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Abstract—This paper presents a passive phase-shift keying
(PPSK) modulator for uplink data transmission for biomedical
implants with simultaneous power and data transmission over a
single 13.56 MHz inductive link. The PPSK modulator provides a
data rate up to 1.35 Mbps with a modulation index between 3%
and 38% for a variation of the coupling coefficient between 0.05
and 0.26. This modulation scheme is particularly suited for bio-
medical implants that have high power demand and low coupling
coefficients. The PPSK modulator operates in conjunction with on-
off-keying downlink communication. The same inductive link is
used to provide up to 100 mW of power to a multi-channel
stimulator. The majority of the system on the implant side was
implemented as an application specific integrated circuit (ASIC),
fabricated in 0.6-pem high voltage CMOS technology. The the-
ory of PPSK modulation, simulated and measured performance
evaluation, and comparison with other state-of-the-art impedance
modulation techniques is presented. The measured bit error rate
around critical coupling at 1.35 Mbps is below 6 x 1078,

Index Terms—Application specific integrated circuit (ASIC),
implantable device, inductive link, passive phase-shift keying
(PPSK), power and data telemetry.

I. INTRODUCTION

NDUCTIVELY powered implantable neural stimulators,
such as cochlear implants [1], visual prostheses [2]-{5],
spinal cord stimulators [6], [7], deep brain stimulators [8] and
vestibular prostheses [9]-{12], are often equipped with back
telemetry, over which the device operational parameters, such
as electrode voltage, power supply level, humidity and temper-
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ature, are reported to external controllers for optimising power
transfer and monitoring implant safety. In some applications,
back telemetry is also used to record neural activities and
transmit the digitised readings to an external processor, where
the data can be analysed and integrated into neural modulation
algorithms for closed-loop stimulation control [1], [12]{14].

Transmission of multi-channel neural recording data from an
inductively powered implant is technically challenging. On one
hand, a wide bandwidth is preferable to allow high resolution
real-time recording; on the other hand, the implementation must
take account of the tight restriction on the physical size and
power consumption. Active transmitters provide wide band-
width at the cost of extra components such as RF antenna and
power consumption [15]-{17]. The alternative of passive im-
pedance modulation has been widely used because of its circuit
simplicity and power efficiency [18]-{31]. However, a trade-
off exists in impedance modulation between the modulation
index, data rate and power transfer efficiency. The coil size
constraints for biomedical implants result in small coupling co-
efficients over the inductive link. In addition, some implantable
devices such as neurostimulators demand high power resulting
in small load impedance. Small coupling coefficients and load
impedance limit the modulation index that can be achieved. As
a consequence, the working range of the coil separation and
data rate are also limited. Changing the load impedance for a
longer period of time allows more time for the voltage on the
receiver side to settle and hence increases the modulation index.
However, this would slow down the data transmission and
inevitably disturb the power transfer hence reduce the power
transfer efficiency. One approach to address this trade-off is to
use separate power and data links. Data rates in the region of
megabit per second (Mbps) have been achieved [24]-{27] at the
expense of larger device size and circuit complexity. Other ap-
proaches include using a series secondary ohmic configuration
for a larger dynamic range of impedance modulation to increase
the modulation index [21], or carefully choosing the timing of
modulation to achieve a high data rate [23], [28]{30].

In the presented design a passive phase-shift keying (PPSK)
modulation scheme, reported in [29], has been developed.
PPSK modulation uses superficially similar circuits to the
conventional load impedance modulation, but imposes precise
control on the timing of modulation to generate a fast transient
response over the inductive link with a relatively high amplitude
change. This modulation scheme is particularly suitable for
biomedical implants that require a high uplink bandwidth but
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Fig. 1. Modeling PPSK modulation. (a) Simplified circuit model of an inductive
link with PPSK modulation. (b) Equivalent circuit model of the inductive link.

have small coupling coefficients and low load impedances.
A high modulation index can be achieved without sacrificing
the data rate. By reducing the duration of the impedance change
the disturbance on power transfer is also minimized. The PPSK
modulator was designed for use in an integrated stimulator for
a vestibular prosthesis [12] (which describes the multi-channel
stimulators and the recording unit). It specifies a minimum
data rate of 600 kbps and up to 100 mW of power for device
operation.

The focus of this paper is the telemetry design. A preliminary
presentation of the PPSK modulator was reported in [28].
This paper presents in detail the theoretical principles of PPSK
modulation, performance evaluation and comparison with other
state-of-the-art impedance modulation techniques. Included are
further circuit details of the application specific integrated cir-
cuit (ASIC), comprehensive measured results including mod-
ulation index, bit error rate, an improved data rate (up to
1.35 Mbps over a 13.56 MHz inductive link), gain factor and
efficiency of the power transfer.

The rest of the paper is organized as follows. Section II
presents the theory of PPSK and evaluates its performance
in simulation. Section III describes the implementation of the
integrated PPSK modulator and the corresponding demodulator
in the external transmitter. Section IV presents the imple-
mentation of the inductive link and the external transmitter.
In Section V the operation of the inductive link is demon-
strated with measured results. Concluding remarks are drawn in
Section VI.

II. THEORY OF PPSK
A. Principle of Modulation

The principle of PPSK modulation [30] can be explained with
reference to Fig. 1. Fig. 1(a) shows a simplified circuit model of
an inductive link for PPSK modulation. In this model, L and
Lo are the inductively coupled primary and secondary coils, re-
spectively, with a mutual inductance M, where M = k+/L1 Lo
and k is the coupling coefficient between the two coils. During
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inductive powering, L is tuned with C; and Ly with C5 at the
carrier frequency. R; is the total serial loss resistance on the
primary side, including the serial loss resistance of the primary
coil and the loss resistance from the driver, vg. Rp is the
parallel loss resistance of the secondary coil and Ry, is the total
equivalent load resistance from the circuits driven by the sec-
ondary coil. The total load resistance seen by Lo can be repre-
sented as Ry, where Ry = Rp||(Rr/2). A switch, S1, connects
both ends of Ly for PPSK modulation. For every binary bit “1,”
S1 closes to short Lo before it opens after a short time interval.
This action creates a transient current surge in the primary loop,
which can be detected by sensing the voltage peak on C'.

An equivalent circuit model of Fig. 1(a) is shown in Fig. 1(b).
Assume during operation, both L; — C7 and Ly — C5 resonate
at the carrier frequency w,, generated by the driver vg, a
sinusoidal signal with unity peak amplitude. vg, and the current
in the primary and secondary loops, i1 and 2, are

vg = sinw,t
11 = Il,peak sinwot (D

19 = I peak SiN (wot + %) .

At resonance, 47 is in phase with vg and lags 2 by 7/2, and
also i1 leads ve1 by 7/2 and is leads voo by /2. Therefore,
at a specific time instant ¢y, where w,ty = 0, signals vg, 71, and
voe are crossing zero towards the positive phase, while 75 is
at its positive peak, I5 peak, With a phase of 7 /2 and v is at
its negative peak with a phase of —7 /2. Similarly, at a specific
time instant ¢;, where w,t; = 7, signals vg, 1, and vogy are
crossing zero again but towards the negative values, while 72 is
at its negative peak, —I2 peak, With a phase of —m /2 and vey is
at its positive peak.

If the switch S closes at ¢y to short Lo for half a carrier
cycle, is is held at I peax during this period (given the on
resistance of .S7 is small). Sy is then opened after half a carrier
cycle, i.e., at time instant ¢;. At this instant, both vg and ¢; are
still crossing zero towards the negative phase and v is still
at its positive peak, but 75 is now forced to be at the positive
peak instead of the negative peak in the steady-state. Denoting
12 steady (t1) = —I2,peak as the steady-state 4o, then i2(t1) =
12, steady (t1) + 212 peak. It can be regarded as injecting a tran-
sient current of i transient(t1) = 212 peax into the secondary
loop that has been running in the steady-state. The energy of
the injected current contributes to a transient current surge in
the primary loop. The loop response to the transient current
superimposes itself onto the steady-state response, resulting in
a transient voltage increase on top of the peak value of vc.
Using the circuit model in Fig. 1(b), the Kirchhoff equations of
the transient response at ¢ are

Rlill‘f’Ll%"'c%fildt_M%:O
Ly% + & [(iy —ig)dt — M4 =0 )
& J (i3 —i2)dt + Ryiz = 0

where 71, 72, and 73 are all transient currents as a result of
injecting 2 transient (t1) = 212 peak, but “transient” has been
removed in the subscripts for simplicity. These transient cur-
rents are superimposed on the steady-state currents. Applying
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TABLE 1 Magnitude, Irl x10°  Damping factor, a
PARAMETERS OF THE INDUCTIVE LINK 0.7 9
3 0.6 8 *
Carrier frequency | 13.56 MHz 27 @
S 05 ®7
Primary coil | 0.5 mm diameter copper wire, 5; 0.4 5 6
2 turn solenoid, 25 mm diameter Bos S s
Ly | 0.21 uH N E
T 02 T a
Cy | 656 pF g g
Rg | 0.15Q g 0.1 3
Secondary coil | 0.315 mm diameter copper wire, 0 005 01 015 02 025 0 005 01 015 02 025
8 turn solenoid, 16 mm diameter k k
L2 1.55 p,H X107 Damped frequency, w/2x Phase, 0
1.6
C2 88.9 pF —b>— w'/2r
Rp 15.340 kQ —e— w'/2n

Laplace transform to (2) with the initial condition of i5(t;) =
213 peak at t1, yields

(R1+SL1+%) I (S)_SMIQ(S)+2IQ7peak:O
slols (s)_2I2,peak+$ (IQ(S)—Ig(S))—SMfl(S):O 3)
ﬁ (13(5)—12(8))+R213(8):O

where s is the Laplace operator. From (3), rearranging I (s) as a
function of I peax Tesults in a Laplace transform with a quartic
denominator

Ii(s)
2k2wg\/1+Qg

—S 112 Il,peak

B 11 k2 z( 1 ) 3(L Il
S4+83 w"(Q1 + Q2 Qz) +S2 w2+ Q1Q2 +sw° Q1 + Qz) | wd
1-k2 1-k2 1-k2 "1k

“

where Q1 = woL1/R1, Q2 = RoCow,, and I peak = I2 peak/
(k+/C1/C24/1 + Q3). Applying inverse Laplace transform,

the i, natural transient can be expressed as

i1 (t)=2|r'|e"*" cos(wW't+0")+2[r"|e" tcos(w"t+0").  (5)

i1(t) is a pair of damped cosine waves. When k? < 1, the inter-
action between the primary and secondary sides are minor,
o’ and o are the damping factors of the primary and secondary
circuits, respectively, where o’ ~ R /2L and ' =~ 1/2RyC5; o'
and w" are the damped frequencies on the primary and secondary
respectively, where w'~\/w2—(’)? and W’ = /w2 —(a)2.
For k?< 1, w'~w"~w,. As k increases, the interaction be-
tween the primary and secondary circuits varies the values of
o, W', W, v and r”, resulting in changes of the peak value
and the rate of increase and decay of the envelope of i1 (¢).

By way of example the link parameters in Table I are specified
for a vestibular prosthesis [12]. They were derived following the
design procedure in Section IV.A. To evaluate 1 (¢) in (5) nu-
merical analysis was conducted in Matlab with the parameters
in Table I. Fig. 2 shows the variation of the parameters «, w, r,
and 6 of (5) with k. There is a distinct change in parameter varia-
tion as k approaches kc,it(= 0.107). There is always a 180°
phase difference between 6" and 6”. As a result, the composite
waveform of i1 (¢) always has an envelope increasing to a
peak and then decaying. Fig. 3 shows the resultant transient
waveforms for different values of k. For large values of k, o/ ~
o and |r'| & |r”|, and an additional low frequency (w' — w”)
sinewave multiplying factor develops and causes ringing.

Frequency, Hz
Degree

Fig. 2. Variation of the parameters of the ¢1 natural transient in (5) versus
coupling coefficient £ using the parameters in Table I.
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Fig. 3. Transient waveforms of the 71 natural transient for different values of
the coupling coefficient k with reference to the results in Fig. 2.

B. Evaluation With ADS Simulation Model

To evaluate the performance of PPSK modulation, a simula-
tion model based on the circuit model in Fig. 1(a) was created
in Keysight Advanced Design System (ADS) v2015.01. The
coupling coefficient was calculated from the coil geometry [32]
using the parameters in Table I. PPSK modulation is imple-
mented by switching on Sy, to short the secondary coil Ls.
The variables in the simulations are the coupling coefficient k,
the equivalent load resistance Rz on the secondary coil, and the
time instants at which S is closed and released. For the vestibu-
lar prosthesis application, the required working range of coil
separation is 5—15 mm, corresponding to calculated coupling
coefficients between 0.169 and 0.048.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to t

T

| LIS S B B S S B B B B B B B B S B B S B

gl

L L DL L L L L L L L L L L L

Ll

2
%

Ll

Vo
§

Vel
Ill{ll[llll

LIS B B -+ B S B B B B B BB B B B S B B B B B B B

S

Lo |

L ] AL R R R

LA L B B B B
205 0 215 220 225 230 235

t, us

Fig. 4. Transient responses of the voltages and current in the operation of
PPSK modulation. The dotted lines indicate the time instants when the sec-
ondary coil is shorted and released.

1) Transient Response: Fig. 4 shows the transient change
on is, vo1, and vee when Sy is closed at the instant iy is at
its positive peak and is then released after half a carrier cycle.
k is set to 0.08 corresponding to 10.5 mm coil separation (this
distance is in the middle of the expected working range of coil
separation for a vestibular implant design). As shown in Fig. 4,
a clear transient voltage surge can be seen on v¢c. The rise
and fall of the voltage surge shows a pattern of summation of
two damped cosine waves. v¢1 returns to its steady-state level
approximately 10 carrier cycles after S7 is closed. This gives a
data rate of 1.35 Mbps over a carrier frequency of 13.56 MHz.

2) Comparison With Other Load Modulation Schemes: The
analysis in Section II.A shows that S; should ideally close at
to and open at £1. Any timing offset from these two critical time
instants will result in a lower 7, transient and hence, lower mod-
ulation index. This is because the equivalent extra current in-
jected into the secondary coil is at its maximum, 215 pcak, When
S1 is on for half a carrier cycle, i.e., w,t1 = 7. When S7 remains
closed for longer, w,to >, where ¢, is the new time instant
when S; opens, the new phase of the original 75 is not opposite
to the stored i at w/2, and thus the equivalent extra injected
current is lowered. The performance of PPSK was compared
with two other load modulation schemes: the ISO/IEC 14443-
Type B phase-shift keying (BPSK) load modulation scheme [33]
(termed as BPSK-LSK below), and the cyclic on-off keying
(COOK) scheme described in [23]. For all three schemes, the
carrier frequency was set to 13.56 MHz and the data rate to
847.5 kbps. The onset of load modulation was set to the positive
zero-crossing point of vce, at which point S; was turned on to
short the secondary coil, for all the three schemes. .S; remained
on for half a carrier cycle for PPSK, one carrier cycle for
COOK and eight carrier cycles for BPSK-LSK. The modulation
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repeated every sixteen carrier cycles. The equivalent load resis-
tance, Ro, was set to 644 € for all the three schemes. This value
was derived from the measured Ry, (1344 2) in parallel with the
measured Rp (15.34 k) of the secondary coil.

Fig. 5(a) compares the modulation index of different modula-
tion schemes. The modulation index on the primary coil is com-
pared over the targeted working range of coil separation. The
modulation index is defined as m = (A — B)/(A + B), where
A and B are the peak voltage and steady-state voltage of vo1,
respectively. The results show that the BPSK-LSK scheme pro-
vides the highest modulation index among the three schemes,
while COOK gives the lowest. PPSK produces a modulation in-
dex close to that of BPSK-LSK when k£ < 0.08. Fig. 5(b) shows
the influence of these three schemes on power transfer with ref-
erence to the power transfer link efficiency when no modulation
is applied to the link. In contrast to the relative performance of
the modulation index, COOK has the minimum disturbance on
the power transfer, while BPSK-LSK reduces the link efficiency
significantly. PPSK has a link efficiency slightly lower than that
of COOK. Comparing the modulation index performance in
Fig. 3(a), BPSK-LSK achieves the highest modulation index
by having the longest duration of modulation. As a result it
causes the most reduction in the power transfer. PPSK shorts
the secondary coil for only half a carrier cycle. It achieves a
modulation index higher than COOK by momentarily reversing
the phase of LC resonance on the secondary side, and subse-
quently injecting extra current into the primary side. However,
this phase reversal of LC resonance causes more energy loss
than COOK, despite the fact that its modulation duration is
shorter. Fig. 5(c) shows the minimum time required for the
carrier to recover after single bit modulation with PPSK and
COOK. The recovery time for both schemes increases as the
coupling coefficients decreases. At strong coupling, a high data
rate can be achieved as shown in [23].

The modulation strategy for specific applications can be
chosen from the simulated performance. BPSK-LSK would
be favourable for its highest modulation index in applications
that only require occasional uplink communication with a low
volume of data to transmit, such as RFID. The reduction in link
efficiency from occasional disturbance on power transfer will
not be significant. On the other hand, at strong coupling, COOK
has the advantage of providing a high data rate with high link
efficiency and acceptable modulation index. For biomedical
implants with low coupling and a demand for constant uplink
communication at high speed, as well as high power demand
(e.g., vestibular prosthesis), PPSK is the optimal choice. At
low coupling, it provides a modulation index much higher than
COOK and comparable to BPSK-LSK, while it is much more
power efficient than BPSK-LSK and close to COOK.

Fig. 5(d) plots the simulated modulation index against the
timing error of the onset and length of the switch closure
duration for PPSK modulation. The timing error is presented as
the percentage of a carrier period. The modulation index is sim-
ulated with a k of 0.08 and Ry of 2 k(). The highest modulation
index of 0.32 occurs when both the onset and length error are
zero. The results suggest a tolerance of —15% to 10% for the
length error, and —10% to 5% for the onset error within which
the modulation index remains above 90% of the peak value.
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regard to timing offset of both the start and duration of the switch closure.
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Fig. 6. System architecture of the power telemetry with PPSK modulation. The integrated components are in the area labeled ASIC.

III. IMPLEMENTATION OF THE TELEMETRY
A. System Overview

A power telemetry with an integrated PPSK modulator was
implemented as part of an implantable stimulator for vestibu-
lar prosthesis (requiring up to 100 mW power delivery and
600 kbps uplink data communication [12]). The system archi-

tecture is shown in Fig. 6 with emphasis on the power and data
telemetry. Power transfer is via the inductive link with its tuning
network, including L, C1,, C1p on the primary side and Lo,
C5 on the secondary side. The tuning network is adjusted to the
carrier frequency of 13.56 MHz. Downlink data transmission
uses on-off keying (OOK) while uplink employs PPSK. The
implant subsystem was integrated in an ASIC as highlighted
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in Fig. 6. Diodes Do — D3 are glass case Schottky diodes and
Cy is a 10 pF tantalum capacitor. The ASIC includes a power
regulator providing a stable high voltage, Vppy, of 12 V for
the stimulator output stage and a stable low voltage, Vppa,
of 5 V for the rest of system, comprising a PPSK modulator,
an OOK demodulator, an implant management unit and a
stimulation and recording unit. Details of the management unit
and stimulation and recording circuits were presented in [11],
[12]. The carrier is generated by a class-D power amplifier in
the external transmitter. The voltage developed in the resonant
tank Lo — C5 is rectified by a half-wave rectifier, D5 — Cy,
for the power regulator. The signal on the secondary coil is
connected to the OOK demodulator and the PPSK modulator.

B. PPSK Operation

The PPSK modulation is managed by a control logic that
operates on a clock extracted from the carrier by the RF clock
generator. The control logic contains a shift register for the data,
two counters and a delay block. The shift register streams out
data received from the implant management unit at a speed de-
fined by the RF counter. The timing sequence of the modulation
control is shown in Fig. 7. A Send Data signal from the implant
management unit triggers the modulation procedure in which
the RF counter starts counting the RF CLK pulses generated
from the RF Carrier. At the overflow value of the counter (7 in
Fig. 7 for a bit rate of 847.5 kbps), if the current bit is logic
“1,” a Bit Data pulse is generated to trigger the monostable
m2 to generate a pulse on Dout. This pulse turns on switch .Sy
for PPSK modulation. S; was implemented by a high voltage
NMOS transistor with dimensions W/L = 1995 pm/1.3 pum,
yielding an on resistance of 17 €2.

Since the received carrier disappears for a few cycles when
modulation occurs due to shorting the secondary coil, RF CLK
becomes momentarily irregular during modulation, as shown in
Fig. 7. To maintain regularity and constant timing between bits,
a blanking mechanism was implemented. After the RF Counter
Value reaches its overflow value, a Blanking Start pulse is
generated to trigger the monostable m1, which generates a
blanking pulse of about 570-590 ns, sufficiently longer than
the required time for the carrier to recover. This pulse blanks
the clock to the control logic from RF CLK, keeping CLK static
until RF CLK returns to regular action. The data rate is pro-
grammable by setting the overflow value of the RF counter. This
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value is set by the external transmitter during system initialisa-
tion. Once the counter exceeds this value, it resets and starts the
next modulation period, where the shift register streams out the
next bit and the bit counter increments by 1. The overall period
for each bit is the sum of the length of the blanking pulse and
the number of carrier cycles set by the overflow value.

As discussed in Section II, the timing of switching on and off
S is critical for achieving the maximum modulation index. A
delay cell, 7, was inserted at the input of S; to align the switch
onset. The length of the delay is a sum of the delay from the
monostable m2, the control logic and the RF clock generator.
Its value was derived from Monte-Carlo simulation to ensure
the onset error is within 10% of one period of the carrier. In
addition, m?2 is made programmable so that the length of the
S1 pulse can be fine-tuned to reduce the length error.

C. Monostable

The circuit implementation and operation of the two
monostable units (m1 and m2, Fig. 6) are shown in Fig. 8.
Fig. 8(a) shows the overall architecture of the monostable. In
operation, a rising edge at the input IN switches the output
OUT to “1” and turns on the current source /¢ to charge the
capacitor C'. When the voltage on C reaches a high threshold
value, V4, the D-flip flop is reset. As a result, its output )
becomes “0” and I¢ is turned off and the current sink, Ip
is switched on to discharge C'. Once the voltage on C' drops to
Viow, OUT is switched back to “0.” The circuit stays in this state
until the next pulse on IN arrives. The width of the output pulse
on OUT is decided by the charging and discharging current
value, the capacitance of C' and the threshold values of V}; and
Viow- Vhi and Vi, are the threshold voltages of inverter “hi”
and “low” in Fig. 8(a), respectively. The charging time, ¢., and
the discharging time, ¢4, are

CVhi

fe =77 ©)

c

C(Vhi — Viow

ty = w (7

D
The threshold voltage of a simple CMOS inverter is [34]
Vinny/ g—ﬁ + Vopa — Vinp
Vin = (®)

14 /5%

where S /fBp is the transconductance ratio of the NMOS and
PMOS transistors; Vi n and Vi p are the threshold voltages.

The current source and sink of m2 are programmable as
shown in Fig. 8(c). I¢ is mirrored with transistors M15, M25,
M27,M28, M36, and M37 to generate a fixed current of 136 uA.
Ip consists of two parts: a fixed current a5 of 80 pA
mirrored with M15, M19, M22, and M24, and a tuning current
Icontrol- Lcontrol 18 €ight times the programmable current I, rogram
generated from M; — My4. The variation range of I.ontrol 1S
between 0 nA and 60 pA with a step size of 4 pA. Ieontrol 18
programmed by the digital values of A0, A1, A2, and A3 that
are set by the external transmitter. Charging and discharging
are controlled by signal @n that turns on or off of the transistor
switches M21, M23, M33, and M38.
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Fig. 8. Programmable monostable implementation. (a) Monostable schematic. (b) Operation of the monostable. (c) Programmable current source.

The value of the capacitor C in m2 is 1.68 pF (included in the
ASIC). The transistor dimensions of the inverters are: for “high,”
PMOS W/L=4 ym/10 gm and NMOS W/L=1 pym/10 ym;
for “low,” PMOS W/L =3 um/10 pm and NMOS W/L =
5 pm/10 pm. The duration of the m2 output pulse (OUT) is
between 107 ns and 116.3 ns with a step size of 0.62 ns. This is
suitable for matching 1.5 cycles of the 13.56 MHz carrier. The
choice of 1.5 cycles instead of 0.5 cycle is to allow a larger C so
that the effect of the process variation is reduced. A switch
closure of 1.5 carrier cycles generates the same PPSK modu-
lation performance because the switch release time is still at the
opposite phase of the switch closure onset, while the current
loss in the secondary loop during switch closure is low given the
high parallel loss resistance of the coil and the low on resistance
of the switch.

The implementation of the monostable m1 is the same archi-
tecture as that in Fig. 8(a) but with Ic = 40 pA, Ip = 48 pA
and C' = 5.73 pF (included in the ASIC).

D. RF Clock Generator

To extract the carrier frequency from the RF signal in the
digital domain a level shifting circuit was implemented as
shown in Fig. 9. The differential amplifier generates a pulse
when the carrier amplitude is above 0 V. This results in a square
wave at the output of the differential amplifier. The following

vD DA

M8 M10
ouT

M9 M11

Fig. 9. RF clock generator.

inverters generate a square wave compatible digital signal to
serve as the clock for the PPSK control logic.

E. OOK Demodulator

The implant receives control settings from the external trans-
mitter via the inductive link using OOK modulation with a data
rate of 400 kbps. The circuit of the OOK envelope detector
to extract the signal from the modulated carrier is shown in
Fig. 10. As the recovery time of the carrier varies with the load
and coupling coefficient, the time constant of the RCy peak
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Fig. 10. Implementation of the OOK demodulator.

GND

detector should be set to a larger value than the worst case rise
time of the carrier. The implemented R is 44.9 k2 and Cy is
2.8 pF. Transistors M5-M 10 form a Schmitt trigger to generate
a digital output from the peak detector.

F. Power Regulator

The power regulator module includes a voltage monitoring
unit, a voltage regulator and a power-on reset. The voltage mon-
itoring unit reports to the external transmitter when the received
voltage is too high or too low (by respectively setting PH and
PL; see Fig. 6) and the driving voltage Vi iver On the class-D
amplifier (see Fig. 11) is adjusted accordingly. The voltage reg-
ulator generates a stable 5 V supply for the implant electronics.
The voltage regulator and the power-on reset are implemented
in standard circuit architecture as described in [34].

IV. EXTERNAL TRANSMITTER AND
COMMUNICATION PROTOCOL

A. Link Design

The diameter of the secondary coil and the coil separation
are mainly defined by the surgical constraints. In the example
of the vestibular application, the layout of the implant is similar
to commercial cochlear implants [35], where the secondary
coil locates alongside a hermetically sealed hybrid. Both the
coil and hybrid are encapsulated with medical grade silicone
rubber. The diameter of the secondary coil Lo was set to 16 mm.
The working range of the coil separation takes into account the
thickness of the skin behind the ear where the device will
be implanted, and the thickness of the secondary coil after
encapsulation. It is set between 5 mm and 15 mm, while the
gain factor of the power transfer peaks around 7-10 mm. To
accommodate misalignment due to relative movement between
the coils on implantation, the diameter of the primary coil L
was set to 25 mm to ensure 100% overlap.

The gain factor of the power transfer (refer to Fig. 1) can be
expressed as [36]

ag = teal VE ©
lvs| (% + k_’i)

where k. is the critical coupling coefficient

ko — |C1 R,
° CQRQ.

(10)
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Fig. 11. Architecture of the external transmitter.

Equation (9) indicates that Ag peaks when k. = k. Therefore,
the values for Cy, Cs, Ry, and Ry are bounded by (9) so that
k. = k at 8 mm coil separation. Among the variables, R; is a
combination of the primary coil serial loss resistance and the
loss resistance of the power amplifier and Re = Rp||(RL/2).
For this design, R; is 1.15 2, while the load resistance of the
implant, Ry, is about 1344 Q) from measurements. The carrier
frequency is 13.56 MHz. Based on the values of Ry, Ro, the
geometry of the coils and the carrier frequency, L.; and Lo were
chosen to satisfy k. = k at 8 mm coil separation, where the
value of k£ was derived using the procedure in [30]. The link
parameters are listed in Table I. According to these parameters,
k is between 0.048 and 0.169, and k. is 0.107 at 8 mm coil
separation.

B. External Transmitter

The architecture of the external transmitter is shown in
Fig. 11. A class-D power amplifier was constructed with the
primary LC tank driven by a pair of power switches built
with two complementary power MOSFETs, Si7501DN, and a
dual MOSFET driver UCC37323. A XC2V64 CPLD (complex
programmable logic device) operates the power switches at a
switching frequency of 13.56 MHz. A microcontroller (MCU)
controls the power transfer level by adjusting the supply voltage
of the class-D amplifier. According to the feedback voltage
measurement from the implant, the MCU programs a digital
potentiometer, AD5220, in the dc/dc converter that supplies the
class-D amplifier. The MCU also generates control settings for
the implant. These settings are sent via SPI (serial peripheral
interface) to the CPLD, where they are packed into frames with
cyclic redundancy check (CRC) code generated and attached.
The CPLD also shifts the frames into a bit-stream and performs
OOK modulation on each bit. The modulation is implemented
by switching on or off the driving signal to the power switches
at 400 kbps. Logic “1” switches off the carrier while logic “0”
keeps the carrier unchanged.

The uplink data stream is demodulated in the PPSK de-
modulator. A simple capacitive voltage divider, C1, and Cp,
scales down the modulated carrier in the primary LC tank to
the dynamic input range of the amplifiers in the filtering and
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Fig. 12. Schematic of the PPSK demodulator.
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Fig. 13. Communication protocol and the frame structures.

amplifying stage. The ratio between capacitors C1, and C1y, is
1:8.57. The voltage on C1,, is applied to the PPSK demodulator,
which comprises an envelope detector, a filter and amplifier
stage and a level detector. The circuit details of the three stages
are shown in Fig. 12. The envelope detector extracts the voltage
transient on C4; from the input. The time constant of the
Re1 — Ceq network was set to be higher than the carrier period
(73.7 ns) but lower than a single bit width (> 740 ns). A RC
low pass filter (Rf1 — C1) with a cut-off frequency of 2 MHz
attenuates the carrier frequency components from the output of
the envelope detector. The ac components in the filtered signal
are applied to a two-stage amplifier with a dc bias at the mid-
supply range. The two-stage amplifier consists of two AD8656
op-amps and a low-pass filter between the two amplifiers. The
amplified signal is translated into a digital bit-stream by a level
detector implemented with a comparator TLV3502.

C. Communication Protocol

The external transmitter and the implant communicate over
the inductive link following a half-duplex protocol shown in
Fig. 13. There are two types of downlink frame, CTC and STC,
and two types of uplink frame, CM and D. All frames begin
with a logic “1” as Start and end with a logic “0” as Stop, so that
the RF carrier remains intact when there is no communication.

Fig. 14. ASIC microphotograph with the building blocks of the telemetry
highlighted.

When the implant is powered up, it sends CM frames to the
transmitter repetitively every 250 us as Ping signals until the
transmitter responds. The procedure for stimulation, recording
and housekeeping requests consists of two stages. The trans-
mitter firstly sends a CTC frame for handshake. The Request
section in the frame defines the request. The implant completes
the handshake with a CM frame as acknowledgement. The
transmitter then sends a STC frame with the settings for the
request, such as the pulse profile and channel for stimulation
or recording window length and channel selection. Details of
the stimulation and recording settings are described in [12].
The housekeeping request includes settings for the PPSK data
rate control and programmable monostable. The settings can be
sent over multiple STC frames. The implant acknowledges each
STC frame with a CM frame. The Ack. section in the CM frame
informs the transmitter whether the STC frame was correctly re-
ceived or not. For a recording request, the transmitter repeatedly
sends CTC frames to check if the 320-bit buffer in the implant,
corresponding to a 1.6 ms neural recording window length, has
been filled up with recorded data. The implant reports the buffer
status in the Ack. section of the CM frames. Once the buffer is
full, the implant starts transmitting data in a D frame. All the
frames contain CRC for error detection at the receiving end.
The length of CRC depends on the length of a frame. Each CM
frame also contains two power bits, PH and PL, for reporting
whether or not the received voltage is too high or too low, so
that the transmitter can adjust the power transfer accordingly.

V. MEASURED RESULTS

The ASIC was implemented in 0.6-pm high voltage CMOS
technology. Fig. 14 shows the die microphotograph with the
building blocks of the telemetry highlighted. Table II lists fea-
tures and measured performance. For the measurements, the
external transmitter and the implant electronics were mounted
on two separate printed circuit boards (PCBs). The implant
electronics includes the ASIC shown in Fig. 14, the auxiliary
discrete components for the telemetry (Dy — D5, Cs, and Cy
shown in Fig. 6), and resistors used as equivalent electrode load
impedances [12]. The primary and secondary coils as specified
in Table I were connected closely to the two PCBs. The two
coils were mounted onto two parallel panels in a coaxial
position. The distance between the two coils was adjusted by
moving one panel along the axis.
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TABLE 11

SUMMARY OF FEATURES AND PERORMANCE

Technology
Die size

Supply voltage

Telemetry
Carrier frequency
Working distance
Uplink modulation
Uplink data rate

Uplink BER

X-FAB 0.6-pym HV CMOS

ASIC: 21.42 mm? (including the telemetry,
implant management, stimulation and
recording circuits)

5V (digital circuits, PPSK modulator,
OOK demodulator, recording unit)

12 V (stimulator output stage)

13.56 MHz
5—15mm

PPSK

Up to 1.35 Mbps

< 1.01 x 10 at 847.5 kbps
<1x 107 at 1.35 Mbps

Downlink modulation ~ OOK
Downlink data rate 400 kbps
Power transfer Up to 100 mW

Power transfer link

: 66.4% without PPSK, 60.64% with PPSK "
efficiency

“*With continuous PPSK at 1.35 Mbps for coil separation of 8 mm.
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Fig. 15. Modeled and measured coupling coefficient for different coil
separations.

15
14 —a—Modeled

13 || —m—Measured
12

2
S 1
10

Gain,

g o N o ©

o 1 2 3 4 5 6 7 8 9 10 11
Coil Separation, mm

12 13 14 15

Fig. 16. Modeled and measured gain factor for different coil separations.

A. Power Transfer

The coupling coefficients at different coil separations were
calculated from measured mutual inductance and compared to
those modeled shown in Fig. 15. The modeled coupling coeffi-
cients in the figure were derived from the coil geometry using
the procedure in [32]. Fig. 16 shows the gain factor against coil
separation of the inductive link driving the vestibular prosthesis
with Ry = 1344 Q. The measured gain factor matches the
result derived from (9) using the modeled coupling coefficients.
The gain factor peaks around 8 mm coil separation, agreeing
with the calculated critical coupling position.
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Fig. 17. (a) Oscilloscope screenshot of the transmission of a CM packet with
PPSK modulation at a coil separation of 7 mm. (b) Zoomed in view of two
consecutive bits of “1.”

B. PPSK Modulation and Demodulation

Fig. 17 shows the performance of the PPSK modulator with
the vestibular implant sending a CM frame over the induc-
tive link. The coil separation was 7 mm, corresponding to
a measured k of around 0.14. A CM frame with an 11-bit
sequence (10100011110) was transferred over the inductive
link. In Fig. 17(a), the top trace is the power regulator output
Vppu that supplies the implant. Vppy is a stable dc voltage
of 12 V. The middle trace is the voltage vg; recorded at the
drain of the switch S7, as shown in Fig. 6. Sy is shorted at
every logic “1” bit for 1.5 carrier cycles. As a result, a transient
voltage surge on vo; can clearly be seen in the bottom trace
in Fig. 17(a). Fig. 17(b) shows a zoom-in view of vg; and vcy
when two consecutive logic “1” bits are transmitted. Switching
of S7 causes a transient voltage surge on v¢; that lasts for nine
carrier cycles before it returns to the steady-state. In order to
allow sufficient settling time over the entire working range of
5-15 mm for the coil separation, each bit of the uplink data
lasts for sixteen carrier cycles before transmitting the next bit.
This corresponds to data rates up to 847.5 kbps.

The measurement was repeated with different coil separa-
tions, and the recorded modulation index is shown in Fig. 18
alongside the simulated modulation index from ADS with
Ry = 644 Q. As shown, the measured values approximately
agree with the simulation, decreasing with the increase of the
coil separation.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: AN INTEGRATED PASSIVE PHASE-SHIFT KEYING MODULATOR FOR BIOMEDICAL IMPLANTS 11

0.45
04]

—4&—Simulated
—#—Measured

o
S w
w o

0.25

0.15

Modulation Index
o
N

©
N

0.05

o 1 2 3 4 5 6 7 8 9 10 N1
Coil Separation, mm

12 13 14 15

Fig. 18. Simulated and measured variation in modulation index for different
coil separations.
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Fig. 20. Measured BER for data rates of 847.5 kbps and 1.35 Mbps.

The minimum numbers of carrier cycles per bit were also
recorded in these measurements and are plotted in Fig. 19
alongside the simulated values. It is shown that the chosen data
rate of 16 carrier cycles per bit is enough for the specified
working range of coil separation, but there is potential for a
higher data rate, especially for small coil separations.

Bit error rate (BER) was measured with the PPSK modulator
configured to continuously transmit a pseudorandom bit-stream
generated from a 24-bit linear feedback shift register. For
each measurement, 16.78 Mbits were collected from the PPSK
demodulator and erroneous bits were counted to obtain the
BER. The BER was measured with R;, = 1344 2, similar to
the simulations. The measured BERs over a coil separation
range between 0 mm and 15 mm at data rates of 847.5 kbps and
1.35 Mbps in open air, are shown in Fig. 20. Over the working
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Fig. 21. Oscilloscope screenshot of signals in the PPSK demodulation stages.
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Fig. 22. Oscilloscope screenshot of telemetry operation for a handshake be-
tween the transmitter and the receiver.

range of 5 mm to 15 mm coil separation, the BER at 847.5 kbps
is below 1.01 x 107% and the BER at 1.35 Mbps is below
1 x 107°. To examine the effect of skin/tissue on the PPSK
modulation the BER at 1.35 Mbps was measured with a pork
skin sample (of thickness 3—4 mm) attached to the secondary
coil. The measured BER with the pork skin is also plotted in
Fig. 20. The results show that the BER is only very slightly
downgraded at long coil separations.

Fig. 21 shows the waveforms in the PPSK demodulation
stages for extracting a 9-bitsequence (111110101). The captured
waveforms are: the input to the envelope detector (Vi1p), the
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TABLE III
COMPARISON WITH OTHER SINGLE-INDUCTIVE-LINK DESIGNS
Carrior Downlink Uplink Coupling Power
Reference frequency Data rate Data rate coefficient in the delivered to the
Modulation Modulation BER specified coil
(MHz) (kbps) (Mbps) separation load (mW)
[19] 10 BPSK 1120 LSK n./a. n./a. 0.07 >0.61
[20] 1 - - LSK 0.003 <1.6x10°(PER) 0.08 -0.17 <250
[21] 13.56 - - LSK 0.5 n./a. 0.03" 20
[22] 13.56 BPSK 1690 LSK 0.1 n./a. 0.04-0.12" 22.5
[23] 13.56 - - COOK 6.78 <6x107 >0.34" <6.3
This work 13.56 OOK 400 PPSK 1.35 5.98x 107" 0.055 - 0.184 <100

“Estimated using equations (1)-(7) in [32] from the coil parameters given in the references. The coupling coefficients of [22] and [23] were estimated for
both coaxial solenoid single-layer coil and planar spiral coil scenarios. In the latter the maximum spacing between two adjacent turns in the coil was set to
Dyiax/N, where Dyjax is the radius of the outermost turn, and N is the total number of turns.

**BER at the critical coupling where the coil separation is 8 mm. The BER over the full working range of coil separation is shown in Fig. 20.

output from the envelope detector, the output from the second
amplifier, and the output digital bit-stream from the comparator.
The probe positions capturing these waveforms are labeled in
Fig. 11 as A, B, C, and D, respectively.

C. Bi-Directional Communication

Fig. 22 shows the recorded procedure of initiating biphasic
stimulating pulses with the bi-directional communication over
the inductive link as illustrated in Fig. 13. Fig. 22(a) shows
four downlink data packets were sent to the implant using
OOK, among which are one CTC packet for selecting the semi-
circular canal and three STC packets for setting the stimulation.
The implant responds to each packet with a CM packet using
PPSK modulation. After the communication the stimulator
starts generating biphasic current pulses ( stim ), as shown in the
top trace in Fig. 22(a). Fig. 22(b) shows a zoom-in view of the
enclosed area in Fig. 22(a), which includes the CTC packet,
the first STC packet and their corresponding CM packets.
The OOK and PPSK modulations are clearly visible in the trace
of vCo1-

D. Comparison With State-of-the-Art

A comparison of performance of the implemented power
and data telemetry with other work is shown in Table III. This
comparison is specific to designs that use a single inductive
link for both power transfer and data communication, where the
performance of the data link is limited by the implementation
of the power link. PPSK modulation provides high load power
and has a high data rate at low coupling with a good BER.

VI. CONCLUSION

This paper has presented a telemetry system with simultane-
ous power delivery and bi-directional data transmission over a
single pair of inductively coupled coils. The telemetry has been
used to operate efficiently a vestibular prosthesis which requires
both a high data rate and high power. An integrated PPSK mod-
ulator has been implemented in 0.6-um high voltage CMOS
technology. A fast data rate of 1.35 Mbps has been achieved for
the uplink over the same pair of coils at a carrier frequency
of 13.56 MHz to transmit out neural recording data. The

performance of the PPSK modulator and its dependence on the
inductive link parameters have been investigated and verified.
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