging (MRI) is par-

ticularly appealing because of its non‐invasive nature and sensitivity to

microstructure. Breast cancers show great variation in microstructure:

higher grades tend to have increased cell density and a more

disorganised structure;4 immune cell infiltration and cell differentiation

affect the distribution of cell types and sizes; and there are changes in

the extracellular matrix related to invasion.5,6

Diffusion MRI is sensitive to many microstructural features.

Diffusion tensor imaging (DTI)7 and neurite orientation dispersion

and density imaging,8 for example, have produced maps of brain archi-

tecture. In the context of cancer, methods such as VERDICT9,10 and

restriction spectrum imaging11 estimate tissue features such as those

related to cell density. However, the exploration of breast microstruc-

ture has been relatively limited in comparison.
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Clinical work has focused on data acquisition at a small number of

low (≤1000 s/mm2) b values and mono‐exponential fitting to give an

apparent diffusion coefficient (ADC). The ADC shows a difference

between benign and malignant lesions,12–15 but there is a large overlap

in the ADC values of the two groups in many studies, with an area

under the receiver operating curve ranging from 0.72 to 0.97 for ADC

alone.16,17 Attempts to use ADC to distinguish histological grades have

producedmixed results, evenwith large numbers of patients.18–20 Some

variation in ADC with molecular subtype has been observed,20–22

although results may be affected by the inclusion of necrotic regions

common in triple‐negative cancers.

However, ADC assumes that all of the water in a particular voxel

can be represented by a single ADC. In reality, intracellular water is

at least partly restricted by the cell membrane, extracellular diffusion

depends on the extracellular space and organisation of cells, and aniso-

tropic structures in the tissue produce diffusion orientation depen-

dence. The use of an inappropriate model yields ADC values that are

dependent not just on physiology, but on the choice of b value itself,23

making comparisons between different scan protocols and between

centres with different scanners difficult. The results from a given

patient might also be difficult to interpret: although ADC correlates

with cellularity in breast tumours,24,25 immune responses and changes

to the extracellular environment may also affect diffusion. More bio-

logically motivated models have the potential to separate microstruc-

tural features related to cell proliferation from those caused by the

immune response, invasion or less common cancer subtypes, and pro-

vide more specific features for tumour characterisation.

Recent clinical studies have begun to explore models beyond

ADC. Intravoxel incoherent motion (IVIM) studies have looked at the

vasculature in and around the tumour.16,26,27 Diffusion kurtosis results

suggest that diffusion is non‐Gaussian and high‐b‐value measurements

contain additional information.28,29 Kurtosis can also be combined

with IVIM.30 Diffusion tensor (DT) modelling has produced inconsis-

tent results, generally demonstrating lower fractional anisotropy (FA)

in cancers compared with normal tissues,31,32 but not always showing

a distinction from benign lesions;15,33,34 other anisotropy metrics may

be more sensitive.35 Furthermore, the source of anisotropy is uncer-

tain: a preclinical breast cancer model observed lower FA in hypoxic

regions with lower collagen fibre content,36 but the differences

between normoxic and hypoxic FAs were small, approximately 0.03.

Other groups have suggested partial restriction in the breast

ducts,31,35 although the average duct diameter (approximately 90 μm

in normal breast and larger in patients with ductal carcinoma in situ37)

is much larger than the average distance travelled by water molecules

during typical diffusion MRI experiments.

In this article, we examined the microstructure in a small set of can-

cer‐containing, formalin‐fixed breast tissue samples ex vivo. This allowed

for high spatial resolution and histopathological comparison that might

shed light on the source of diffusion signal differences. For example, a

previous study found large differences in the ADC of epithelial cell

regions compared with surrounding stroma, as well as qualitative differ-

ences in anisotropy.38 The ex vivo approach also permitted longer scan

times to obtain data over a broad range of gradient strengths, durations,

orientations and diffusion times. This rich dataset was then fitted with a

set of candidate models which describe the intracellular and extracellular
spaces with different shapes and degrees of restriction. Model parame-

ters were then compared with the histological features. This information

can be used to optimise clinical scan protocols39 and to select a biolog-

ically relevant signal model with parameters that might allow for higher

specificity in tumour characterisation.
2 | METHODS

2.1 | Samples

Seven breast tissue samples containing invasive breast cancers [two

grade 1 ductal/no special type (NST), one grade 3 mucinous, four grade

3 NST] were obtained from six patients through the King's Health

Partners Cancer Biobank. The use of tissue and data was approved under

NHS REC agreement (07/H0874/131). Tumours ranged in size from 15

to 70 mm, with a portion at the edge of the main tumour and its sur-

rounding stroma cut by the biobank for scanning and subsequent histol-

ogy. Samples were immersed in formalin within 30 min. Before imaging,

the specimens were rehydrated with phosphate‐buffered saline for at

least 2 weeks and, immediately prior to imaging, samples were trans-

ferred to Fomblin Perfluorosolv PFS‐1 (Solvay Solexis, Watford, UK).
2.2 | MRI scan procedure

Images were acquired on a 20‐cm bore, 9.4‐T MRI scanner (Varian Inc.,

Palo Alto, CA, USA) using a 33‐mm quadrature coil (RAPID Biomedical,

Rimpar, Germany) and gradients capable of 1000 mT/m. The tempera-

ture was monitored and maintained at 18.4 ± 0.4°C.

Diffusion images were acquired with a fat‐saturated, multi‐slice,

fast spin echo (FSE) sequence [resolution, 250 × 250 μm2; slice

thickness, 500 μm; field of view, 3.2 × 3.2 cm2; TR = 1 s; echo train

length (etl) = 4]. Forty‐two diffusion‐weighted images were acquired

in three directions with a corresponding b = 0 image at the gradient

durations, strengths and separations outlined in Table 1; higher gradi-

ent strengths used more than one average (number of averages,

NEX) as indicated in parentheses. Diffusion tensor images (42 direc-

tions + six unweighted images, δ = 4.5 ms, Δ = 20 ms, TE = 30 ms) were

acquired at 187 and 226 mT/m (corresponding to b values of 1000 and

1500 s/mm2, respectively). For the single case shown in Figure 2g, only

a single DT image at 187 mT/m was available as a result of acquisition

errors. The total diffusion scan protocol was 3 h 45 min in duration.

The nature of the T2 decay was probed using a multi‐echo, multi‐

spin sequence (TE = 5 ms; TR = 3 s; NEX = 4; 32 echoes; scan time,

26 min), and a high‐resolution (125 × 125 × 500 μm3) T2‐weighted

image (FSE; TE = 20 ms; TR = 4 s; effective TE = 48 ms; etl = 8; NEX = 8;

scan time, 17 min) was acquired to aid registration to histology. Two of

the samples underwent repeat scanning either 4 days or 5 weeks apart,

and were registered40 to examine the reproducibility.
2.3 | MRI data analysis

The one‐ and two‐compartment models outlined in Table 2 were fitted

to the data voxel‐wise, excluding voxels that were predominantly fat or

with non‐mono‐exponential T2 decay (non‐mono‐exponentiality was

defined as a main peak area comprising less than 90% of the total



TABLE 1 Diffusion‐weighted imaging (DWI) scan parameters. The b values corresponding to the gradient strengths (G) at each gradient duration
(δ) and separation (Δ)/TE. The number of averages is given in parentheses for cases in which more than one average was performed

Δ/TE (ms) δ (ms)

G (mT/m)

40 80 120 160 200 240 280 320 360 400

10/18 3 9 37 83 148 232 334 455 594 752 928

30/45 3 30 120 269 478 748 (4) 1077 (8)
10 306 1222 2750 4889 7638 (4) 10999 (8)

60/75 3 61 243 548 973 (2) 1521 (8)
10 649 2597 5843 10388 (2) 16231 (8)

80/95 3 81 326 733 (2) 1303 (4) 2037 (10)
10 878 3514 7906 (2) 14054 (4) 21960 (10)

TABLE 2 Models tested (with fitting parameters in parentheses). Compartment shapes are described in the text and Appendix

Models tested Extracellular compartment Intracellular compartment No. of fitting parameters

Ball (ADC) Ball (D1) 3

Zeppelin Zeppelin (D1, D2, θ, ϕ) 6

Tensor (DT) Tensor (D1, D2, D3, θ, ϕ, α) 8

Ball–Ball Ball (D1) Ball (DI) 5

Zeppelin–Ball Zeppelin (D1, D2, θ, ϕ) Ball (DI) 8

Tensor–Ball Tensor (D1, D2, D3, θ, ϕ, α) Ball (DI) 10

Ball–Sphere Ball (D1) Sphere (DI, R) 6

Zeppelin–Sphere Zeppelin (D1, D2, θ, ϕ) Sphere (DI, R) 9

Tensor–Sphere Tensor (D1, D2, D3, θ, ϕ, α) Sphere (DI, R) 11
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spectral area in the T2 spectrum from non‐negative least‐squares anal-

ysis41). Compartment shapes are described in detail in Panagiotaki

et al.42 and are summarised in the Appendix: a Ball describes unre-

stricted (free or hindered) isotropic diffusion; a Tensor describes aniso-

tropic free diffusion (with diffusion coefficients D1, D2 and D3 in three

orthogonal directions characterised by angles θ and ϕ for the primary

diffusion direction and α describing the angle of the secondary diffu-

sion direction in the perpendicular plane); a Zeppelin is a cylindrically

symmetrical tensor; and a Sphere describes diffusion restricted

isotropically by an impermeable membrane with radius R. In this nomen-

clature, the conventional ADC model is represented by a Ball and a bi‐

exponential fit by Ball–Ball. In addition to the diffusion, shape and orienta-

tion parameters for each compartment shown in parentheses in Table 2,

two‐compartment models have extracellular and intracellular volume

fractions fE and fI, respectively, and all models include the equilibrium

signal S0 and the T2 relaxation time constant as fitting parameters.

Data were fitted using an iterative maximum likelihood procedure

that accounts for local minima and Rician noise.42 The noise was derived

from correction of the standard deviation of signal in an empty region43

in each image. Parameters were constrained as follows:

0.01 < D < 3 mm2/s for all diffusion coefficients; fE + fI = 1;

0.1 < R < 20 μm; 0 < S0; 0.001 < T2 < 3 s. Model selection was performed

using the Akaike information criterion (AIC), AIC = − 2 ln L+ 2k,44 and the

Bayesian information criterion (BIC), BIC = − 2 ln L + k ln n,45 where L is

the maximum likelihood of the model given the data, k is the number

of fitting parameters and n is the number of data points.

Parameter distributions were examined using a Markov chain

Monte Carlo (MCMC) procedure39 for selected voxel data. Using a

Metropolis–Hastings sampler, 500 samples were drawn from the

posterior distribution with the optimised parameter values as a starting

point, a burn‐in of 5000 iterations, a sampling interval of 400 and a
Gaussian proposal distribution with standard deviation equal to 1%

of the initial parameter estimate.
2.4 | Histology and registration

After imaging, the samples were processed and embedded in paraffin

wax, and sections approximately 3 μm thick were cut at every

100 μm through the block. The slides were stained with haematoxylin

and eosin (H&E), and digitised using a C9600–01 NanoZoomer Digital

Slide Scanner (Hamamatsu, Hamamatsu City, Japan) at 20× magnifica-

tion (21 708 pixels/cm).

Histological images were stacked into a volume using

two‐dimensional pairwise registrations between adjacent slices based

on a block‐matching strategy.46,47 The transformation model used was

rigid body and the similarity measure was the correlation coefficient.

This pairwise registration aligns each slice with the subsequent slice

and then concatenates transformations to generate a volume consisting

of stacked slices registered with respect to a reference slice in the

middle of the image stack. The slice separation was taken as 100 μm.

To register the stacked histology volume to the T2‐weighted MRI,

9–15 manually selected corresponding landmarks were identified in

each MRI/histology volume pair. This provided an approximate initial

alignment as a result of the differing volume orientations. For the final

registration, the volumes were resampled to isotropic voxels (0.5 mm

for MRI and 0.1 mm for histology) to reduce orientational bias and the

relevant regions (bright foreground voxels in MRI and non‐zero voxels

in histology) were selected to restrict the region over which the

similarity measure was calculated to the internal tissue contrast. An

intensity‐based affine registration from ITK48was then performedusing

normalised mutual information as the similarity measure and a regular

step, single‐scale optimisation withMRI as the target volume. The shear
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component of the affine registration will, to first order, correct for any

residual cumulative stacking error of the histology slices. A sample of

the three‐dimensional histology stack in each of three orthogonal views

is shown in Figure S1with the diffusionMRI slice overlaid. As a result of

the orientation of the MRI slice with respect to the histological slicing

plane, only a portion of the histology slice corresponds to the diffusion

image, which is indicated by outlines of tumour regions in subsequent

figures. The transformation was also applied to the primary diffusion

vectors to keep alignment consistent with the image orientation.
3 | RESULTS

Fitting quality, parameter reproducibility and posterior parameter dis-

tributions were first examined as part of the model selection process.

In a second section, model parameters were compared with histology,

first examining parameters associated with compartment size and

restriction, and then those associated with orientational structure.

3.1 | Fitting results and model selection

Figure 1a shows a sample diffusion‐weighted image (b = 1076 s/mm2,

Δ = 30 ms, δ = 3 ms); the yellow point indicates the voxel for which the
FIGURE 1 (a) Sample diffusion‐weighted image (DWI) (b = 1076 s/mm2)
separation Δ is a different colour; all directions for a particular Δ are plotte
value with full lines showing the fit for the Tensor model (b) and the Tenso
errors for the Tensor model. White scale bars in all magnetic resonance im
data (points) are plotted in Figure 1b–d. Fits (full lines) are shown for

the standard DT model (b) and the Tensor‐Sphere model (d) (fits for

other models can be seen in Figure S2). The plotted fitted lines are

calculated assuming Rician noise (mean noise/S0 = 0.01 for this voxel),

so that any remaining systematic bias should be the result of model

choice. Values are normalised using the fitted S0 value. The residuals

(Figure 1c, e) emphasise that even the most complex single‐compart-

ment model, the Tensor, overestimates the signal at low diffusion

times and b values, and underestimates the signal at high diffusion

times and b values. This voxel is typical of those that have higher fitted

fI values in two‐compartment models (fI = 0.44 for the Tensor–Sphere

in this voxel); fits for voxels with lower fI deviate less from the data, but

have a stronger orientational dependence.

T2‐weighted and diffusion‐weighted images for each sample are

shown in the two left‐most columns of Figure 2 with the tumour

focus outlined in cyan. Most of the remaining tissue is fat; some

fibroglandular voxels outside the main tumour focus are also present.

The best model for each voxel in each sample is shown in the third

column of Figure 2 for AIC and in the fourth column for BIC (regions

with no colour were excluded either as fat or for having non‐mono‐

exponential T2). The distributions of relative AICs and BICs across

each sample are shown in the boxplots, with the line at the median,
with the voxel of interest marked in yellow. (b, d) DWI (each gradient
d with a single colour) and DTI (green) data (points) as a function of b
r–Sphere model (d). Corresponding residuals (c and e) show systematic
ages represent 5 mm



FIGURE 2 T2‐weighted images (first column) and diffusion‐weighted images (second column) for each sample with the main tumour focus outlined
in cyan. Maps demonstrate the model that best explains the data in each voxel [third column, Akaike information criterion (AIC); fourth column,
Bayesian information criterion (BIC)] and the distribution of relative AICs and BICs (low values indicate better explanation) across the samples.
(a, b) Grade 1 ductal/no special type (NST); (c) grade 3 mucinous; (d–g) grade 3 NST. Diffusion data from most voxels are best explained by an
anisotropic compartment and a restricted compartment (Zeppelin–Sphere or Tensor–Sphere), although there are several regions, particularly in
the grade 3 mucinous carcinoma, in which no restriction is required to explain the data (Zeppelin–Ball, Tensor–Ball). Three samples (b, d and g)
contained more fat, with only small tumour areas at the edge of the sample and some voxels exhibiting isotropic restriction (Ball–Sphere)
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the box extending to the quartile values and the whiskers showing

the range. The four larger samples (Figure 2a, c, e and f) are best

explained by models with anisotropy; the remaining three cases (Fig-

ure 2b, d and g) include large amounts of fat, with a smaller tumour
focus near the edge of the field of view, where the Ball–Sphere

model is selected in some voxels. This could be a result of signal‐to‐

noise ratio (SNR) issues at the image edge, contamination from inter-

spersed fat, or may be a true biological difference (the case with the
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largest number of voxels best explained by the Ball–Sphere model is

an invasive carcinoma of histological grade 1 and NST). Many voxels

are best explained by a model with a restricted Sphere component,

but some regions, particularly in the grade 3 mucinous carcinoma (

Figure 2c), are better explained by an unrestricted Zeppelin–Ball or

Tensor–Ball model. There are no voxels in any of the samples in

which a conventional ADC or DT is the best choice. Subsequent

results focus on the four samples with large central sections of inva-

sive cancer (Figure 2a, c, e, f), but the remaining cases can be seen in

the Supporting Information.

Figure 3 demonstrates the parameter variance using histograms

from the MCMC procedure for data from a single voxel with

moderately high fI. The width of the diffusion coefficient distribu-

tions is larger for the two‐compartment models, but the distributions

of the angular parameters are similar. The mean values are similar

across two‐compartment models with restriction (Ball–Sphere,
FIGURE 3 Histograms of the posterior parameter distributions for each mo
with data for a single voxel. Mean values and parameter distributions are sim
extracellular diffusion coefficients, D1–3, demonstrating that increasing mo
Zeppelin–Sphere, Tensor–Sphere) for fI, DI, R, θ and ϕ, but differ

for related diffusion coefficients (e.g. D1 from Ball–Sphere is

between D1 and D2 for Zeppelin–Sphere). Histograms from voxels

with lower fI (see Figure S3) showed similar patterns, but with

narrower θ and ϕ distributions, probably because of the larger extra-

cellular signal.

There was generally good agreement between the posterior distri-

butions and parameter maps (see Figure S4) for the Zeppelin–Sphere

and Tensor–Sphere models. Reproducibility (Figure S5) was also

similar, and so subsequent results are presented for the simpler

Zeppelin–Sphere model.
3.2 | Model parameters – fI and R

Figure 4 shows H&E‐stained histology in the top row, parametric maps

from ADC (second row) and selected parameters from the Zeppelin–
del obtained using the Markov chain Monte Carlo (MCMC) procedure
ilar for all restricted models (with Sphere compartment), aside from the
del complexity does not affect parameter stability substantially



FIGURE 4 Parametric maps for the apparent diffusion coefficient (ADC, second row) and selected parameters from the Zeppelin–Sphere model.
Regions of low cellularity and correspondingly high ADC are outlined in red and typically correspond to lower fI in the Zeppelin–Sphere model.
However, some regions (e.g. cyan outline) have high cellularity relative to their surroundings, but higher ADC, which may be explained by a
larger cell radius, R. Additional samples are shown in Figure S6. Regions without colour were excluded either as fat (orange outline in first
column) or as non‐mono‐exponential T2 (orange outline in second column), which often corresponded to necrotic regions on histology
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Sphere model (rows 3–5). There was variation in all parameters across

samples, including the characteristic high ADC in the mucinous carci-

noma in the last column (mean ± standard deviation across fitted

tumour voxels (×10−3 mm2/s): 1.3 ± 0.3 for grade 3 mucinous;

0.67 ± 0.18 and 0.50 ± 0.17 for grade 1 NST; 0.9 ± 0.6, 0.55 ± 0.09,

0.68 ± 0.14 and 0.48 ± 0.22 for grade 3 NST).

Regions of low cellularity on histology tend to correspond to

regions of high ADC and low fI (red outlines). However, there are

regions in which higher cellularity does not correspond to lower

ADC (compare the region outlined in cyan with surrounding regions)

and, in such cases, the patterns in the Zeppelin–Sphere parameter

maps differ from those of the conventional ADC maps. The high mag-

nification histology in Figure 5a (from black inset on histology and

corresponding to white inset on MRI parameter maps) shows a region

with varying cell size as a result of the presence of immune cells
amongst cancerous epithelial cells. The ADC in this region is relatively

uniform [(0.77 ± 0.16) × 10−3 mm2/s], but R increases from

6.4 ± 0.4 μm on the left side of the image to 8.2 ± 3.1 μm on the right

side of the image, where the proportion of larger epithelial cells

increases. The boxes in Figure 5b show a region of low cellularity

(near the cyan outline from Figure 4) where ADC is lower than in

the surroundings [(0.51 ± 0.07) × 10−3 mm2/s versus

(0.68 ± 0.08) × 10−3 mm2/s in the same‐sized region above], contrary

to conventional thinking about ADC, but the R map and high

magnification histology suggest that small cells in this region restrict

diffusion, limiting diffusion decay in spite of the lower cellular volume

fraction.

For the mucinous carcinoma (last column), the fitted R parameter

hits the 20 μm maximum allowed by the fitting procedure in most

voxels. This large R value is equivalent to unrestricted diffusion given



FIGURE 5 Regions from two of the tumours demonstrating different spatial variation in the apparent diffusion coefficient (ADC) and Zeppelin–
Sphere model parameters. (a) The black and white boxes show regions of relatively uniform ADC in which the radius R from the
Zeppelin–Sphere model suggests smaller cells in the left half of the region, which is supported by the histology, which shows smaller
inflammatory cells on the left of the region and an increasing proportion of clusters of larger epithelial cells on the right. (b) Boxes enclose a

region in which ADC is lower in the bottom right, but cellularity appears lower on histology. The high magnification histology demonstrates that
the cells are smaller in this region, which is consistent with the lower values in this region of the R map
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the diffusion lengths probed in this experiment; thus, this finding is

consistent with Figure 2 data that the Zeppelin–Ball model is a better

choice in this sample.
3.3 | Model parameters – orientation

Colour FA maps from the Zeppelin portion of the Zeppelin–Sphere

model (i.e. removing the isotropic spherical component from the FA

calculation) are shown alongside the H&E‐stained histology in

Figure 6. Small regions of coherent direction (approximately 4 voxels

=1 mm) were observed and are highlighted for regions from two

samples in Figures 7 and 8.

Figure 9 displays the colour FA maps for the original data (a) and

data downsampled in‐plane (b, c), demonstrating that anisotropy

becomes weaker (colours less bright) at lower resolution, particularly

at 2 mm resolution.
FIGURE 6 Haematoxylin and eosin (H&E)‐stained histology alongside col
Zeppelin–Sphere fit. Remaining samples are shown in Figure S7
4 | DISCUSSION

4.1 | Model selection

This article presents detailed diffusion data of breast tissue samples

acquired using a rich imaging protocol, testing a variety of one‐ and

two‐compartment models with different shapes, with and without

restriction. The model that best explains the data varies in different

tumours and regions, which is not unexpected given the diversity of

breast cancer microstructure. This variation has also been reported in

ex vivo prostate studies.49 A small fraction of voxels were excluded

from fitting as a result of non‐mono‐exponential T2 decay, and histol-

ogy revealed that many such voxels were in necrotic regions. In most

voxels, the data were best explained by the anisotropic two‐compart-

ment models: Zeppelin–Sphere and Tensor–Sphere in regions of

higher cellularity, indicating that a restricted diffusion component is

present in these areas, or Zeppelin–Ball and Tensor–Ball in regions of
our fractional anisotropy (FA) maps from the Zeppelin portion of the



FIGURE 7 Higher magnification histology of
two regions (outlined in boxes) with higher

fractional anisotropy (FA), demonstrating
correspondence between the primary
diffusion direction and directional patterns of
the fibrous stroma

FIGURE 8 Higher magnification of the grade 3
mucinous carcinoma showing correspondence
between the primary diffusion direction and
directional patterns in the fibrous stroma, even
in the areas of low cellularity. Note that the
colour scale and arrow length have been
adjusted from previous figures to better identify
regions of coherence
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low cellularity. There was no clear trend in parameters with grade,

although the number of samples is small and the samples

demonstrated heterogeneity. There were no regions in which

conventional ADC or DTI best explained the data. These models are

by far the most commonly used clinically, albeit with more limited

single‐shell protocols consisting of lower b values.

Although the constraints of clinical scans limit the diffusion data

that can be obtained, the results of the rich protocol suggest that there

is valuable information that is not captured by most clinical protocols

and diffusion models. For example, a clinical protocol with scan

parameters producing signal sensitive to the observed R range of
6–9 μm could be designed. This approach has been successfully

applied in prostate cancer to distinguish tumour from benign regions,9

and may improve tumour characterisation in breast.
4.2 | Parameter values

Parameter values varied both across and within samples. The MCMC

parameter distributions suggested that the fitted parameters were

relatively stable, and comparison with histology further supported

the hypothesis that parameter variations reflected true microstructural

differences. This heterogeneity makes a simple summary of parameter



FIGURE 9 The colour fractional anisotropy (FA) map for the Zeppelin portion of the Zeppelin–Sphere model for the original 0.25 × 0.25 × 0.5 mm3

data (a) downsampled (by averaging) to 1.0 × 1.0 × 0.5 mm3 (b) and 2.0 × 2.0 × 0.5 mm3 (c). At lower resolutions, the anisotropy becomes weaker
(colours are less bright) and it is more difficult to discern a coherent direction in the data
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values challenging. The mucinous carcinoma examined had the highest

ADC (Figure 4, third column), as has been reported previously, and is

attributed to low cellularity.13,15

In other samples, the ADC in regions of low cellularity was approx-

imately 1.3 × 10−3 mm2/s, which is in agreement with the value of

1.23 × 10−3 mm2/s for interlobular stroma found by Norddin et al.38

at 22°C. Regions of higher cellularity tended towards lower ADC

(approximately 0.6 × 10−3 mm2/s), in agreement with the mean diffu-

sivity in breast lobules (0.59 × 10−3 mm2/s) and regions of invasive

ductal carcinoma (0.45 × 10−3 mm2/s), despite differences in scan

parameters and resolution.38 However, ADC does not fully character-

ise the histological features: some regions with little variation in ADC

(box in Figure 5a) showed variations in cellularity and cell size that

more closely reflected variations in the fI and R maps from the Zeppe-

lin–Sphere model; other regions with low ADC actually had low cellu-

larity relative to their surroundings (Figure 5b). The map of R suggested

that this was a result of smaller cell size, and a qualitative estimate of

cell size based on nuclear size in H&E supported this.

This is the first study using two‐compartment restricted diffusion

models to examine ex vivo breast tissue. However, Lasič et al.50 exam-

ined MCF‐7 cells that had been grown in vitro and found a median

size of 13.2 μm assuming a log‐normal distribution and a width of

0.6 μm. This is larger than the radius range observed in most sample

regions in the present study (6–9 μm). This may reflect true biological

differences – the ex vivo samples include stromal regions containing

smaller cells such as lymphoid cells – or may indicate cell shrinkage

as a result of fixation or the use of a single cell radius parameter

rather than a cell size distribution. Models incorporating cell size dis-

tributions were beyond the scope of this study, but should be exam-

ined in the future.

The diffusion coefficients themselves are affected by the room

temperature scan, e.g. they are lower than the intracellular

(1.5 × 10−3 mm2/s) and extracellular (2.8 × 10−3 mm2/s) values

observed for in vitro breast cell samples at 37°C.50 Fixation may also

affect diffusion through cross‐linking and decreased water content,

but work in prostate suggests that the relative signal fractions in com-

partments are similar before and after fixation and that changes are

unlikely to affect model ranking.51,52 Studies in brain53 and optic

nerve54 also demonstrate that the microstructure and anisotropy are

largely unaffected by fixation. Thus, cell size and organisational infor-

mation should reflect the in vivo situation reasonably well, but further

experiments are needed to verify this.
4.3 | Anisotropy

Previous work31 has suggested that anisotropy in breast DTI might be

a result of breast ductal structures. We were unable to examine this

hypothesis in this study because of the limited number of normal duct

structures in the samples, but anisotropy was observed in regions in

which no breast ducts were present on histology. The regions with

strongest anisotropy correspond to regions of lower cellularity in

which H&E staining demonstrates a coherent collagen pattern. The

possibility that structures not visible on H&E staining may contribute

to diffusion anisotropy cannot be eliminated, but work in gels and

tumour xenografts suggests that collagen results in the anisotropic

diffusion of large molecules55 and may affect the smaller water

molecules that provide the signals measured here. These findings are

consistent with the higher FA observed in fibrous stroma relative to

breast lobules,38 and with the higher FA in regions of hypoxia with

increased collagen fibre density.36

The regions of coherence on the FA maps (Figure 6) are relatively

small, approximately 1 mm, and are likely to be averaged out at reso-

lutions approaching 2 mm (Figure 9), which may account for the

inconsistency in previous clinical findings: in healthy breast tissue,

the ducts and/or surrounding structures may produce large regions

of anterior–posterior anisotropy;35 tumours disrupt this structure

and lower the large‐scale anisotropy, but smaller regions of coherence

with varying direction exist in the stroma, and may produce observ-

able anisotropy depending on the image resolution, SNR and how

disruptive the tumour is. For example, higher order diffusion tensor

methods have been successfully applied in patients, and demonstrate

the presence of multiple diffusion fibre directions in some voxels of

malignant tumours, but anisotropy is not present in benign tumours.17

There is also evidence that collagen reorients in invasive tumours,6

and is more strongly aligned in malignant samples relative to

hyperplastic samples.56 Of particular note in this study is that,

although the mucinous carcinoma had lower anisotropy, small regions

of coherence were still observable and corresponded to stromal ori-

entation patterns, whereas mucinous carcinomas have proven difficult

to distinguish from normal and benign tissue using conventional ADC

methods.13 Thus, the ability to detect small regions of anisotropy

within and around tumours is a potentially valuable biomarker, and

may become achievable in the near future with the use of reduced

field‐of‐view sequences, double diffusion encoding sequences57 or

higher order diffusion tensor methods.17
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4.4 | Limitations

In addition to the use of a single average cell size parameter, and the

fixation and temperature issues already discussed, this study has sev-

eral limitations. The number of samples was small, but variation in

the preferred microstructural model and parameters was observed

even within this range of grades and histological subtypes of breast

cancer. Samples were examined voxel‐wise to maximise the informa-

tion obtained about different microstructural environments, but addi-

tional samples are needed to determine whether the findings are

generalisable across all breast cancers.

The gradient strengths used were larger than those commonly

available clinically, but Figure 1 demonstrates that single‐compartment

models, such as DTI, diverge from the data even at low b values (e.g. red

circles). More limited gradient strengths and diffusion times may result

in more uncertainty in model parameters, but a priori information, such

as that obtained from ex vivo studies and validated in vivo, may be useful

in constraining models applied to more limited clinical data.

All models assumed no exchange of water between compartments

during the measurement, although there may be some additional signal

decay, particularly at long diffusion times and high b values, arising from

exchange effects. T2 was assumed to be mono‐exponential, and a sepa-

rate sequence ascertained where this assumption failed and excluded

these voxels from fitting. The method could potentially be extended

to include regions with multi‐exponential T2, given sufficient data. We

assumed spherical cells of uniform size, which is a simplification of the

real biological system. In cases in which there is some eccentricity in

the cell shape, the radius estimate will represent a volume average of

this parameter. Futurework could extend themodel selection to include

compartments with anisotropic restriction; however, fitting both a cell

size and compartment eccentricity using a basic pulsed gradient spin

echo sequence biases both the radius and eccentricity parameters.58
5 | CONCLUSIONS

This is the first study to examine such a broad range of diffusion data in

human breast tissue samples and to model the data using both anisot-

ropy and restriction. The data from most cellular cancer regions and

the adjacent fibroglandular tissue were best explained using a Ten-

sor–Sphere or Zeppelin–Sphere model, indicating that both restriction

and anisotropy are present in breast cancer tissues. There were no

voxels in which ADC or DTI were the best models. Although variations

in ADC often corresponded with variations in cellularity on histology,

there were exceptions in which additional information was provided

by the radius parameter R and intracellular volume fraction fI from

the Zeppelin–Sphere model. Regions of anisotropy corresponded to

extracellular regions with aligned collagen on histology, but directions

were only coherent over areas of approximately 1 mm and require high

spatial resolution or diffusion techniques sensitive to sub‐voxel anisot-

ropy17,57 for their detection.
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APPENDIX

Mathematical descriptions of the model components are presented

here for the pulsed gradient spin echo (PGSE) sequence. Compartments

are assumed to have slow exchange of water between them, such that

the total signal in a voxel S is the sum of all signal compartments Si

weighted by their respective fractions fi: S ¼ S0e−
TE
T2∑

i
f iSi , where S0 is

the equilibrium signal intensity, TE is the echo time and T2 is the T2

relaxation time constant (S0 and T2 are fitted parameters in all models).

The Ball compartment is equivalent to the signal for Gaussian dif-

fusion: SBall ¼ e−bD1 with b = (γgδ)2(Δ − δ/3), where γ is the gyromag-

netic ratio, g is the gradient strength, δ is the gradient duration and Δ

is the gradient separation.
The Zeppelin is the product of signal along the primary diffusion

direction and the direction perpendicular to this: SZeppelin ¼
e−b cos2ψD1 e−b 1−cos2ψð ÞD2 , where ψ is the angle between the normalised

gradient direction g ̂ and the parallel diffusion direction n ̂ defined in

spherical co‐ordinates with θ and ϕ: cosψ ¼ g ̂ ⋅ n̂ , n̂ ¼
sinθ cosϕ; sinθ sinϕ; cosθð Þ.

The Tensor signal is given by STensor ¼
e−b cos2ψ1D1 e−b cos2ψ2D2 e−b cos2ψ3D3 , where cosψi is the angle between

the gradient direction and the ith eigenvector from the

diagonalisation of the diffusion matrix, such that n̂1 ¼
sinθ cosϕ; sinθ sinϕ; cosθð Þ , n̂2 ¼ k̂ cosαþ k̂×n̂1

� �
sinαþ

n̂1 k̂▪n1̂
� �

1− cosαð Þ , k ̂ ¼ sinθþ π
2 cosϕ; sinθþ π

2 sinϕ; cosθþ π
2

� �
is a

vector orthogonal to n ̂1 rotated by an angle α in that plane and

therefore n̂3≡n̂1×n̂2.

The Sphere signal is calculated using the Gaussian

phase distribution approximation:59 SSphere ¼

exp −2γ2g2∑
m

2βm
2D1δ−2þ2Y δð Þþ2Y Δð Þ−Y Δ−δð Þ−Y Δþδð Þ

D1
2βm

6 βm
2R2−2ð Þ

� �
. Here, Y xð Þ ¼

e−βm
2D1x , βm is the mth root of J3

2
βmRð Þ−βmRJ5

2
βmRð Þ ¼ 0 and Jν is the

Bessel function of the first kind, order ν. The summation was carried

out over the first 31 roots of the equation.
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