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Abstract  

The origin of cancers is associated with etiology as well as therapeutics. Several 

studies reveal that malignancies in children can originate in utero. However a 

diagnostic approach to distinguish between cancers initiated pre- or postnatally is 

absent. Here we identified a transcriptional factor FEV that was expressed in fetal 

hematopoietic cells and became silent after birth. We characterized that FEV was 

essential for the self-renewal of hematopoietic stem cells (HSCs). We next found FEV 

was expressed in most infant leukemia samples, but not in adult samples, in accord 

with the known pre-natal origins of the former. We further determined the majority of 

pediatric acute lymphoid and myeloid leukemias (ALL and AML) were FEV-positive. 

Moreover FEV-knockdown markedly impaired the leukemia-propagating ability of 

leukemic stem cells. We therefore identified FEV is unique to fetal HSCs and stably 

expressed in leukemic cells of prenatal origin. It may also provide a tractable 

therapeutic target. 
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Introduction 

Recognition of embryonal features in cancer cells presumes the possibility of a 

prenatal origin for cancer. 
1-3

 Since the first demonstrations that leukemogenic 

chromosome translocations can occur prenatally, 
4
 increasing evidence supports that a 

substantial number of malignancies in children and adolescent can originate prenatally. 

5-13
 However, there is currently no diagnostic test or biomarker that distinguishes 

cancers that are pre- versus post-natal in origin. FEV-expression may provide such a 

test. FEV (also known as PET1 in mammals) is an ETS (E26 transformation-specific) 

transcription factor. 
14, 15

 We previously reported that this transcription factor is 

essential for embryonic development of hemogenic endothelium-based hematopoietic 

stem cells (HSCs) and for its functional maintenance in fetal hematopoiesis. 
16

 Yet it 

remains to be confirmed whether FEV regulates the self-renewal in HSCs or plays 

other roles. In the current study, we systemically analyzed the developmental profile 

of FEV-expression and characterized its functional roles in HSCs. Further, we 

investigated FEV-expression in leukemic cells in terms of its correlation with origins 

of the disease and its effect on leukemia-propagation of leukemic stem cells (LSCs). 

We demonstrated that FEV is a specific regulator of self-renewal in fetal HSCs. 

FEV-expression is essential for leukemia-propagation of LSCs and is reflective of the 

common prenatal initiation of the disease. 

 

Materials and Methods  

Human samples 
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Umbilical vein cord blood (CB) from anonymized healthy donors was purchased from 

Shanghai Cord Blood Bank in accordance with local ethics procedures. Clinical 

Samples of fetal liver and bone marrow (BM) from healthy donors and leukemia 

patients were obtained from Shanghai Jiaotong University and Fudan 

University-affiliated hospitals and the studies were approved by their Medical Ethical 

Committees and all human participants gave written informed consent. Detailed 

information of the clinical samples is described in Supplementary Tables S1–3. 

 

Reverse-transcriptase quantitative polymerase-chain-reaction (RT-qPCR) 

detection of FEV-expression and the positivity definition   

Total RNA was extracted by Trizol reagent according to the manufacturer’s 

instructions (Invitrogen, CA, USA) and reversely transcribed. RT-qPCR was 

performed using SYBR Green PCR master mix (Applied Biosystems, CA, USA) 

according to the manufacturer’s instructions. All experiments were performed in 

triplicate with Applied Biosystems 7900HT. Differences in cDNA input were 

normalized by GUS expression levels. 
17, 18

 Samples with GUS cycle-threshold values 

of 30 or more were excluded from the analysis. The positivity for FEV-expression is 

defined according to amplification in at least two of three replicates with FEV 

cycle-threshold values of 40 or less (using a threshold setting of 0.1) and a single melt 

peak (FEV at 92 C; GUS at 89.5 C). 
17

 The detail is described in Supplemental 

Methods.  
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Preparation of lentivirus and transduction 

FEV interference oligonucleotides (cat. no. RHS4533) were purchased from Open 

Biosystems (CO, USA). Lentiviruses were packaged as previously described 
19

. 

Lin
−
CD34

＋
CD38

−
 cells or AML LSCs or ALL cells were infected with lentivirus at an 

MOI of 100 for 18 h. Transduced cells were either transplanted into NOD/SCID mice 

or used for in vitro assays.  

 

Colony-forming cell (CFC) assay 

Assays were performed in a semi-solid methylcellulose medium as previously 

described. 
20

 Cells were plated in 35 mm dishes containing methylcellulose. The 

colonies were scored under a microscope 13–14 days post-plating. Replating was 

carried out by pooling total cells from primary cultures and inoculating 10
5
 into fresh 

methylcellulose medium. 

 

Long-term culture-initiating cell (LTC-IC) assay 

Limiting dilution LTC-IC assay was performed in 96-well format in myelocult H5100 

medium (Stem Cell Technologies, BC, Canada) on a feeder layer comprising a 1:1 

mixture of irradiated M2-10B4 and S1/S1 mouse fibroblasts. This assay was 

performed following the protocol provided with the products. 
20

 LTC-IC frequency 

was calculated using L-Calc software (Stem Cell Technologies). 

 

Advanced xenograft transplantation 
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NOD-SCID mice were purchased from Shanghai SLAC Laboratory Animal Co. Ltd. 

(SLAC). These mice were maintained and handled under sterile conditions at the 

animal facility in accordance with local regulations. 6–8 weeks old mice received 150 

cGy of total body irradiation from a 137 Cs source and subsequently treated with 200 

μg of CD122 antibody via intraperitoneal injection. Recipients were transplanted with 

10
4
 transduced HSCs, 10

4
–10

5
 flow-sorted AML LSCs or 10

6
 ALL cells via intratibial 

injections. BM engraftment was assessed at 10–12 weeks post-transplantation for 

transduced cord blood HSCs and BM HSCs 
11

 or 12–16 weeks for AML LSCs or ALL 

cells. 
21, 22

 All animal experiments were approved by the Experimental Animal Ethical 

Committee at Shanghai Jiao Tong University School of Medicine in accordance with 

the ARRIVE guidelines. 

 

Immunophenotypic analysis of BM cells of mouse recipients 

BM cells of recipients were flushed down with Iscove’s modified Dulbecco’s medium 

(IMDM; Gibco, CA, USA) supplemented with 1% BSA (Sigma, St. Louis, USA). 

Cells were stained CD45-APC or CD45-PE-Cy7 for engraftment; CD34-PE-Cy7 for 

total stem/progenitor cells; and CD34-PE-Cy7 and CD38-PE for engrafted HSCs. 

Stained cells were analyzed or sorted using flow cytometer (Aria II; BD, NJ, USA). 

All antibodies were obtained from BD Bioscience. The detail is described in 

Supplemental Methods. 

 

Flow-sorting of LSCs 
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LSCs were sorted as previously described 
22

. LMPP-LSCs and GMP-LSCs were 

isolated as CD34
＋

CD38
−
CD45RA

＋
CD90

−/low
 and CD34

＋
CD38

＋
CD123

low/＋
CD45RA

＋
CD110

−/low 
respectively. 

 

Statistical analysis 

Differential FEV-expression in infant and adult leukemias was analyzed by using 

chi-square test. Correlation of FEV-expression levels with leukemia lineage 

distribution, gender, and cytogenetics were analyzed by spearman’s test, Correlation 

of FEV-expression levels with age were analyzed by Pearson's test. Differential 

FEV-expression in ALL and AML were analyzed by t test. Results of the functional 

assays were compared between Ctr.V, NSC and iFEV groups by t tests. Statistical 

analysis was evaluated by using SPSS 18.0 software (SPSS Inc. Chicago, USA). 

Two-sided P values less than 0.05 were considered statistically significant. 

 

Results  

FEV is expressed only in fetal hematopoietic cells  

Expression of FEV in hematopoietic cells was initially detected at different 

developmental stages of zebrafish.
16

 Results of whole-mount in situ hybridization 

(WISH) showed that fev-expression was detected in the lateral late mesoderm at 

10-somite stage. fev-expression continued in the aorta-gonad-mesonephros (AGM) at 

24 hours postfertilization (hpf) in zebrafish (Supplementary Figure S1a, left and 

middle panels). This expression was not detected in the kidney marrow that is 
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equivalent to BM of mammals of 4 dpf zebrafish (Supplementary Figure S1a, right 

panel). In line with this result, the transgenic line using the fev promoter (fev:GFP) 

showed bright GFP fluorescence in the AGM at 24 hpf; slight expression was detected 

in the pancreas but not in the kidney marrow of zebrafish at 3 months (Supplementary 

Figure S1b).  

To determine whether FEV-expression profile is conservative in mammals, we 

flow-sorted the primitive lineage-negative (Lin
−
) and mature lineage-positive (Lin

＋
) 

murine hematopoietic cells with high purities from the fetal liver (14.5 dpf) and BM 

of 1–4 and 8 weeks old (Supplementary Figure S2a). Fev-expression in these cells 

was detected by RT-qPCR.
17

 Consistent with the expression in zebrafish, murine Fev 

was expressed in Lin
−
 and not in Lin

＋
 hematopoietic cells of the fetal liver. However, 

Fev-expression was undetected in both Lin
−
 and Lin

＋
 cells of the BM 

(Supplementary Figure S2b and c). Taken together, Fev was only expressed in fetal 

cells and became silent after birth.  

Analysis of FEV-expression was further assessed in human hematopoietic cells of 

fetal liver, neonatal umbilical vein CB, and postnatal BM of infants (4 to 12 months 

old), children (3 to 14 years old) and adults (31 to 45 years old). CD45-expressing 

hematopoietic cells were flow-sorted into primitive and more mature cell populations 

based on CD34 expression, high purities were achieved (Supplementary Figure S3a). 

FEV was expressed in fetal and neonatal cells, mainly in primitive CD34
＋
 cells, but 

not in infant, child and adult BM cells of both CD34
+
 and CD34

−
 populations as 

determined by RT-qPCR (Figure 1a and b). The RT-qPCR products of CD34
+
 cells 
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were cloned and sequencing confirmed FEV (Supplementary Figure S3b).  

These results show that FEV is conservatively expressed in embryonic and fetal 

hematopoietic cells and becomes silent after birth in different species from zebrafish 

to human, suggesting that FEV may be a specific regulator of fetal hematopoiesis.  

 

FEV-expression is required for the self-renewal of HSCs 

We next systemically characterized FEV functional roles in Lin
−
CD34

＋
CD38

−
 HSCs. 

Human CB cells were selected for the assays because of their availability, neonatal 

nature, and FEV-expression profile (Figure 1a and b). After Lin
−
 cells were enriched, 

CD34
＋

CD38
−
 stem cells and multipotent progenitor cells and CD34

＋
CD38

+
 

committed progenitor cells were flow-sorted with high purities (Supplementary Figure 

S3c), and FEV-expression was analyzed using RT-PCR (Supplementary Figure S3d). 

Lin
−
CD34

＋
CD38

−
 cells were used for functional assays of FEV-expression in HSCs. 

FEV-knockdown was achieved by a lentiviral vector-driven interference short-hairpin 

RNA (iFEV; Figure 2a)
16

. Transduction efficiencies of the control vector (Ctr.V), 

non-silencing control (NSC) and iFEV were detected 3 days after viral infection 

(Figure 2b, top panels), and the transduced cells (GFP
+
) were flow-sorted with high 

purities (Figure 2b, bottom panels). FEV-knockdown was determined by RT-PCR 

(Figure 2c). The quantitative limiting dilution assay was used to analyze the frequency 

of LTC-ICs, the most primitive human hematopoietic cells assessable in vitro. 

FEV-knockdown markedly reduced LTC-IC readout compared with that in Ctr.V and 

NSC settings (Figure 2d). There is no significant difference between Ctr.V and NSC 
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(Figure 2d). In line with this result, loss of FEV significantly reduced replatable CFCs 

as assessed by plating (Figure 2e) and replating (Figure 2f) CFC assays.  

The cultured cells (Figure 2b) were analyzed to determine whether reduction of 

CFCs and LTC-ICs in iFEV cells could also reflect differences in cell cycle kinetics or 

cell survival. Results of apoptosis assay (Supplementary Figure S4a and b) and cell 

cycle analysis (Supplementary Figure S4c and d) showed no difference between iFEV 

and Ctr.V cells. These results suggest that FEV is an obligatory regulator of HSC 

self-renewal.  

To further determine the role of FEV in regulating self-renewal in HSCs, total 

unsorted GFP
+
 and GFP

−
 cells after transduction were transplanted into 

immunodeficient NOD-SCID mice treated with CD122 antibody (NS122 mice) 
21, 23, 

24
. After 12 weeks post-transplantation, flow cytometry was conducted to analyze 

human cell engraftments by using human CD45-specific antibody. The contribution of 

iFEV cells (GFP
+
) to the engraftment was considerably reduced compared with that of 

Ctr.V-transduced cells as shown in the representative flow-cytometric plots (Figure 3a) 

and the statistic diagram of mice tested in more than three separate experiments 

(Figure 3b). Within the engrafted GFP
+
 cells of iFEV and Ctr.V, proportions of total 

CD34
+
 (Figure 3c and d) and primitive CD34

＋
CD38

−
 (Figure 3e and f) were analyzed. 

The populations of progenitor and stem cells were lower in iFEV than that in the 

control. This result indicates that the lower engraftment contribution of iFEV cells 

may be attributed to impaired self-renewal by FEV-knockdown. To consolidate this 

result, the engrafted GFP
＋
 cells from the primary iFEV and Ctr.V recipient mice were 
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flow-sorted and transplanted into secondary recipients. After 10–12 weeks 

post-transplantation, human cell engraftments were analyzed. The details are shown in 

Table 1. The iFEV cells failed to reconstitute in secondary recipients, whereas the 

Ctr.V cells engrafted well, with comparable numbers of cells transplanted (Figure 3g 

and h).  

To molecularly confirm the regulatory role of FEV in the self-renewal of fetal 

HSCs, we comparatively analyzed the differential expression of those genes reported 

to be essential for the maintenance of fetal HSCs 
25, 26

 by using RT-qPCR in iFEV and 

Ctr.V cells (Figure 2b). With FEV-knockdown, the expression of genes SCL, MLL, 

IKZF1, BMI1, and MEIS1 were significantly reduced (Supplementary Figure S5), 

further supporting that FEV is a crucial regulator of HSCs.  

 

FEV-expression in leukemic cells is indicative of a prenatal origin 

We next investigated the FEV-expression in leukemic cells by using the same 

RT-qPCR. First, we measured FEV-expression in infant leukemias (0−12 months old) 

that are almost all prenatal in origin. 
13, 27

 Fifty three infant samples were obtained and 

qualified for the detection of RT-qPCR and data analysis (Table 2 and Supplementary 

Table S1). The results showed that most infant samples (51 in 53) were FEV positive 

(FEV
+
) at a comparable level as in CB CD34

+
 cells (Figure 4 and Table 2). We then 

screened for FEV-expression in adult leukemias (older than 40 years old) that are 

presumed to rise postnatally. Eleven adult samples were tested for FEV-expression by 

RT-qPCR and data analysis (Table 2 and Supplementary Table S2). The results 
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showed that most adult samples (10 in 11) were FEV negative (FEV
−
) similarly as 

detected in normal BM cells (Figure 4 and Table 2). Together the dramatic difference 

between infant and adult samples suggests that FEV-expression in leukemic cells is 

indicative of a prenatal origin.   

To extend the detection in wider spectrum of pediatric leukemias, we measure the 

FEV-expression in 193 samples of children (1–13 years old), 15 teenagers (13–20 

years old), and 3 young adults (20–40 years old) with AML or ALL (Supplementary 

Table S3). The results are summarized in Figure 4. The expression pattern in children 

is similar to that in infants, most samples being FEV
+
 (Table 2). Surprisingly all the 

tested samples of teenagers and young adults were FEV
+
.
  

The results of FEV 

positivity suggested that the majority of pediatric leukemias are possibly prenatal in 

origin. 

Considering there was a range of expression levels in the FEV
+
 samples, we took 

the pediatric samples collected in one hospital (Shanghai Medical Center for Children) 

for further analysis to determine whether there was any correlation of FEV-expression 

levels with diagnostic factors. A significant correlation between FEV-expression 

levels and leukemia subtype (lymphoid or myeloid) was identified (r = －0.223, P < 

0.001); FEV-expression in ALL samples was significantly higher than that in AML 

samples (Supplementary Figure S6a). There was no significant correlation of 

FEV-expression levels with age (Supplementary Figure S6b, r = －0.114, P = 0.071), 

karyotype (r = 0.074, P = 0.318) and gender (r = －0.033, P = 0.600).  

 

©    2016 Macmillan Publishers Limited. All rights reserved.



 

 15 / 25 
 

FEV-knockdown markedly impairs the leukemia-propagating of LSCs  

We then asked whether FEV played any functional role in leukemic cells and thus 

could be a potential therapeutic target. FEV function in LSCs of the BM aspirate 

samples of pediatric patients was studied. In CD34
＋
 AML samples, two populations, 

namely, lymphoid-primed multipotential progenitors (LMPP)-like 

(CD34
+
CD38

−
CD45RA

＋
CD90

−/low
) and granulocyte-macrophage progenitors 

(GMP)-like (CD34
＋

CD38
＋

CD123
low/ ＋

CD45RA
＋

CD110
−/low

) were previously 

characterized as containing LSCs. 
22

 Similar immunophenotypes in the FEV
+
 samples 

tested in this study were observed (Supplementary Figure S7a, left and middle panels). 

LMPP-LSCs and GMP-LSCs populations were flow-sorted with high purities 

(Supplementary Figure S7a, right panel). 

LMPP-LSCs and GMP-LSCs were infected with iFEV and Ctr.V viruses and 

subjected to leukemic reconstitution in the NS122 mice model. Infection efficiencies 

were calculated, and the infected cells (GFP
+
) were flow-sorted to measure FEV- 

expression (Supplementary Figure S7b). RT-PCR results showed that FEV-expression 

in iFEV-transduced cells was efficiently knocked down (Supplementary Figure S7c). 

Total unsorted GFP
+
 and GFP

−
 cells were transplanted into NS122 mice. After 16 

weeks post-transplantation the leukemic reconstitution in the mouse BM was analyzed 

by detecting human CD45. 
22, 24

 Ctr.V-transduced cells propagated well, whereas 

iFEV-LMPP and iFEV-GMP cells failed to reconstitute in the BM as shown in the 

representative flow-cytometric plots (Figure 5a and b) and the statistical diagram of 

the total samples and mice studied (Figure 5c and d). The results indicate that iFEV 

©    2016 Macmillan Publishers Limited. All rights reserved.



 

 16 / 25 
 

impaired the leukemia-propagating capacity of LSCs.  

A similar functional assay was also performed on FEV
+
 ALL cells. Previous studies 

showed that cell fractions containing LSCs with a wide spectrum of 

immunophenotypes can propagate leukemia. 
11, 19, 28-30

 The total leukemic cells of 

ALL samples in the current study were applied to assess the effect of iFEV on 

leukemia-propagating ability in NS122 mice. 
21

 Similar results were obtained; the 

knockdown of FEV-expression in ALL cells markedly impaired the 

leukemia-propagating capacity in recipient mice (Figure 5e and f). 

The normal human HSCs (Lin
−
CD34

+
CD38

−
) isolated from donor’s BM at 

transplantation were used as a control in the xenotransplantation experiments to 

determine whether or not iFEV transduction affects hematopoietic reconstitution of 

normal BM HSCs. The results showed no significant difference in engraftment in 

mice between Ctr.V and iFEV cells, indicating iFEV treatment did not affect the 

function of normal HSCs (Supplementary Figure S8a and b).    

Taken together, FEV is expressed in childhood leukemic cells of both AML and 

ALL, and FEV-expression is functionally essential for the leukemia-propagating 

capacity of LSCs. Treatments such as iFEV transduction may selectively impair LSCs 

and spare normal BM HSCs.   

 

Discussion 

Since the first evidence was reported that leukemogenic mutations occurred in utero, 
4
 

several approaches have been developed to track down the prenatal origin of 
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childhood leukemia.  For example, genetic analysis of concordant leukemia of twins 

5, 31
 and detection of genetic lesions of the neonatal blood in archived Guthrie cards 

5, 

32-34
. These studies revealed that more than fifty percent of cases of childhood 

leukemia are prenatal in origin, although these approaches might technically 

underestimate the frequency. However, due to lack of a feasible diagnostic approach 

to determine the pre- or post-natal origin of leukemias, the exact frequency and 

biologic and medical implications of determining prenatal origination remains 

unknown in pediatric leukemias. Here, we have addressed these issues by identifying 

and characterizing FEV. 

FEV-expression profiles are highly conservative in zebrafish, mouse, and human. 

FEV is active in fetal and neonatal HSCs and silent in postnatal HSCs. We 

demonstrated that FEV-expression is functionally essential to the self-renewal of 

HSCs. In line with our previous finding, 
16

 FEV regulates HSC emergence in 

embryonic development of hematopoietic system and functionally maintains the 

self-renewal capacity of HSCs in fetal development. We identified FEV as a unique 

regulator of fetal hematopoiesis. Understanding how the fetal self-renewal machinery 

in HSCs switches to postnatal one when HSCs migrate to the BM after birth is 

expected to elucidate the mechanism of how leukemia develops. 
35

 

More interestingly therefore, FEV-expression in leukemic cells was positive in 

most infant patients’ samples, whereas rarely positive in adult patients, indicating that
 

FEV-expressed leukemia may be prenatal in origin. By detecting and modifying 

FEV-expression, we investigated the frequency of prenatal origination and explored 
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the potential therapeutic implication in pediatric leukemias. Consistent with the 

prediction by previous studies, 
5-7, 32, 33

 most cases of pediatric leukemias were 

FEV-expression positive, in accord with a prenatal origin. Moreover FEV was positive 

in all the tested samples of teenagers and young adults, suggesting that leukemias in 

these patients who are routinely admitted to adult wards and receive treatment as adult 

patients may actually be similar to childhood leukemias in terms of etiology and 

biologic basis and thus therapeutics.  

Further analyses of the correlation of FEV-expression levels with diagnostic factors 

in pediatric samples were performed. The results showed that the FEV-expression 

level in ALL was significantly higher than that in AML. Yet the relevance of the 

difference remains to be determined, and may be associated with distinct cellular 

origins or different leukemia-propagating capacity of leukemic cells. Further studies 

are required to define changes in FEV expression by leukemia subtype of genetic 

lesions including MLL fusions, which may contribute to our understanding of 

leukemogenesis both in terms of the precise period in which the initiating events 

occur and the covert latency of the disease.
36, 37

  

More importantly the results of our xenotransplantation experiments showed that 

iFEV treatment significantly impaired the leukemia-propagating capacity of LSCs, 

without affecting hematopoietic reconstitution of normal HSCs. This suggests that 

FEV may provide a tractable target for therapy in childhood leukemias, killing LSCs 

and sparing normal HSCs. Therefore, our findings and conceptual views have 

implications in both etiology and therapeutics of cancer, particularly in childhood and 
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adolescent patients. 
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Figure Legends 1 

Figure 1. FEV-expression profiles in human hematopoietic cells in development. (a) 2 

Representative RT-qPCR amplification and dissociation curves of FEV and GUS in 3 

the human cells as labelled. (b) The results of all the samples tested in at least three 4 

times are summarized. Data are presented as mean ± SD. 5 

 6 

Figure 2. Functional assays of FEV in human primitive hematopoietic cells in vitro. 7 

(a) Short-hairpin oligos of FEV interference (iFEV) and non-silencing oligos (NSC) 8 

were cloned into the lentiviral vector driven by U6 promotor. (b) Flow cytometric 9 

analysis of infection efficiencies of Lin
−
CD34

＋
CD38

−
 HSCs by the virus of Ctr.V, 10 

NSC or iFEV 3 days post-infection. GFP
+
 cells were flow-sorted (top panel), and the 11 

purities were detected (bottom panel). (c) RT-PCR detection of FEV-expression in the 12 

flow-sorted cells of b. PC, positive control using 293T cells permanently expressing 13 

human FEV. NC, non-template control. (d) LTC-IC assay by limiting dilution, the 14 

estimated LTC-IC frequencies (solid lines) for Ctr.V, NSC and iFEV cells were 1/16, 15 

1/17 and 1/163, respectively. Dotted lines, 95% confidence intervals. (e) CFC assay, 16 

iFEV cells had a 6.6-fold decrease in the total colonies compared with NSC and Ctr.V 17 

cells (20.4 ± 1.1 vs. 134.2 ± 10.0 vs. 134.7 ± 5.6). (f) Replating CFC assay of the 18 

primary colony cells of e. iFEV led to an 11.0-fold decrease in the total colonies 19 

compared with NSC and Ctr.V cells (13.6 ± 2.5 vs. 150.50 ± 5.4 vs. 147.3 ± 7.1). n = 20 

3 separate experiments (e‒g). 
#
P >0.05, *P < 0.001 (Student’s t test). All Data are 21 

presented as mean ± SD. 22 
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 23 

Figure 3. FEV-knockdown impaired the self-renewal ability of HSCs in vivo. (a and b) 24 

Flow-cytometric analysis of engraftment and contribution of GFP
＋
 cells in primary 25 

mice and infection efficiency before transplantation (input), representative plots (a) 26 

and statistical summary (b). iFEV led to a 13.6-fold decrease (45.1% ± 6.8% vs. 3.3% 27 

± 2.6%). n = 10 mice per group from nine separate experiments. (c and d) Flow 28 

cytometric analysis of total progenitors (CD34
＋

) in the BM of primary Ctr.V and 29 

iFEV mice, representative plots (c) and statistical summary (d). (e and f) Flow 30 

cytometric analysis of more primitive CD34
＋
CD38

−
 cells in the BM of primary Ctr.V 31 

and iFEV mice, representative plots (e) and statistical summary (f). n = 9 (Ctr.V) and 32 

n = 7 (iFEV) mice. (g and h) Engraftment contribution of Ctr.V or iFEV cells in 33 

secondary recipients by representative flow-cytometric plots (g) and statistical 34 

summary (h). Note: iFEV cells failed to reconstitute in secondary recipients. n = 5 35 

(Ctr.V) and n = 3 (iFEV) mice. 
#
P >0.05, *P < 0.05, **P < 0.005, ***P < 0.001 36 

(student’s t test). All Data are presented as mean ± SD. 37 

 38 

Figure 4. Differential FEV-expression in leukemic cells of infant, childhood, teenager, 39 

young adult and adult patients. FEV-expression in leukemic cells was measured by 40 

RT-qPCR. The results are presented in comparison with that in CB CD34
+
 cells (FEV

+
) 41 

and BM CD34
+
 cells (FEV

−
).  42 

 43 

Figure 5. FEV-knockdown impaired the leukemia-propagating of LSCs. (a and b) 44 
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Representative flow cytometric analysis of leukemia-propagation of LMPP-like and 45 

GMP-like LSCs transduced with Ctr.V or iFEV in the mouse BM. (c and d) Statistical 46 

summary of engraft contribution of GFP
+
 cells in the recipients transplanted with 47 

LMPP-like and GMP-like LSCs. n = 5 or 6 (Ctr.V) and n = 6 (iFEV) mice from three 48 

patients. (e) Representative flow cytometric analysis of leukemia-propagation of ALL 49 

cells transduced with Ctr.V or iFEV in the mouse BM. (f) Statistical summary of 50 

engraft contribution of GFP
+
 cells in the recipients transplanted with ALL cells. n = 11 51 

(Ctr.V) and n = 16 (iFEV) mice from four patients. All data are presented as mean ± 52 

SEM. *P < 0.05, **P < 0.005 (Student’s t test).  53 
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Recipients
* Engraftment (%) Recipients

† Cell number injected Engraftment (%)

Ctr.V1–1 3.37 × 10
5 0.9

Ctr.V1–2 3.00 × 10
6 0.01

Ctr.V2–1 3.07 × 10
5 1.64

Ctr.V2–2 2.76 × 10
6 3.05

Ctr.V3–1 2.00 × 10
5 0.31

Ctr.V3–2 2.80 × 10
6 4.57

Ctr.V4–1 2.00 × 10
5 0.03

Ctr.V4–2 2.80 × 10
6 dead

Ctr.V5 42.5 Ctr.V5–1 3.80 × 10
5 1.31

Ctr.V6 31.4 Ctr.V6–1 2.00 × 10
5 0.21

iFEV1 2.59 iFEV1–1 2.10 × 10
5 0

iFEV2 2.87 iFEV2–1 3.38 × 10
5 0

iFEV3 1.29 iFEV3–1 2.15 × 10
5 dead

iFEV4 0.91

iFEV5 1.02

iFEV6 0.81

iFEV7 0.85

†
CD45

＋
GFP

＋
 cells sorted from primary recipients were injected into secondary recipients.

0

iFEV6–1 2.12 × 10
5 dead

Table 1. Primary and secondary transplantation of CB Lin
−
CD34

＋
CD38

−
 cells 

transduced with Ctr.V or iFEV

*
2×10

4
 Lin

−
CD34

＋
CD38

−
 cells transduced with Ctr.V or iFEV were injected into primary recipients.

Ctr.V3 33.4

Ctr.V4 25.2

iFEV4–1 2.60 × 10
5

Primary Secondary

Ctr.V1 41.1

Ctr.V2 35.3
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Characteristics Infant leukemias Child leukemias Adult leukemias P

Total, n 53 193 11

Leukemia lineage
‡

0.747
*
 / 1.000

†

Acute lymphoid leukemia, n (%) 25 (47.2) 89 (46.1) 4 (36.4)

Acute myeloid leukemia, n (%) 28 (52.8) 103 (53.4) 7 (63.6)

Mixed lineage leukemia, n (%) 0 (0) 1 (0.5) 0 (0.0)

Gender
‡ 0.747*/ 0.204†

Female, n (%) 25 (47.2) 71 (36.8) 4 (36.4)

Male, n (%) 28 (52.8) 122 (63.2) 7 (63.6)

Cytogenetic
‡#

1.000
*
/ 0.090

†

Normal 7 (30.4) 74 (48.1) 3 (33.3)

Simple 12 (52.2) 45 (29.2) 4 (44.4)

Complex 4 (17.4) 35 (22.7) 2 (22.2)

Age
＊ Less than 0.001

*
/ 

Less than 0.001
†

Median 8 months 4.7 years 59 years

Range 2-12 months 1.1-13.0 years 50-85 years

FEV expression
‡

Less than 

0.001
*
/1.000

†

FEV- 2 (3.8) 5 (2.6) 10 (90.9)

FEV
+
, n (%) 51 (96.2) 188 (97.4) 1 (9.1)

*
P  value of infant vs. adult

†
P  value of child vs. infant

‡
Pearson Chi-Square test

＊
Mann- Whitney U test

Table 2. Summary of the patients’ information and FEV positivity

#
Cytogenetics of 77 samples were unknown, including 30 infant leukemias, 39 child leukemias, 4 teenager 

leukemmias, 1 young adult leukemia and 2 adult leukemias.
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