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a  b  s  t  r  a  c  t

The  estimation  of  the  thermophysical  characteristics  of  building  elements  based  on  in  situ  monitoring
enables  their  performance  to be assessed  for quality  assurance  and  successful  decision  making  in  pol-
icy  making,  building  design,  construction  and  refurbishment.  Two  physically-informed  lumped  thermal
mass  models,  together  with  Bayesian  statistical  analysis  of  temperature  and  heat  flow  measurements,
are  presented  to  derive  estimates  of  the  thermophysical  properties  of  a wall.  The  development  of  a two
thermal  mass,  three  thermal  resistance  model  (2TM)  enabled  the  thermal  structure  of the  wall  to  be  inves-
tigated  and related  to the known  physical  structure  of  two  heavy-weight  walls  of  different  construction:
a  solid  brick  wall  and an  aerated  clay,  plaster,  woodfibre  insulation  and  gypsum  fibreboard  wall.  The  2TM
model  produced  good  match  to the  measured  heat  flux  at both  interior  and  exterior  surfaces  for  both
hermal mass
ayesian statistics
eat transfer

n situ measurements

walls,  unlike  a one  thermal  mass  model  (1TM);  Bayesian  model  comparison  strongly  supported  the  2TM
over  the  1TM  model  to  accurately  describe  the  observed  data.  Characterisation  of  the  thermal  structure
and  performance  of building  elements  prior  to  decision  making  in interventions  will  support  the  devel-
opment  of tailored  solutions  to maximise  thermal  comfort  and  minimise  energy  use  through  insulation,
heating  and  cooling  strategies.

Publi
© 2016  The  Author(s).  

. Introduction

The thermophysical properties of the building envelope have
een identified as key parameters in the determination and expla-
ation of the energy performance of buildings and are widely
sed in models to predict the energy demand of the built stock
1–3]. However, a performance gap has been identified between
he expected energy use of buildings and their measured energy
se [4–6]. The origins of the performance gap are multi-layered and
omplex, involving issues such as occupant behaviour, technologi-
al performance, construction defects, and changes to the materials
nd design [5,7].

Deviation between the expected thermophysical performance
f building elements from tabulated data and their measured per-
ormance has been identified as a significant issue in a number of

tudies [8–11]. Unlike the use of standard published values, the
easurement and analysis of in situ data to infer thermophysical

roperties enables the environmental conditions the envelope is

∗ Corresponding author.
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shed  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
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exposed to and its state of conservation, such as moisture accu-
mulation, to be accounted for [8,12]. In situ measurement also
facilitates the quality assessment of building construction and the
assessment of the performance of building elements where the
material properties and stratigraphy are not certain [13,14]. The
impact of inhomogeneities in the structure, such as delamina-
tion and cracks [12,15], poor detailing, layout and/or workmanship
[8,15], and thermal bridges [12] may  also be better understood with
in situ measurements.

In addition to contributing to the performance gap, the use
of unrepresentative thermophysical characteristics may  affect the
proposed heating strategy of a building, the cost-effectiveness of
energy-saving measures and the implementation of appropriate
retrofitting strategies. Consequently, the evaluation of the actual
thermophysical properties of the building stock from monitored
data is widely considered advantageous compared to the use of
tabulated data [16] both to minimise the performance gap and to
improve the overall quality of the building process by feeding back

the learnings into the system.

In situ measurements have been widely used in industry and
academia to estimate the thermophysical properties of building
elements [17–20]. However, the cost, time and expertise required

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Tint, Text measured internal and external surface tempera-
ture (◦C)

T0
Cn

initial temperature of the nth lumped thermal mass
(◦C)

Qm,in, Qm,out measured heat flux into and out of the internal
and external surfaces (Wm−2)

Qe,in, Qe,out estimated heat flux into and out of the internal
and external surfaces (Wm−2)

S complex Laplace variable representing the deriva-
tive operator

Z time-shift operator
� sampling interval (i.e. the interval between mea-

surements) (s)
Rn n-th lumped thermal resistance (starting from the

internal side) (m2KW−1)
Cn n-th lumped thermal mass (starting from the inter-

nal side) (Jm−2K−1)
TCn estimated temperature of the nth lumped thermal

mass (◦C)
� vector of the unknown parameters of the model
P(�|D, H) posterior probability distribution, given the data D

and the model H
P(D|�, H) likelihood
P(�|H) prior probability distribution
P(D|H) evidence
�Lj width of the uniform prior probability of the jth

parameter
�e,ε, �m,ε estimated and observed time series for the data

stream ε
��,ε standard deviation of a noise term affecting the

measurements
ır

�,ε
, ıa

�,ε
relative and absolute uncertainty affecting the

measurements
�2

ε(�, H) Chi-squared function for the data stream ε
A inverse of the Hessian of the negative logarithm of

the posterior at MAP

Superscripts
p, p − 1 current and previous time step

Subscripts
1TM single thermal mass model
2TM two thermal mass model

t
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t
[
t
k
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c
i

◦

MAP  maximum a posteriori estimation

o undertake high-quality in situ measurement and analysis is a
arrier to the wider adoption of this method [21]. Several methods
ave been developed to estimate the thermophysical properties of
uildings from monitoring campaigns (e.g., [16,22–25]). The choice
f method is generally dictated by the final purpose of the anal-
sis, the available data, and the experience and expertise of the
eam; none of these methods can be considered the best in absolute
erms [22]. The analysis may  be undertaken by white-box methods,
sing models derived from first principles, or by inverse (or data-
riven) methods matching our understanding of the system (i.e.
he model) to the measured data using black- or grey-box models
26]. Black-box methods use statistical techniques to infer the rela-
ionships amongst the inputs and outputs and do not require any

nowledge of the system; the parameters of the model do not have

 direct physical interpretation [27]. Conversely, grey-box models
ombine the advantages of white- and black-box models by includ-
ng physical knowledge in the statistical description of the system
ngs 135 (2017) 398–409 399

and its behaviour, using prior information of the relationships of its
parameters [28], but can require the adoption of a large number of
parameters.

This paper presents the development of a dynamic inverse grey-
box method of estimating effective thermal mass, U-values and
R-values, building on that presented in Biddulph et al. [13]. The
method uses lumped thermal mass models to describe the heat
transfer across the building element and Bayesian-based optimi-
sation techniques to estimate the best set of model parameters,
and includes detailed error analysis. This statistical framework pro-
vides the most probable value for the parameters, an estimate of
their uncertainties, their probability distribution and correlations
[13]. The method is non-destructive, in line with standard tech-
niques [29], and requires limited knowledge about the materials
and structure of the building element, which is essential for the
robust study of different built forms where these parameters are
often not well characterised.

The lumped thermal mass models adopted here enable the
estimation of parameters with clear physical interpretation (e.g.,
R-value and effective thermal mass), which can be subsequently
used to gain useful insights into the thermophysical behaviour
of the building and how this may be improved. Additionally, the
short measurement campaigns required facilitate estimation of the
response of the thermal properties of the building to changing con-
ditions, such as wind and moisture. The use of interior and exterior
heat flux measurements enable the inference of the thermal struc-
ture of the building element, and its response to heat flow out of
and into the building. As such, the models are also scalable – more
complex models may  readily be implemented if corresponding data
is available. Finally, this paper presents the use of Bayesian model
comparison to select the model that best represents the recorded
data. For this purpose we  use the ratio of the evidences of the
models tested [30, Chapter 28], which embodies the Occam’s razor
principle. The improved fit of more complicated models is offset
against the increased prior space associated with the greater num-
ber of parameters. Unlike the likelihood ratio, this method does not
require that the models tested are nested.

2. Case studies and monitoring campaign

Two  solid walls of different construction have been studied
using in situ monitoring and Bayesian statistical methods for the
estimation of their thermophysical properties. The thermal resis-
tance and mass of the two  walls were explored by means of lumped
thermal parameter models of different complexity, designed to
provide a description of the heat transfer through the building
element. Specifically, a single thermal mass model, as applied previ-
ously in [13] and now with an improved analysis method, and a two
thermal mass model were implemented. The walls studied were
expected to exhibit significantly different thermal performance:
the first (OWall) was  of brick construction and formed part of the
external wall of an office building [50], whilst the second (TCWall)
utilised aerated clay blocks and was located in a thermal chamber
[51]. The two  case studies and monitoring campaigns are discussed
below.

2.1. Brick wall in an office building

The first case study (OWall) was a solid-brick wall located on
the first floor above ground of an office building in central London

(UK), oriented north-west-facing (327 between the normal to wall
and north). The wall was 370 ± 7 mm thick, consisting of 20 ± 5 mm
of plaster (expected to be lime) on the inside and 350 ± 5 mm  of
exposed solid brick masonry on the outside. The masonry depth



400 V. Gori et al. / Energy and Buildi

Fig. 1. Schematic diagram of the single thermal mass model (1TM) showing the
equivalent electrical circuit for the heat transfer through the wall. Parameters of the

model are: the effective thermal mass (C1),  its initial temperature
(

T0
C1

)
and two

thermal resistances (R1, R2). The measured quantities are: the internal (Tint ) and
external (Text) temperatures of the wall surface and the heat fluxes entering and

leaving the wall from the internal
(

Qm,in

)
and external (Qm,out) surfaces.

Fig. 2. Schematic diagram of the two  thermal mass model (2TM) showing the equiv-
alent electrical circuit for heat transfer through the wall. Parameters of the model

are: the two effective thermal masses (C1, C2), their initial temperatures
(

T0
C1

, T0
C2

)
a
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nd three thermal resistances (R1, R2, R3). The measured quantities are the internal

Tint ) and external (Text ) surface temperatures of the wall and the internal
(

Qm,in

)
nd external (Qm,out) heat flux through the wall.

as expected to comprise one and a half bricks, potentially with
ir gaps at the interface between adjacent bricks.

The OWall was instrumented (Figs. 1 and 2) with two Hukseflux
FP01 [31] heat flux plates (HFP) and two type-T thermocouples
laced in-line with each other on opposite sides. The external HFP
as secured using a water-resistant elastomeric polymer on the

dge of the plate and thermal paste on the measuring area, while
he internal one was fixed by covering the wall-facing side of the
ensor with a layer of low-tack tape followed by a layer of double-
ided tape [32]. Since the fixing layers are very thin, their additional
hermal mass and resistance are assumed negligible in compari-
on to those of the wall [32]. The thermocouples were taped on
op of each HFP (on the guard ring, outside the measuring area),
sing thermal paste to ensure thermal contact [32]. As the ther-
al  resistance

(
6.25 × 10−3 m−2K−1W

)
of the HFP [31] is about 1%

f the typical resistance of a solid-brick wall similar to the OWall,
he difference between the wall and HFP surface temperatures is
ssumed negligible. A Campbell Scientific CR1000 [33] data logger
as used to record the data. Data were sampled every 5 s and aver-

ged over 5 min  intervals. For the purpose of this paper, the time
eries analysed was selected such that the difference between the
nternal and external temperatures was comparable to that used in
he thermal chamber.

.2. Aerated clay block wall in an environmental chamber
The second wall (TCWall) was built in the centre of a ther-
al  chamber to minimise possible edge effects introduced by the

tructure of the chamber itself. The wall was subdivided into eight
ngs 135 (2017) 398–409

sections (1865 mm by 500 mm)  to test different wall construc-
tion technologies [34]. The section investigated in this paper is
a 303 ± 3 mm thick heavy-weight solid-wall constituted of seven
layers. From the outside it comprised: 175 ± 2 mm of aerated clay
blocks, 10 ± 2 mm of gypsum plaster, 5 ± 1 mm of lime plaster,
20 ± 1 mm of woodfibre insulation board, 0.10 ± 0.05 mm func-
tional layer glued to a 80 ± 1 mm of woodfibre insulation board
and 12.5 ± 0.5 mm of gypsum fibreboard. This section was  chosen
as it is of heavy-weight construction, similarly to the OWall, but
it has significantly different structure and expected thermal mass
distribution, providing a useful contrast to the OWall (Section 2.1).

The wall was  instrumented (Figs. 1 and 2) with two Hukseflux
HFP01 [31] HFP and two  thermistors, mounted on the wall sur-
face close to each HFP. The pairs of instruments were placed in-line
with each other on opposite sides, similarly to the OWall. Duct tape
was used to fix the HFP (measuring area excluded) and thermis-
tors to the wall; a layer of thermal compound was applied under
the sensors to ensure good thermal contact. A Campbell Scientific
CR3000 [35] data logger was  used to record the heat flux enter-
ing and leaving the wall, while an Eltek Squirrel [36] data logger
was used to record surface temperatures. Data were averaged and
recorded over 5 min  intervals.

External ambient temperature profile in the thermal chamber
was set to repeat hourly temperatures of a typical day derived from
the UK Test Reference Year (TRY) for Manchester [37]. The indoor
daily profile was set to replicate a typical UK indoor heating pattern
derived from the Warm Front dataset, a project where air temper-
ature and relative humidity were monitored for up to 4 weeks in
the main living spaces of more than 1600 dwellings in five urban
areas across the UK [38].

3. Theory and calculation

In this paper, two  lumped thermal parameter models (Sections
3.1.1 and 3.1.2) were applied to describe the heat transfer through a
building element. Firstly, model fitting was performed to estimate
the best-fit parameters for each model (Section 3.2) and calculate
the associated error matrix. Then, model selection was  performed
using the Bayesian odds ratio method (Section 3.3) [30, Chapter 28].

3.1. Thermal models of the wall

Two physically informed lumped thermal mass models were
implemented to describe the walls in terms of thermophysical
parameters, which are assumed to be constant during the moni-
toring period. Both models assume one-dimensional heat transfer
perpendicular to the wall surfaces [29].

3.1.1. The single thermal mass model
The single thermal mass model (1TM) describes the heat flow

through the wall using a physically informed equivalent electrical
circuit constituted of two thermal resistances and a lumped ther-
mal  mass, as illustrated in Fig. 1. Heat may  be stored by or released
from the thermal mass, creating a time shift in the response of the
measured heat flux to changes in external and internal tempera-
ture. This paper adopts an improved method for the discretisation
of the single thermal mass model previously introduced in [13]. The
backward difference transform (or rectangular rule) is replaced by
the bilinear transform (or trapezoidal rule) which provides a better
approximation to the derivative operation [39, Chapter 8.1.2].

The 1TM model (Fig. 1) incorporates four unknown parameters[ ]T

�1TM = R1, R2, C1, T0

C1
(i.e. respectively two thermal resistances,

one effective thermal mass and its initial temperature). The tem-
perature of the effective thermal mass

(
TC1

)
is proportional to the

heat stored in the effective thermal mass (C1),  which is in turn the
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ntegral of the net heat flux entering it. The temperature of the
ffective thermal mass can be estimated by electrical analogy to
eat transfer and imposing the conservation of heat. The Laplace
ransform [40, Chapter 2.5] was used to replace the linear differen-
ial equations (necessary to describe the heat flux released by the
ffective thermal mass) with polynomial operations:

C1TC1 = Tint − TC1

R1
+ Text − TC1

R2
, (1)

here Tint and Text are the internal and external temperature of
he wall surface; S is the complex Laplace variable representing the
erivative operator. This differential equation was approximated

y a difference equation to sample the continuous-time system into
iscrete-time steps. The bilinear transform [39, Chapter 8.1.2] was
sed to approximate the derivative operator using the time-shift
perator Z:

 =
2
(

1 − Z−1
)

�
(

1 + Z−1
) (2)

here 1 and Z−1 return the value of the signal at the current and
revious time step, respectively; � is the sampling interval (i.e. the

nterval between measurements). Substituting Eq. (2) into Eq. (1),
earranging and applying the time-shift operator, the temperature
f the effective thermal mass at each time step can be estimated
s:

p
C1

=
(

Tp
int + Tp−1

int

)
/R1 +

(
Tp

ext + Tp−1
ext

)
/R2 +

(
2C1/� − 1/R1 − 1/R2

)
Tp−1

C1

2C1/� + 1/R1 + 1/R2

(3)

here Tp
C1

and Tp−1
C1

are respectively the temperature of the effec-
ive thermal mass at the current (p) and previous (p − 1) time step;
p
int, Tp

ext and Tp−1
int , Tp−1

ext are respectively the internal and external
emperature of the wall surface at the current and previous time
tep. The estimated heat flow from the indoor ambient into the
nternal wall surface

(
Q p

e,in

)
and the estimated heat flow leaving

he external surface of the wall
(

Q p
e,out

)
at each time step can be

omputed as:

p
e,in =

Tp
int − Tp

C1

R1
; Q p

e,out =
Tp

C1
− Tp

ext

R2
. (4)

The model parameters �1TM can be estimated given the mea-
ured heat transfer from the inside

(
Q p

m,in

)
or the outside

(
Q p

m,out

)
urface of the wall or both simultaneously, as illustrated in Sec-
ion 3.2.

.1.2. The two thermal mass model

⎧⎪⎪⎨
⎪⎪⎩
(

2
�

C1 + 1
R1

+ 1
R2

)
Tp

C

− 1
R2

Tp
C1

+
(

2
�

C2 + 1
R2
A more complex lumped thermal mass model, the two  ther-
al  mass (2TM) model (Fig. 2), was developed to describe the

eat transfer through the wall. It includes seven parameters

2TM =
[
R1, R2, R3, C1, C2, T0

C1
, T0

C2

]T
(i.e. respectively three thermal

esistances, two effective thermal masses and their initial temper-
tures).
ngs 135 (2017) 398–409 401

Adopting the same approach as described in Section 3.1.1, the
temperature of the two effective thermal masses

(
TC1 , TC2

)
can be

calculated by imposing the equilibrium of the heat flux at each
node:⎧⎪⎨
⎪⎩

SC1TC1 = Tint − TC1

R1
+ TC2 − TC1

R2

SC2TC2 = TC1 − TC2

R2
+ Text − TC2

R3

. (5)

Substituting the Laplace variable in Eq. (5) with the bilinear trans-
form (Eq. (2)) and rearranging, the system of equations in Eq. (5)
becomes:

2
Tp

C2
=
(

2
�

C1 − 1
R1

− 1
R2

)
Tp−1

C1
+ 1

R2
Tp−1

C2
+ Tp

int + Tp−1
int

R1

3

)
Tp

C2
= 1

R2
Tp−1

C1
+
(

2
�

C2 − 1
R2

− 1
R3

)
Tp−1

C2
+ Tp

ext + Tp−1
ext

R3

(6)

where Tp
C1

, Tp
C2

are the temperature of the two effective thermal

masses at the current time step (p);  Tp−1
C1

, Tp−1
C2

are the tempera-
ture of the two  effective thermal masses at the previous time step
(p − 1). For simplicity, the coefficients of the parameters and the
constant terms are renamed as follows:

a11 = 2
�

C1 + 1
R1

+ 1
R2

(7a)

a12 = − 1
R2

(7b)

a13 =
(

2
�

C1 − 1
R1

− 1
R2

)
Tp−1

C1
+ 1

R2
Tp−1

C2
+ Tp

int + Tp−1
int

R1
(7c)

a21 = − 1
R2

(7d)

a22 = 2
�

C2 + 1
R2

+ 1
R3

(7e)

a23 = 1
R2

Tp−1
C1

+
(

2
�

C2 − 1
R2

− 1
R3

)
Tp−1

C2
+ Tp

ext + Tp−1
ext

R3
. (7f)

The temperature of the two  effective thermal masses at each time
step

(
Tp

C1
, Tp

C2

)
can be estimated from Eq. (6) as:

Tp
C1

=
a13 − a12Tp

C2

a11
; Tp

C2
= a11a23 − a21a13

a22a11 − a21a12
. (8)

Finally, the estimated heat flux entering the indoor surface
(

Q p
e,in

)
and leaving the external surface

(
Q p

e,out

)
of the wall at each time

step can be calculated as:

Q p
e,in =

Tp
int − Tp

C1

R1
; Q p

e,out =
Tp

C2
− Tp

ext

R3
. (9)

The model parameters �2TM can be estimated given the measured
heat transfer from the inside

(
Q p

m,in

)
and the outside

(
Q p

m,out

)
sur-

face of the wall, as described in Section 3.2.
3.2. Model fitting and best-fit parameter estimation

The 1TM and 2TM models (Section 3.1) utilise parameters that
describe the thermophysical characteristics of the structure and
the heat transfer across it. For each model (H ∈ {H1TM, H2TM}), we
chose as best-fit parameters

(
�MAP

)
the maximum a posteriori
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MAP) estimates1 [30]. Adopting a Bayesian approach [42], the pos-
erior probability (i.e. the probability of the parameters �, given the
ata D) can be rewritten as the product of the prior probability
i.e. the initial estimated probability distribution of the parame-
ers of the model) and the likelihood (i.e. a data-dependent term
escribing the probability of obtaining the measured data given the
odel adopted and its parameters) divided by the evidence (i.e. a

ormalisation factor). This yields:

MAP = arg max
�

P
(

�
∣∣D, H

)
= arg max

�

P
(

D
∣∣�, H

)
P
(

�
∣∣H )

P
(

D
∣∣H ) (10)

here P
(

�
∣∣D, H

)
is the posterior probability; P

(
D
∣∣�, H

)
is the

ikelihood; P
(

�
∣∣H ) is the prior probability; P

(
D
∣∣H ) is the evi-

ence. In this analysis error in the dependent variables (model
utputs) is accounted for through an additive noise term including
ll quantifiable sources of uncertainties (e.g., errors on the observed
uantities both in the minimisation and parameter estimation
rocesses, fitting errors and errors on the outputs). The additive
oise term is defined a priori to account for all the known sources
f uncertainties affecting the observed data. Assuming that the
bservation errors are Gaussian-distributed and that the residuals
etween the estimations and the measurements are independent
t each time step, the likelihood can be computed as:

(
D
∣∣�, H

)
=
∏
ε ∈ E

n∏
p=1

1

��,ε

√
2	

exp

[
−
(

�p
e,ε − �p

m,ε

)2

2�2
�,ε

]
(11)

here E is the set of data streams ε contributing to the fit (in this
pplication E coincides with the set of HFPs analysed and ε can
e either the internal or external one); p is the index of the time
tep and n the number of observations per data stream; ��,ε is the
tandard deviation of an additive noise term affecting each mea-
ured data stream (the heat flux in this case; see Section 4.2.1);

p
e,ε and �p

m,ε are respectively the estimated and observed data
tream at each time step (in this paper �p

e,ε ∈
{

Q p
e,in, Q p

e,out

}
and

p
m,ε ∈

{
Q p

m,in, Q p
m,out

}
). Taking the natural logarithm of Eq. (10),

he best-fit parameters can be estimated as:

MAP = arg max
�

ln P
(

D
∣∣�, H

)
+ ln P

(
�
∣∣H )

= arg min
�

∑
ε ∈ E

n∑
p=1

(
�p

e,ε − �p
m,ε

)2

2�2
�,ε

− ln P
(

�
∣∣H )

= arg min
�

�2
ε

(
�, H
)

− ln P
(

�
∣∣H ) (12)

here �2
ε

(
�, H
)

is a chi-squared function representing the residu-
ls between the measured and estimated quantities for each data
tream. A numerical minimisation software (the Scipy implemen-
ation of the basinhopping algorithm using the Powell method)
s used to identify the global minimum of the posterior probabil-
ty surface and calculate the error matrix from the matrix of the
essian around it [43].

For the 1TM model, the chi-squared function can be cal-
ulated from the internal measured heat flux only �2

in =
1

�2
�,in

∑
p

(
Q p

e,in − Q p
m,in

)2
(as in [13]), the external heat flux only
2
out = 1

�2
�,out

∑
p

(
Q p

e,out − Q p
m,out

)2
or both of them simultaneously

2 = �2
in + �2

out. The latter is used for the 2TM model and the 1TM

1 Analysis of the full posterior probability of the parameters by means of a Markov
hain Monte Carlo (MCMC) approach may  provide supplementary insight and is the
opic of ongoing research by the authors [41].
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model when both the internal and external heat fluxes are used in
the optimisation process.

3.3. Model selection

The two  models (1TM and 2TM) have different complexity, in
this case represented by the number of parameters. In general,
more complex models result in a better fit to the training data,
which is in principle desirable. However, if the model is too com-
plex it starts to describe the noise in the observations instead
of the underlying process – a phenomenon known as overfitting
[30, Chapters 39,44]. Bayesian model comparison accounts for this
issue by requiring an improved goodness of fit as the number of
parameters increases because increasing the number of param-
eters enlarges the prior probability space, effectively penalising
more complicated models [44–46]. Therefore, the plausibility of
two different models (H1TM, H2TM) fitted to their most probable
parameters

(
�MAP1, �MAP2

)
can be inferred using the ratio of their

posterior probability (odds ratio) [30, Chapter 28]:

P
(

H1TM

∣∣D)
P
(

H2TM

∣∣D) =
P
(

D
∣∣H1TM

)
P (H1TM)

P
(

D
∣∣H2TM

)
P (H2TM)

, (13)

where P
(

H1TM

∣∣D), P
(

H2TM

∣∣D) are the posterior probability of

each model; P
(

D
∣∣H1TM

)
, P
(

D
∣∣H2TM

)
are the evidences; P (H1TM),

P (H2TM) are the prior probabilities.
For each model H, the evidence (or marginal likelihood) can be

calculated by marginalising over the parameters �:

P
(

D
∣∣H ) =

∫
P
(

D, �
∣∣H )d� =

∫
P
(

D
∣∣�, H

)
P
(

�
∣∣H )d� (14)

where P
(

D, �
∣∣H ) is the joint probability of the data and the param-

eters given the model; P
(

D
∣∣�, H

)
is the likelihood and P

(
�
∣∣H ) is

the prior probability of the parameters. Assuming that the posterior
distribution can be approximated with a Gaussian distribution cen-
tered at the most probable value of the parameters given the data(

�MAP
)

, the Laplace method can be used to approximate Eq. (14)
[30, Chapter 28]:

P
(

D
∣∣H ) ≈ P

(
D
∣∣�MAP, H

)
P
(

�MAP

∣∣H ) [det (2	A)]1/2 (15)

where P
(

D
∣∣�MAP, H

)
is the best-fit likelihood;

P
(

�MAP

∣∣H ) [det (2	A)]1/2 is the Occam’s factor; P
(

�MAP

∣∣H ),
[det (2	A)]1/2 are respectively the prior probability and a coeffi-
cient that depends on the curvature of the posterior distribution
around the best-fit parameters; A is the inverse of the Hessian
of the negative logarithm of the posterior probability distribu-
tion computed at the MAP  and corresponds to the covariance
matrix under the Gaussian approximation. The best-fit likelihood
P
(

D
∣∣�MAP, H

)
can be obtained computing Eq. (11) for � = �MAP.

The prior probability distribution of the parameters of the model
is calculated as the product of the probability density functions
associated with each parameter. If uniform priors are adopted, as
here, P

(
�MAP

∣∣H ) is calculated as:

z

P
(

�MAP

∣∣H ) =
∏
j=1

(
�Lj

)−1
(16)

where z is the number of parameters of the model and �Lj is
the width of the uniform prior probability of each parameter j.
Therefore, for each model the evidence P

(
D
∣∣H ) can be calculated

according to Eq. (15) as:
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(
D
∣∣H ) =

[∏
ε ∈ E

n∏
p=1

1

��,ε

√
2	

exp

(
−
(

�p
e,ε − �p

m,ε

)2

2�2
�,ε

)]

×

⎡
⎣ z∏

j=1

(
�Lj

)−1

⎤
⎦ [det (2	A)]1/2. (17)

To provide a fair comparison of the performance of the models,
he same information (i.e. number of data streams and observa-
ions) has to be used for the optimisation of each model. In this
aper the model selection has been performed comparing the 2TM
odel with the 1TM model fitted using both the indoor and exter-

al heat flux measurements (Section 3.2). Thus, both models used
our measured inputs, namely the indoor and external heat fluxes
nd temperatures. Additionally, the same time series was  used to fit
he two models and to estimate the most probable thermophysical
arameters.

.4. Prior probability distribution

Estimates of the R-value (and U-value) and total thermal mass of
he walls are available by calculation using the dimension of each
ayer and the tabulated thermophysical properties of each mate-
ial (Section 4.1). However, the values calculated from tabulated
hermophysical properties may  not be representative of the actual
hermal performance of the case studies investigated as the spe-
ific materials, structure and condition of the wall (e.g., moisture
ontent) are unknown. Consequently, large non-informative uni-
orm priors were used in this application for the estimation of the
arameters to capture potential unexpected performances due to

imited knowledge of the walls. Conversely, non-uniform prior (e.g.,
og-normal distributed) can be adopted if more information about
he geometry and the distribution of the thermophysical properties
f the building materials are available [41].

Appropriate and consistent prior information is important for
arameter estimation, but it is crucial for model comparison. There-
ore the bounds on all resistances in both models is set to the
ame range of 0 to 4 W−1m2K, all effective thermal masses 0 to
,000,000 Jm−2K−1 and initial temperatures of the effective ther-
al  masses from −5 to 30◦C. These ranges encompass all expected

alues, with an ample safety margin.

. Results and discussion

The thermophysical properties of the two walls were esti-
ated using the steady-state average method (AM) [29] and the

ynamic lumped thermal parameter models, with one (1TM) and
wo thermal masses (2TM). U-values were also calculated using
hermophysical properties from look up tables published in the lit-
rature, on the basis of the wall structure. For each case study, the
odel selection was performed to assess which model is the best

o describe the observed data.

.1. Literature thermophysical properties

An U-value of 0.35 Wm−2K−1 was obtained for the TCWall from
he tabulated thermophysical properties of the different compo-
ents (Section 2.2) provided by the manufacturers. For the OWall,

 range of possible U-values was defined because of the lack of
pecific information on the density and characteristics of its mate-

ials (Section 2.1). According to the Chartered Institute of Building
ervices Engineers (CIBSE) Environmental Design – Guide A [47],
he thermal conductivity of solid bricks is expected to be in the
ange 0.50 to 1.31 mKW−1, while lime plaster ranges between 0.70
ngs 135 (2017) 398–409 403

and 0.80 mKW−1. Mortar joints between bricks were not accounted
for separately (i.e. the brick layer was considered homogeneous)
in the calculation as the thermal conductivity of mortar is within
the thermal conductivity range for solid brick. On this basis, the
U-value of the OWall is expected to be in the range of 1.11 to
2.16 Wm−2K−1, obtained by combining the upper and lower val-
ues of thermal conductivity of the materials constituting the wall.
In both cases, constant indoor

(
Rs in = 0.13 m2KW−1

)
and external(

Rs out = 0.04 m2KW−1
)

air film resistances [48] were used in the
U-value calculation.

The total thermal mass of each wall was computed using
values of density and specific heat capacity from [47] for the
OWall and from manufacturers’ specifications for the TCWall.
The computed total thermal mass ranged between 379,700 and
697,400 Jm−2K−1 for the former case study, while it resulted in
a value of 274,800 Jm−2K−1 for the latter. In addition to the total
thermal mass, the thermal masses as seen from the internal and
external ambient were computed following the simplified method
for the calculation of heat capacity described in Appendix A of the
EN ISO 13786 standard [49]. For the OWall, this yields an inter-
nal thermal mass ranging between 107,500 and 180,100 Jm−2K−1

and an external one in the range 100,800 to 191,600 Jm−2K−1. Sim-
ilarly, the simplified method predicts an internal thermal mass of
48,000 Jm−2K−1 and an external one of 119,000 Jm−2K−1 for the
TCWall.

The wide ranges of potential U-values and thermal masses of
the OWall highlight the difficulties often associated with the cal-
culation of representative values from tabulated thermophysical
properties, especially when inaccurate or insufficient information
about the building are available. Very often only visual inspections
or quick surveys are possible, leading to potential difficulties in
identifying different building layers, measuring their thicknesses,
or identifying similarly looking materials and inferring their prop-
erties from look up tables in the literature. Tabulated values may
present quite broad ranges even for a single material and they do
not account for the issues associated with in situ performance, such
as moisture content or changing environmental conditions.

4.2. Estimation of the thermophysical properties from in situ
measurements

The results of the analysis of the measured data for the OWall
and TCWall are presented below, preceded by details of the error
estimation. For each case study, the criteria set out in the BS ISO
9869-1 standard [29, p.9] were imposed to determine the num-
ber of full days required by the AM to return a valid estimation
of the R- and U-value of the wall. The time series so obtained was
also used to estimate the thermophysical parameters with the 1TM
and 2TM models. For each method, the total R-value (and U-value)
was calculated as the surface-to-surface thermal resistance plus a
correction factor. The latter accounts for the constant indoor and
external air film resistances introduced in Section 4.1 and removes
the thermal resistance of the HFPs [31]. For the 1TM and 2TM mod-
els, the surface-to-surface R-value was  calculated as the sum of the
individual thermal resistance estimates returned by the analysis.

4.2.1. Estimation of the uncertainties
4.2.1.1. Estimation of the standard deviation of the additive noise
term affecting the measured heat flux. For each HFP involved in the
analysis, the standard deviation of the additive noise term ��,ε
affecting the measured heat flux has to account for all the quan-

tifiable sources of uncertainties affecting the observations (Sections
3.2 and 3.3). Assuming that, in line with expectations, each source of
uncertainty is independent, the total relative and absolute uncer-
tainty

(
ır

�,ε
, ıa

�,ε

)
affecting the measurements of each HFP was
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mal  masses had comparable trends to those for the OWall.
Similarly to Fig. 4, a summary of the thermophysical properties

obtained from all methods is shown in Fig. 6. The total thermal
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alculated as the quadrature sum of the following uncertainties:
a) the accuracy of the equipment (i.e. HFP and data logging sys-
em(s) involved in the analysis); (b) the effect of random variations
aused by imperfect thermal contact between the sensor and the
all (5% according to [29, p.13]); and (c) an uncertainty due to the
odification of the isotherms caused by the presence of the HFP

3% according to [29, p.13]). The variance of the additive noise term
f each measured heat flux was then calculated as:

2
�,ε =

(
ıa

�,ε

)2 +
(∑n

p=1

∣∣Q p
m,ε

∣∣
n

ır
�,ε

)2

(18)

here Q p
m,ε is the measured heat flux at each recording interval (p)

or each HFP (ε) used in the analysis (i.e. parameter estimation or
odel comparison).

.2.1.2. Estimation of the systematic uncertainties on the U-value.
or the AM,  the total systematic uncertainty affecting the U-value
as calculated through a first-order Taylor series expansion of its
efinition as function of heat flux and temperature difference. It

ncluded the quadrature sum of the total relative uncertainty on
he measured heat flux as described in Section 4.2.1.1, the accu-
acy of the equipment used for temperature measurement (i.e.
hermometers and data logging system(s)), and an extra 10% uncer-
ainty that accounts for errors caused by the variations over time of
he temperatures and heat flow, as suggested in [29, p.13]. Owing
o the use of surface temperatures, the calculation omitted the 5%
ncertainty suggested in [29, p.13] to account for the tempera-
ure variations within the space and the differences between air
nd radiant temperatures. For the dynamic method, the systematic
rror associated with the U-value was calculated indirectly from
he derivative of the gradient of the posterior probability distri-
ution at its maximum with respect to all the parameters and the
ystematic uncertainty contributing to the U-value estimation [41].

For the OWall, the relative systematic uncertainty on the U-
alue was 19% for the AM,  16% for the 1TM model (either using
nly the internal or both heat flux measurements) and 15% for the
TM model. For the TCWall the relative systematic uncertainty was
5% for the AM,  11% for the 1TM model when using the internal
eat flux only and 10% both for the 1TM model using both heat flux

nformation and the 2TM model.

.2.1.3. Estimation of the statistical uncertainties on the U-value. Sta-
istical uncertainties on the 1TM and 2TM parameter estimates
nd its covariance matrix were estimated during Bayesian analysis.
he statistical uncertainty on the U-value was calculated from the
ovariance matrix by applying a first-order Taylor series expan-
ion of the definition of a U-value given the thermal resistances
ontributing to it. It is worth noting that in our case studies these
ncertainties are small (the order of magnitude was  10−3 inde-
endently of the model optimised) and the total uncertainty is
ominated by the systematic uncertainties because the number of
arameters of the models is much less than the number of obser-
ations in the time series analysed. Statistical uncertainties are
herefore omitted when presenting U-values, unless clearly stated.

.2.2. Estimation of the thermophysical properties of the office
all

According to the criteria in [29, p.9] (see also Section 4.2), a three
ull-day time series (from the 5th to the 8th of October 2014) was
nalysed for the OWall. The surface-to-surface R-value calculated
sing the AM was 0.37 ± 0.07 m2KW−1, which resulted in a U-

alue of 1.89 ± 0.36 Wm−2K−1 after applying the correction factor
escribed in Section 4.2.

The chi-squared function representing the likelihood for the
TM model can be calculated in a number of ways to estimate the
ngs 135 (2017) 398–409

thermophysical properties of a wall (Section 3.2). One method, as
previously presented in [13], is to use only the heat flux transfer-
ring through the interior surface of the wall (1 HF). As expected
there is a reasonable match between the predicted2 and measured
interior heat flux (Fig. 3) but a poor fit when predicting the heat
transferring through the exterior surface of the wall investigated;
the estimates of the U-value was 1.73 ± 0.27 Wm−2K−1. A second
way to calculate the chi-squared function for the 1TM model is to
use both the interior and exterior heat flux measurements (2 HF);
this produced a U-value estimate of 1.82 ± 0.30 Wm−2K−1. The heat
fluxes estimated by the 1TM model when using both the measured
interior and exterior heat fluxes are shown in Fig. 3; the predic-
tion of the external heat flux is improved, to the detriment of the
fit to the internal heat flux. The 2TM model requires both the inte-
rior and exterior heat flux measurements and returned a U-value of
1.71 ± 0.26 Wm−2K−1. The bottom panel of Fig. 3 illustrates the esti-
mated and measured heat fluxes through the wall using the 2TM
model. In this case there is good agreement both for the interior
and exterior heat flux (Fig. 3 only shows a two-day period for illus-
trative and readability purposes, however the fitting performance
shown is representative of the whole data set and of the TCWall
case study). The model comparison is discussed in Section 4.3.

Estimates of the parameter values for all models are shown
in Table 1. The estimates of the 2TM effective thermal masses(

C1 = 212, 900 ± 1, 800 Jm-2K-1; C2 = 113, 100 ± 1, 000 Jm-2K-1
)

are comparable with those calculated from look up tables(
Cint = [107,  500; 180, 100] Jm-2K-1; Cext = [100,  800; 191, 600]

Jm-2K-1
)

and shown in Section 4.1. Fig. 4 illustrates the estimates
of the thermophysical properties of the wall using the AM, 1TM
(both using 1 HF or 2 HF) and 2TM models for the OWall. It also
highlights the wide range of possible R-values using tabulated
properties due to uncertainty regarding the performance of the
materials constituting the wall.

The measured interior and exterior surface temperatures,
together with the estimated effective thermal mass temperatures
in the 2TM model are shown in Fig. 5. As expected, both effective
thermal mass temperatures respond to changes in surface temper-
ature, out of phase with each other and the surface temperatures.
As illustrated in Fig. 5 the temperature of the effective thermal mass
closest to the exterior surface

(
TC2

)
is sometimes lower than the

surface temperature, indicating periods when the heat flow has
reversed to be from the exterior into the wall.

4.2.3. Estimation of the thermophysical properties of the wall in
the thermal chamber

Three full days of data were required for the TCWall to meet
the criteria outlined in [29, p.9] (see also Section 4.2). Repeat-
ing the analysis described in Section 4.2.2, the adjusted U-value
was 0.34 ± 0.05 Wm−2K−1 for the AM,  0.33 ± 0.04 Wm−2K−1 for
the 1TM model using only the interior heat flux to calculate the
chi-squarded function, 0.33 ± 0.03 Wm−2K−1 for the 1TM model
using both heat fluxes and 0.33 ± 0.03 Wm−2K−1 for the 2TM
model. Estimates of the parameters for all models are shown in
Table 2. Notably, the 2TM estimates of the two  effective thermal
masses

(
C1 = 46,  700 ± 500 Jm-2K-1; C2 = 119, 100 ± 800 Jm-2K-1

)
are in close agreement with those calculated from tabulated data(

Cint = 48,  000 Jm-2K-1; Cext = 119, 000 Jm-2K-1
)

and reported in
Section 4.1. The predicted heat flows and temperatures of the ther-
2 In this paper the term predicted is used in its statistical meaning of estimating
the  value of a random variable rather than as synonym of forecast, which implies
making a prediction of the value of the variable at a given time in the future.
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Fig. 3. Measured and estimated heat flows through the OWall by: (a) the 1TM model utilising data from the internal HFP; (b) the 1TM utilising both interior and exterior
HFP  and (c) the 2TM using both HFP.

Table 1
Thermophysical parameters estimated for the OWall. Only statistical errors from the model fitting are quoted; the number of significant figures was chosen to illustrate the
level  of statistical error.

Parameters AM 1TM (1 HF) 1TM (2 HF) 2TM Units

R1 0.372 0.068 ± 0.001 0.248 ± 0.001 0.076 ± 0.001 m2KW−1

R2 0.354 ± 0.002 0.145 ± 0.001 0.272 ± 0.001 m2KW−1

R3 0.078 ± 0.001 m2KW−1

C1 224,900 ± 1, 600 269,600 ± 2, 500 212,900 ± 1, 800 Jm−2K−1

C2 113,100 ± 1, 000 Jm−2K−1

T0
C1

16.31 ± 0.02 15.37 ± 0.03 16.11 ± 0.02 ◦C

T0
C2

15.27 ± 0.03 ◦C

U-Value 1.868 1.708 ± 0.008 1.816 ± 0.005 1.713 ± 0.005 Wm−2K−1

Fig. 4. Summary of the surface-to-surface R-value and size of the effective thermal mass(es) of the OWall as estimated with the AM and the dynamic method, with the 1TM
(both  using only the internal heat flux (1 HF) or both (2 HF)) and the 2TM models. The effective thermal mass is indicated by a solid circle with radius proportional to its
magnitude. The expected range for the R-value calculated from the literature is also shown.
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Fig. 5. Measured temperatures of the interior (Tint) and exterior (Text) wall surfaces and estimated temperatures of the first (TC1 , closer to the interior surface) and second
(TC2 , closer to the exterior surface) effective thermal mass using the 2TM model for the OWall.

Table 2
Thermophysical parameters for the TCWall. Only statistical errors from the model fitting are quoted; the number of significant figures was chosen to illustrate the level of
statistical  error.

Parameters AM 1TM (1 HF) 1TM (2 HF) 2TM Units

R1 2.790 0.256 ± 0.002 2.582 ± 0.010 0.287 ± 0.003 m2KW−1

R2 2.600 ± 0.012 0.259 ± 0.001 2.365 ± 0.012 m2KW−1

R3 0.249 ± 0.001 m2KW−1

C1 71, 300 ± 500 142,900 ± 1, 000 46,700 ± 500 Jm−2K−1

C2 119,100 ± 800 Jm−2K−1

T0
C1

18.86 ± 0.01 14.92 ± 0.02 18.85 ± 0.01 ◦C

T0
C2

14.83 ± 0.02 ◦C

U-Value 0.339 0.331 ± 0.001 0.333 ± 0.001 0.327 ± 0.001 Wm−2K−1

Fig. 6. Summary of the surface-to-surface R-value and size of the effective thermal mass of the TCWall as estimated with the AM and the dynamic method, with the 1TM
(both  using only the internal heat flux (1 HF) or both (2 HF)) and the 2TM models. The magnitude of the effective thermal mass is proportional to the radius of the solid circle.
The  expected R-value calculated from the manufacturer specification sheet is also shown.
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esistance and U-value estimates are within error bands; the loca-
ion (in thermal resistance space) of the estimated effective thermal

ass varies according to heat flux measurement location. The ther-
al  performance of this wall is distinct from that of the OWall.
Results for the 1TM (2 HF) and 2TM models identify the dom-

nant effective thermal mass to be a relatively small thermal
esistance from the external surface compared to the total thermal
esistance of the wall. The 2TM model indicates a large thermal
esistance separating the effective thermal masses, with a small
ffective thermal mass located near the interior wall surface, in
hermal resistance space. This reflects the known structure of the
all (Section 2.2), which is expected to have high thermal mass lay-

rs adjacent to the surfaces. It comprises aerated clay blocks and
laster separated from a layer of gypsum fibreboard (a thin layer
f high specific thermal mass material) by a total of 100 mm of
oodfibre insulation (a lower thermal mass material). The charac-

eristics of the effective thermal mass estimated by the 1TM model
sing only the internal heat flux measurements are dominated by
he material in close proximity to the HFP [13] rather than those on
he exterior side of the fibreboard insulation. The 2TM model may
herefore be used to provide further insight into the structure of
he wall, in effective thermal mass and resistance terms, and thus
ts response to heating and cooling loads on each side of the wall,
s discussed in Section 5.

.3. Model comparison

Fig. 3 suggests that the 2TM model is better at estimating the
eat flow into and out of the wall compared to the 1TM model,
s it indicates smaller residuals between modelled and recorded
eat flux data. Both models approximate the continuous thermal
esistance and mass properties of a wall through discrete compo-
ents. However, through the inclusion of an additional effective
hermal mass and resistance compared to the 1TM model, the 2TM

odel enables a better representation of different conditions and
all properties adjacent to each HFP, whilst still coupled across the
hole wall depth.

Bayesian model selection (Section 3.3) was applied to the anal-
sis for each case study to compare the performance of the 1TM (2
F) and 2TM models and check whether the additional complexity
f the 2TM model is justified. The two models were tested on the
ame time series used to evaluate the thermophysical properties of
he elements. The natural logarithm of the odds ratio (Eq. (13)) of
he 1TM to 2TM models were −14167 for the OWall and −12357
or the TCWall. In both cases the 2TM model was  found to provide

 substantially better representation of the recorded data than the
TM model, suggesting that the inclusion of an additional effective
hermal mass improves the physical representation of both case
tudies. The 2TM model enables heat flow into and out of the walls
t each surface to be better represented for both the TCWall, con-
isting of seven different layers, and the OWall, consisting of brick
nd plaster.

. Conclusions

A method to derive the thermophysical properties of a building
lement from in situ measurements has been developed to provide
nsight into its structure and performance in relation to heat flows
t both interior and exterior surfaces. Heat flux and temperature
easurements on both sides of building elements have been ana-

ysed using physically informed models and Bayesian statistical

nalysis, increasing the physical insights available from typical
easurement campaigns utilising just heat flux measurement on

nterior surfaces [13]. Heat flows into and out of the structure of
he element can be accurately characterised and the heat storage
ngs 135 (2017) 398–409 407

estimated, suggesting that the application of the method may  be
extended to different seasons and ranges of internal and external
conditions (e.g., heat flowing from the structure, into the structure
or reversing over the monitoring period) [41].

Measurements of heat flux and temperature were taken on
the internal and external surfaces of two heavy-weight walls
of contrasting structure. A predominantly brick wall of standard
construction (OWall), situated in an occupied office, and a well
insulated clay-block-based wall (TCWall), housed in a thermal
chamber, were studied. Physical models based on the elec-
trical analogy of heat were applied to the data, assuming
one-dimensional heat flow, and combined with Baysian analy-
sis to determine the best-fit model parameters. The wall thermal
properties were estimated using literature values and simple cal-
culation; the conventional average method (AM); a one thermal
mass and two thermal resistance model (1TM) with a heat flux
plate on both the interior and exterior surfaces (2 HF) or one heat
flux plate on the interior surface only (1 HF); and a two thermal
mass, three thermal resistance model (2TM). The relative probabil-
ity of the 1TM and 2TM models accurately describing the observed
wall thermal performance was  estimated using Bayesian model
comparison.

Estimates of the in situ U-value of each wall applying differ-
ent thermal mass models are within error estimates; U-value
of the OWall using the AM,  1TM (1 HF), 1TM (2 HF) and
2TM models are 1.89 ± 0.36 Wm−2K−1, 1.72 ± 0.27 Wm−2K−1,
1.82 ± 0.30 Wm−2K−1 and 1.71 ± 0.26 Wm−2K−1 respectively.
These values are within the broad range of possible U-values
derived by simple calculation based on properties of the poten-
tial materials of the walls from literature sources, 1.11 to
2.16 Wm−2K−1. Similarly, the U-values of the TCWall derived
from monitored data range from 0.33 ± 0.03 Wm−2K−1 to
0.34 ± 0.05 Wm−2K−1, compared to the expected U-value esti-
mated from the supplied properties of 0.35 Wm−2K−1. The effective
thermal mass estimates (Tables 1 and 2) are lower than the total
thermal mass of the wall estimated from the expected structure
and literature values (Section 4.1). As noted previously [13], the
effective thermal mass estimates of these models do not capture
the full thermal mass of the wall but rather the apparent thermal
mass as seen from the perspective of the interior or exterior ambi-
ent [13]. In fact, the internal and external estimates of the effective
thermal mass obtained from the 2TM model for the OWall are com-
parable with the calculated internal and external thermal masses
reported in Section 4.1. Notably, the values calculated from tabu-
lated data

(
Cint = 48,  000 Jm-2K-1; C ext = 119, 000 Jm−2K−1

)
and

those estimated by the dynamic method (C1 = 46,  700 ±
500 Jm−2K−1; C2 = 119, 100 ± 800 Jm−2K−1

)
are in close agree-

ment for the TCWall, where detailed information about the
thermophysical properties of the building stratigraphy were avail-
able and the two effective thermal masses are clearly separated by
the large thermal resistance of the woodfibre insulation.

Estimations of heat flux entering and leaving the wall were com-
pared to the measured data for all the dynamic models. The 1TM
(1 HF) model produced a good match between the modelled and
measured internal heat flux, but a poor fit to the external heat flux;
as expected the dynamic behaviour is optimised at the measure-
ment location of heat flux. The 1TM (2 HF) model produced a better
match to the exterior heat flux measurements than the 1 HF model,
but a worse fit to the interior heat flux. This is not surprising, as the
available data exceeds the parameterisation of the model exposing
the inability of the simple 1TM model to accurately represent the
thermal performance of heavy-weight walls at both surfaces. How-

ever, the 2TM model provided a good fit to both the internal and
external heat flux for both walls. In line with these results, the odds
ratio calculated for Bayesian model selection indicate that the 2TM
model has a much higher probability of representing the observed
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ata than the 1TM (2 HF) model for both walls (noting that the same
ata is required for application of model comparison).

The 1TM (1 HF) model estimated effective thermal mass close to
he interior surface for the OWall and TCWall and it may  be used to
rovide insight into the dynamic performance of the interior space
nd inform a retrofitting and space heating strategy. The 1TM (2
F) model estimated the effective thermal mass to be nearer to
xternal surface for both the OWall and TCWall; as noted above,
he underparameterisation of the model has led to a poorer fit of
eat flux data at the internal surface and this effective thermal mass
ould be of limited use to estimate the thermal performance of the

nterior space. The 2TM model places the effective thermal masses
lose to the surfaces for both the OWall and TCWall; however, the
elative sizes of the thermal resistances are different for these walls
nd reflects the known physical structure of the walls. Knowledge
f the estimated size and locations of the effective thermal mass
nd thermal resistances may  be valuable for design purposes. For
xample, to tailor retrofitting solutions, where the structure of a
uilding element is often not well characterised [13,32], and to
etermine the performance of the interior space both during the
eating season and during periods of high external temperatures,
otentially informing the cooling strategy of buildings.

The development of an enhanced model to estimate the ther-
ophysical properties of building elements using a physically

epresentative model based on the electrical analogy to heat and
ayesian statistics, and using in situ measured data, supports
reater understanding of the performance of building elements.
he ability to account for both heat flow into and out of a build-
ng element supports an extension of the seasons in which such

easurement campaigns may  be undertaken, and the potential to
ccount for direct solar radiation [41]. The two thermal mass, three
hermal resistance model may  be applied to support improved
hermal comfort and energy performance through helping close
he performance gap, informing tailored retrofitting solutions and
oth space heating and cooling strategies.
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