
MEASUREMENT MATRIX DESIGN FOR COMPRESSIVE SENSING WITH SIDE
INFORMATION AT THE ENCODER

Pingfan Song? João F. C. Mota? Nikos Deligiannis†‡ Miguel Raul Dias Rodrigues?

? Electronic and Electrical Engineering Department, University College London, UK
† Department of Electronics and Informatics, Vrije Universiteit Brussel, Belgium

‡ iMinds vzw, Ghent, Belgium

ABSTRACT

We study the problem of measurement matrix design for Com-
pressive Sensing (CS) when the encoder has access to side infor-
mation, a signal analogous to the signal of interest. In particular,
we propose to incorporate this extra information into the signal ac-
quisition stage via a new design for the measurement matrix. The
goal is to reduce the number of encoding measurements, while still
allowing perfect signal reconstruction at the decoder. Then, the re-
construction performance of the resulting CS system is analysed in
detail assuming the decoder reconstructs the original signal via Ba-
sis Pursuit. Finally, Gaussian width tools are exploited to establish
a tight theoretical bound for the number of required measurements.
Extensive numerical experiments not only validate our approach, but
also demonstrate that our design requires fewer measurements for
successful signal reconstruction compared with alternative designs,
such as an i.i.d. Gaussian matrix.

Index Terms— measurement matrix design, side information,
Compressive Sensing, Basis Pursuit

1. INTRODUCTION

Compressive Sensing (CS) [1, 2] is a signal acquisition paradigm
that leverages signal sparsity to acquire signals with far less mea-
surements than classical sampling schemes. It has been applied, for
example, in medical imaging [3], radar detection [4], sensor net-
works [5], and compressive video [6]. In many of these applications,
one has access to side information, a signal analogous to the signal
we want to reconstruct. For example, in compressive video past re-
constructed frames can be used as side information to reconstruct the
current frame [7,8]; in medical imaging, prior patient scans can also
be used as side information in image reconstruction [9]. One of the
main benefits of using side information in these applications, where
measurements are expensive, is that it allows reducing the number
of required measurements for reconstruction.

Much research has used side or prior information to obtain even
lower acquisition rates in CS. This typically involves modifying the
reconstruction procedure, e.g., Basis Pursuit (BP) [10] by using es-
timates of the support of the signal, either deterministically, as in
modified-CS [11–15], probabilistically, as in [16, 17], or in the form
of a signal analogous to the signal to be reconstructed, as in `1-`1
and `1-`2 minimization [18–21]. Other work, such as [22], has used
side information to perform classification and reconstruction under
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Fig. 1. CS with Side Information at the encoder.

probabilistic models. In all these work, however, side information is
used to aid only the sparse reconstruction process, not the acquisition
one.

In practice, side information may be available both at the en-
coder and decoder. In this paper, the goal is to integrate side in-
formation into the measurement matrix to aid the signal acquisition
process. Note that our approach differs from those where the encoder
uses richer models to improve performance, e.g., [23, 24]. We show
that, conceptually, our measurement matrix design is equivalent to
solving a weighted `1 minimization problem at the decoder. In that
sense, our work is closely related to [25], which establishes bounds
on the number of measurements required to reconstruct sparse sig-
nals using weighted `1 minimization. Although we use tools similar
to the ones in [25] (namely the concept of Gaussian width [26–29])
to establish related bounds, our bounds are much simpler and, as our
experiments show, also much tighter.

Problem statement. Fig. 1 illustrates the situation where side
information is available at the encoder. Let x? ∈ Rn be the signal
of interest, from which we take m linear measurements y = Ax?,
where A ∈ Rm×n is the measurement matrix. Then the vector of
measurements y is sent to the decoder. In turn, the decoder recon-
structs a vector x̂ ∈ Rn from y by, e.g., solving an optimization
problem like BP. If there are enough measurements, x̂ should be a
good approximation to x?. In the figure, w ∈ Rn comprises the
side information, a vector that we assume to be similar to x?. In this
context, we study the problem of designing the measurement matrix
A at the encoder using the side information w, and then analyze the
reconstruction performance of the resulting system.

Contributions. In the presence of side information at the en-
coder, we propose a new design scheme for the measurement matrix
A in which each row vector is independently drawn from the Gaus-
sian distribution N (0,Σ), where the covariance matrix Σ ∈ Rn×n
is, assumed diagonal, is designed according to the side information
w. Then, based on this design, we establish a bound on the number
of measurements that guarantees perfect reconstruction of the origi-
nal signal via solving BP. Experimental results illustrate the gains of
the proposed measurement matrix design with respect to the scenar-
ios where no side information is used.



2. BACKGROUND

Let x? ∈ Rn be the sparse signal of interest. When there is no
side information available, it is a standard CS problem to reconstruct
x? from a given vector of measurements y = Ax?. One common
approach is to solve Basis Pursuit [10]:

minimize
x

f(x) = ‖x‖1
subject to y = Ax ,

(1)

where ‖x‖1 :=
∑n
i=1 |xi| denotes the `1-norm of x. Assuming

A ∈ Rm×n is composed of i.i.d. Gaussian entries with zero mean
and variance 1/m, there are several different tools to analyse (1), for
example, the Restricted Isometry Property (RIP) [30] and the Gaus-
sian width/distance [26–29]. We will use the latter, since it allows
providing sharper performance characterizations, although with the
shortcoming of being applicable only to Gaussian matrices. Con-
cretely, [28] establishes the following theorem.

Theorem 1 (Corollary 3.3 and Proposition 3.10 in [28]). Let x? ∈
Rn be the signal of interest with sparsity s := |{i : x?i 6= 0}|.
Given a vector of measurements y = Ax?, where matrix A ∈
Rm×n is composed of i.i.d. zero-mean Gaussian random variables
with variance 1/m, then, x? is the unique optimal solution of (1)
with probability at least 1− exp

(
− 1

2
(λm − ω(Ω))2), provided

m ≥ 2s ln
(n
s

)
+

7

5
s+ 1 . (2)

In the above theorem, λm := Eg[‖g‖2] denotes the expected length
of a zero-mean, unit-variance Gaussian vector g ∼ N (0, Im) in

Rm. Moreover, ω(Ω) := Eg

[
sup
z∈Ω

gTz

]
denotes the Gaussian width

of the set Ω, where Ω = Tf (x?) ∩ Sn−1 is the spherical part of the
tangent cone Tf (x?) and g ∼ N (0, In) ∈ Rn is a zero-mean,
unit-variance Gaussian vector. Thus, when no prior information is
available, the number of measurements necessary to recover x? is
O(s ln n). Next, we will see that providing side information to the
encoder allows obtaining a bound smaller than (2).

3. MEASUREMENT DESIGN WITH SIDE INFORMATION

In this section, we consider the case where side information is avail-
able at the encoder. We start by presenting our design scheme for the
measurement matrix; then, we analyse the resulting scheme and es-
tablish a theoretical bound for the number of measurements required
for perfect reconstruction in subsection 3.2, and give the proof for
the bound in subsection 3.3.

3.1. Design Scheme

Assuming the encoder has access to w, the side information, we
design the measurement matrix A ∈ Rm×n as follows: each
row of A is generated independently as a realization of a ran-
dom Gaussian vector with zero mean and covariance matrix Σ =
diag(σ1, . . . , σi, . . . , σn) ∈ Rn×n, where each variance σi is given
by

σi =

{
1 if wi 6= 0

ε ∈ (0, 1] if wi = 0 .
(3)

In (3), ε is a predefined parameter that determines the gains with re-
spect to the no-side-information case. Driven by the side information
w, the intuition of setting ε ≤ 1 comes from energy considerations:
less energy should be spent on acquiring the components of x? that
the side information indicates to be zero.

: { : 0}
i

I i x
*

= ¹ : { : 0}c

i
I i x

*
= =

: { : 0}
i

P i w= ¹

w :

:*x

r v

Fig. 2. Visualization of the mismatch parameters r and v.
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Fig. 3. Comparison of our theoretical bound (5) with the classic CS
bound (2), and Mansour and Saab’s bound [25], with r/s = 0.1,
v/s = 0.1.

3.2. Main result: CS with side information at the encoder

In this section, we analyse the performance of the resulting CS sys-
tem and present a new bound on the number of measurements re-
quired for successful reconstruction when the measurement matrix
is designed as above.

To present our result, we define two parameters that capture the
amount of mismatch between x? and w:

r := |{i : x?i 6= 0, wi = 0}| , (4a)
v := |{i : x?i = 0, wi 6= 0}| . (4b)

In other words, r counts the number of components missed by w,
and v counts the number of components that w overestimates as
shown in Fig. 2. Denoting the sparsity of x? by s and the sparsity of
w by sw, there holds 0 ≤ r ≤ s and 0 ≤ v ≤ min{sw, n− s}.

Proposition 1. Let x? ∈ Rn be the signal of interest with sparsity
s := |{i : x?i 6= 0}|, and w ∈ Rn be the side information. Let
r > 0 and v > 0, defined as (4a) and (4b), denote the two types
of mismatch between x? and w. Given a vector of measurements
y = Ax?, where A ∈ Rm×n is designed as in Section 3.1, then
x? is the unique optimal solution of (1) with probability at least
1− exp

(
− 1

2
(λm − ω(Ω))2), provided

m ≥ 2
(
εs+ (1− ε)r

)
ln
(n
s

)
+

7

5
s+ (1−

√
ε)v + 1 . (5)

Remark 1. Proposition 1 establishes that our measurement ma-
trix design scheme reduces the number of required measurements
from O(s ln n) [cf.(2)] to O((ε s+ (1− ε)r) ln n). In particular, if
the number of components missed by w, namely r, is small and the
dimension n is large, the reduction in the number of measurements
can be significant, as the dominant logarithmic term in (5) is reduced
remarkably compared to the counterpart term in the CS bound (2), as
shown in (6a). On the other hand, (6b) ensures that the unfavourable



increase from the non-dominant linear term in (5) is limited to no
more than the mismatch v.

0 ≤ ε ≤ 1; r ≤ s =⇒ εs+ (1− ε)r ≤ s . (6a)

0 ≤ ε ≤ 1; v ≥ 0 =⇒ v ≥ (1−
√
ε)v ≥ 0 . (6b)

Remark 2. Proposition 1 also shows that ε determines the sen-
sitivity of the bound to the quality of the side information. For high
quality side information with small mismatch r and v, a smaller ε
should be selected. Otherwise, a larger ε is more favourable.

Remark 3. It can also be seen that our bound (5) generalizes
the classical CS bound (2). Concretely, as shown in Fig. 3, bound
(5) asymptotically approaches the classical CS bound (2) with the
increase of ε. Note that, taking ε = 1, (5) simplifies to (2), as ε · s+
(1− ε) · r = s and (1−

√
ε) · v = 0.

Remark 4. Section 3.3 will show that solving BP with our mea-
surement matrix design as in Proposition 1 is equivalent to solv-
ing a weighted `1 minimization problem at the decoder. In that
context, Mansour and Saab’s work [25] established a result simi-
lar to Proposition 1; see Theorem 5 in [25]. Their result is, how-
ever, considerably more complicated and looser than ours, as shown
in Fig. 3. To compare them roughly, assume n is large enough
and set ε → 0. The dominant term of the bound in (5) becomes
2r ln n, and the dominant term of the bound in [25, Thm.5] becomes
2
[
(r + v) ln n+ (r + v)

√
lnn+

√
(r + v) lnn

]
, where r and v

are as in (4).

3.3. Outline of the proof of Proposition 1

This section gives the proof outline of Proposition 1 which involves
mainly two stages: converting the BP optimization with our mea-
surement matrix design to a weighted `1 minimization with an i.i.d.
Gaussian matrix and computing the upper bound for the Gaussian
width/distance.

Equivalence to weighted `1 minimization. We notice the
equivalence between BP optimization with our measurement matrix
design A and the weighted `1 minimization problem with an i.i.d.
Gaussian matrix Ã. Concretely, problem (1) with the measurement
matrix A as proposed in §3.1 can be formulated as

min
x

‖x‖1
s.t. y = Ax

⇐⇒ min
x

‖x‖1
s.t. y = (AD)(D−1x)

⇐⇒ min
z

‖Dz‖1
s.t. y = Ãz

(7)

where Ã := AD and z = D−1x for D := diag(d1, . . . , dn).
Note that from (1) to (7), the optimization variable is changed

from x to z = D−1x, where the weights matrix D is invertible be-
cause ε > 0. The goal of D is to transform the current non-i.i.d.
(anisotropic) Gaussian measurement matrix A to an i.i.d. Gaussian
matrix Ã, tha is isotropic in this case. In addition, the diagonal form
of D ensures that the optimal solution z? of (7) has the same support
as x?. Recall that the random column vector X is called isotropic if
EXXT = In. In order to make Ã = AD isotropic, each row of Ã
needs to satisfy EãT

i ãi = In, where ãi = [ãi1, · · · , ãij , · · · , ãin]

is the i-th row vector of Ã. Thus, for each element, there holds

E
[
ã2
ij

]
= E

[
a2
ij · d2

i

]
= d2

i ·
[
Daij + (Eaij)2] = d2

i · σi = 1,

since Eaij = 0. The variance σi = Daij is the i-th element in the
diagonal of the covariance matrix Σ, defined as in (3). Finally, we

take D = diag(d1, . . . , dn) with

di =
1√
σi

=

{
1; if wi 6= 0

1/
√
ε; if wi = 0

0 < ε ≤ 1 . (8)

Computation of the bounds. The required number of measure-
ments m that guarantees successful reconstruction is upper bounded
by the Gaussian width [28, 29]. As it is difficult to compute the
Gaussian width in a closed form, an upper bound based on Gaus-
sian distance is computed instead. Concretely, f(z) = ‖Dz‖1 is a
convex function. Suppose 0 /∈ ∂f(z?) for a given z? ∈ Rn, then

m ≥ Eg

[
dist
(
g, cone ∂f(z?)

)2]
+ 1 =⇒ m ≥ w(Ω)2 + 1 (9)

guarantees perfect recovery with high probability, where cone ∂f(z?)
is the cone generated by the subdifferential of the objective function
f(z) at the optimal point z?. Let dist(g, S) := min{‖z− g‖2 :
z ∈ S} denote the Euclidean distance between a point g and the
set S. To compute an upper bound for the Gaussian distance in (9),
the objective is decomposed as f(z) = ‖Dz‖1 =

∑n
i=1 f

(i)(zi) =∑n
i=1 |di zi| and the corresponding cone is computed as

cone ∂f(z?) =
(
t · ∂f (1)(z?1), t · ∂f (2)(z?2), · · · , t · ∂f (n)(z?n)

)
,

t · ∂f (i)(z?i ) =

{
t di sign(di z

?
i ); if i ∈ I

I
(
0 , t di

)
=: [−t di, t di]; if i /∈ I

where i = 1, . . . , n, I := {i : z?i 6= 0} is the support of z?, and
I(a, b) denotes an interval with centre a and radius b. Then, Jensen’s
inequality is applied to derive that

Eg

[
dist
(
g, cone ∂f(z?)

)2]
≤
∑
i∈I

Egi
[
dist
(
gi , t di sign(di z

?
i )
)2] (10a)

+
∑
i/∈I

Egi
[
dist
(
gi , I(0, t di)

)2] (10b)

which holds for arbitrary t > 0. In our case, t =
√

2 ε ln (n/s) is
selected to compute the upper bound.

For simplicity, an auxiliary functionA(x) for x ∈ Rn is defined
as

A(x) = −xϕ(x) + (1 + x2)Q(x) . (11)

where ϕ(x) = exp
(
−x2/2

)
/
√

2π is the probability density func-
tion of a scalar Gaussian random variable with zero-mean and unit
variance, and Q(x) =

∫ +∞
x

ϕ(t) dt is the Q-function. Then, it is
proved that for a scalar zero-mean Gaussian random variable with
unit variance, i.e., g ∼ N (0, 1), the Gaussian distance can be ex-
pressed as

Eg
[
dist
(
g, I(a, b)

)2]
= A(b− |a|) +A(b+ |a|). (12)

Specifically, when b = 0, interval I(a, 0) reduces to a point a, and

Eg
[
dist(g, a)2

]
= A(−|a|) +A(|a|) = a2 + 1. (13)

When the interval is centered at 0, i.e., a = 0, there holds

Eg
[
dist
(
g, I(0, b)

)2]
= 2A(b) (14)



Then, (13) and (14) are plugged into (10a) and (10b) to obtain

(10a) =
∑
i∈I

[
1 + t2 d2

i

]
= s+ 2

(
εs+ (1− ε)r

)
ln
(n
s

)
,

(10b) =
∑
i/∈I

2A(t di) = 2(n− s− v)A(t) + 2vA(t
√
ε)

= 2(n− s)A(t) + 2vA(t
√
ε)− 2vA(t) ≤ 2

5
s+ (1−

√
ε)v ,

where the first term involving 2s/5 is derived from Lemma 3 in [20],
i.e., 1−1/x√

π ln(x)
≤ 2

5
for all x > 1, and the last term is from the

property of function A(x), that is, 0 ≤ max
x≥0

(
A(α · x) − A(x)

)
≤

(1− α)/2 for 0 < α ≤ 1. Finally, (10a) and (10b) are combined to
obtain the upper bound (5).

4. EXPERIMENTAL RESULTS

A set of experiments has been conducted to evaluate the efficacy of
the proposed measurement matrix design. An i.i.d. Gaussian matrix
is used as the benchmark. In the signal reconstruction stage, we
use the SPGL1 Toolbox [31] to solve the same BP with both an i.i.d.
Gaussian matrix and our measurement matrix design. The parameter
setting is shown in Table 1. m varies from 10 to 1000 with a step of
10 and the relative sparsity s/n varies from 0.05 to 0.6 with a step
of 0.05 so that the number of measurements corresponding to the
success rate exceeding 85% can be found as the empirical threshold.
To indicate the phase transitions, s/m varies from 0.1 to 1 with a
step of 0.05. In these experiments, 100 instances of A are generated
for each pair of s and m.

The experiment results are shown in Fig. 4. Fig. 4(a) shows
the success rate varying as a function of the number of measure-
ments for different sparsity levels. Fig. 4(b) compares the theoreti-
cal bounds and empirical bounds. Fig. 4(c) and Fig. 4(d) compares
the phase transition for the two types of measurement matrix. The
results indicate that our measurement matrix design outperforms the
i.i.d. Gaussian matrix for small mismatch, and our bound is tight and
practically coincides with the empirical phase transition well.

Table 1. Parameters setting for the experiments
n m/n s/n s/m r/s v/s ε

1000 0.01:1 0.05:0.6 0.1:1 0.1 0.1 0.1

5. CONCLUSIONS

In this paper, a new measurement matrix design scheme is proposed
to integrate side information at the encoder into a CS system. Based
on the design scheme, the performance of the resulting system is
analysed in terms of the number of measurements required for per-
fect reconstruction. Extensive experiments indicate that our mea-
surement matrix design allows reducing the number of measure-
ments provided the side information has reasonable quality. In addi-
tion, it is demonstrated that our theoretical bound is simple and tight.
We believe this work can contribute to better design of CS systems in
scenarios where side information is available, such as medical imag-
ing, sensor networks, and multi-view camera systems. In the future,
we will consider not only the case where the measurements are noisy,
but also the scenario where the side information is available at both
the encoder and the decoder.
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(a) Success ratio with measurements for different sparsity levels.
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Fig. 4. Experimental results. (a) In each sub-figure, the black line
with marker 4 represents the recovery performance of i.i.d. Gaus-
sian matrix and BP, the red line with marker ∗ represents our mea-
surement matrix design with BP. In (c) and (d), the colorbar repre-
sents the success ratio. For each pair of m/n and s/m, the higher
the succes ratio is, the whiter the point is.
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