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Abstract

In recent years a great deal of interest has been attracted by the materials called
‘spin ices’, and the monopole-like quasiparticle excitations inside them. Spin ices
are frustrated Ising ferromagnets with a high level of frustration arising from a
spin configuration akin to the proton configuration of water ice. Excitations of
the ground state configurations can produce local arrangements of spins which
behave similarly to magnetic monopoles, including carrying an effective magnetic
charge and experiencing Coulomb interactions with one another. By taking these
‘monopoles’ as the units of analysis, theories of charged particle interaction can
be applied to magnetic spin ice crystals.

This thesis will examine the applicability of a number of theories based on this
model to experimental data of the real properties of spin ice, along with a novel ex-
perimental method, and in turn report on what the results suggest about the phys-
ical nature of the spin ices in question. The main materials studied are dysprosium
titanate (Dy2Ti2O7) and holmium titanate (Ho2Ti2O7), and additional investiga-
tions are performed on cadmium erbium selenide (CdEr2Se4) and praseodymium
zirconate (Pr2Zr2O7).

First, a new derivation of the Debye-Hückel theory of electrolytes adapted for
spin ice is presented, incorporating a microscopically correct partition function and
the effects of higher-energy excitations, called ‘double monopoles’. The theory is
compared to specific heat experimental and simulation data for Ho2Ti2O7 and
Dy2Ti2O7 and experimental data for CdEr2Se4. It is found that Debye-Hückel
theory is an effective analytic theory of spin ice magnetic heat capacity even into
high temperatures of 6 K or more, in contrast to earlier work which held that such
temperatures are out of the effective region of the spin ice model. Extensions of
the theory to account for lattice geometry, Bjerrum pairing and ‘entropic charge’
are considered.

Second, several theories for describing the magnetic relaxation of spin ice are
compared to experimental data from Dy2Ti2O7 at 0.4 to 0.6 K. The theories
encompass the Wien effect seen in electrolytes, surface effects and the failure of
the samples to equilibrate on experimental timescales. The results are inconclusive
and suggest that multiple effects must be considered to form a complete theory of
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spin ice relaxation at low temperatures.
Third, an absolute measurement of the entropy of the quantum spin ice Pr2Zr2O7

using a recently introduced method is reported and compared to previous work
on the material, along with a prediction of its specific heat using Debye-Hückel
theory. The results demonstrate that the method is effective at low temperatures
and suggest that the low-temperature entropy of Pr2Zr2O7 is less than that of
classical spin ices, and that its monopole dynamics are significantly different.
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Chapter 1

Introduction

A critical difference between electricity and magnetism in traditional theory is the

nonexistence of true magnetic charges. Despite the predictions of many unifica-

tion theories and extensive searches, fundamental magnetic charges, or monopoles,

have not been observed [1]. Nevertheless the notion of the magnetic monopole has

recently found use in describing the behaviour of certain frustrated magnets. Mem-

bers of the ‘spin ice’ class of magnetically frustrated crystals [2] emulate the electric

structure of water ice magnetically, and this extends to replicating electric charge

defects in water with effective magnetic charge defects in crystals [3]. This sur-

prising result gives rise to a symmetry between electrical and magnetic behaviour

that extends to the remarkable possibility of modelling spin ice not as a crystal

containing magnetic dipoles, but as a Coulomb gas of magnetic monopoles.

Based on this interpretation, the Debye-Hückel theory of electrolytes has been

adapted and applied to the ‘magnetolyte’ of spin ice [4]. This unusual marriage

has been successful in modelling spin ice behaviour, but also revealed a number of

problems that impede the creation of a complete theory. In chapter 3 of this thesis

the theory and its implementation is explored, the problems are highlighted, and

the current progress on solving the problems and expanding the theory is outlined.

Beyond Debye-Hückel theory, which considers the system in zero field, the

magnetic relaxation behaviour of spin ices is distinctive and worthy of study, due

to the way magnetic charges are generated, destroyed and move inside the system.

Chapter 4 of this thesis will consider recent studies of low-temperature relaxation

15



16 CHAPTER 1. INTRODUCTION

[5, 6, 7] and compare several distinct models against relaxation data.

In chapter 5, a recently devised method for determining the magnetic entropy

of materials will be tested on a candidate quantum spin ice [8], to both investigate

its physical properties and relation to the classical spin ices and the strengths and

limitations of the method.

It is hoped that exploration of emergent monopoles will reveal new physics

and possibilities in condensed matter, aid in the understanding of water ice, and

perhaps better equip us to tackle fundamental monopoles if and when they are

discovered.

1.1 Electricity and Magnetism

Of the four traditional physical interactions, the one that dominates scales from

the atomic to the terrestrial is electromagnetism. As the name suggests this is the

union of the electrical and magnetic interactions known to premodern science, as

described by the macroscopic Maxwell equations [9]:

∇ · E =
ρe
ε0

(1.1)

∇ ·B = 0 (1.2)

−∇× E =
∂B

∂t
(1.3)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(1.4)

where E is the electrical field, B is the magnetic field, ρe is electrical charge density,

J is the current density, ε0 is the electric permittivity of free space, and µ0 is the

magnetic permeability of free space.

There is a limited but incomplete symmetry between these equations. The

missing element is ‘magnetic charge’, defined by divergence in B (∇ · B 6= 0).

Electrical fields can have net divergence in a given volume, represented by ρe in

equation 1.1. This divergence is associated with fundamental particles carrying

electric charge. If an equivalent magnetic charge existed, it could be added to the

equations to obtain the following symmetric Maxwell equations:
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∇ · E =
ρ

ε0
(1.5)

∇ ·B = µ0q (1.6)

−∇× E = Jm +
∂B

∂t
(1.7)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(1.8)

where q is the magnetic charge density and Jm is the magnetic current density.

In 1931 Paul Dirac [10] theoretically defined the necessary characteristics of

this magnetic charge despite its never having being observed experimentally. He

found that the existence of a magnetic monopole imposes a quantisation condition

on the electron:

eg

4π~
=
n

2
(1.9)

where e is the electronic charge, g is the magnetic charge, and n is some integer.

Thus the existence of true magnetic charge would underpin the discrete nature of

electric charge. A reversed argument shows that electric charge guarantees that

magnetic charge is quantised. However, this theoretical desirability, reflected in

more modern fundamental physical theories, has not given way to empirical discov-

ery, despite one tantalising but unreplicated signature in a 1982 superconducting

loop experiment [11].

It is worth noting at this point that the existence or nonexistence of true

magnetic charge is not objective and fundamental, but is partly an artefact of

conventions. Jackson 1998 [12] notes that the quantities can be transformed as

follows:

E = E′cos ξ + B′sin ξ (1.10)

B = −E′sin ξ + B′cos ξ (1.11)

and the sources similarly:

ρ = ρ′cos ξ + q′sin ξ (1.12)
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q = ρ′sin ξ + q′cos ξ (1.13)

with equivalent transformations for J and Jm. If one envisions electromagnetic

charge as defined by points in a two-dimensional plane with the x axis representing

electric charge and the y axis magnetic, this transformation represents a rotation

of the coordinate axes by an angle ξ.

Under these transformations the Maxwell relations still apply. When ξ = 0

there is no change in values, and q = 0 implies q′ = 0. However, if we choose

ξ 6= 0, q = 0 applied to equation 1.13 directly yields ρ′/q′ = −cos ξ/sin ξ. The

new electric and magnetic charge are connected by a constant ratio, which applies

to all charged particles. If q 6= 0 however, this relation does not hold. As such

we can see that the most fundamental question is not whether magnetic charge

exists, which is a matter of convention, but whether the interaction of a particle

with the electromagnetic force is specified by one number, or two.

The concept of magnetic charge used in condensed matter physics, and of

magnetic monopoles used in this work, does not require violation of the traditional

Maxwell equations or the introduction of a second electromagnetic variable in

fundamental physics [3]. Nevertheless it stands as an example of how condensed

matter systems can produce counterintuitive results that emulate unusual physical

properties.

1.1.1 Magnetism in Materials

Electromagnetism is the interaction that holds atoms and atomic structures to-

gether. The complex electric microstructure of materials can give rise to equally

complex magnetic structure. The treatment here is primarily derived from Blun-

dell 2001 [13].

As can be seen from the Maxwell equations, magnetic fields can be generated

by loops of current. Consider a current I around the circumference of an area dS,

defined by a vector dS of length equal to the area and perpendicular to its plane.

This defines a magnetic moment dµ = IdS.

These loops can be created not just macroscopically but also on the scale of

individual atoms. An electron bound to a nucleus possesses an angular momentum

composed of its inherent spin and its orbital angular momentum, and this angular
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momentum of a charge defines a current around the nucleus, which generates a

magnetic field. This field takes the form of a dipole and so atoms whose orbital

electrons have net angular momentum can be considered in classical analogy as bar

magnets. Macroscopic solid magnets are composed of large numbers of similarly-

aligned magnetic atoms, often referred to as ‘spins’.

The orbital and intrinsic (or ‘spin’) angular momentum of electrons in atoms

are governed by quantum mechanics. The magnitude of the orbital angular mo-

mentum is given by L =
√
l(l + 1)~ and its component along a particular fixed

axis (typically the z-axis) by ml~, with l and ml quantum numbers and l some

integer. The equivalent quantities for intrinsic spin are defined similarly using S, s

and ms, with s = 1/2 for electrons. The magnitude of the components of angular

momentum can only take the values defined by ml = l, l − 1, ...− l, and similarly

for ms. Due to the uncertainty principle, it is not possible to know more than one

component of the spin simultaneously, but it is possible to know one component

and the total magnitude of the spin simultaneously.

The magnetic moment created by an atom is proportional to its total angular

momentum J = L + S, where L and S are the total orbital and spin angular

momenta respectively of all the electrons in the atom. The magnetic moment is

given by µ = γJ, where γ is called the ‘gyromagnetic ratio’. The gyromagnetic

ratio is γ = −gJµB, where µB is the Bohr magneton, the ground state magnetic

moment of a hydrogen atom, and gJ is called the Landè g-factor.

The possible values of the orbital and intrinsic angular momenta define the

occupiable states of the system. Electrons are fermions, a class of particle with

half-integer spin, which are constrained by the Pauli exclusion principle, which

holds that only one fermion can occupy a given quantum state at a given time [13].

As electrons are fermions, they cannot share quantum states, and the addition of

electrons to the system will fill up available states. If all the electrons in an atom

of a given ml and ms value can be paired with another with the opposite ml and

ms values, then the atom can have J = L = S = 0 and no magnetic moment

unless one is created by external fields. If it has unpaired electrons however, it has

an inherent magnetic moment even in the absence of a field.

The combination of angular momentum quantum numbers that minimises the

energy is estimated by three principles called Hund’s rules. The rules are ordered
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in descending order of typical energy level and so importance for electron ordering

[13].

Hund’s first rule is to maximise S, by aligning all electron spins in one direction.

Pauli exclusion means that electrons cannot share states, so electrons with identical

spin states cannot occupy the same spaces. Separating them this way reduces their

Coulomb repulsion energy.

The second rule is to maximise L. In classical analogy, electrons orbiting in

the same direction will meet less often, again reducing their Coulomb repulsion.

The third rule states that the value of J is given by |J | = |L − S| if the

outermost shell is half or less full, and |J | = |L + S| otherwise. This effect arises

from the spin-orbit coupling, whereby the magnetic field created at the electron

site by the nucleus orbiting in its frame of reference splits the levels of the electron

spin. This effect couples the orbital and spin angular momenta of the electron.

It is sufficently small that it is often overriden by additional factors such as the

crystal field (see section 1.1.4), but is effective for rare earth ions such as Dy3+

and Ho3+.

Atomic states are written in the form XYZ , where X = 2S + 1, Y is a letter

code representing L as defined in table 1.1, and Z = J .

Table 1.1: Atom L Values

L 0 1 2 3 4 5 6

S P D F G H I

In this notation, the ground state of free Ho3+ ions is 5I8, and the ground state

of free Dy3+ ions is 6H15/2. Hund’s third rule applies additively in each case.

1.1.2 Magnetisation and Susceptibility

The magnetic moment per unit volume of a material is the magnetisation M. This

is distinct from the magnetic field generated by those moments and other sources

such as externally applied fields. This field is denoted by H. At any point in space

the magnetic field B is defined as
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B = µ0(H + M). (1.14)

In free space with no magnetic moments, this resolves to B = µ0H and the

one vector field is simply a scaled version of the other. Inside a magnetic material

where M 6= 0, the magnetisation must be considered. The two vector fields M

and H affect one another, as magnetic moments will be aligned by the field and

will in turn generate a field of their own. In a material where there is a linear

relationship, called a linear material, they have the relation M = χH, with χ

being the dimensionless ‘magnetic susceptibility’ of the material. For this case,

equation 1.14 becomes:

B = µ0(1 + χ)H = µ0µrH, (1.15)

defining µr = 1 + χ as the ‘relative permeability’ [13].

The above susceptibility is the ‘volume susceptibility’ for the magnetic moment

by volume. The molar susceptibility χm and the mass susceptibility χg can also

be defined, in relation to the magnetic moment per mole or mass.

Magnetic response is not instantaneous, as will be explored in chapter 4 of this

thesis. When the applied field oscillates with frequency ω, this is called an a.c.

(‘alternating current’) field after the electric equivalent of an oscillating voltage

producing an ‘alternating’ rather than ‘direct’ current. In such conditions the

susceptibility becomes the complex a.c. susceptibility χ(ω) where χ(0) is equal to

the normal (d.c., ‘direct current’) susceptibility. The a.c. susceptibility consists

of a magnitude (here |χ|) and a phase shift φ by which the oscillation of the

magnetisation lags the oscillation of the driving field. The a.c. susceptibility is

often treated as having two parts, the real part χ′ and the imaginary part χ′′:

χ = |χ|eiφ = |χ|(cosφ+ i sinφ) (1.16)

χ′ = |χ| cosφ (1.17)

χ′′ = |χ| sinφ (1.18)

When the field does not oscillate but is constant, the magnetisation is called
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the d.c. magnetisation.

The reciprocal effect of M on H must also be considered. Consider a field Ha

applied to a magnetic material. The material contains magnetic moments aligned

in some fashion to create magnetisation field M throughout the sample. These

magnetic moments will create a magnetic field that adds to the applied magnetic

field Ha to create the internal magnetic field Hi. So at some point r in the material:

Hi = Ha + F(r), (1.19)

where F is the field created by all moments in the sample at that point in the

sample. This depends not just on the magnetic physics of the material but also on

its shape, and in general can be complex to work out. It is most easily defined for

the special case of an ellipsoidal sample with field applied along a principal axis.

For such samples, F = −NM, with N being a constant for that ellipsoid called

the ‘demagnetising factor’. This yields

Hi = Ha −NM, (1.20)

and if we define an applied Ba and an internal Bi similarly to H, we obtain:

Bi = µ0(Hi + M) = µ0(Ha + (1−N)M). (1.21)

Since the applied field has no magnetisation component, Ba = µ0Ha, so

Bi = Ba + µ0(1−N)M. (1.22)

This definition of B in terms of two fields M and H allows us to see how objects

akin to magnetic monopoles can exist without violating the Maxwell equations.

Note in equation 1.2 that only B is required to have a divergence of 0 at all

points. As B is defined in equation 1.14 as the linear sum of two other quantities,

divergence in these quantities can exist so long as divergence in one is exactly

cancelled by divergence in the other at all points:

∇ ·M = −∇ ·H. (1.23)
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This allows the definition of an effective magnetic charge density ρH = ∇ ·H,

which has applications in the practical study of magnets [3]. However, this quantity

is not discrete on all scales. It necessarily cannot be defined on scales smaller than

the magnetic moments that constitute the material in question, and does not

typically resolve into discrete objects like the true charges of electrostatics.

1.1.3 Paramagnetism

If χ is positive, the system is called paramagnetic, and if negative it is diamagnetic.

Paramagnetism will arise in a system with magnetic atoms (atoms with unpaired

electrons) and weak interactions between the magnetic moments. Diamagnetism

will arise in systems with paired electrons. All systems exhibit a degree of diamag-

netism as all systems contain paired electrons, but the effect is weak and easily

dominated by other interactions if present [13].

In the limit of low field, the susceptibility of paramagnets is described by the

Curie law [13]:

χ =
nµ0µ

2
eff

3kBT
, (1.24)

where µeff is an effective moment given by µeff = gJµB
√
J(J + 1). The existence

of a 1/T proportionality in χ is an experimental signature of paramagnetism. It

can be written as

χ =
C

T
(1.25)

where C is the Curie constant.

1.1.4 The Crystal Field

In an ideal Curie-law paramagnet spins have no interaction with their neighbouring

spins or the crystal environment, but this is not always a reasonable approximation.

Often spins are strongly constrained by these factors. All atoms in solids are

affected by their electronic environment, as it is electrostatic interactions that

bind solids together. But besides fixing the physical location of a given atom, the

surrounding crystal environment also interacts with the electronic orbitals and so

alters the magnetic properties of the atom.
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Different L and mL values generate different spatial distributions of the orbiting

electron around the nucleus. As electrons have electrostatic charge they exist in

energy potentials relative to one another, and so differing spatial distributions

of an orbiting electron will have differing energy levels depending on how they

are arranged relative to the orbiting electrons of the surrounding atoms, which

are subject to the same effect from their surrounding atoms. This effect lifts

the degeneracy of the orbitals and favours states that distribute the electrons

away from contact with their neighbours. The field generated by surrounding

environment is called the ‘crystal electric field’ or ‘crystal field’ [13].

As atomic magnetic properties are dominated by electron angular momenta,

this favouring of particular orbital states also favours particular magnetic states.

An example key to spin ice is the Ising spin, in which the ground state of the outer

electron orbitals has the maximum angular momentum parallel or antiparallel to

the z-axis, producing a powerful magnetic dipole moment oriented likewise. So

long as it remains in the ground state, the atom can flip between these orientations

without passing through any intervening states.

In holmium titanate, the crystal field of the oxide ions surrounding the Ho3+

splits the 5I8 free ion state. The ground state is an almost pure J = 8, mJ = ±8

doublet, where the angular momentum is constrained to point parallel or antipar-

allel to the z-axis [14]. Dysprosium ions are similarly constrained in dysprosium

titanate [15]. This type of two-state single-axis spin state distribution is called an

Ising spin. Directional dependence of this sort is known as ‘anisotropy’, and Ising

spins are a form of ‘easy-axis anisotropy’.

1.1.5 Dipole Interaction

Besides the electrostatic interaction with nearby atoms, atoms can also interact

magnetically.

The most obvious magnetic interaction mechanism is the dipole interaction.

This is the familiar attraction and repulsion of magnets realised on the microscopic

scale. The dipolar Hamiltonian for two magnetic moments µ1 and µ2 at a distance

r is given by [13]:
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Ĥ =
µ0

4πr3

[
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

]
. (1.26)

For two dipoles of magnitude µ = µB separated by r = 1 Å, the energy is

of order 10−23J, approximately equivalent to 1 K. However many magnetic sys-

tems can maintain order at much higher temperatures than 1 K, so more ordering

principles must be at work in these materials [13].

1.1.6 Exchange Interaction

The dominant interaction governing magnetic ordering in materials is the exchange

interaction [13]. Exchange is an electrostatic interaction arising from the con-

straints placed on the electron wavefunctions by the Pauli principle. This principle

requires that a wavefunction of two fermions, such as electrons, must be antisym-

metric under exchange of the particles. The wavefunction of two elections is the

product of a spatial function and a spin function and so for the product to be anti-

symmetric one of these functions must be symmetric and the other antisymmetric.

As the electrons have electric charge, a change in their spatial distribution

produces a change in their energy. As spatial and spin functions are connected via

the Pauli principle, this coupling between charge spatial distributions produces an

effective coupling between their spins, and so their magnetic moments.

So the exchange Hamiltonian of a two-electron system can be given by

Ĥexchange = −2J1,2S1 · S2. (1.27)

where J is the exchange coupling constant. If J is negative the exchange interaction

is antiferromagnetic (favours opposite spin directions). If it is positive the exchange

interaction is ferromagnetic (favours similar spin directions).

There are several classes of exchange interaction. ‘Direct exchange’ is the

simplest and refers to interactions between electrons on neighbouring atoms. If

neighbouring orbitals overlap their electrons can become correlated, forming a

bonding (spatially symmetric) or more rarely antibonding (spatially antisymmet-

ric) orbital. These lower energy by expanding the volume over which the electrons

are distributed to the orbitals of both atoms, akin to increasing the size of a
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particle-in-a-box model. This phenomenon is the ‘covalent bond’ that underlies

many molecular structures. However, its significance for magnetic structure is

limited. It is often the case that magnetic orbitals of neighbouring atoms do not

significantly overlap. ‘Indirect exchange’ is an exchange interaction that operates

via some mediator that connects the magnetic orbitals.

Superexchange is exchange mediated by a third nonmagnetic atom with which

the two magnetic orbitals overlap. In figure 1.1 an example is shown for two

transition metal atoms with single electrons in their outer shell. The three atoms

have bonds over which their electrons can delocalise. If the two electrons on the

magnetic atoms have opposite spin alignment, they can be separated between the

atoms, or both occupy either single magnetic atom. This expands their occupa-

tion volume and reduces the energy of the electrons as described above. If they

have a parallel alignment, however, they are forbidden from occupying the same

atom orbital by Pauli exclusion, and do not benefit from the expanded occupa-

tion volume and lowered energy. Superexchange is usually antiferromagnetic, but

ferromagnetic superexchange can occur [13].

The RKKY (Ruderman, Kittel, Kasuya and Yoshida) interaction, also called

‘itinerant exchange’, is a form of exchange found in metals [13]. It is mediated

by conduction electrons which are polarised by one magnetic moment and then,

thus polarised, couple to a different magnetic moment. For large r, the coupling

constant takes the form

JRKKY ∝
cos(2kF r)

r3
(1.28)

where kF is the radius of the Fermi surface. The oscillatory dependence on sepa-

ration introduced by the cosine term leads to an interaction that is ferromagnetic

or antiferromagnetic dependent on distance.

Double exchange arises in systems containing magnetic ions which can exist

in multiple oxidation states (differing oxidation states are differing numbers of

electrons associated with the nucleus). This flexibility of oxidation state may allow

electrons on the outermost shells to hop to the outermost shells of neighbouring

ions. Hopping being possible allows a saving of kinetic energy, as it expands the

spatial range of the hopping electrons.
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Figure 1.1: Antiferromagnetic superexchange interaction between single outer shell electrons in
two transition metal atoms (M) mediated by oxygen (O). The overlapping orbitals are shown at
the base of the diagram. The antiferromagnetic ground state configuration of electron spins is
shown above that, then two excited states. By mixing with the excited states, the electrons can
delocalise over the three atoms and reduce their kinetic energy.

If the electrons in the outermost shells have an exchange interaction with elec-

trons in an inner shell, then they will be constrained to a particular relative orien-

tation. Hopping does not change the spin orientation of the electron. Therefore,

to minimise the energy of the hopping electron, the exchange-linked inner shells

must be ordered ferromagnetically between ions. This ordering allows the electron

to hop through the crystal, rendering it metallic [13].

1.1.7 Magnetic Order

The effect of these inter-spin interactions is to produce order in the spin system.
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In ferromagnetic materials, inter-spin interactions (typically ferromagnetic ex-

change interactions) favour neighbouring spins aligned in the same direction. A

simple Hamiltonian for such a system in a magnetic field B is [13]

Ĥ = −Σi,jJi,jSi · Sj + gµBΣjSj ·B (1.29)

where J is the exchange coupling constant (see equation 1.27) and is positive, B is

the applied field, and the sum runs over all spins i and j. The interaction between

spins can be represented by an effective ‘molecular field’ Bmf , using the following

expression for the molecular field for the ith spin:

Bmf = − 2

gµB
ΣjJi,jSj, (1.30)

and then

−2Si · ΣjJi,jSj = µBΣiSj ·Bmf (1.31)

where the left hand side is the conventional exchange interaction and the right hand

side is the expression in terms of molecular field. Then, making the assumption

for simplicity that the molecular field is the same for all spins, the Hamiltonian

can be written

Ĥ = gµBΣiSi · (B + Bmf) . (1.32)

The consequence of the B + Bmf term is that spins can experience an effective

field even in the absence of an applied field. The molecular field is related to the

magnetisation by Bmf = λM where λ is a constant scaling factor. This model of

ferromagnetism is called the ‘Weiss model’ [13].

As the effect of the field is to align the spins and so magnetise the material,

and the magnetisation of the material strengthens the field in turn, magnetisation

in the sample is self-sustaining at low temperatures. Entire ferromagnetic samples

do not necessarily have a macroscopic net magnetisation in zero field as they may

be separated internally into ‘domains’ of spins parallel to one another but with

different orientations to those in other domains, but these domains can be aligned

by applying a magnetic field and will then retain the magnetisation when the field

is removed. At higher temperatures, thermal fluctuations begin to disrupt the
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magnetisation until spontaneous magnetic order cannot be preserved. The critical

temperature at which magnetic order vanishes in zero field is the ferromagnetic

transition (Curie) temperature TC [13].

In antiferromagnets, inter-spin interactions favour neighbouring spins aligned

in opposite directions. For such materials, J in equation 1.29 is negative for

neighbouring spins. Such systems can often be considered as two interpenetrating

‘sublattices’ defined as occupying alternating points on the total lattice. In the

Weiss model, each sublattice will have a molecular field:

B+ = −|λ|M− (1.33)

B− = −|λ|M+ (1.34)

where the sublattices are labelled + and −. The low-temperature ordered state of

such a system is for one lattice to point all in one direction and the other lattice

to point all in the opposite direction, akin to two ferromagnets, satisfying the

condition of opposite directions between any pair of neighbouring spins.

If the spins in each sublattice have the same magnetic moment, this configura-

tion yields a total magnetic moment of 0. This order will, like that of a ferromagnet,

be destroyed by thermal fluctuations as temperature increases, until it is destroyed

at the Néel temperature TN [13].

Ferrimagnetism is a variety of antiferromagnetism in which the sublattices do

not have the same moment per spin. As such the total system will have a net

magnetisation even when both sublattices are perfectly anti-aligned, and the two

lattices can have differing temperature dependencies. This produces a complex

temperature dependence for the total magnetisation. It may even change sign if

the sublattice with largest magnetisation changes from one to the other at some

temperature (called the ‘compensation temperature’) [13].

Helical ordering is a form of order where spins laid in layers shift direction

by some angle θ each layer. It is found in some rare earth metals with magnetic

interactions mediated by the RKKY interaction [13].

In spin glasses, a lack of order in the spin sites or the interaction strengths

and orientations between them leads to a lack of order in the magnetic moments.

They do not exhibit long-range structure but instead randomly mixed interactions.
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Below a freezing temperature Tf , spin glasses freeze into one of many metastable

disordered ground states with slow relaxation behaviour. Spin glasses are treated

in greater detail in section 1.3.

1.1.8 Curie-Weiss Law

The magnetic susceptibility of ferromagnets in the paramagnetic state above the

Curie temperature TC is predicted by the Weiss model to be a function of T −TC :

χ ∝ 1

T − TC
. (1.35)

The same model predicts for antiferromagnets for T > TN :

χ ∝ 1

T + TN
. (1.36)

These two expressions have a very similar form. The more general version is

the ‘Curie-Weiss law’ [13]:

χ =
C

T − θ
. (1.37)

where C is the Curie constant for the material and θ is called the Weiss tempera-

ture. For θ > 0, the material is a ferromagnet with TC = θ. For θ < 0, the material

is an antiferromagnet with TN = −θ (under ideal conditions for the Weiss model,

in real antiferromagnets −θ/TN can be greater than 5 [13]). If θ = 0 the mate-

rial is paramagnetic and the equation is simply the Curie law described in section

1.1.3. This expression can be used to interpret data on magnetic materials in the

paramagnetic state. It can determine if they are ferromagnets or antiferromagnets

and estimate their critical transition temperature.

1.1.9 Nuclear Magnetism

Besides electrons, atomic nuclei are also charged and can carry angular momen-

tum, and so can have a magnetic moment. This moment is very small compared to

the electronic moment with typical values on the order of 10−3 to 10−4 µB. There

is also no spatial extension of the nucleus outside the centre of the atom, so the
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coupling of nuclei to one another is extremely weak, so systems do not exhibit

nuclear magnetic ordering at typically achievable laboratory temperatures [13]. In

copper, the antiferromagnetic Néel temperature is 58 nK, and in silver it is 560 pK

[13]. These extremely low temperatures can only be achieved by adiabatic demag-

netisation (a technique in which the sample is magnetised while connected to a

low-temperature heat bath, then allowed to demagnetise while isolated), exploit-

ing the fact that the nuclei can have a different temperature to the atomic lattice

due to weak coupling between nuclear and electronic spins [13].

Nuclear spin is governed by the quantum number I which can take an integer

or half-integer value. Its component in the z-direction is mI , which can take a

value between −I and I in integer steps, similarly to electronic orbital and spin

momentum.

Nuclear spin is coupled to electronic spin. While there is no powerful exchange

interaction, the magnetic field created by the orbital electrons associated with a

nucleus will split the nuclear magnetic energy levels. These are typically smaller

than the electronic energy level structure, even the fine structure, and are termed

‘hyperfine structure’. While usually negligible, this structure can become thermo-

dynamically significant at low temperatures as will be seen in section 3.2.2.

1.2 Thermodynamics

The study of thermodynamics concerns itself with bulk properties of physical sys-

tems that have a temperature. It is a theory of remarkable power and universality,

that obtains general results that apply across systems with enormous microscopic

variety. The summary in this section is based on Finn 1993 [16] and Mandl 1988

[17].

Macroscopically, temperature (T ) is the potential that determines heat flow.

If two systems with different temperatures are brought into thermal contact, heat

(energy) will flow from the one with higher temperature to the one with lower

temperature, and this heat flow will bring the temperatures toward one another

until their temperatures are equal. If their temperatures are equal they are in

thermal equilibrium and there is no heat flow, and if two systems both have equal

temperature to a third system, they have equal temperature to one another. Sys-
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tems in equilibrium do not change with time. Equilibrium in general is a state of

the system that does not change with time. If a system is put out of equilibrium it

will begin to move through the space of possible states according to its particular

physical properties, until it reaches an equilibrium state [16]. A system returning

to equilibrium from a perturbation is called ‘relaxation’ and is characterised by a

‘relaxation time’ τ .

Microscopically, the temperature of a system defines the probability that its

components will occupy a particular state. The probability of an object being in

a certain state i is given by the Boltzmann expression [17]:

P =
gie
−εi/kBT

Z
, (1.38)

where gi is the number of macroscopically indistinguishable states associated with

the state i, called its statistical weight or degeneracy (this concept is discussed in

more detail in section 1.2.2), εi is its energy, and Z is the ‘partition function’. The

partition function is a summation and weighting of all the possible states of the

object. It is given by:

Z = Σigie
−εi/kBT , (1.39)

summing over all possible states i.

Reciprocally, the temperature of a system in equilibrium is determined by its

physical state. Temperature is one of a set of ‘state variables’. In a given system,

if all but one of the state variables are known, the remaining variable is also

determined. In gases with a fixed amount of substance, the additional variables

are pressure (P ) and volume (V ). In magnetic solids with a fixed amount of

substance, they are field (H) and total magnetic moment (I = MV ). So one can

write [16]:

T = T (P, V ), (1.40)

T = T (H, I). (1.41)

The latter can be easily seen by recalling I = MV , then considering the cases in

magnetism where χ = χ(T ), so M = χ(T )H, so any two of T , M and H specify
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the third. Systems where both magnetic and mechanical physics are significant

have all five state variables with any four independent, yielding:

T = T (P, V,H, I) (1.42)

The internal energy U of a system is the total kinetic and potential energy of its

components. It can change both by heat flow and by doing work on the system.

Heat is nonmechanical exchange of energy due to temperature difference, while

work is other forms of energetic interaction such as equalising a pressure difference

by moving a piston. Generally the change in internal energy is of more interest

than attempting to measure the energy itself. The general equation for change in

internal energy is dU = dW + dQ, where dQ is heat flow and dW is work done,

which for a magnetic system is given by [16]

dU = HdI + dQ, (1.43)

and for a gaseous system

dU = dQ− PdV, (1.44)

provided the process is ‘reversible’. A reversible process is one which can be

reversed and bring not just the system but its surroundings back to their initial

state. Such processes are ‘quasistatic’ in that they move the system through a

sequence of equilibrium states, and involve no action by dissipative forces such

as friction, that impose costs on moving the system through states. Very often

a reversible process is an idealisation, but they can be used to obtain results for

processes in general. For a system exhibiting both types of physics the composite

equation for dU is:

dU = HdI − PdV + dQ. (1.45)

1.2.1 Heat Capacity

Assuming no other factors, positive heat flow into a system raises its temperature.

The amount of heat required to raise the temperature by a certain amount is the

heat capacity. More precisely, heat capacity C is the amount of heat reversibly

added to the system divided by the temperature rise, in the limit of small quantity
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of heat and small rise [16]:

C =
dQ

dT
, (1.46)

and specific heat c is the heat capacity per unit mass.

There are however multiple reversible paths on the state diagram between

the two ends of ∆T , and they may have differing dQ and so heat capacities. Two

elementary examples for a gaseous system are the heat capacity at constant volume

CV and the heat capacity at constant pressure CP . For the first, if V is constant,

dV = 0, so

CV =
dQV

dT
=
dU

dT
. (1.47)

i.e. the heat input is identical to the increase in internal energy, because no work

is done.

For CP , we can obtain a similar result by first defining a new quantity the

‘enthalpy’ HE (to disinguish from magnetic field H)

HE = U + PV, (1.48)

dHE = dU + PdV + V dP = dQ+ V dP, (1.49)

from equation 1.44. If dP = 0, this resolves simply to dHE = dQP .

Therefore

CP =
dQP

dT
=
dH

dT
. (1.50)

1.2.2 Entropy

In 1855 Clausius showed [16] that for a system in contact with thermal reservoirs

at temperature T and undergoing a process with identical initial and final states,∮
dQ

T
≤ 0. (1.51)

That is, such a process can only occur if net heat transfer is out of the system

into the reservoirs, or zero. If there is net heat transfer out then there must be

commensurate work done on the system, because dU = dW +dQ = 0. If the cycle
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is reversible, then: ∮
R

dQ

T
= −

∮
R

dQ

T
= 0. (1.52)

So a cyclic process can dissipate work into heat, but not vice versa.

If a system is taken along a reversible path from an initial state i to a final

state f , then back along a different reversible path from f to i, then the total path

is a reversible cycle and so:

∫ f

i

dQ

T
+

∫ i

f

dQ

T
= 0, (1.53)

∫ f

i

dQ

T
= −

∫ i

f

dQ

T
. (1.54)

This holds independently of the particular paths chosen so long as the path is

reversible. This allows the definition of a state variable S, called ‘entropy’, with

the difference in entropy between two states defined as:

∆S = Sf − Si =

∫ f

i

dQ

T
, (1.55)

which can be noted to be the integral with respect to T of C/T . This is the macro-

scopic definition of entropy, which defines entropy changes only. Significantly, over

any process, the entropy of the universe (the entropy of the system plus the entropy

of its surroundings) cannot decrease [16].

From equations 1.55 and 1.44, a new statement of the internal energy can be

written:

dU = TdS − PdV. (1.56)

Entropy also has a microscopic definition, which bridges macroscopic and mi-

croscopic physics. Any given state defined by the thermodynamic state variables

will have a number of possible microscopic states which, while microscopically

distinct, produce the same aggregate state variables. An illustrative example is

provided by Mandl 1988 [17]. Consider a paramagnet in an applied magnetic field

B. Each of the N spins in the paramagnet has spin 1/2 and the only states it can

occupy in the field are to to be parallel or antiparallel to it. The energy E of the
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system is given by

E = (N − 2n)µB (1.57)

where n is the number of spins aligned parallel to the field, µ is the magnetic

moment of the spins and B the magnitude of the field. The (magnetic) energy

and magnetisation of a given state is determined solely by n. However, a given n

can correspond to a large number of spin configurations, given by the number of

ways n parallel spins can be chosen out of N spins total:

Ω =
N !

n!(N − n)!
(1.58)

where Ω is called the ‘statistical weight’ of the state determined by E, M and

B. This macroscopic state is called the macrostate and each possible spin con-

figuration is called a microstate, and Ω for a macrostate is equal to the number

of microstates that correspond to that macrostate. This applies for all thermo-

dynamic systems, be they orientations of spins in a paramagnet or positions of

particles in an ideal gas.

Ω defines the entropy of the macrostate, but not in a linear relation. Entropy

is an ‘extensive quantity’, so the total entropy of two independent bodies B1 and

B2 with entropies S1 and S2 is S = S1 + S2 . However, the statistical weight of

the total macrostate of the two bodies is Ω = Ω1Ω2, as the bodies are independent

and the choice of microstate in one does not constrain the choice of microstate in

the other. Therefore, the statistical weight is linked to the absolute value of the

entropy by [17]:

S = kBlnΩ. (1.59)

The absolute value of entropy is related to the third law of thermodynamics.

The third law states that systems in equilibrium at absolute zero have an entropy

of zero. At absolute zero, all systems will be in their ground state, and if unique,

this state will have a statistical weight of 1 and an entropy of 0.

Systems with a degenerate ground state may appear to violate this principle.

As will be discussed in more detail in section 1.3, spin ice can be considered to

have a degenerate ground state and so a ground state entropy. Such systems,

however, will not actually violate the third law if their apparent positive entropy
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ground state is merely a collection of states barely above a true ground state, from

which the equilibration toward the ground state is extremely slow. Such a system

is not in equilibrium, even though reaching equilibrium may be so slow that the

system is effectively in a positive entropy ground state for experimental purposes.

Whether the system can be treated in this way despite the technical violation of

the equilibrium conditions for thermodynamics is an empirical matter [16].

1.2.3 Free Energies

With the entropy, two more thermodynamic state functions can be defined: the

Helmholtz (F ) and Gibbs (G) free energies. Both help define the amount of useful

energy in the system in the light of the limitations placed by increasing entropy.

Changes in the Helmholtz free energy F = U − TS are related to the maxi-

mum work theoretically extractable from a system with no change in temperature

between the endpoints of the process. If a system is held at constant volume

(or equivalent for non-gaseous systems) and in thermal contact with a reservoir,

its equilibrium condition is for F to be minimised. The Helmholtz function also

provides a point of connection between macroscopic and microscopic physics. For

systems of N objects that are distinguishable from one another and weakly inter-

acting, the Helmholtz free energy can be defined in the ‘thermodynamic bridge

equation’ [16]:

F = −NkBT lnZ. (1.60)

The Gibbs free energy G = HE − TS is to enthalpy as the Helmholtz free

energy is to internal energy. It has a similar relation to work, but in this case G

defines the amount of ‘useful work’ that can be extracted from the system. The

Gibbs free energy also defines an equilibrium condition: for a system in thermal

and mechanical (or equivalent) contact with a heat and pressure reservoir, G must

be minimised for the system to be in equilibrium.

Recalling that universal entropy cannot decrease, and noting that energy is

conserved, we see that universal free energy must over time decrease. This leads

to the cosmological concept of the ‘heat death of the universe’, a theoretical future

state where free energy is zero and no useful work can be performed by any process.

From U , HE, F and G four important relations can be derived. From a defini-
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tion of U [16]:

dU = TdS − PdV, (1.61)

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV, (1.62)

T =

(
∂U

∂S

)
V

and P = −
(
∂U

∂V

)
S

. (1.63)

As the value of U is determined entirely by the state variables, integrations of

dU are path-independent, and dU = TdS−PdV is an exact differential. Therefore:(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

. (1.64)

This is the first Maxwell relation. The remaining, from HE, F and G respec-

tively are [16] (
∂T

∂P

)
S

=

(
∂V

∂S

)
P

, (1.65)(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

, (1.66)(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

, (1.67)

Magnetic equivalents can be defined easily by substituting P → −H and

V → I. These should not be confused with the ‘Maxwell equations’ governing

electromagnetism, discussed in section 1.1.

1.2.4 Chemical Potential

Thermodynamic theory can be extended to include changes in the quantity of

matter, not just of energy [16]. This extends the thermodynamic equation once

more:

dU = TdS − PdV + ΣiµidNi, (1.68)

where Ni is the number of particles of type i in the system and µi is the respective

‘chemical potential’, which is, for this gaseous system, the increase in energy per
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particle added under constant S, V and Nj 6=i:(
∂U

∂N

)
V,S,Nj 6=i

= µi. (1.69)

This can also be defined in terms of the free energies. For the Helmholtz free

energy:

F = U − TS, (1.70)

dF = dU − TdS − SdT, (1.71)

dF = ΣiµidNi − PdV − SdT, (1.72)(
∂F

∂N

)
V,T,Nj 6=i

= µi, (1.73)

which depends on T rather than S being constant, and for the Gibbs free energy:

G = U + PV − TS, (1.74)

dF = dU − TdS − SdT, (1.75)

dF = V dP + ΣiµidNi − SdT, (1.76)(
∂G

∂N

)
P,T,Nj 6=i

= µi, (1.77)

which depends on T and P being constant.

1.3 Frustration

Frustration as a physical term refers to a property of certain systems in which

it is impossible to minimise the energy of every interaction simultaneously [18].

The canonical example is a triangular array of three antiferromagnetically coupled

Ising spins (see section 1.1.4) with Ising axis perpendicular to the lattice (shown

in figure 1.2), where two will minimise energy by adopting opposite orientations

but the third cannot orient opposite to both its neighbours simultaneously. In this

system the ground state is degenerate, with six possibilities corresponding to the

six possible arrangements of two spins in one direction and the third in the other.



40 CHAPTER 1. INTRODUCTION

Figure 1.2: Frustrated antiferromagnetic triangle. Spins are antiferromagnetically coupled along
the lines, and constrained to point up or down. The spins along the base have a minimised
interaction, but only one has a minimised interaction with the remaining spin. Neither orientation
of the top spin can minimise interactions with both base spins simultaneously.

The first frustrated system to be identified was water ice [19], which later

became the model for spin ice [14]. Water ice crystals in the Ih form (the usual

form found in nature on Earth, henceforth just called ‘ice’) have a tetrahedral

structure, with each oxygen atom having four equidistant oxygen neighbours [20].

Each oxygen-oxygen hydrogen bond contains a proton (hydrogen ion) which may

be situated closer to one oxygen or the other, as shown in figure 1.3. Bernal and

Fowler [19] proposed the rule that each oxygen should have two protons close to it

and two far. These ‘ice rules’ were proven by Pauling [21] to produce ground state

degeneracy in the crystal that diverges exponentially with the number of water

molecules. His estimate predicted a very large zero point entropy of R ln(3/2) per

mole H2O that is consistent with earlier experiments by Giaque et al. [22].

An ice crystal containing N oxygen atoms, each with four O-O bonds each

shared with another oxygen atom has 22N possible configurations of the hydrogen

ions. Of these configurations, 6 of the 16 possible for any given ion are in the

ground state. So Pauling found:

Ω = 22N

(
6

16

)N
=

(
3

2

)N
(1.78)
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Figure 1.3: A: Proton structure of water ice. Hydrogen ions (black spheres) are positioned along
bonds between oxygen ions (white spheres) in a 2-near 2-far arrangement. B: Magnetic structure
of spin ice. Magnetic moments (arrows) are positioned between titanium atoms (white spheres)
in 2-in 2-out arrangement. From ‘Spin Ice State in Frustrated Magnetic Pyrochlore Materials’
by S.T. Bramwell and M.J.P. Gingras, Science 2001 [2]. Reprinted with permission from AAAS.

S = kBlnΩ = kBln(3/2)N = kBNln(3/2), (1.79)

which yields R ln(3/2) for N = NA, Avogadro’s number. The exact entropy is

higher by the order of approximately 1% [23], but this minor discrepancy is not

important for this investigation.

A further consequence of this structure is that it allows the creation of ionic

defects. Defects are imperfections in otherwise regular structures, such as absence

of an atom from a typically occupied crystal lattice site, or in this case a violation

of the typical ordering rule of protons in ice. If a proton tunnels from one end of a

hydrogen bond to the other, then a system that otherwise obeys the ice rules will

now have one negatively-charged oxygen site and one positively-charged oxygen

site [24]. This proton mobility contributes to the electrical conductivity of ice [24].

Since the discovery of water ice’s properties extensive work has been done on

characterising frustration in magnetic, rather than electric systems [25, 26]. The

enormous variety of possible magnetic materials with different combinations of ge-

ometric structure and spin interactions, and of experimental techniques for probing

them, makes magnetic systems an excellent laboratory for examining frustrated
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behaviour.

Frustrated magnetic systems can achieve long-range ordered ground states,

but often with low critical temperatures such that |θ|/Tc > 10 [25], where θ is the

Weiss temperature and Tc the critical temperature for transition into the ground

state. However, not all frustrated systems can achieve long-range order even at

low temperatures. Among those those that do not, many are found on the kagome

and pyrochlore lattices.

If the frustrated antiferromagnetic triangle described above is extended into a

corner-sharing triangular lattice, this creates a frustrated ‘kagome lattice’, shown

in figure 1.4. If kagome lattices are stacked vertically with an offset and interstitial

triangular planes, this creates the ‘pyrochlore lattice’ of corner-sharing tetrahedra,

shown in figure 1.5. This lattice takes its name from the class of cubic pyrochlore

oxides (A2B2O7) that realise it in nature and provide many examples of frustrated

magnetic systems [26].

Figure 1.4: Kagome lattice of corner-sharing triangles. Reproduced from Greedan et al. [25]
with permission of the Royal Society of Chemistry.

http://dx.doi.org/10.1039/B003682J


1.3. FRUSTRATION 43

Figure 1.5: Construction of a corner-sharing tetrahedral lattice from multiple kagome layers.
Reproduced from Greedan et al. [25] with permission of the Royal Society of Chemistry.

Spin glasses, mentioned in section 1.1.7, do freeze but do not exhibit long-range

order. Instead, the interactions are randomly mixed due to lack of regular struc-

ture in the positions or interactions of the spins [13]. They are found among the

pyrochlores in the forms of Y2Mo2O7 and Tb2Mo2O7 [26], among other possibili-

ties, but better understood are spin glasses formed by alloys or diluted magnetic

crystals.

Positional disorder or ‘site-randomness’ arises from the magnetic spins being

in variable locations relative to one another [13]. Spin glasses of this sort can

be achieved in alloys such as Au1−xFex [26] (for x 0.05) or Cu1−xMnx [13] (for

http://dx.doi.org/10.1039/B003682J
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x � 1). As the spins in these metals interact via the RKKY interaction (see

section 1.1.7) which varies between ferro- and antiferromagnetic coupling with

distance, the variation in distance means the interaction of each spin with its

neighbours is random and frustrated by competing interactions.

Another possibility is ‘bond-randomness’, in which the locations of the spins

are regular but their interactions are randomly varied [13]. This can be achieved in

crystals such as Rb2Cu1−xCoxF4, where both Cu and Co are effective spin-1/2 Ising

spins, but the sign and magnitude of the superexchange between spins depends on

which elements are involved and how their orbitals are occupied [13].

Spin glasses freeze into one of many metastable ground states as the system

temperature goes below a freezing temperature Tf . As they approach Tf from

above, the spins form into locally correlated clusters, connected to one another

by spins not in clusters. Fluctuations inside the clusters slow down and the in-

teractions between spins become longer-range, until the system as a whole freezes

into a state with no long-range order. Near the transition at Tf , there is a peak

in the real part of the a.c. susceptibility χ(ω), which is a signature of spin glass

behaviour [13].

‘Cooperative paramagnetism’, first identified by Villain in 1979 [27], is a frus-

trated state in which only local correlations between spins exist and there is no

long-range order, but the spins do not freeze and remain dynamic down to low

temperatures [25]. It can be realised theoretically by extending the frustrated an-

tiferromagnetic triangle to kagome and pyrochlore lattices as described above [13].

Cooperative paramagnetic spins on the antiferromagnetic pyrochlore lattice order

under the constraint ΣiSi = 0 for each tetrahedron, where i runs over all spins

on the tetrahedron. Tb2Ti2O7 has been proposed as a physical realisation of this

state, and remains unfrozen down to 0.07 K [28], but work since has complicated

this characterisation and suggested it has some spin-ice like properties and may

even be a form of quantum spin ice [26, 29].

Other pyrochlores such as Er2Sn2O7 and Er2Ti2O7 realise the ‘XY antiferro-

magnet’, a sort of inverse of the Ising spin in which the spins can rotate freely in

the plane perpendicular to the [111] axis: an easy-plane anisotropy. These enter

ordered ground states at 0.1 K and 1.2 K respectively [26], the latter by an ‘or-

der by disorder’ transition in which a ground state is stabilised from a degenerate
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manifold by quantum fluctuations [30].

As is evident pyrochlores manifest a wide variety of magnetic behaviour. How-

ever one class replicates the physics of the original water ice frustrated system

much more closely, and so has been termed ‘spin ice’.

1.4 Spin Ice

In 1997 Harris et al. [14] discovered a magnetic equivalent to the proton degeneracy

of water ice in the ferromagnetic pyrochlore Ho2Ti2O7 (HTO).

In HTO, Ho3+ ions are arranged in a tetrahedral lattice as shown in figure 1.6.

The crystal field experienced by the holmium ions creates a ground state doublet

dominated by the mJ = |8〉 states of the 5I8 free ion state, with the resultant

easy-axis anisotropy producing effective Ising spins constrained to point along the

〈111〉 direction that connects the centre of each pyrochlore tetrahedron with its

neighbours. This structure could also be considered a diamond lattice with the

Ho3+ ions situated on the bonds between lattice sites, and from that perspective

forms a clear analogy with the proton bond structure of water ice, as shown in

figure 1.3.

This structure was discerned using elastic neutron scattering, a technique in

which the nuclear and magnetic structure of the sample is used to scatter incident

neutrons, which have an inherent magnetic moment [13]. In 2001 Bramwell et al.

[32] presented diffuse neutron scattering results that demonstrated conclusively

that holmium titanate has a spin ice structure. These results are displayed in

figure 1.7. This paper also settled a dispute regarding the nature of HTO which

will be summarised in section 3.2.

A theoretical precursor to this spin ice structure had been outlined by Ander-

son in 1956 [34]. It consisted of antiferromagnetic Ising moments on the same

pyrochlore lattice, with Ising axis parallel to a global z-direction. However, this

global z-preference violates the cubic symmetry of the pyrochlore lattice, and the

spin system remained a theoretical curiosity with no real material counterparts

[32]. The innovation of Harris et al. was to realise that ferromagnetic Ising spins

parallel to the local axis have the same relations to their neighbours as antiferro-

magnetic spins with a global parallelism. This local parallelism also preserves the
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Figure 1.6: Pyrochlore crystal unit cell. Magnetic rare earth ions are situated on the tetrahedral
vertices, nonmagnetic ions at tetrahedon centres. Oxygen structure is not shown. Spins exist
on the tetrahedral lattice, while emergent monopoles exist on the diamond lattice. Reprinted by
permission from Macmillan Publishers Ltd: Nature (Castelnovo et al. 2008 [31]), copyright 2008

cubic symmetry of the pyrochlore crystal.

It is surprising that a ferromagnet, which prefers all magnetic moments to

point in the same direction, should exhibit frustration, macroscopic degeneracy

and no long range order. It is variable direction of the Ising axes that allows this:

it impossible for a tetrahedral cell to simultaneously align four Ising spins at its

vertices with axes passing through the centre of the cell. Consider the case shown

in figure 1.9, where the top spin has been oriented upward and then the bottom

three spins oriented to be as closely aligned with the top spin as permitted by

the lattice geometry. The interaction energy of the top spin with each of three

base spins has been minimised. However, if the perspective of one of the three

www.nature.com
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Figure 1.7: Image (a) is the experimental neutron scattering pattern of HTO at T = 50 mK.
Intensity increases from dark blue to dark red. Images (b) and (c) are the predictions of the
nearest neighbour and dipolar spin ice models at 0.15 K and 0.6 K respectively, with the region
investigated in image (a) marked. Reprinted figure with permission from [S. T. Bramwell et al.,
Physical Review Letters 87, 047205 2001 [32]. Copyright 2001 by the American Physical Society.

base spins is considered, while its interaction energy with the top spin has been

minimised, its interaction energy with the other two base spins is maximised, as

they are pointing relatively toward one another.

The minimum total energy is obtained by having two spins point in and two

out on each tetrahedron. There are six degenerate configurations satisfying this

condition, which are shown in figure 1.10. For each configuration, each spin on a

tetrahedron is parallel to two of the other spins and antiparallel to the third.

The ground state of holmium titanate is this 2-in 2-out formation on each

individual tetrahedron. This is an exact map to the 2-close 2-distant ice rules

for proton ordering. Hence, holmium titanate was identified as the first ‘spin
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Figure 1.8: Specific heat (a) and entropy (b) of DTO in zero and 0.5 T field. In inset, the
inverse magnetic susceptibility of DTO. Reprinted by permission from Macmillan Publishers
Ltd: Nature (Ramirez et al. 1999 [33]), copyright 1999.

ice’. The closely related compound dysprosium titanate (Dy2Ti2O7, DTO) was

found to also exhibit spin ice behaviour and a 1999 thermal study by Ramirez

et al. [33] confirmed the entropy change between zero and high temperature to

correspond to the ground and maximum ice entropies predicted by Pauling, as

well as producing the first example of the characteristic Schottky anomaly specific

heat form. A Schottky anomaly [13] is a broad peak caused by elements of the

system transitioning between a ground and an excited state, in this case ice rule

and non-ice-rule spin configurations on tetrahedra. These results can be seen in

figure 1.8 reproduced from their paper.

www.nature.com
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Figure 1.9: Ice-rule violating tetrahedron with all spins aligned with top spin. Modified from
‘Spin Ice State in Frustrated Magnetic Pyrochlore Materials’ by S.T. Bramwell and M.J.P. Gin-
gras, Science 2001 [2]. Reprinted with permission from AAAS.

In later work, spin ice behaviour has been observed in Ho2Sn2O7 [35] (HSO),

Ho2Ge2O7 [36] (HGO), Dy2Sn2O7 [37] (DSO), Dy2Ge2O7 [36] (DGO), outlining a

broad range of dysprosium and holmium spin ices.

There has also been work [38] investigating a potential class of spin ices in

which quantum fluctuations of the ice rules manifold create new types of excitation.

These ‘quantum spin ices’ will be introduced in more detail in chapter 5, in which

a suggested [8] quantum spin ice praseodymium zirconate (Pz2Zr2O7, PZO) will

be examined.

Beyond the pyrochlores, the spinel crystal CdEr2Se4 [39] (CES) has also been

identified as a spin ice. DTO, HTO, PZO and CES will all be examined in this

thesis.

Beyond the natural ices, recent years have seen the creation of ‘artificial spin

ices’ from larger-scale magnets which display a range of similar and related be-

haviours [40, 41].
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Figure 1.10: The six degenerate ice-rule following spin configurations of a tetrahedral lattice site
in spin ice. Modified from ‘Spin Ice State in Frustrated Magnetic Pyrochlore Materials’ by S.T.
Bramwell and M.J.P. Gingras, Science 2001 [2]. Reprinted with permission from AAAS.

1.4.1 Dipolar Spin Ice

An unusual property of holmium and dysprosium spin ices is the relative strength

of their exchange and dipole interactions. In most materials where they coexist,

the exchange interaction is the dominant effect [13], however in spin ice the two are

of similar strength due to a strong magnetic moment and weak exchange coupling,

and so the dipole interaction cannot be discounted [42]. The dipolar spin ice

Hamiltonian was written down by den Hertog et al. in 1999 as [43]

Ĥ = −J
∑
<i,j>

Si · Sj +Dr3
nn

∑
i>j

[
Si · Sj
|rij|3

− 3(Si · rij)(Si · rij)
|rij|5

]
(1.80)

where J is the exchange coupling, D the dipole-dipole coupling and rnn the dis-

tance between nearest neighbour rare earth ions. rij acts as a unit of measurement.
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The first term represents the exchange interaction and the second the dipolar in-

teraction, which decays as |rij|−3 and so is long range. This long-range interaction

presents a problem for the macroscopic degeneracy of spin ice, as it could render

the energy of a given tetrahedron dependent on the configuration of neighbouring

or more distant tetrahedra and so split the degeneracy of the ground state.

Monte Carlo simulations [44] by B. C. den Hertog and M. J. P. Gingras in 2000

[43] suggested that the dipole interactions were on the contrary responsible for

the spin ice behaviour, and were capable of overriding antiferromagnetic exchange

interactions at nearest-neighbour distances. In 2004 Isakov et al. [45] found analyt-

ically that the dipole interaction is almost perfectly self-screening when projected

over long distances and reduces to a near-neighbour effect. This ‘projective equiv-

alence’ means the effective interaction of the spins is entirely nearest-neighbour.

Further neutron scattering work by Fennell et al. [46] made a detailed experimen-

tal test of this in 2009. The combined role of the exchange and dipole interactions

in nearest-neighbour interactions can be expressed with an effective exchange con-

stant

Jeff = Jnn +Dnn (1.81)

where Jnn is the nearest neighbour exchange energy and Dnn the nearest neighbour

dipolar energy [32]. A consequence is that so long as Jeff > 0, the material may

be ferromagnetic and exhibit spin ice properties, even if Jnn is antiferromagnetic,

as is in fact the case in holmium titanate [32] and dysprosium titanate [43].

1.5 Electrolytes

An electrolyte is a solution of charged ions. It consists of solvent molecules, in

which are mixed compound, undissociated and dissociated ions. Electrolytes are

considered ‘weak’ or ‘strong’ depending on whether the degree of molecular disso-

ciation is small or large respectively. This is not to be confused with the dilution

of the electrolyte.
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1.5.1 Debye-Hückel Theory

Debye-Hückel theory was created in 1923 [47] by P. Debye and E. Hückel. It is

a theory of the free energy arising from electrostatic interactions between ions in

solution. A change in free energy will have consequences for other thermodynamic

quantities such as the specific heat and the entropy, and so modelling it is of

theoretical interest. The theory presented here is taken from the presentation in

Moore [48].

As charges in a gas are subject to the Coulomb interaction, their distribution

will not be random. Charges will attract charges of the opposite sign and so the

charge atmosphere around each ion in equilibrium will have charge opposite to that

of the ion itself. In the extreme situation of dominating electrostatic interaction the

ions would achieve an order akin to that of an ionic crystal, but the thermal energy

of the solution represented by kinetic collisions prevents such an ideal ordering.

Nevertheless the atmosphere will have a net electrostatic energy.

First, the potential Φ experienced by a representative ion due to the other ions

muse be determined. This potential derives from the ionic atmosphere, which is

considered to be symmetric, and is related to the charge density by the Poisson

equation:

1

r2

d

dr

(
r2dΦ(r)

dr

)
=
−ρ
ε0ε

(1.82)

with Φ(r) the potential, ρ the charge density of the atmosphere, ε0 the permittivity

of free space and ε the permittivity of the electrolyte. To obtain a solution, ρ must

be formulated as ρ(Φ) and substituted into equation 1.82. The charge density ρ is

defined by the distribution of charges, and the number of charges of type i in unit

volume that have energy Ei above the average E0 is given by

N ′i = Nie
−Ei/kT (1.83)

where Ni is the total number of charges of type i in unit volume. To bring a charge

Qi into a region of potential Φ requires work QiΦ, and the energy of all charges

can be defined this way. The average of this work across the whole solution of

positive and negative charges will be zero, so all E0 = 0. Therefore state:
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N ′i = Nie
−QiΦ/kBT (1.84)

Charge density ρ in a unit volume is the sum of the charge per unit volume of

each type of charge.

ρ =
∑

(QiN
′
i) =

∑(
QiNie

−QiΦ/kBT
)

(1.85)

To simplify this one can make an important approximation. If the charges are

sufficiently sparse or the temperature sufficiently high relative to their interaction

energy, we can take −QiΦ/kBT � 1. The start of the expansion of the exponential

e−QiΦ/kBT is:

e−QiΦ/kT = 1− QiΦ

kBT
+

1

2!

(
QiΦ

kBT

)2

(1.86)

which if terms in QiΦ/kBT to the second power or higher are negligible, gives:

ρ =
∑

(QiNi)−
∑(

QiNi
QiΦ

kBT

)
=
∑

(QiNi)−
Φ

kBT

∑(
Q2
iNi

)
(1.87)

That this linearisation of the exponential only holds for low concentrations or high

temperatures represents a problem for Debye-Hückel theory, as one may often want

to investigate the properties of an electrolyte that is not highly dilute.

The electrolyte is assumed to be overall charge-neutral, so the first term van-

ishes:

ρ = − Φ

kBT

∑
Q2
iNi. (1.88)

With this equation ρ(Φ) has been obtained, so can be substituted into equation

1.82:

1

r2

d

dr

(
r2dΦ(r)

dr

)
=

Φ
∑
Q2
iNi

kBTε0ε
(1.89)

d

dr

(
r2dΦ(r)

dr

)
= Φr2κ2 (1.90)

where

κ2 =

∑
Q2
iNi

kBTε0ε
(1.91)
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κ−1 is called the Debye length lD.

To solve equation 1.90, substitute u = rΦ:

d

dr

(
r2d

u
r

dr

)
= κ2ru (1.92)

simplifying by the chain rule to obtain:

d2u

dr2
= κ2u (1.93)

allowing a standard exponential solution:

u = Ae−κr +Beκr, (1.94)

Φ =
A

r
e−κr +

B

r
eκr. (1.95)

Examining the boundary conditions, the Coulomb field of the central charge

must vanish as as r approaches infinity, and so must the net field of the pertur-

bation it creates in the charged atmosphere, as that is itself caused by the central

charge field. So the total potential Φ of these fields must also vanish. e−r/r con-

verges to zero in the limit of infinite r, however er/r does not, so B = 0, leaving:

Φ =
A

r
e−κr (1.96)

which is the screened Coulomb potential. To find the value of A, substitute back

into equation 1.82:

1

r2

d

dr

(
r2d

A
r
e−κr

dr

)
=
−ρ
ε0ε

(1.97)

ρ =
−Aκ2ε0ε

r
e−κr (1.98)

This is the charge density of the monopole cloud around a single charge. But

the total net charge of the cloud must be equal to the charge of the central charge,

as the Coulomb gas is overall neutral. Therefore, integrating charged shells from

the lattice distance a out to infinity,
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∫ ∞
a

4πr2ρ(r)dr = −Qi (1.99)

Aκ2ε0ε∫ ∞

a

4πre−κrdr = Qi (1.100)

Aκ2ε0ε

Qi

=
κ2eκa

4π(1 + aκ)
(1.101)

A =
Qi

4πε0ε

eκa

1 + κa
(1.102)

The final result for Φ is:

Φi =
Qi

4πε0ε

eκa

1 + κa

e−κr

r
(1.103)

This is the potential around a charge in a free Coulomb gas sufficiently dilute

that QΦ � kT . This potential is formed from the Coulomb potential of the

charge plus the potential contributed by the ionic atmosphere. This form is that

of a screened Coulomb potential, with the electrostatic force exerted by the central

charge screened by its tendency to surround itself with opposite-sign charges. The

effect of this screening is encapsulated in the Debye length κ−1 = lD, which is

the approximate distance over which the influence of one charge extends before it

is screened out by the electrostatic fields of other charges. This quantity is also

called the ‘thickness of the ionic atmosphere’ [48].

Now Debye-Hückel theory can be used to estimate the additional Coulomb

energy obtained by introducing an ion to the Coulomb gas. First split the potential

into its atmospheric and central components:

Φi =
Qi

4πε0εr
+

Qi

4πε0εr

(
eκa

1 + κa
e−κr − 1

)
= Φic + Φia (1.104)

No atmospheric ions can approach closer than a, so the potential due to the

atmosphere at the central site will be equal to the atmospheric potential at r = a.

Φia,r=a =
Qi

4πε0εa

(
eκa

1 + κa
e−κa − 1

)
= − Qi

4πε0ε

(
κ

1 + κa

)
(1.105)
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From this the energy required to introduce an ion of charge Qi into the ionic

atmosphere can be determined. Integrate the potential from 0 to Qi:

∆Ei =

∫ Qi

0

ΦdQ′i = −
∫ Qi

0

Q′i
4πε0ε

(
κ

1 + κa

)
dQ′i = − Q2

i

8πε0ε

κ

1 + κa
(1.106)

This energy will feature prominently later as the Coulomb correction to the

chemical potential, νiC :

νiC = − Q2
i

8πε0ε

κ

1 + κa
= −kBT

lT i
a

κa

1 + κa
= −kBT

lT
lD + a

(1.107)

where lT i is the Bjerrum length associated with the ion type:

lT i =
Q2
i

8πε0εkBT
. (1.108)

The Bjerrum length is the distance at which the Coulomb interaction between two

charges matches the thermal energy scale kBT .

1.5.2 Conductivity

Electrolytes can conduct electrical charge due to the mobility of the dissolved ions.

At the most basic level, the presence of an electric field will exert force on ions in

the electrolyte:

F = qE. (1.109)

However, the ions do not exist in a vacuum where they can move freely without

competing interactions, but in a solvent medium. There are three effects that

retard ion motion in electrolytes.

The ion is physically obstructed by the other atoms in the solvent (more pre-

cisely, by mutual electron repulsion if it moves too close). This obligates it to move

not in a straight line but in a biased Brownian path as it finds gaps in the liquid

solvent, causing acceleration to be frequently halted. This is the ‘viscous effect’.

The viscous effect impedes all movement through a viscous medium. However

there are two other effects particular to ions. First, we have seen above in the
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treatment of Debye-Hückel theory that ions attract an oppositely-charged ionic

atmosphere. When an ion moves, this atmosphere will not move with it immedi-

ately, but will take time to reform around the ion, and will be persistently chasing

it if the ion movement is fast enough. This means there will be an oppositely-

charged region of the electrolyte centred on the place the ion just left, which will

attract it back to its original location. This creates a drag on ion movement called

the ‘asymmetry effect’.

Secondly, the ionic atmosphere will itself move under the electric field, in the

opposite direction to the central ion. These moving ions will in turn move solvent

molecules along with them, producing a current in the solvent medium against the

central ion motion. This is called the ‘electrophoretic effect’.

1.5.3 Wien Effect

Conductivity is typically described by Ohm’s law [9]:

i = κE (1.110)

where i is the current density (Am−2), E is electric field, and κ is the conductivity, a

constant independent of the magnitude of E. However, experiments demonstrated

that the conductivity of electrolytes deviates from Ohm’s law above low values of

E. This phenomenon is explained by the first and second Wien effects [48].

The first Wien effect is connected to the ionic atmosphere. As the applied field

increases, the drift velocity increases, and will eventually overwhelm the random

Brownian motion, creating a permanent movement in the field induced direction

and preventing the formation of an ionic atmosphere. This eliminates the elec-

trophoretic effect that retards ion conduction.

The second Wien effect is called the ‘field dissociation effect’. A weak elec-

trolyte has a certain ‘degree of dissociation’ α which describes the number of ions

that exist as free ions relative to the number that remain in bound or closely asso-

ciated pairs. A dissociatable compound of positive (P) and negative (N) ions can

undergo the following reversible reaction:

PN = P+N− = P+ + N− (1.111)
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An applied field will act on the second step. It applies a force in opposite

directions on the positive and negative ions, which will tend to separate them.

Onsager [49] found in 1934 that for a strong field acting on a weak electrolyte, the

ratio of dissociation constant in field to zero field was given by

K(E)

K(0)
=
J1

(
4
√
−b/2

)
2
√
−b/2

(1.112)

where J1(X) is the first order Bessel function, and

b =
e3|E|

8πε0εk2T 2
. (1.113)

For b < 3 this can be approximated by the power series

K(E)

K(0)
= 1 + b+

b2

3
+
b3

18
+

b4

180

b5

2700
+ ..., (1.114)

while for b > 3 this can be approximated by

K(E)

K(0)
=

(
2

π

)1/2

(8b)−3/4e(8b)1/2

. (1.115)

1.6 Experimental Techniques

1.6.1 Magnetisation

The heat capacity measurements presented in this thesis were primarily taken using

the magnetometry probe of a Quantum Design Physical Property Measurement

System (PPMS).

Magnetisation can be measured in ‘d.c.’ or ‘a.c.’ form. To measure d.c.

magnetisation, the sample is held in a nonmagnetic sample mount and exposed

to the appropriate magnetic field. Then, the sample is passed through a set of

conducting coils. The movement of a magnetised sample though the coil induces

a voltage in accordance with equation 1.3. This current can be used to derive a

value for the field generated by the magnetic moments inside the sample, and so
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a value for the net magnetisation.

To measure a.c. magnetisation, the sample is positioned inside one of two

detection coils, and then a driving field is applied by a drive coil. The field is

allowed to cycle repeatedly and the measurements are averaged over the cycles to

eliminate noise. The measurement is then repeated on a counter-wound coil, and

this result again averaged.

The instruments themselves introduce error into the measurement due to time

lag in the coil and electronics, which introduces a phase shift. This time lag may

vary with the experimental parameters such as temperature, field and frequency.

Eliminating this error source requires calibrating for the phase shift during each

measurement.

1.6.2 Heat Capacity

Thermodynamics defines many quantities of theoretical interest, but not all of

them are amenable to direct measurement. One easily accessible quantity is heat

capacity, which gives access to the entropy and other quantities. This quantity is

the focus of the investigation of Debye-Hückel theory in this thesis.

The heat capacity measurements presented in this thesis are primarily taken

using the calorimetry probe of a Quantum Design PPMS. In this method the

sample is mounted on a platform using thermal grease to ensure good thermal

and mechanical coupling. The platform in turn is suspended in vacuum by wires,

which form a weaker thermal link to the rest of the apparatus, which functions as

a heat bath.

To take a measurement, the platform and the surroundings are stabilised at a

test temperature. Then power is applied to a heater in the sample platform for a

determined length of time, raising its temperature and that of the sample. The

power is terminated, and the sample platform is allowed to relax to match the

surroundings. The platform temperature is monitored throughout this process,

and together with the heater power data provides the raw experimental data.

The heat capacity of the sample can be extracted by fitting the relaxation

profile to a theoretical model. The PPMS instrument uses two models, one that

assumes perfect thermal contact between the sample and the platform, another
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that introduces separate sample-platform and platform-surroundings relaxation

times.

The simple model is based on the equation:

P = (Ca + Cx)
dTp
dt

+K1(Tp − T0) (1.116)

where P is the heater power, Ca and Cx are the heat capacities of the sample and

the addendum (the remainder of the complex added to the platform, e.g. thermal

grease), Tp and T0 are the sample and bath temperatures respectively, K1 is the

thermal conductance between sample and bath and t is time. The equation can

be integrated and fitted to empirical Tp vs. t data to yield the unknown Cx.

The more complex model is based on the simultaneous differential equations:

P = Ca
dTp
dt

+K2(Tp − Tx) +K1(Tp − T0) (1.117)

0 = Cx
dTx
dt

+K2(Tx − Tp) (1.118)

where K2 is the thermal conductance between sample and platform and Tx is

the sample temperature. For K2 � K1, Tp = Tx is a good approximation and

equations 1.117 and 1.118 simplify to equation 1.116.

In 2014 Bovo et al. [50] investigated the accuracy of these methods by ex-

amining the performance of the PPMS specific heat measurements on bulk and

thin film spin ice, whose small heat capacity makes accuracy essential. They

highlighted two potential sources of error: K2/K1 not being large enough, requir-

ing the decision by the system to use the full thermal equations, and a strongly

temperature-dependent Cx.

If K2/K1 is not large, the relaxation has two time constants τ1 and τ2, for the

coupling of the platform to the bath and the sample to the platform respectively.

In the event that τ2 is small, the least squares fitting procedure is unreliable, so

the system adopts the simplified model of equation 1.116. Bovo et al. [50] however

found that the error introduced by the simplified model was negligible. If Cx is

strongly temperature-dependent, the investigation found that the fitting procedure

introduced significant errors, but only for heating pulse times significantly longer

than those used in specific heat experiments.
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The PPMS system automatically selects the relaxation model that is most

appropriate for a particular measurement and sample. As the usage of the PPMS

in the current work is an entirely conventional specific heat measurement of bulk

spin ice samples, like those tested by Bovo et al. [50], no significant systematic

error is expected. Single standard deviation random errors are introduced by the

instrument.
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Chapter 2

Magnetic Monopoles in Spin Ice

Just as the ground state of water ice is equivalent the ground state of spin ice,

there exists an analogy between a form of thermal defect in 1h water ice and a form

of thermal defect in spin ice. A violation of the ice rule for a given oxygen atom

in water produces an electrically charged ‘ionic defect’ with either three (H3O+)

or one (OH−) protons near to it [24]. Likewise a given tetrahedron obeying the

ice rule may be transformed into a 3-in-1-out (3-1) or 1-in-3-out (1-3) defect by

flipping one of its four spins [3]. Such defects are created in pairs, as a proton

or spin in an ice connects two sites, and moving the proton or flipping the spin

in an otherwise ice-rule configuration creates a defect on both. At higher energy

cost, 4-0 (H4O2+) and 0-4 (O2−) ‘double defects’ carrying twice the charge can be

created, and these are essential to the physics of spin ice in the high-temperature

regime.

In 2005 Ryzhkin [3] demonstrated that such magnetic defects carry effective

positive and negative magnetic charges. This result was independently obtained

and reinforced in 2008 by Castelnovo, Moessner and Sondhi (CMS) who explicitly

identified such charges as ‘magnetic monopoles’ [31]. Figures 2.1 and 2.2 from their

paper demonstrate the phenomenon visually. The quasiparticles are not monopoles

in the fundamental sense of divergences in the magnetic field B. However if ex-

amined above the atomic scale they constitute opposite divergences in the fields

H and M [3, 31] which sum to prevent a violation of the Maxwell equations, and

exhibit many properties appropriate to independent and disconnected north and

63
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south poles. So magnetic charge density can be defined:

q = −∇ ·M (2.1)

Figure 2.1: a) A pair of dipolar model ice sites in the ground state. b) The same pair with the
connecting spin flipped, producing two monopoles. c) A pair of dumbbell model ice sites in the
ground state. d) The same pair with the connecting dipole flipped. Reprinted by permission
from Macmillan Publishers Ltd: Nature (Castelnovo et al. 2008 [31]), copyright 2008.

A chain of identical dipoles generates an H field equivalent to that of two

magnetic charges, each placed at one end of the chain[12]. Once a defect pair

has been created in spin ice, it can be extended by further spin flips or proton

movements (see Figure 2e). If a 3-1 or 1-3 defect exists on a site adjacent to a

2-2 site and is connected to that site by one of the three majority spins, flipping

that spin will return the defect site to a 2-2 configuration but alter the 2-2 site to

an equivalent defect configuration. In effect, insofar as we consider the defect a

quasiparticle in its own right, it has moved from the initial site to the second. Such

an operation makes no net change to the nearest-neighbour dipole configuration

and so costs no energy in itself [31]. This is in contrast to a similar operation

of extending a dipole flip chain in, for example, a conventional ferromagnet. The

energy cost that does exist is entailed by the violation of the ice rules and is
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Figure 2.2: A network of dumbbell sites with a monopole pair separated by a spin chain.
Reprinted by permission from Macmillan Publishers Ltd: Nature (Castelnovo et al. 2008 [31]),
copyright 2008.

determined by the distance between the two defects, and is a Coulomb interaction

[31]:

E =
−µ0q

2
m

4πr
(2.2)

where µ0 is the permeability of free space, qm is the monopole charge, and r is

their separation. Compare the electrostatic Coulomb interaction between charges

of like magnitude [9]:

E =
−q2

e

4πε0r
(2.3)

where µ0 substitutes for its electric equivalent 1/ε0.

This energy is bounded as the dipoles are separated to infinity and so the

defects are not only mobile but are deconfined, and not restricted to remain near

one another except by the physical limits of the crystal [31].

Furthermore, the defects once created cannot in general be uniquely identified

with a partner by a single or even small number of dipole chains. In spin ice one can

draw arbitrary chains by entering each tetrahedron on an in-spin and leaving on
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Figure 2.3: Representation of a 2D square spin lattice. The red arrows describe a closed loop. The
blue arrows describe a spin chain terminating on the surface. The green and purple arrows present
two alternative spin chains connecting the monopoles, represented by black circles. Similar
topological features are present in a 3D diamond spin lattice.

one of the out-spins. In the ground state configuration, if every dipole is traversed

only once, all chains chosen may only terminate on the crystal surface or close

upon themselves and form a loop. However in a configuration with defects, such a

chain may terminate on a defect. In such a circumstance a summation of all chains

in one chosen configuration will reveal net charge at each defect site, but there are

a very large number of possible chain networks that could be drawn, each valid

and revealing the same result. The historical dipole chain the defect traversed is

irrelevant to the physics of the system except in extreme ordering cases. Figure

2.3 shows a sample spin configuration in a two-dimensional spin ice network that

illustrates these features.

This picture of unconstrained monopoles in an open sea is not perfect. The

charges are defined by and so constrained by the vector geometry of the spin lattice.
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A defect of a given polarity can move from one site to another by flipping a spin

from one particular orientation to the opposite orientation. Movement of charges

in one direction and their opposed charges in the opposite direction will polarise the

spin network. This introduces a fundamental geometric constraint on monopole

motion, in that the same spin cannot be traversed by the same charge of monopole

in the same direction consecutively, but even at low monopole concentrations the

polarisation reduces the entropy of the network. This is analogous to the theory

of electrical relaxation in ice via proton movement derived by Jaccard in 1964 [51].

In zero field this constraint is not critical, but if the crystal is exposed to a

magnetic field then all defects of one type will move with the field, and their

opposites will move against it. This movement will rapidly polarise the network

and produce a counteracting force that halts the magnetic current. Due to this

constraint, it is impossible to sustain DC magnetic currents even in an infinite

spin ice crystal [42]. When the crystal is polarised in this way, the Dirac strings

become observable by diffuse neutron scattering as reported by Morris et al. in

2009 [52].

A 2011 theoretical result by Ryzhkin [53] shows that the DC current inhibition

also hampers the ability of such crystals to screen external magnetic fields. Even

in zero field it has been proposed that this constraint affects monopole dynamics

by realising an ‘entropic charge’. The work on this possibility will be discussed in

section 3.1.4.

2.1 Dumbbell Model

An approximation of the dipolar model (see section 1.4.1) to a dumbbell model is

used by Castelnovo et al. in their 2008 paper. [31]. In this model each magnetic

dipole is transformed into a ‘dumbbell’ with a positive magnetic charge at one end

and a negative charge at the other. Each charge is situated at the centre of one of

the tetrahedra.

Given N dumbbells, corresponding to dipoles, each with a magnetic charge q

or −q at either end, we have 2N charges labelled qi where i = 1, 2, ..., 2N . Now

if we define that identically located charges have a same-site-interaction energy

factor νS, and otherwise a Coulomb interaction, we obtain:
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Vij =

{ µ0qiqj
4πrij

, rij 6= 0

νSqiqj, rij = 0
, (2.4)

where Vij is the interaction energy between charges i and j and rij their separation,

and other symbols have their usual meaning.

Each diamond lattice site is the meeting point of four dumbbells, so contains

four charges. Summing the charges at each site a obtains Qa = qa1 +qa2 +qa3 +qa4,

and then for sites a, b, ...:

Vab =

{ µ0QaQb
4πrab

, a 6= b
1
2
νSQ

2
a, a = b

. (2.5)

The quantity 1
2
νSQ

2 is equal to the ν0 defined in section 3.1.2.

In their paper [31] Castelnovo et al. derive a value for νS:

νS =

(
a

µ

)2
(
J

3
+

4

3

[
1 +

√
2

3

]
D

)
(2.6)

where a is the diamond lattice constant, µ the magnetic moment of the spins, and

J and D the exchange and dipolar coupling constants respectively [2]. However in

the work presented in this report the monopole energy is occasionally allowed to

float as a fitting variable.

This approximation automatically gives ‘projective equivalence’ (discussed in

section 1.4.1), as each 2-in 2-out tetrahedron will have a net charge of zero at

all points, and so no net influence on the rest of the dumbbells. Only when the

spin ice state contains defects will local charge exist, as in such cases there will

be three charges of one sign and one of the opposite at the defect site, resulting

in a net charge of magnitude 2q. In the most extreme case, four charges of one

sign may occupy a single lattice site to produce a charge of magnitude 4q. These

net charges will mean the other charges in the dumbbell network experience a net

magnetostatic force from the defect site.
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2.2 Magnetolyte Model

The final abstraction of spin ice physics is to consider it as a system of monopoles

in the grand canonical ensemble. At this point we have abstracted quite far from

the magnetic-pyrochlore basis, but the model is nevertheless remarkably effective

at describing the physics of spin ice above the ground state.

In this model the material is understood as a vacuum from which magnetically

charged quasiparticles emerge. The particles move diffusively between sites on a

diamond lattice and interact via the Coulomb interaction, forming a Coulomb gas

[42]. This picture of a Coulomb gas of particles corresponds closely to a classical

electrolyte, a surprising result given the very different physical realities underlying

the two.

However, the correspondence is not perfect. Magnetic charge quasiparticles

exist on a lattice rather than in free space, which constrains their motion. Fur-

thermore, even if one defines an electrolyte on a lattice, the spin ice magnetolyte

is constrained by the configurations of the underlying spin network. Importantly,

sustained DC currents are impossible in a magnetolyte due to polarisation of the

network by the monopole movement [42], as discussed at the start of this chapter.

Of the effects on conduction in electrolytes described in section 1.5.2, not all are

applicable to magnetolytes. The viscous and electrophoretic effects are dependent

on the particular microscopic physics of electrolytes, and will not apply to the

magnetolytes, which have no solvent medium. However spin ice defects do not

gain momentum and must search for permissible spin-flip routes to move through

the diamond lattice, which is an effect similar to the viscous effect.

2.3 Debye-Hückel Theory for Magnetic Monopoles

If spin ice is modelled as a gas of magnetic charges, it can be treated with the same

techniques, despite its radically different microscopic nature. The possibility of this

unlikely union was first demonstrated by Castelnovo, Moessner and Sondhi [4] in

2011. Their derivation of Debye-Hückel theory, presented below, produced the

theoretical specific heat seen in figure 2.4 reproduced from their paper, compared

against experimental data. The theory has some success at low temperatures but
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less as temperature increases. Also shown in figure 2.4 is their interpretation of

the effective limits of Debye-Hückel theory, which halts at 2 K, beyond which they

contend, in line with typical interpretations of Debye-Hückel theory, that high

monopole density causes the theory to break down. However, even for T < 2 K

their theory diverges significantly from the experimental data.

Figure 2.4: Upper figure: Regions of DTO physics according to Castelnovo et al.. Note pro-
posed end of Coulomb phase at 2 K. Lower figure: heat capacity of DTO. Black squares are
experimental results, solid blue line is CMS Debye-Hückel theory with ν0 = 4.37 K, dashed cyan
line is CMS Debye-Hückel theory with ν0 = 4.57 K. Reprinted figures with permission from
C. Castenovo et al., Physical Review B, 84, 144435, 2011 [4]. Copyright 2011 by the American
Physical Society.

The CMS derivation takes a different approach to the derivation of a Debye-

Hückel theory to the derivation given in section 1.5.1. To begin their derivation

they describe a system of non-interacting monopoles. They write internal energy

http://dx.doi.org/10.1103/PhysRevB.84.144435
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U as:

U = N∆ = Ntx∆, (2.7)

where N is the monopole count, ∆ is the energy cost of an isolated monopole

(measured here in Kelvin), Nt is the pyrochlore lattice site count, and x is the

dimensionless monopole density N/Nt. N monopoles will consist of N/2 positive

and N/2 negative monopoles, which can be organised among Nt lattice sites in W

ways:

W =
Nt!

(N/2)!2(Nt −N)!
. (2.8)

Nt and N are assumed large, so using Stirling’s approximation and equation 1.59:

S = −kBNt[2(x/2)ln(x/2) + (1− x)ln(1− x)]. (2.9)

This allows the definition of the free energy per spin:

Fnn
Ns

=
UkB − TS

Ns

(2.10)

where Ns = 2Nt is the spin count. The kB attached to U converts the units of ∆

to Joules.

Minimising this, they obtain an expression for monopole density:

xnn =
2e−∆/T

1 + 2e−∆/T
. (2.11)

This is a Boltzmann distribution over the partition function for a system of two

types of monopole and one type of ground state site.

This result is only for non-interacting monopoles. To account for the Coulomb

interaction between monopoles they deploy the following approximation used by

Debye and Hückel in 1923:

Fel
NsKB

= − NT

4NsπxV a3
d

[
(adκ)2

2
− (adκ) + ln(1 + adκ)

]
, (2.12)

where κ is the Debye length seen in equation 1.91. xv is the volume density of
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monopoles, N/V . This simplifies to

Fel
NsKB

= − T

3
√

3π

[
(adκ)2

2
− (adκ) + ln(1 + adκ)

]
. (2.13)

This expression allows the definition of a mean-field free energy per spin, mea-

sured in Kelvin:

F

NskB
=
x

2
∆+

Tx

2
ln

(
x/2

1− x

)
+
T

2
ln(1−x)− T

3
√

3π

(
α2x

2
− α
√
x+ ln(1 + α

√
x)

)
,

(2.14)

where

α(T ) =

√
3
√

3πEnn
2T

(2.15)

and Enn = (µ0Q
2)/(4πadkB) is the Coulomb energy between a pair of neighbouring

monopoles.

Searching as before for a minimisation of free energy, they find:

d(F/NskB)

dx
= ∆ + T ln

(
x/2

1− x

)
− Enn

2

α
√
x

1 + α
√
x

= 0 (2.16)

x =
2e
−
(

∆
T
−Enn

2T
α
√
x

1+α
√
x

)

1 + 2e
−
(

∆
T
−Enn

2T
α
√
x

1+α
√
x

) . (2.17)

This pair of equations cannot be solved analytically, but CMS solve it numeri-

cally with a recursive approach. However, as discussed later these expressions are

theoretically inaccurate in some respects, and a main result of this thesis is an

improvement of the Debye-Hückel theory of spin ice.

2.4 Monopole Dynamics

The description of the magnetic structure of spin ice in terms of monopoles also

proved a valuable perspective for investigating the magnetic behaviour of spin

ice. If spin ice magnetic defects act as monopoles macroscopically they will be

mobile under field and their flow will partially if not wholly constitute the magnetic

response of the system. The initial theoretical work was done by Ryzhkin in his
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original 2005 paper [3] (after the example of Jaccard 1964 [51]) in which he defined

the ‘configuration vector’ Ω as follows:

Ω(r) =
a

2
Σiασiα

êiα
V

(2.18)

summing over all spins in a macroscopically small volume V around r. σiα defines

the direction of the Ising spin and ê the unit vector along which it points. a is the

diamond lattice constant. Thus, Ω is a quantity measuring the local ‘directionality’

of the spins, with an additional a/2 factor.

Multiplying Ω by the magnetic moment µ of the spins and dividing by a/2

yields the total local magnetic moment M:

M(r) =
2µ

a
Ω(r) (2.19)

So recalling Q = 2µ/a:

Ω = M/Q (2.20)

The change in configuration vector also defines the defect flux. A spin flip will

either move a defect or create a defect pair, which is magnetically equivalent to

moving a defect away from a site on which it was stacked with an opposite defect.

As such a spin flip from e to −e is equivalent to the displacement of a positive

defect by ae or a negative defect by −ae.

dΩ = dr+N+ − dr−N− (2.21)

where N+ is the number of positive defects moved by dr+ and N− the number of

negative defects moved by dr−. In time-dependent form this becomes

∂Ω

∂t
= j+ − j− (2.22)

And in integral form:

Ω(t)−Ω(0) =

∫ t

0

(j+ − j−)dt′ (2.23)
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where j(+,−) is the positive or negative defect flux dr(+,−)/dt×N(+,−)V .

He relates the defect flux to applied field and configuration vector as:

ji = uiniµ0(QiH− ηiΦΩ) (2.24)

where n1,2 is the defect concentration xiN (N the number of tetrahedra, xi the

proportion occupied by defects of type i), u1,2 is the mobility, η1,2 = ±1 and

Φ = (8/
√

3)akT . The permeability of free space µ0 is added to the expression in

his paper [3] due to a difference in units.

Equations 2.23 and 2.24 can be solved for Ω and ji given H(t). Using this and

applying an oscillating field that varies as H ∝ e−iωt, Fourier transformations lead

to

Mω = χT (ω)Hω, (2.25)

χT (ω) =
Q2

Φ[1− iωτ ]
, (2.26)

a theoretical prediction for the frequency dependent magnetic susceptibility. For

a constant field frequency ω is zero so this becomes:

χT = Q2/Φ. (2.27)

2.4.1 Brownian and Other Monopole Motion

In 2013 Bovo et al. [54] presented a study of the mechanisms of monopole dif-

fusion and high-frequency AC response and made an explicit test of Ryzhkin’s

dynamical theory. Monopoles follow diffusive dynamics because they are massless

quasiparticles that ‘move’ via random spin flips rather than massive particles with

substantial momentum, but the more precise nature of these dynamics was not

previously known. Bovo et al. [54] found from relaxation time measurements that

the mobility below 10 K is proportional to 1/T as seen in figure 2.5 from their

paper. This is consistent with the Nernst-Einstein equation describing Brownian

motion [54]:

u =
DQ

kBT
(2.28)
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Figure 2.5: a: Real DTO susceptibility versus frequency. b: Imaginary DTO suscepti-
bility versus frequency. c: Cole-Cole plot (argand diagram) for DTO. Coloured lines are
fits to χT , χS , α and τ from equation 2.29 at temperatures T = 4.5 K (red), T =
8 K (blue) and T = 14 K (green). d: Monopole mobility measured at applied fields
µ0|H| = 0 (fullblack), 3 (fulldarkgrey), 10 (fulllightgrey), 18.5 (openblack), 38.5 (opengrey) mT.
Bars represent standard deviation. Red line is u = A/T , a Brownian diffusion characteristic.
Blue line is u = Be−C/T with B = 39(1) ms−1T−1 and C = 250(1) K, an Orbach-like process
appearing at high temperature. Reprinted by permission from Macmillan Publishers Ltd: Nature
Communications (Bovo et al. 2013 [54]), copyright 2013.
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Figure 2.6: Variance in logarithmic relaxation time σ2
lnτ (circles, bars represent standard devia-

tion) in zero field or the set of applied fields mentioned in fig 2.5. Lines represent fitted function
σ2
1 + xσ2

2 where x(T ) is the monopole density, fitted over the zero field data (red) or finite field
data (green). Shaded areas the maximum systematic error in the monopole density. Reprinted
by permission from Macmillan Publishers Ltd: Nature Communications (Bovo et al. 2013 [54]),
copyright 2013.

where u is the monopole mobility, Q the monopole charge, T the temperature and

D the diffusion constant. D here is temperature independent, and if related to

the monopole hop rate ν0 as D = ν0a
2/6 finds a temperature independent hop

rate. This temperature independence of the hop rate (also noted by Jaubert and

Holdsworth [42] regarding the temperature-invariant τ0 in the Arrhenius equation,

discussed below) is evidence that spin flips in spin ice are a quantum mechanical

tunnelling process.

The Coulomb correlations between monopoles are potentially destructive to

the Brownian nature of their diffusion. However this effect can be suppressed in

practice so long as the Debye screening length is small, in which case there will be

no long-range correlations and the Nernst-Einstein equation will hold [54]. The

existence of Brownian diffusion under this condition is another point of correspon-

dence between spin ice systems and electrolytes.

The relaxation results focused on the relationship between the isothermal sus-

ceptibility χT , the susceptibility in the limit of low frequency (i.e. d.c. field) where
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Figure 2.7: Adiabatic susceptibility χS against temperature. Circles are measured susceptibility
at the same fields as in fig. 2.5, with bars representing standard deviation. The red line is
the monopole density fitted to χS(0) by a scale factor, with the shaded area representing the
maximum systematic uncertainty. Reprinted by permission from Macmillan Publishers Ltd:
Nature Communications (Bovo et al. 2013 [54]), copyright 2013.

the sample can always thermally equilibrate with the environment, and the adi-

abatic susceptibility χS, which is the susceptibility in the limit of high frequency

where heat transfer to the environment is zero. By modifying the theory of Ryzhkin

from his original monopole paper [3], Bovo et al. [54] obtain the relation:

χ(ω)− χS
χT − χS

=
1

1 + (iωτ)1−α (2.29)

where τ is a relaxation time expressible by τ−1 = µ0uQx/V0χT and α is a param-

eter determining the width of the relaxation time distribution. This expression

is based on the Cole-Cole magnetic relaxation model [55] and incorporates said

distribution of relaxation times after a singular time was found to be unable to fit

the data, going beyond the approximations made by Jaubert and Holdsworth [42]

and Ryzhkin [3].

They theorise that the dispersion of rates is due to magnetic fields from the

monopole gas affecting the flipping rates of spins, and find from this an expression
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relating α to the monopole population x, allowing a direct test of the theory. In

figure 2.6 reproduced from their paper, the y-axis quantity σ2
lnτ is the variance in

logarithmic relaxation time, derived from α. It can be seen to be closely correlated

with the theoretical expression σ2
1 + xσ2

2, where σ1,2 are fitted parameters repre-

senting the effect of the mean square static field and mean square monopole field

respectively.

By fitting equation 2.29 to the data Bovo et al. [54] obtain isothermal suscepti-

bility χT values consistent with the previous work of Jaubert et al. [56] predicting

a change in the relation of the susceptibility to the Curie constant with tempera-

ture. Jaubert et al. find the magnetic behaviour of HTO to cross over between a

high temperature (T > 100 K) paramagnetic regime where χT = C/T and a low

temperature (T < 1 K) spin-liquid regime where χT = 2C/T . Bovo et al. find

χT (2 K) = 1.8C/T and χT (10 K) = 1.2C/T for DTO, consistent with Jaubert et

al.’s results. They note that this Curie behaviour of χT is characteristic of a spin

system and reveals no direct monopole signature, and suggest that the entropic

restrictions on DC monopole currents suppress the influence of monopoles at low

frequencies.

At high frequencies, Bovo et al. [54] find an almost linear relationship be-

tween the adiabatic susceptibility χS(T ) and the monopole density x(T ), visible

in figure 2.7. Their theory is that this is due to a plasma-like monopole oscilla-

tion, consisting of a frictionless reversible displacement of magnetic monopoles in

the applied field. This suggests plasma physics as another field of notably non-

crystalline theory with potential to be profitably mined to describe spin ice, and

presents ultra-high frequency a.c. susceptibility measurements as a direct probe of

the monopole concentration in spin ice. It is also notable as a definitely monopolar

theory, in contrast to the spin theory of χT , though it should be noted that the

monopole model is defined in terms of the spin model and the two never conflict,

even if one or the other is more useful in a certain context.

These results, however, are in the T > 2 K region. The fits performed by

Bovo et al. [54] using the expression in equation 2.29 do not describe the low-

frequency, low-temperature behaviour of spin ice, as shown in figure 2.5b from

their paper. As noted by Jaubert and Holdsworth [42] after Snyder et al. [57], the

low-temperature region operates under a different relaxation regime to the plateau
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region where the experimental results of Bovo et al. are concentrated. Despite the

Curie behaviour of the isothermal susceptibility χT even at these temperatures,

the magnetic relaxation behaviour may contain subtleties on which the monopole

model may shed light.

2.4.2 Numerical Study of Monopole Dynamics

Figure 2.8: Experimental spin relaxation time τ of DTO at various temperatures. Three regions
are clearly visible. Figure from [42] using data from [57]. c© IOP Publishing. Reproduced with
permission. All rights reserved.

As mentioned above, in 2011 L. D. C. Jaubert and P. C. W. Holdsworth pub-

lished a detailed numerical study [42] of monopole dynamics.They drew on the

2004 work of Snyder et al. [57], which identified three general regimes of mag-

netic relaxation shown in figure 2.8: a high-temperature regime where the Ising

behaviour of the spins breaks down and the spin ice model becomes inapplicable,

a plateau of relaxation time τ between 3 and 12 K where the monopole population

is saturated, and a low-temperature spin freezing regime where τ increases rapidly.

They found that the plateau region was successfully fitted by an Arrhenius

law with an energy scale equal to the cost of creating a single monopole absent

Coulombic effects, later slightly improved by a modification of this energy to allow
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Figure 2.9: Characteristic spin relaxation time of DTO at various temperatures, experimental
data from [57] and theoretical predictions of Arrhenius models. Black crosses are experimental
data, with dotted guideline. Solid lines are Arrhenius predictions. Note different regions of
success for different Arrhenius energies. Figure from [42]. c© IOP Publishing. Reproduced with
permission. All rights reserved.

for double defect creation. That the cost of a single monopole rather than of a pair

of monopoles defines the Arrhenius energy demonstrates that the monopole pairs

have fractionalised into individual poles. However, as can be seen in figures 2.9

and 2.10, this law fails to predict the relaxation timescale in the low temperature

region. Previous work by Matsuhira et al. [58] had fitted an Arrhenius law of

a higher energy scale to the magnetic relaxation of HTO and HSO in the low-

temperature region with a higher characteristic energy. An approximate DTO

equivalent of this is shown by the green line in figure 2.9 and it is clear that this

fails to predict the relaxation timescale in the plateau region.

Simulations by Jaubert and Holdsworth [42] found that a pure nearest-neighbour

spin ice (NNSI) with no dipolar effects generated similar relaxation results to the

Arrhenius law, but a full dipolar spin ice model produced accurate results through

both freezing and plateau regions. This indicates that the spin freezing is due to

long-range dipolar interactions, the most important of which is Coulombic inter-

actions between defects.

Further simulations examined the exact effect of the Coulomb interactions.
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Figure 2.10: Characteristic spin relaxation time of DTO at various temperatures, experimental
data from [57] and theoretical predictions of Arrhenius models. Black crosses are experimental
data, with dotted guideline. Solid lines are Arrhenius predictions. Note different regions of
success for different Arrhenius energies. Figure from [42]. c© IOP Publishing. Reproduced with
permission. All rights reserved.

Figure 2.11 (reproduced from their paper) shows the value of the energy cost to

create a defect pair from the ground state manifold as yielded by Monte Carlo

simulations of a DSI model without double charges. The energy cost increases at

low temperatures, leading to a reduction in monopole population, which in turn

reduces the magnetic relaxation rate (as can be seen by comparing with figures

2.9 and 2.10) as it is creation or movement of monopoles that changes the system

magnetisation. The reduction of the energy cost with increasing temperature is

due to Debye screening, but while this anticipates the work presented here by

measuring the screening effect, it is incomplete as double charges were excluded

from the calculations.

This screened monopole model of the relaxation is not contradictory to the

work done on the Arrhenius law. The Arrhenius equation used is of the form:

τ = τ0e
β∆E (2.30)

where ∆E is some characteristic energy barrier and τ0 is typically understood as
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Figure 2.11: Energy required to create a pair of magnetic monopoles in Monte Carlo simulations
of a dipolar spin ice model (red), or energy gained from creation of a monopole pair in simulations
of a Coulomb gas (blue). Black line is the difference between them, twice the negative monopole
chemical potential (−2ν). Bars are standard deviations, not errors. Upper dashed line is an
analytical prediction of energy gain of creating a monopole pair in a vacuum. Lower dashed
line is low-temperature limit of 2ν. Figure from [42]. c© IOP Publishing. Reproduced with
permission. All rights reserved.

the timescale for an attempt rate at that process. In the case of spin ice the process

is the formation of monopoles from the ice-rules vacuum, and the Boltzmann factor

eβ∆E accounts for two thermally-governed factors: the population of monopoles

which can magnetise or demagnetise the sample by moving, and the possibility of

creating new monopole-antimonopole pairs by flipping spins on neutral sites. As

the bulk magnetisation of the system is determined by the configuration of the

spin or Dirac string network, both processes control the magnetisation.

2.4.3 Wien Effect in Spin Ice

In 2009 Bramwell et al. [59] presented muon spin rotation (µSR) results claiming

to have established the presence of discrete magnetic Coulomb charges and mea-

surable associated currents, along with the existence of non-Ohmic conductivity

in DTO. Their method was based on demonstrating a proportionality between
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Figure 2.12: Asymmetry profile of muon decay over time in DTO sample. Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature (Bramwell et al. 2009 [59]), copyright 2009.

magnetic moment fluctuation rate and magnetic conductivity under field.

νµ(B)

νµ(0)
=
κ(B)

κ(0)
= 1 +

b

2
, (2.31)

where νµ is the magnetic moment fluctuation rate, κ is the magnetic conductivity

and b the Onsager factor:

b =
Q3|H|

8πµ0k2
BT

2

for the low field limit. This is consistent with the concept that magnetic charge

motion is the mechanism of magnetisation change in spin ice.

In a transverse field µSR experiment [59], spin-polarised muons are implanted

into the sample and their decay (half life τ = 2.2 µs) into positrons observed by

opposed positron detectors. As muons are electrically charged they they precess

around the local magnetic field and this precession can be measured by opposing

positron detectors measuring the distribution of the direction of emitted positrons

over time. A 1mT applied transverse field over the sample predicts an oscillatory
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Figure 2.13: Muon relaxation rate λ(B), proportional to magnetic charge conductivity, against
field. Reprinted by permission from Macmillan Publishers Ltd: Nature (Bramwell et al. 2009
[59]), copyright 2009.

form for the spin precession as the muons ‘orbit’ the field direction. Deviations

from the muon relaxation function predicted by the applied field provide evidence

of the local field. In figure 2.12 reproduced from their paper, one can see both the

oscillatory form and the effects of fluctuations in the local field. which manifest as

the exponential shrinking and breakdown of the envelope. The exponential decay

of the display envelope is governed by the muon relaxation rate λ, which at low

temperatures is proportional to the magnetic moment fluctuation rate νµ.

In figure 2.13, relaxation rate λ is shown to increase with field, indicating a

non-Ohmic increase in magnetic conductivity in line with Onsager’s theory. In

figure 2.14, magnetic charge Q derived from this theory is plotted against inverse

temperature. Notably, the result obtained for the charge is close to the theoretical

prediction yielded by the dumbbell model for DTO. For 1/T < 3 K−1 the derived

charge begins to anomalously increase, a phenomenon later explained by Bramwell

et al. [60] by reference to experimental error from muons implanting outside of

the sample.
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Figure 2.14: Estimated monopole charge against inverse temperature. Reprinted by permission
from Macmillan Publishers Ltd: Nature (Bramwell et al. 2009 [59]), copyright 2009.

These results were challenged by Dunsiger et al. [62]. Firstly, they used Monte

Carlo simulations of a microscopic model of DTO to estimate the internal field at

likely muon implantation locations, and found that fields of several hundred mT

were probable. Fields this large will rapidly damp the polarisation function to

zero, overwhelming the effect of the 1 mT applied field. Secondly, they performed

µSR measurements in a 2 mT applied field both with and without a DTO sam-

ple, and obtained similar results for the asymmetry distribution over time. Their

interpretation of this was that the muon signature detected instead derived from

muons landing elsewhere in the instrument than in the sample itself. Thirdly, they

took µSR measurements in zero applied field and reported an unexpectedly rapid

spin relaxation rate at T < 5 K, faster than predicted by monopolar theory.

Bramwell et al. have defended their result [60]. To the first point they held

that their analysis was of a minority component of the muons at sites with internal

fields smaller than the applied field, rather than muons in the typical sites with

rapid damping. To the second point they held that below 0.4 T the effect of extra-

sample muons does not dominate and that correcting for their presence eliminates
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Figure 2.15: Upper figure: charge density n versus log time under field quench in simulation and
according to magnetolyte model. In electrolyte, density increase is permanent, in manetolytes,
transient. Figure (a): Square wave driving field stabilises increased charge density n. Figure (b):
Leads to oscillating magnetisation. Figure (c): Average density increase against amplitude of
applied field, and against Onsager’s model. Reprinted figures with permission from V. Kaiser et
al., Physical Review Letters, 115, 037201, 2015 [61]. Copyright 2015 by the American Physical
Society.

the anomalous rise in Q at T > 0.3 T seen in figure 2.12 from their original paper

[59]. Repeating their experiment with non-spin ice samples or with the DTO

sample blocked by a silver plate eliminated the Wien effect. Finally, they held

that Dunsiger et al.’s experimental procedure was prone to systematic error and

did not attempt to replicate their own result, which was replicated in HTO by a

separately working group in 2011 [63]. The controversy has not been decisively

resolved at the time of publication.

In 2014 Kaiser, Bramwell et al. performed Monte Carlo simulations on a

periodic-boundary dumbbell model of DTO [61]. They found first of all that a

http://dx.doi.org/10.1103/PhysRevLett.115.037201
http://dx.doi.org/10.1103/PhysRevLett.115.037201
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field directly applied to a magnetolyte causes a transient increase in the monopole

density, consisting of an initial increase caused by the Wien effect followed by a

decrease as the monopole currents caused by the field magnetise the system. They

further found that using an alternating magnetic field can stabilise the density

increase against this collapse. These results are summarised in Figure 2.15 repro-

duced from their paper, which also demonstrates the close correspondence between

the magnetolyte results and similar results for a simulated weak electrolyte. Fur-

ther evidence for the Wien effect will be considered in chapter 4 of this thesis.

2.4.4 Low-Temperature Dynamics and Extrinsic Defects

In 2012, work by Revell et al. [5] highlighted the potential importance of devia-

tions from ideality in spin ice. They performed DC and AC magnetic relaxation

measurements on DTO at temperatures from 0.475 K to 1.1 K and found that

the decay of the magnetisation is not effectively described by simple monopole

models. With assistance from Monte Carlo simulations they proposed that the

decay was described by a stretched exponential, and affected by surface effects, a

temperature-dependent attempt rate proportional to monopole density, and crys-

tal defects that produce a long-time tail in the relaxation.

Their proposed defect type was the ‘spin stuffing defect’. This type of defect

replaces nonmagnetic titanium ions in DTO with magnetic dysprosium ions as

shown in figure 2.16 from their paper. This changes the energy levels of local spin

configurations such that monopoles have lower energy when near to the stuffed

spin and monopole creation near the spin has a lower energy cost. This type of

defect had previously been investigated in spin ice at occupation levels of 10%

or more [64][65], but Revell et al. [5] found in simulations that it could have a

significant effect even at less than 1% stuffing.

Their result of an attempt rate proportional to monopole density was not sup-

ported by Bovo et al. in the 2013 paper discussed above [54], but as the Bovo

et al. experiments were performed at much higher temperatures, it is possible

this is because the monopole population was near saturation and so not strongly

dependent on temperature.

A closer examination of the Revell et al. [5] stretched exponential expression
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Figure 2.16: Position of an additional ‘stuffed’ dysprosium ion occupying a titanium site (red
circle). Blue circles are the nearest-neighbour dysprosium spins with Ising axes labelled. Green
circles are remaining dysprosium ions on adjacent tetrahedra. Reprinted by permission from
Macmillan Publishers Ltd: Nature Physics (Revell et al. 2013 [5]), copyright 2013.

and its relation to other expressions and new data will be undertaken in chapter

4. However, the question of defects was taken up in recent work by Sala et al. [6],

which empirically establishes the presence of oxygen-vacancy defects which have a

similar effect.

Sala et al. created defect-free DTO crystals by annealing conventionally grown

crystals in oxygen. Annealing is a process wherein the sample is heated sufficiently

that atoms can move within the sample. By doing so within an oxygen atmosphere,

oxygen atoms can diffuse into vacancies within the crystal, reducing or eliminating

defects due to oxygen absences. The effect of the annealing was confirmed by them
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for the closely related crystal Y2Ti2O7 (YTO) by diffuse neutron scattering which

revealed that the conventionally grown crystals had a similar diffuse scattering

pattern to oxygen-depleted crystals, but the annealed crystals were missing fea-

tures found in both. They also present neutron scattering plots of conventionally

grown DTO to demonstrate that they show the same features as defective YTO,

but the features are not very clearly visible. These results can be seen in figure

2.17 from their paper [6]. However, that a change has occurred after annealing the

as-grown DTO crystals in oxygen is demonstrated by the magnetisation results.

The as-grown and annealed crystals were examined with d.c. and a.c magneti-

sation measurements as shown in figures 2.18 and 2.19 from their paper [6]. The

d.c. measurements suggest that the as-grown crystals have reduced magnetic sus-

ceptibility, implying that present oxygen vacancies reduce the magnetic moment

of associated Dy3+ ions.

In the AC measurements, a long-time tail seen in Revell et al.’s work [5] (see

figure 2.19) and reproduced in the defective crystals of Sala et al. [6] is eliminated

in the annealed crystals. This suggests first that the ascription of the long-time tail

to the presence of defects is accurate, and second that the defects responsible are

oxygen vacancies that can be mostly eliminated through treatment of the crystal,

rather than stuffed dysprosium spins as Revell et al. hypothesised.

Sala et al. [6] go on to present a model for the structure of the oxygen defects

based on CEF calculations. As shown in figure 2.20 from their paper, the oxygen

vacancy creates a tetrahedron with four XY-type spins (see section 1.3) rather

than Ising spins. Monopoles cannot exist, or even be defined, on this site, and

it is surrounded by four tetrahedra with 3 Ising spins and one XY spin each, to

which the ice rules do not apply. If one calculates by counting surface spins the

entire five-site cluster will have a net magnetic charge that can be incremented

or decremented by monopole movements in or out, but the interior of the cluster

does not have monopoles defined in the same way as the crystal bulk due to a lack

of normal spin ice tetrahedra. Sala et al. [6] calculate that a monopole moving

to a defect cluster can reduce energy by quantities comparable to the monopole

chemical potential, implying a strong pinning effect [6].

Returning to the low-temperature regime, the finding of Snyder et al. [57]

that magnetic relaxation timescales dramatically extend at low temperatures is



90 CHAPTER 2. MAGNETIC MONOPOLES IN SPIN ICE

Figure 2.17: Upper left figure is diffuse neutron scattering from oxygen-deficient (Y2Ti2O6.79)
YTO in (hk7) plane, both experimental (upper) and in Monte Carlo simulation (lower). Pale blue
cross and ring represent effects of oxygen deficiency. Upper right figure is similar experimental
plot for oxygen-grown YTO, with features present, and lower right figure is for oxygen-annealed
YTO, with features absent. Lower left figure is similar plot for oxygen-grown DTO, with features
faintly present. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials (Sala
et al. 2014 [6]), copyright 2014.
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Figure 2.18: d.c. magnetisation versus applied field in [100] direction at T = 2 K for normal
and annealed DTO crystals. Reprinted by permission from Macmillan Publishers Ltd: Nature
Materials (Sala et al. 2014 [6]), copyright 2014.

mirrored by work from Pomaranski et al. in 2013 [66]. By taking extremely

long-term measurements of the heat flow into and out of a DTO crystal inside

a magnetically shielded dilution fridge, the authors obtain a specific heat at low

temperatures larger than typically reported. When converted to entropy as shown

in figure 2.21 from their paper, this yields a ground state entropy lower than the

Pauling ice entropy.

This result demonstrates (as previously shown with numerical and analytic

work by Melko, den Hertog and Gingras [68, 69]) that the 2004 analytic result of

Isakov et al. [45] showing that the long-range dipolar interactions sum to leave

only near-neighbour effects is only an approximation, and a sub-Pauling ground

state for spin ice does exist, no matter how finely distinguished. However, as it

only appears at long time scales it is insulated from the general Pauling state by

some factor such as a large energy barriers or long search times. As such, in this

work the ice rules state will typically be treated as the true ground state of spin ice

and the Pauling entropy as the ground state entropy, as lower energy states that

are only accessible on extremely long timescales are not relevant to the physics of

spin ice on the shorter timescales this work deals with.
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Figure 2.19: Dynamic correlation function C(t) = 〈M(0)M(t)〉 derived from a.c. susceptibil-
ity measurements. Green line is from Revell et al. [5]. Figure reprinted by permission from
Macmillan Publishers Ltd: Nature Materials (Sala et al. 2014 [6]), copyright 2014.

2.5 Specific Heat Measurements of Spin Ice

There has been a substantial supply of specific heat measurements of spin ice com-

pounds. In 1968 Blöte [70] took measurements of DTO below 2 K that suggested

a large zero-point entropy. In 1999, Ramirez et al. [33] took measurements over

a larger interval and established from the entropy that DTO was one of the re-

cently discovered spin ices, as seen in figure 3. However, their focus was on the

entropy differential quantity c/T , rather than the heat capacity c itself. At high

temperatures c/T is strongly reduced by the T factor, but the phonon contribu-

tion to specific heat only becomes important above approximately 6 K. As such,

it was not of great importance to their investigation, and they did not deal with

it in an explicit manner. As the spin ice Debye-Hückel theory outlined below (see

section 3.1) includes higher-energy excitations in the form of double charges, and

its performance at high temperatures will be examined in light of this, it will be

necessary to carefully consider the specific heat at temperatures on the order of

10 K and so the phonon contribution to that heat.

An attempt to deal with the phonon heat of dysprosium titanate was made in

2003 by Hiroi et al. [71]. They used a Debye T 3 model fitted to the experimental
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Figure 2.20: Visual depiction of oxygen defect effect on spin ice system. Note normal site
manifesting monopole on far right, adjacent to sites with green XY-spins free to rotate on discs,
created by central oxygen defect. Reprinted by permission from Macmillan Publishers Ltd:
Nature Materials (Sala et al. 2014 [6]), copyright 2014.

specific heat to estimate the phonon contribution. A similar method was used in

2011 by Klemke [67], with similar results. Hiroi et al.’s findings are examined in

detail in section 3.2.2.

Debye-Hückel theory was first explicitly compared to measured specific heat

of DTO by Morris et al. in 2009 [52], but without an explicit presentation of

their theory. The same data was compared to a completely presented theory by

Castelnovo et al. in 2011 [4], which has been discussed above in section 2.3.

HTO has also been treated repeatedly. It was first identified as a spin ice in

1997 [14]. However on the strength of specific heat measurements, Siddharthan

et al. [72] argued in 1999 that HTO was not a spin ice. HTO has a large low-

temperature specific heat peak, larger than is predicted by nearest neighbour spin

ice theory. Siddharthan et al. held that below 0.6 K the spins thermally decouple

from the lattice and freeze into a glassy phase, and that the peak is explained by

long-range dipolar and antiferromagnetic superexchange that prevent the forma-
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Figure 2.21: Specific heat over temperature measurements (c(T )/T ) and derived entropy (s(t) of
single-crystal DTO. Red points are long relaxation time measurements by Pomaranski et al.. Blue
and green are short relaxation time measurements from earlier work. Reprinted by permission
from Macmillan Publishers Ltd: Nature Physics (Pomaranski et al. 2013 [66]), copyright 2013.
References 2 and 8 in figure refer to [33] and [67] respectively in this work.

tion of the spin ice state. They presented simulated data to this end predicting

a large peak at approximately 0.7 K, but available experimental data began at

higher temperatures than the proposed peak location, and agreed poorly with

the simulation. In 2001 an improved model was presented [73], but the problems

were not eliminated as seen in figure 2.22. The thermal decoupling was explained

by the existence of an ordered true ground state and multiple partially-ordered

metastable states separated from it by infinite energy barriers. This phenomenon

would lead to the spin network becoming trapped in a local minimum and unable

to reach a state commensurate with the temperature of the other elements of the
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Figure 2.22: Experimental and simulated specific heat of HTO and DTO. Reprinted figure with
permission from R. Siddharthan et al., Physical Review B, 63, 184412, 2001 [73]. Copyright 2001
by the American Physical Society. HTO simulation data derived from the model outlined in that
paper.

system, hence thermal decoupling.

Bramwell et al. later that year [32] explained the apparent non-spin ice be-

haviour of the low-temperature specific heat by referring to the 1968 measure-

ments of Blöte et al. [70], which found similar behaviour at low temperature in

Ho2GaSbO7. This behaviour was explained by introducing a Schottky anomaly

of eight Holmium nuclear energy levels spaced at 0.3 K. This hyperfine correc-

tion when applied to the HTO data removes the high early peak, and the need

to explain it by as shown in figure 2.23. The judgement that HTO is a spin ice

material was strongly buttressed by results in the same paper that demonstrated

accordance of the experimental results of HTO neutron scattering with the pre-

http://dx.doi.org/10.1103/PhysRevB.63.184412
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Figure 2.23: Specific heat of HTO. Empty squares are total specific heat of HTO, less lattice
contribution. Line indicates theoretical nuclear contribution. Empty circles are remaining exper-
imental specific heat after nuclear subtraction, with error around 0.7 K. Filled circles are dipolar
spin ice simulation results. Reprinted figure with permission from S. T. Bramwell et al., Physical
Review Letters 87, 047205, 2001 [32]. Copyright 2001 by the American Physical Society.

dictions of a dipolar spin ice model using experimentally predicted spin coupling

parameters. These results are shown in figure 1.7 also reproduced from Bramwell

et al.’s paper [32].

In 2006 Lau et al. [64] performed a more comprehensive study that used

lutetium titanate as a nonmagnetic proxy to estimate the phonon contribution.

This method is investigated below in section 3.2.2. Regardless of its efficacy, their

objective was to study the effects of spin doping on HTO, and no Debye-Hückel

investigation has been performed on the material. Despite this its high monopole

chemical potential among the spin ices make it an ideal Debye-Hückel test material

if one cleans the specific heat of the obscuring nuclear and lattice contributions,
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as will be demonstrated below.

2.6 Aims of This Work

The following work has two primary divisions and one additional. In the first,

a new derivation of Debye-Hückel theory that extends over double charges will

be presented, and some possible extensions to account for neutral dipole pairs,

entropic effects on monopole configuration, and the significance of the lattice ge-

ometry will be outlined. Then, the theoretical predictions of the theory and its

variations will be compared to measurements and later simulations of the specific

heat of dysprosium titanate and holmium titanate, and the implications of these

results for the strengths and weaknesses of Debye-Hückel theory both for spin ice

and more generally will be examined. Additionally, the investigation will suggest

a revision to previous results of the magnetic specific heat of dysprosium titanate

in the 10 K region. Finally, the model will be applied to to specific heat measure-

ments of the proposed non-pyrochlore spin ice cadmium erbium selenide [39]. As a

spinel rather than a pyrochlore, it has a different crystal structure with lower CEF

energies for its magnetic spins, allowing a test of Debye-Hückel theory’s efficacy in

a different crystal family.

In the second, three competing theoretical models for the magnetic relaxation

of spin ice at temperatures of 0.6 K and below will be compared. Ryzhkin’s original

model [3] and extended models from S. T. Bramwell [74] and Revell. et al. [5] are

compared in detail to relaxation data graciously provided by Paulsen et al. [7] and

the implications of their strengths and deficiencies for the significance of various

theories about the microscopic processes of spin ice relaxation are teased out.

In a final section a method for absolute magnetic entropy measurements re-

cently proposed and implemented by L. Bovo [75] is applied to praseodymium

zirconate and compared to previous measurements [8]. Praseodymium zirconate

is of interest as it is a quantum spin ice [38], a class of spin ice distinguished by

zero-temperature quantum dynamics and superposition of ice rule states. This

application sheds light on the relation of praseodymium zirconate to spin ice and

the utility and limitations of the method.
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Chapter 3

Debye-Hückel Theory

As described in section 2.3, a derivation of Debye-Hückel theory for spin ice was

presented by CMS in 2011 [4]. However, while this treatment demonstrated the

basic applicability of Debye-Hückel theory, it was incomplete in some respects

and inaccurate in others. Particularly, it does not account for double charges,

and it is not obvious how their theory could be extended to do so. Here an

alternate model derived from the different method of section 1.5.1 will be presented,

which directly includes double charges, as well as an improved treatment of the

partition function. The prospects for including more detailed entropic effects,

bound monopole pairs, and reformulations of the theory to account for lattice

geometry will also be examined.

This will enable a thorough survey of the strengths and weaknesses of Debye-

Hückel theory as a description of spin ice, by comparison with experimental and

simulation data for DTO and HTO and experimental data for CES. In particular,

it is shown that accurate correction for the lattice specific heat is necessary in order

to compare theory with experiment. A key result is that in contradiction to the

previous belief expressed in figure 2.4 from [4], Debye-Hückel theory and implicitly

the monopole model are effective descriptions at temperatures much higher than

2 K.

99
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3.1 The Theory for Spin Ice

3.1.1 Monopole Population

In the theory of section 1.5.1, charge (monopole) concentration enters as a pa-

rameter in equation 1.83. In spin ice, monopoles can be constantly created and

destroyed by spin flips, and the equilibrium population will be determined by the

free energy associated with doing so. As such the monopole population is an

endogenously determined quantity.

Define the dimensionless monopole density (the proportion of sites occupied by

single defects) as

x =
Nd

N
(3.1)

where N is the total number of diamond lattice sites and Nd = N+ + N− is the

total number of defects of either type. Similarly define the double defect density

y:

y =
Ndd

N
(3.2)

The ratio of defects to sites is the probability that any given site is occupied,

so statistical mechanics yields the expressions, after equation 1.38:

x =
g1e

−ν
kBT

g0 + g1e
−ν
kBT + g2e

−ν2
kBT

(3.3)

y =
g2e

−ν2
kBT

g0 + g1e
−ν
kBT + g2e

−ν2
kBT

(3.4)

where ν and ν2 are the energy of a defect and double defect respectively and g0,

g1 and g2 the statistical weights of the ground, defect and double defect states

respectively. This can be made equivalent to the expression of CMS in 2011 [4]

(equation 2.11) by setting g0 = 1, g1 = 2 and g2 = 0:

x =
2e

−ν
kBT

1 + 2e
−ν
kBT

(3.5)
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In this the ground state and positive and negative poles are all accounted

as individual states with equal weight. However, in my view this approach is

erroneous as ‘monopole defect’ and ‘ground state’ are not singular states of defects

in themselves but labels for bundles of states of the spins in the tetrahedron in

question. Instead the theory should follow Ryzhkin in his original 2005 paper

[3] and proceed by counting states, but including the double charge states which

were excluded in that paper and in the later Castelnovo et al. paper [4]. There

are four spins, each with one of two possible orientations, for 16 total possible

configurations (see figure 1.10). Of these six correspond to an ice-rules state, four

correspond to each polarity of single charge, and one corresponds to each polarity

of double charge. As such:

g0 = 6

g1 = 8

g2 = 2

x =
8e

−ν
kBT

6 + 8e
−ν
kBT + 2e

−ν2
kBT

=
e
−ν
kBT

3
4

+ e
−ν
kBT + 1

4
e
−ν2
kBT

(3.6)

y =
2e
−ν2
kBT

6 + 8e
−ν
kBT + 2e

−ν2
kBT

=
1
4
e
−ν2
kBT

3
4

+ e
−ν
kBT + 1

4
e
−ν2
kBT

(3.7)

If ν is known, this yields the dimensionless concentration of each type of

monopole. Without double defects, this agrees with Ryzhkin’s 2005 result [3].

3.1.2 The Chemical Potential

The chemical potential ν0 of a monopole is defined as minus half the energy cost

of creating and dissociating a monopole pair. To account for the additional energy

associated with Coulomb interactions, an effective chemical potential ν can be

defined:

νi = νi0 − νiC (3.8)
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where −νiC is the energy deriving from Coulomb correlations within the magne-

tolyte. The subscript i denotes single or double defects.

The microscopic physical meaning of νi0 is the energy εi required to alter the

spin configuration of a single lattice site to create a defect of type i, plus the energy

required to separate this monopole to infinity from the opposite charges created

adjacent to it.

νi0 = εi +
µ0Q

2
i

8πa
(3.9)

The chemical potential νi0 is determined by the microscopic crystal structure

and magnetic properties of the spin ice compound. It is the single free parameter

of complete spin ice Debye-Hückel theory, and cannot be directly measured in

a real substance. However, it can be specified in a simulation and methods of

estimating it in physical systems provide reference values used in our experimental

investigation.

The Coulombic correction νiC can be estimated using Debye-Hückel theory as

described in section 1.5.1. To convert the electrostatic Debye-Hückel theory to

magnetic, substitute ε0ε → 1/µ0, N1 → x/Vd and N2 → y/Vd, where Vd is the

volume of one defect. This yields from equation 1.107:

νiC = −kBT
lT

lD + a
(3.10)

where lT i is the Bjerrum length for the defect type and lD is the Debye length:

lT i =
Q2
i

8πε0εkBT
(3.11)

lD =

√
kBTVd

µ0Q2(x+ 4y)
= κ−1. (3.12)

This definition of νC in terms of lD and lD in terms of x leads to circularity, as x is

determined by νC . This circularity can be resolved by iteration to self-consistency.

10 iterations make the error negligible. In the present work x is iterated 20 times.



3.1. THE THEORY FOR SPIN ICE 103

3.1.3 Double Charge Ratio

The theory above treats the concentrations of single and double poles seperately,

as independent species, but it is useful to note that they are not independent

quantities, but are determined by the same thermodynamics. As such the two can

be collapsed into a single expression.

The chemical potential of a double defect is four times that of a single defect.

Consider equation 3.9 again:

νi0 =
εi
2

+
µ0Q

2
i

8πa
.

The second term is the energy required to unbind the two defects, and scales

trivially to produce a fourfold energy if the charge Q is doubled. The first term

depends on εi, the energy required to create the two defects from the ground state.

The internal structure of a spin ice lattice site is such that it has four Ising spins

on its vertices and six interactions between these spins, corresponding to the edges

of the tetrahedron.

The ferromagnetic coupling of the spins favours spins that point in the same

direction absolutely, but in the language used to describe spin configurations of

lattice sites they favour oppositely-oriented neighbours, as ‘in’ spins will face other

‘in’ spins in any given tetrahedron.

Define the internal energy of a lattice site [4]:

E = JΣj,k,j 6=kSjSk, (3.13)

where J is the coupling constant of the spins, including any merely proportional

factors. In the ground state of two spins in and two out, there will be four favoured

interactions and two disfavoured interactions, so E0 = 2J − 4J = −2J , where E

is the total energy of the spin interactions in the lattice site. As this is the ground

state and the zero charge state one can take this as the zero of energy for the ther-

modynamics of the system, so ε0 = 0 where ε = E+2J is the renormalised energy.

In the first excited state (single defect) there will be three favoured interactions

and three disfavoured interactions, so E1 = 0 and ε1 = 2J . In the second excited

state (double defect) there will be six disfavoured interactions, so E2 = 6J and
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ε2 = 8J . So ε2/ε1 = 4. This gives the desired:

ν2 = 4ν1 (3.14)

The Coulomb correction νiC for a double monopole is also multiplied by factor

4. In equation 3.10 it is proportional to the Bjerrum length (equation 3.11), which

is proportional to Q2
i . It is important to note that while the expression for νiC

also contains lD (equation 3.12), lD is a function of Q, not Qi, and is a property of

the magnetolyte invariant between consideration of single and double monopoles,

unlike the i-indexed lT i. As such it does not alter the Q2
i scaling of νiC .

Therefore, the energy per site of a system of single and double monopoles is:

u = (ν0 − νC)x+ 4(ν0 − νC)y = (ν0 − νC)(x+ 4y) (3.15)

u = (ν0 − νC)x
(

1 + 4
y

x

)
(3.16)

and from equations 3.5 and 3.7:

y

x
=
g2e

−ν2
kBT

g1e
−ν
kBT

(3.17)

There are 8 spin configurations that create single charges, and 2 that produce

double charges, so take g2/g1 = 8/2 = 1/4 and obtain:

y

x
=

e
−ν2
kBT

4e
−ν
kBT

(3.18)

y

x
=
e
−4(ν0−νC )

kBT

4e
−(ν0−νC )

kBT

(3.19)

y

x
=

1

4
e
−3(ν0−νC )

kBT (3.20)

So substituting into equation 3.16, obtain the internal energy per site:

u = (ν0 − νC)x

(
1 + e

−3(ν0−νC )

kBT

)
(3.21)
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And for lD from equation 3.12:

lD =

√
kBTVd

µ0Q2[x+ 4y]
= κ−1 (3.22)

lD =

√√√√√ kBTVd

µ0Q2x

(
1 + e

−3(ν0−νC )

kBT

) = κ−1 (3.23)

This creates another self-consistency problem, as lD and νC are defined in terms

of one another with no easy analytic solution. This can be solved by iterating to

self-consistency in the same manner as the original problem of νC and x.

3.1.4 Entropic Charge

The spin lattice does not just constrain the positions of poles to lattice sites, but

also affects their possible motion and configurations. Likewise, any given monopole

configuration places constraints on the possible configuration of spins. Movement

of poles can only be accomplished by spin flips and any pole must be connected

by at least one properly aligned spin chain to another, or to a system boundary.

CMS’s 2011 paper [4] determined the entropic free energy contribution of the

spin configuration and analogised it to a Coulomb interaction via an ’entropic

charge’. This charge can be incorporated into Debye-Hückel theory.

The concept of entropic charge is not intuitively obvious, but it can be in-

terpreted physically as follows: if two opposite charges are separated, there must

be, in the absence of other charges and in periodic boundaries, at least one spin

chain connecting them. The spin network has a net polarisation pointing from

one spin to the other. The further apart the charges are the more the network

configurations are constrained by this requirement. This constraint on the network

lowers its configurational entropy and so increases the free energy of a given charge

configuration as mediated by a factor T in the definition of Helmholtz free energy

F = U − TS. There are however problems with this picture, which will become

apparent later.

Their own application of the theory did not reveal a significant result, but spin

ice Debye-Hückel theory has been developed from their 2011 model, so this is not
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necessarily conclusive. V. Kaiser later formulated a similar implementation [76],

which is used here.

Two entropic charges have the free potential energy:

Uent(r) = − ηq
2

4πr
(3.24)

This can be combined to produce a Poisson-Boltzmann equation:

∆Φ(r) = −x(µ0Q
2 + ηq2)

kBTVD
Φ(r) (3.25)

where q the ‘entropic charge’ is set to 1 and

η =
8akBT√

3
(3.26)

yielding:

lD =

√
kBTVD

x(µ0Q2 + ηq2)
(3.27)

lT =
µ0Q

2 + ηq2

8πkBT
(3.28)

The x in these expressions can be modified with the same factor as in equation

3.16 to incorporate double charges. The quantity η previously appeared (labelled

Φ) in a 1997 paper by Ryzhkin and Whitworth [77]. There it relates the config-

urational entropy of water ice to the configuration vector Ω. The configuration

vector in water is a description of the flux of ions and defects, but in his 2005

paper [3] Ryzhkin related the configuration vector to the spin configuration and

magnetisation of spin ice, as treated in more detail in section 2.4:

Ω(r) =
a

2
ΣiαSiα

e1α

V
(3.29)

M = QΩ (3.30)

The sum in eqn. 3.29 runs over all spins i in each tetrahedron α in a macro-

scopically small volume V around point r. eiα is the unit vector for each spin.
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In 2013 Ryzhkin, Ryzhkin and Bramwell [78] used the relation

S = −1

2
ηΩ2 (3.31)

from 14 to obtain an entropic free energy:

Went =
4kBTaΩ2

√
3

(3.32)

However, they note that while this can be transformed into an entropic charge,

to do so is not necessarily meaningful. This returns to the physical characterisa-

tion of entropic charge given above. In that scenario, a single pair of monopoles

is created and separated in an ice-rules crystal. However in real spin ice these

monopoles will exist in a system with many other monopoles. From equations

3.30 and 3.32, it can be seen that the free energy is minimised by minimising mag-

netisation, but a separation of two monopoles in a populated system may increase

or decrease the magnetisation and hence the entropic free energy of the system.

The configuration vector being a more complete description does not demon-

strate that entropic charge is not a practically useful concept. However, there is

reason to suspect that it is not. If the magnetic charge of the defects in a spin

ice system were nullified, under the logic of entropic charge one would expect that

Coulombic behaviour would remain arising from the pure organisation of the spin

network. This scenario is inaccessible to physical experiment but not to simula-

tion. Such simulations have been performed [76] and ‘nonmagnetic spin ice’, rather

than demonstrating a residual Coulombic interaction, instead behaves as if defects

have no charge of any kind.

On the strength of this failure of entropic charge to appear when isolated,

it is justifiable to conclude that it is eliminated by the complexity of practical

spin ice systems. Nevertheless the theory will be examined in comparison with

experimental data below.
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3.1.5 Bjerrum Pairing

Debye-Hückel theory is a theory of fully dissociated charges, but this is not a

complete description of Coulomb gases or of spin ice. Bjerrum [79] noted that

in dilute ion solutions, closely bound pairs of ions may form a distinct species to

dissociated ions.

Consider the case of charges on adjacent sites, so with separation a. If the

pairs are a well-defined species separate to dissociated ions, they will have their

own chemical potential and concentration. For this model:

νB = 2ν0 − 2kBT
lT
a

(3.33)

from combining eqns. 3.9 and 1.108, i.e. the chemical potential of a pair of

monopoles that is not separated, so have kBT lT/a as the limiting value of their

Coulomb energy as they come together. They will have a population factor [74]

xB =
e
νB
kBT

1 + e
νB
kBT

(3.34)

with no modification due to the charged atmosphere, as they are adjacent to one

another. However, this näıve expression conceals a problem, as Bjerrum pairs are

not truly heterogenous from normal monopoles and so their statistical weight, here

taken as 1, does not have an obvious definition. This will present problems later.

Leaving aside this problem, a modification of the standard Debye-Hückel terms

is also required. As Bjerrum pairing accounts for near-neighbour pairs, the mini-

mum approach distance in Debye-Hückel theory changes from a to 2a. Hence, the

νC term becomes

νC = −kBT
lT

lD + 2a
(3.35)

The Bjerrum pairs do not in theory affect νC beyond this, being closely associated

and magnetically neutral in total.

As stated, this is under the assumption that Bjerrum pairs are a well-defined

species independent of the free monopoles. At low concentrations and so low

temperatures the free monopoles will typically be distant from one another and so
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from bound pairs, and the two species can be treated separately in a principled

fashion as described above. However as the temperature rises and the system

saturates this distinction between Bjerrum pairs and free monopoles becomes less

clear and the theory less applicable. We will see the consequences of this below.

Besides Bjerrum pairing, even higher-level structures may become apparent.

Zhou et al.[36] predict that creating or discovering spin ices of progressively lower

chemical potentials will reveal new correlation forms such as clusters or liquids

or, in the limit of small chemical potential, a completely full lattice of alternating

positive and negative charges. This extreme case is the theoretical outcome of

νc > −ν, making double poles energetically favourable compared to the ground

state.

3.1.6 Lattice Debye-Hückel Theory

The theory so far has been formulated for a continuum assumption, but this is

obviously not the case in the real system. Monopoles in spin ice do not move

freely but only exist in the tetrahedral sites defined by the rare earth ion spin

lattice. This potentially leads to changes in the behaviour of monopoles in the

system, and if the Debye length falls below the lattice spacing we might expect

them to have a significant effect.

A lattice solution of Debye-Hückel theory was presented by Kobelev, Kolomeisky

and Fisher in 2002 [80].

νC = kBT
C3a

3

12VdT ∗

[
P (1)− P

(
6

(a/lD)2 + 6

)]
(3.36)

where kB and T have their usual meanings, a is the lattice constant and Vd the

volume of one defect. P , C and T ∗ are more complex. Reduced temperature T ∗

is given by

T ∗ =
kBTa4π

µ0Q2
(3.37)

where symbols have their usual meaning. C3 is a factor determined by the dimen-

sionality of the system
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C3 =
2π

3
2

Γ(3/2)
(3.38)

and P is the integrated lattice Green’s function

P (ζ) =

∫
k

1

1− ζJ(k)
(3.39)

where

J(k) =
1

c0

∑
nn

eik·a (3.40)

where c0 is the number of near-neighbours and a is a near-neighbour vector.

For the pyrochlore system, this is

J(k) =
1

4

e2i(kx+ky+kz) + e2ikx + e2ikye2ikz

ei(kx+ky+kz)
(3.41)

The integral P has no known analytic solution, so in the model it is solved

numerically.

Unfortunately, Kobelev et al. [80] note that their solution is only valid for the

set of Bravais lattices, which does not include the diamond lattice on which spin

ice monopoles are defined. This theoretical objection suggests a reason why the

model may fail, but it falls to experimental investigation to determine whether it

will do so in practice.

3.2 Debye-Hückel Theory and Experiment

The theory above can be used to obtain predictions for the monopolar heat capacity

of spin ices. Microscopically, this would be the specific heat contribution of the

Ising states of the magnetic moments. The specific heat is directly accessible to

experiment, so a test of the theory is in principle straightforward.

In view of the developments outlined in section 2.5, with varied approaches

being taken to the question of phonon removal and the relative importance of

this to study of Debye-Hückel theory in the high temperature regime, this group

decided to obtain new data for holmium and dysprosium titanate for comparison,
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to ensure control over all aspects of the data processing.

We took specific heat measurements of HTO, DTO and also CES. The data

so obtained is compared to the theoretical predictions of Debye-Hückel theory in

detail in this section.

3.2.1 Experimental Methods

The crystals were prepared by D. Prabhakaran using the method outlined in his

2011 paper [81]. Single crystals of DTO and HTO were grown in an oxygen flow in

an optical floating-zone furnace, and their purity and alignment tested with X-ray

diffraction. The DTO crystal has a pale yellow colour, and the HTO orange.

The specific heat measurements were taken using the calorimetry probe of a

Quantum Design PPMS, as described in section 1.6.2. The measurements were

performed by L. Bovo, with the author observing for the DTO measurement. Both

crystals were measured in cooling from 300 K to 0.4 K. At low temperatures, due

to high specific heat but slow dynamics the equilibration time for HTO become

excessively long and the measurement unreliable and as such, the data is only

considered reliable down to 0.8 Kelvin. Addendum measurements were taken

separately to remove the contribution of the thermal grease.

L. Bovo additionally performed specific heat measurements on the spinel cad-

mium erbium selenite using a powder supplied by J. Lago. Similarly to the py-

rochlores, it was measured in cooling from 300 K to 0.45 K. As powder samples

can have reduced internal thermal conductivity between the grains, the powder

was pressed into a thin pellet of the same size as the puck platform.

3.2.2 Removal of Non-Monopolar Factors

The measurement of specific heat determines the total heat capacity of the crystal.

However, our theory is only a theory of the energy stored in the Coulomb gas of

monopoles. All spin ices have an additional contribution from lattice phonons and

holmium titanate has an additional complication in the form of a large nuclear

hyperfine contribution [32]. At temperatures higher than the main focus of our

study here, higher crystal field levels may also become important.
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Figure 3.1: Specific heat of DTO with proposed lattice contribution C = αT 3 with α = 4.85 ×
10−4JK−4mol−1. Reproduced with permission from Hiroi et al., Journal of the Physical Society
of Japan, 72:411418, 2003 [71].

The hyperfine contribution for HTO is the contribution of the nuclear spin of

the holmium ions. Blöte [70] found that this was well-represented by a Schottky

anomaly for eight energy levels spaced equidistantly at 0.3 K.

U =
Σiνie

νiβ

Σieνiβ
(3.42)

where νi = 0.3i for i = integers 0→ 7. This can be differentiated straightforwardly

to yield a specific heat contribution.

Determining the contribution of the lattice is more difficult. When studying

low temperatures or the quantity c/T , it can be assumed without great distortion
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Figure 3.2: Measured specific heat of DTO under three lattice heat removal systems. Blue circles
use a YTO proxy T -scaled to match high temperature specific heat of DTO. Green circles use
an LTO proxy T -scaled to be tangent to the raw DTO curve. Red circles use a T 3 specific heat
law after [71] and [67]

that the magnetic specific heat becomes negligible at relatively high temperatures

like 10 K. This assumption is bolstered by the conventional (but as shown be-

low, incorrect) assumption that Debye-Hückel theory is inapplicable at these high

temperatures. It receives further support from the work of Hiroi et al. [71] who,

applying a Debye T 3 model for the specific heat, found a value of 353 K for the

Debye temperature of DTO, provided the magnetic heat capacity goes to zero at

12 K. Their result is shown in figure 3.1. However, there is reason to believe this

conclusion is false.

Prior to examination of the evidence, it would be surprising if the monopolar

contribution became negligible at 12 K. The predicted value, using the methods

described in section 3.2.3 below, of the chemical potential of a single monopole

in DTO is 4.35 K and of a double monopole is four times this (see section 3.1.3).

Even if Debye-Hückel theory were unable to describe their behaviour, it would not
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Figure 3.3: Specific heats of holmium and dysprosium titanates, including both magnetic and
phonon contributions (this work). Lines are guides for the eye.

be the expected result if a magnetic system with a characteristic energy scale of

this size became a negligible contribution to the thermodynamics of the system

at such a comparatively low temperature. In Figure 3.2 it can be seen how the

application of the Debye model of Hiroi et al. [71] causes the heat capacity to

collapse by 10 K.

Furthermore, a direct comparison of dysprosium and holmium titanate heat

capacity gives evidence of a long monopolar tail. The two rare earths have similar

masses and ionic radii (see table 3.1) so we would expect their phonon heat ca-

pacities to be similar. This is borne out by a comparison of the specific heat data

in figure 3.3. As such, at the point where the monopolar contribution runs out,

their heat capacities should converge, excepting the contribution of the crystal field

which is negligible at low temperatures. After their respective Schottky peaks the

difference between the two compounds diminishes continuously but is still clear

at 10 K and remains up to 25 K. As small differences in the non-monopolar heat

capacity of the two pyrochlores do exist, this is not a wholly reliable method, but

does suggest residual monopolar heat capacity to at least 10 K.
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Figure 3.4: Main figure: total specific heat of DTO determined by calorimetry (full circles) or
thermodynamic field theory (open circles) at various fields. Brown line denotes phonon specific
heat according to T 3 law. Inset figure shows magnetic specific heat prediction on that basis.
Dashed line is data from [52]. Note units of specific heat refer to moles of DTO, not Dy, so
values are double figures from this work. Reproduced with permission from [67] (Klemke 2011).

The method used by Hiroi et al. was to fit a T 3 Curie law specific heat to DTO

specific heat data. As noted above a similar methodology was used by Klemke in

2011 [67]. The Hiroi et al. figure is reproduced in figure 3.1 (right hand figure)

and Klemke’s results in figure 3.4. It can be seen that both successfully fit the

experimental results between 10 K and 20 K with this approach. However while

the conclusion is a reasonable one to draw from the given result in isolation it is

not a completely safe one. It depends on a fitted variable and fundamentally on

the assumption that the low-temperature lattice heat of DTO has a T 3 form, and

does not precisely match the nonrandom shape of the specific heat curve. In view
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Figure 3.5: Total specific heat of Ho2(Ti2−xHox)O7−x/2 versus temperature at 0 and 1 T. Green
filled circles are HTO in zero field, the quantity studied in this section. Dashed lines represent
lattice contribution, solid black line the nuclear contribution. Reprinted by permission from
Macmillan Publishers Ltd: Nature Physics (Lau et al. 2006 [64]), copyright 2006.

of these doubts and the theoretical expectation of a significant high-T monopolar

heat, it was felt justified to attempt a different approach.

Our group attempted four methods: yttrium and lutetium titanate proxies,

direct magnetic quenching, and magnetisation quenching.

The proxy method takes a crystal without significant magnetic behaviour and

measures its specific heat on the assumption that its non-magnetic physics are

relatable to those of the spin ices. Lau et al. [64] used this approach in 2006 for

HTO. They took a polynominal fit to Lu2Ti2O7 (lutetium titanate, LTO) specific

heat data, scaled it to match HTO data and found a non-negligible magnetic
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Figure 3.6: Specific heats of HTO, DTO, LTO and YTO per mole of X in X2Ti2O7. Teal line
is YTO with a C-scaling of ×1.37. Purple line is YTO with a T -scaling of ×0.83. Black line is
LTO with a T -scaling of ×0.83. Lines are abstracted from points and do not represent continuity
of measurement.

specific heat at 10 K remained shown in figure 3.5.

In the investigation here both an LTO and a Y2Ti2O7 (yttrium titanate, YTO)

proxy is also tested. Both yttrium and lutetium are transition metals closely

chemically related to the rare earths but without relevant magnetic behaviour.

Table 3.1 summarises their relevant physical properties [82, 83].

Table 3.1: Properties of Rare Earths and Oxides

Rare Earth R3+ Ionic Radius/Å Mass/amu Molecular Mass/amu

dysprosium 1.03 162.5 532.6
holmium 1.02 164.9 537.4
yttrium 1.015 88.9 387.6
lutetium 0.97 175 557.6

It is not immediately obvious which is preferable, as the yttrium pyrochlore
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of ×0.83. All lines are guides for the eye.

has a smaller molar mass, but has an ionic radius very close to that of the rare

earths. In our investigation we used both. Yttrium titanate data was taken from

Johnson et al. [84], while the lutetium titanate heat capacity was measured by L.

Bovo from 300 K to 2 K using a Quantum Design PPMS.

Figures 3.6 and 3.7 present comparisons of the spin ice heat capacities, the

proxy heat capacities, and the results of scaling possibilities. It is clear that neither

candidate is an ideal proxy in its raw form as YTO is predictably deficient due to

its lower mass, while LTO is deficient at high temperatures but overshoots in the

low-temperature region of interest, and so cannot represent a mere component of

the heat capacity. These problems can be addressed by scaling the data to estimate

the equivalent heat capacity for the spin ices. As the two spin ices are chemically

very similar, they are assumed to have the same low-temperature specific heat.

An obvious scaling to perform on YTO is a scaling of the heat capacity (rather

than temperature) in line with the molar mass difference between it and the spin
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ices. However we see in figure 3.6 (upper) that this does not reproduce the shape

of the spin ice curve, so if scaling is possible it must be along the lines of some

other variable. The Debye theory of specific heat [85] provides justification for

scaling by temperature.

Phonons are the quantisation of lattice vibrations and as such can only exist

at certain energy levels. The phonon energy of a substance is equal to the energy

of an occupied vibration mode multiplied by the probability of that mode being

occupied, integrated over the density of available modes. This energy can be

transformed into a heat capacity by differentiating with respect to temperature as

usual. However, determining the density of modes in three dimensions for a real

material is a difficult, so approximations are desirable if possible.

In the high-temperature classical limit, Einstein’s approximation that each of

the 3N modes of a crystal of N atoms contributes kBT to the energy is accurate.

At lower temperatures the only excited modes will be the low-frequency ‘acoustic’

modes, which have a density of states given by the analytically tractable

g(ω) =
V ω2

2π2

(
1

vL
+

2

vT

)
(3.43)

where vL and vT are the longitudinal and transverse sound velocities respectively.

Debye’s approximation to low-temperature heat capacity assumes this relation

obtains up to a limiting frequency ωD, which is the frequency such that the total

number of modes is 3N . Above this frequency there are assumed to be no modes.

Debye obtains the form:

C =
12NkBπ

4

5

(
T

ΘD

)3

(3.44)

where ΘD = ~ωD/kB contains all of the information about the solid and operates as

a scaling to the temperature factor. Any two curves differentiated by ΘD values can

be collapsed onto one another by scaling the temperature by the factor ΘD1/ΘD2.

Even though the Debye approximation itself is questionable, it does indicate

the theoretical justifiability of a T scaling for the specific heat. As such in figure

3.6 (upper) a temperature scaling of 0.83 × T is shown, but while this matches

the DTO data well over the range 50 K < T < 250 K, it is less effective below
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50 K, which is the region of interest, as can be seen in figure 3.7 (lower). A large

deficiency is present in this region and while we expect a gap from the absence of

monopolar contribution to the YTO heat capacity, the size and persistence of the

deficiency rule out this as a complete explanation, since the monopolar contribution

should decay with increasing temperature. For LTO, the problem is opposite, as

it overestimates the heat capacity at low temperatures in its naked form and does

so more severely when scaled to match the high-temperature data. An opposite

course is suggested by the obvious fact that the phonon contribution to specific

heat cannot exceed the total specific heat: a 1.12 × T scaling in the opposite

direction such that the LTO specific heat is tangent to the DTO specific heat at

approximately 13 K, as seen in figure 3.7. Doing this suggests an approximate

upper bound to the phonon contribution, and a negligible magnetic contribution

at 13 K.

It should be noted at this point that we have seen the T scaling does not

work at low temperatures even for the two nonmagnetic pyrochlores YTO and

LTO, which have specific heats similar at high temperatures but different at low

temperatures, so the proxy method remains an imperfect means of determining

the lattice contribution to the specific heat.

A possible explanation for the discrepancies in this region is differences in the

crystal field energy levels. The energies of the first excited crystal field states in

DTO and HTO are on the order of 300 and 200 K respectively [2]. The specific

heat contribution from these excited levels peaks in the region 80 to 120 K.

While there is no clearly accurate result from either proxy they still have use

at lower temperatures before the phonon contribution becomes overwhelming. By

taking the YTO value as a lower bound and the LTO value as an upper bound

for this contribution, they can be used to suggest a plausible range of values

for the monopolar specific heat. We see in figure 3.2 that the difference only

becomes significant above 7 K, but in figure 3.11 that double charges and their

high-temperature contribution to the specific heat are already important at 4 K.

Ajudicating between the two is aided by reference to simulations. V. Kaiser

has performed simulations of dipolar spin ice models of DTO and HTO [86]. In

figures 3.8 and 3.9 the simulated data is compared to the data using the LTO and

YTO specific heat proxies. For both spin ices, the simulated values are close to the
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Figure 3.8: Dipolar spin ice simulation by V. Kaiser [86] (red line) vs. experimental data for
HTO using YTO and LTO proxies. The red line is a guide for the eye.

YTO proxy values, indicating that unless the dipolar model breaks down by 10 K

there must be a substantial residual monopolar specific heat at this temperature,

and that YTO is a good proxy for DTO and HTO spin ices. However, this thesis

will include the LTO proxy in figures in view of the possibility of a breakdown of

the dipolar model.

Despite its utility the limitations of the proxy method are clear. Two poten-

tially more accurate alternatives were tried, both of which attempt to measure the

sample directly.

The magnetic quenching method applies a strong magnetic field to fully mag-

netically order the spin ice system and eliminate magnetic contributions. Then,

assuming no major magnetostriction effects, the specific heat of the sample can be

measured and the difference between this measurement and a zero field measure-

ment is the contribution of the quenched behaviour to the specific heat. However,

magnetic fields of at least 14 T were found to be required to fully quench the

material, and these exerted sufficient mechanical force on the PPMS thermal mea-
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Figure 3.9: Dipolar spin ice simulation by V. Kaiser [86] (red line) vs. experimental data for
DTO using YTO and LTO proxies. The red line is a guide for the eye.

surement puck to damage it and prevent measurement. The method could still be

used with a more robust instrument and is the most direct way to determine the

lattice contribution, but was not practical with current equipment.

An alternative method avoids using fragile specific heat pucks. L. Bovo [75]

developed a method based on magnetisation, described in more detail in section

5.3. From the thermodynamics of spin ice she obtains:(
∂I

∂T

)
Hi

=
1

µ0

(
∂S

∂Hi

)
T

(3.45)

where I is the magnetic moment. From there integration yields:

µ0

∫ Hi

0

(
∂I(T,Hi)

∂T

)
Hi

dHi = S(T,Hint)− S(T, 0) (3.46)

This enables the magnetic entropy change between two applied fields to be deter-

mined by integrating the rate of change of magnetisation with temperature as a
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Figure 3.10: Entropy vs. temperature for DTO. Red dots are estimated by calorimetry, black
dots by magnetometry as described in [75] and this work. Figure from [42]. c© IOP Publishing.
Reproduced with permission. All rights reserved.

function of applied field. The magnetic specific heat can then be derived using the

following relation:

T
∂S

∂T
= c (3.47)

with c the magnetic heat capacity in zero field.

However, this method is limited. The numerous numerical transformations that

must be performed on the data compound experimental uncertainties to produce

large error bars on yielded entropy values, as seen in figure 3.10 reproduced from

[75]. As the region in question has high T , the variations in T∂S/∂T will be so

large as to completely obscure the real value of c without a large number of points

measured with extreme care.

In chapter 5 of this work this method is applied to praseodymium zirconate, a

candidate spin ice, and proves unable to provide good data at higher temperatures.
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3.2.3 Values of the Chemical Potential

When comparing a theory to evidence it is preferable to establish as much as possi-

ble prior to the comparison, rather than defining parts post-hoc to fit experiment.

What is brought to the theory beforehand is itself the result of the interpretation

of other evidence in the light of theories, but if these prior results are well estab-

lished they can reasonably be trusted and if not the success or failure of the new

test will serve to reinforce or cast doubt on both theories together.

The theory outlined above has three parameters that vary between different

spin-ice materials: the diamond lattice spacing a, the monopole charge Q, and

the monopole chemical potential ν0. The first can be determined by scattering

experiments using well-established condensed matter theory [85], the second from

measurements of the rare-earth ion magnetic moment and the definition Q =

2µ/ad. The third is a quantity that only has meaning in the context of monopolar

spin ice theory, discussed above. It can however be compared to, and defined with

the use of, similar ’third parameters’ in previous spin ice theories.

As discussed in section 2.1, in 2008 CMS [31] formulated a ‘dumbbell model’

for spin ice, which yields the following expression for the magnetic energy of spin

ice:

Vab =

{ µ0QaQb
4πrab

, a 6= b
1
2
νSQ

2
a, a = b

(3.48)

where a and b range over all sites. The upper expression accounts for the interac-

tions among the components of the monopole gas. The second is the ’monopole

self-energy’, which is the chemical potential, i.e. the energy associated purely with

the existence of the monopole in itself. In their paper CMS find a value for νS:

νS =

(
a

µ

)2
(
J

3
+

4

3

[
1 +

√
2

3

]
D

)
(3.49)

where a is the diamond lattice constant, µ the magnetic moment of the spins, and

J and D the exchange and dipolar coupling constants respectively. J and D are

defined by den Hertog and Gingras in their 1999 paper [43] as components of the

dipolar spin ice Hamiltonian (see equation 1.80). D is defined as µ0µ
2/8πa3

p where
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ap is the pyrochlore lattice constant =
√

3/2a. J is determined experimentally by

fitting Monte Carlo simulations to specific heat data.

In comparison to Debye-Hückel theory’s trio of variables a, Q and ν0, dipolar

spin ice theory has a, µ and J , in each case with the first two externally exper-

imentally determinable and the last a variable of the theory. However, the two

theories are not equal in status. DSI theory is a fully microscopic model of spin

ice. Its monopolar equivalent is the dumbbell model outlined by Castelnovo et al.

[31]. Debye-Hückel theory by contrast is an abstraction of the dumbbell model

and should be expected to be less precise. As such the use of ν0 values determined

by J values generated by fitting the DSI model is preferable to fitting ν0 directly

and this is the direction taken in the first part of the empirical investigation below.

Using this approach yields ν0 values 4.35 K for DTO and 5.7 K for HTO.

The issue is further complicated by improving measurements of the other pa-

rameters compared to those used in previous work. The Castelnovo et al. paper

[31] that introduces the monopole model reports that for DTO, a = 4.3356 Å

and µ = 10µB, while other reported values for a including the source [81] of the

DTO used in this work are closer to 4.3786 Å [81, 87, 88], and µ has been mea-

sured more accurately since at 9.87µB [89]. Due to the interdependent nature of

the three values, it is inconsistent to update these values but leave J the same,

however updating J would require implementing a new dipolar model simulation

which would be impractical with the resources available.

As such in a second part of the empirical investigation ν0 has been allowed to

vary freely.

3.2.4 Specific Heat Theory

Making use of the data, however treated, requires a theory of the specific heat

yielded by Debye-Hückel theory.

The definition of heat capacity at constant volume is:

cν =
∂U

∂T
(3.50)

Obtaining this requires an expression for the internal energy U(T,N). Note
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that as Debye-Hückel theory returns a value of N for a given T and set constant

parameters (see sections 3.1.1 and 3.1.2), N = N(T ) and T = T (N). As such U

becomes a single variable function that can be written U(T ) or U(N) and there is

no need to use partial derivatives of N or T in the thermodynamics.

It is tempting to use the following logic: The energy per charge is the effective

chemical potential ν = ν0 − νc as in equation 3.8. As such

U = xν (3.51)

dU

dT
=
dxν

dT
(3.52)

with appropriate modifications for double charges. However, this is deceptive.

Properly, the total energy is obtained by integrating over the addition of the total

number of charges:

U(N) =

∫ N

0

ν(N)dN (3.53)

Now consider:

ν =
dU

dN

c =
dU

dT

c =
dU

dN

dN

dT
, (3.54)

so from equation 3.53:

c = ν(N)
dN

dT
, (3.55)

the correct equation to use.

3.2.5 Holmium Titanate

In figure 3.11 the forms of Debye-Hückel theory outlined above are compared to

the experimental data for holmium titanate, using a monopole chemical potential

of 5.7 K and no fitted parameters. It can immediately be seen that the data has

the approximate form of a Schottky anomaly born of the two excited states that

the system populates over this temperature range.
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Take the Debye-Hückel theory with double charges but without entropic, lattice

or Bjerrum modifications as the baseline. In the pre-peak region the theoretical

projection of heat capacity increases rapidly in line with the experimental data.

There is an anomalous point at 0.7 K, but this is believed to be due to the dif-

ficulties in measuring the very large hyperfine specific heat as discussed above in

section 3.2.1. Past the peak, there is a long decline in which which the theory

is in good agreement with the data until it becomes ambiguous at T > 7 K. In

this region the single-charge theory drops off dramatically even in the 4 to 6 K

region where the lattice heat is not yet important, demonstrating the importance

of double charges even before the high-temperature tail. A partial exception arises

at high temperatures (T > 9K) where, for the LTO lattice subtraction only, the

single-charge theory is closer to the data. This difference is highlighted in figure

3.12, which compares the single- and double-charge theories directly.
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Figure 3.11: Holmium titanate experimental data and theory. The red symbols denote the
two phonon heat proxies. The solid lines denote a range of Debye-Hückel theories. Blue is a
continuum theory with double charges, of which the others are variants. Purple omits double
charges, green includes entropic charge terms, black is calculated for a lattice and yellow includes
Bjerrum pairing. There are no fitted parameters.

At the peak itself there is a significant gap between the theoretical prediction
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Figure 3.12: Holmium titanate experimental data and theory. The red symbols denote the two
phonon heat proxies. The solid lines denote continuum Debye-Hückel theory with (blue) and
without (green) double charges. There are no fitted parameters.

and the experimental result for heat capacity. This is due to the limitations of

Debye-Hückel theory, which considers a gas of only independent charges. In real

electrolytes and magnetolytes charges will form Bjerrum pairs and higher cor-

relations as explored by Zhou et al. [36]. The implications of this failure for

Debye-Hückel theory in spin ice as a whole are discussed below.

The results of adding a term for Bjerrum pairs as outlined in section 3.1.5 are

shown by the teal line. It is immediately apparent that the attempt fails, and

overestimates the specific heat in all regions. This failure highlights the problem

of a lack of a principled distinction between the Bjerrum pairs and free charges in

a dense charge gas, which means that linearly adding two separate models cannot

describe the system accurately. This contrasts with the double charge correction

which introduces an accounting for a wholly distinct species. This problem is

fundamental as will ne demonstrated below.

The outcome of including entropic charge is very promising. The theoretical

specific heat is reduced at high temperature but raised around the peak region.
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The closeness of the correspondence for HTO is remarkable, with no deviations

of significant size from the experimental data in reliable regions, and it is very

tempting to take this as proof of the viability of the entropic charge model for

high-ν spin ices, but the theoretical arguments against the concept ([78] and see

section 3.1.4) remain valid and it would be premature to declare it valid on the

basis of one set of data for one compound. The shift introduced by entropic charge,

of an increase at the peak in exchange for a decrease at high temperatures, is the

same as that to be expected from a complete Bjerrum theory, and the possibility

of a misleading coincidence should not be discounted on the strength of one good

fit.

Finally, the lattice theory does not deviate from the basic theory in a major

way, but does demonstrate a rightward shift and depression of the peak height

that worsens the accuracy of the fit. This suggests that, like the entropic charge

theory is suspected to be, the accuracy of the basic theory is partially illusory, but

due to the theoretical difficulties noted above this is only a tentative conclusion

that awaits a lattice theory known to be valid for diamond lattices.

3.2.6 Dysprosium Titanate

In figures 3.13 and 3.14 the theory is compared to experimental data for DTO.

The experimental data has the same general form as for HTO, but the Schottky

peak is higher and occurs at a lower temperature.

The theoretical predictions use a chemical potential of 4.35 K and, as for HTO,

no fitted parameters. The distribution of results is likewise similar but, in general,

less successful. The failure of the baseline double-charge theory to reach the peak

is more pronounced and accompanied by a similar failure on the upward slope of

the peak, and counterbalanced by a general overestimation of the specific heat

along the downward slope.

Among the variant theories the distribution of results is again similar. The

Bjerrum theory fails, the single-charge theory is inferior except at higher tempera-

tures, and the lattice theory is shifted right and down from the continuum theory,

becoming less accurate. The extremely good result of the entropic charge theory

for HTO is not replicated but does improve on the baseline fit, demonstrating that
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Figure 3.13: Dysprosium titanate experimental data and theory. The red symbols denote the
two phonon heat proxies. The solid lines denote a range of Debye-Hückel theories. Blue is a
continuum theory with double charges, of which the others are variants. Purple omits double
charges, green includes entropic charge terms, black is calculated for a lattice and yellow includes
Bjerrum pairing. There are no fitted parameters.

it is insufficient as a complete spin ice theory even if one were to accept it in the

face of theoretical objections.

3.2.7 Discussion

Debye-Hückel theory has been tested here against two spin ices. For holmium

titanate it has met with qualified success, but for dysprosium titanate its perfor-

mance is noticeably worse. The largest problem is an inability to reach the peak

without the use of theoretically questionable entropic charge, and the most direct

method of tackling this is a failure.

The peak difficulties might be expected to arise from the formulation of the the-

ory itself. Debye-Hückel theory relies on a linear approximation of the exponential

e−QiΦ/kT , valid in the case that QiΦ� kT (see equation 1.87), i.e. that the ratio of

the typical magnetostatic energy to the typical thermal energy is small. This can
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Figure 3.14: Dysprosium titanate experimental data and theory. The red symbols denote the
two phonon heat proxies. The solid lines denote continuum Debye-Hückel theory with (blue)
and without (green) double charges. There are no fitted parameters.

be satisfied by a low QΦ, which will be the case if there is a low concentration of

charges, or by a large kBT . By calculating the average separation distance based

on the monopole concentration, and applying to the expression for Φ in equation

1.103, the value of the ratio can be estimated at each given temperature.

In figure 3.15 we see the variation of QΦ/kBT with temperature for single poles

in dysprosium titanate, and it is clear that the quantity is at its highest in the

vicinity of 1 K where the theory performs poorly. The quantity is smaller, and the

theory more successful, both before and after this region. However, the decline

with increasing temperature is quite slow, and there is a secondary peak at approxi-

mately 2.5 K, indicating that the effect is not necessarily very strong. Nevertheless

this result and the relative success of the theory at higher temperatures give theo-

retical and empirical backing to the prospect of high-concentration Debye-Hückel

theory, in solutions where the temperature is high enough to overcome the large

QiΦ term.

Qualitatively, as mentioned above, this can be considered to be a consequence
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0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Temperature/K

Q
Φ

/k
B
T

Magnetostatic Energy/Thermal Energy for Single Charges in DTO

Figure 3.15: QΦ/kBT (the ratio of the typical magnetostatic energy to the typical thermal
energy) plotted against temperature for single charges in DTO. Debye-Hückel theory relies on a
linear approximation to that is in theory only applicable when QΦ/kBT � 1.

of Debye-Hückel theory only considering independent charges. More closely cor-

related states such as Bjerrum pairs or many-ion systems are not modelled. At

low populations, this is not a problem as the charges are so sparse that few com-

plex systems will form, and at high temperatures the system will be sufficiently

energetic to ‘melt’ any such structures. In either case the theory of independent

charges will still function. DTO, with its lower chemical potential than HTO, will

have a higher population of monopoles at any given temperature and so pose more

problems for the Debye-Hückel approximation, hence the inferior performance of

the model. The issue of charge correlations in magnetolytes as chemical potential

decreases is developed more thoroughly by Zhou et al. in [36].

The straightforward correction is to add a term for Bjerrum pairs, but this

approach failed in both test ices. It can be described as doing so due to ‘double

counting’ of states and the lack of a distinct pair in a dense system, but the problem

is fundamental in magnetolytes in a mathematically clear way.
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The internal energy of the system is governed by the Boltzmann distributions

which determine the population of each state:

x =
gie

−νi
kBT

g0 + g1e
−ν
kBT + g2e

−ν2
kBT

(3.56)

Assuming the change in value of νi from screening, entropic or other consid-

erations is finite, as T approaches zero all non-ground state terms approach zero

population and the ground state approaches a population of 1. As T approaches

infinity the population of each state approaches that determined by its degeneracy

g in proportion with the others. This mirrors the entropy of the system. Assuming

no accessible ‘true ground state’ below the ice rules state, at T = 0 K it has the

Pauling entropy of an ice grid that obeys the ice rules and at infinite T it has the

entropy of a system where all possible spin configurations are equally occupiable.

Because it is constrained by the Boltzmann distribution the entropy increase, and

hence the specific heat, predicted by Debye-Hückel theory over the course of a

temperature rise from 0 to infinity must necessarily equal the difference between

the Pauling and saturation entropies.

Given this, a bare addition to the specific heat such as the näıve Bjerrum theory

described in the theoretical section will always cause a net overshoot, as it produces

an entropy strictly larger than that produced by the bare Debye-Hückel theory

which is already constrained to produce the correct total entropy regardless of its

accuracy at any one specific temperature. The increase in the specific heat in the

peak region must be ‘paid for’ by a reduction in other regions, and so a Bjerrum

theory for spin ice cannot stand independently of the rest of the Debye-Hückel

theory. It must either operate entirely within the same boltzmann distributions

as the independent charges or produce a negative ‘Bjerrum contribution’ at high

temperatures.

This aligns with the observed deficiencies of Debye-Hückel theory in the more

trying case of DTO, where it failed to meet the peak but overshot at high tem-

peratures. This balancing means the overall area under the c/T curve, and so the

entropy, remains constant and sheds light on the way the experimental and the-

oretical curves change shape between HTO and DTO. As the chemical potential

lowers the system populates at lower temperatures, and offsets this with a reduced
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rate of population increase at higher temperatures, thus producing a lower, earlier

peak.

3.2.8 Comparison with Previous Formulation of Debye-

Hückel Theory

In figure 3.16 the theory developed above is compared for DTO against the results

of the theory of CMS [4] described in section 2.3, digitised from figure 2.4.
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Figure 3.16: Experimental data for specific heat of DTO (red symbols) compared to Debye-
Hückel theory with double charges and microscopic degeneracy for ν0 = 4.35 (blue line) and the
Debye-Hückel theory of CMS for ν0 = 4.37 (red line) [4].

Before the peak, the CMS theory matches the data more closely than the new

theory. As it passes the peak, it develops a severe overshoot in its estimation

of the specific heat, then loses this as the temperature increases, crossing the

experimental value at approximately 3 K and finishing below the YTO-proxied

value, though not the LTO-proxied value.

This differences can be understood in terms of the two differences of the mod-

els. The difference in the statistical weight of the ground state changes the low-
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temperature specific heat, while at high temperatures and hence energies the ex-

clusion of double charges becomes . The performance of the model at high tem-

peratures is similar to that of the single-charge theory in figure 3.13.

The overall comparison is not as clear-cut as might be expected given the closer

match of the new theory to the fundamentals of the system. However, two further

points should be registered in favour of the new theory. First, above 2 K it has

a similar derivative to the experimental data using the YTO proxy favoured by

simulations, yielding a similar shaped curve with a small vertical offset. The CMS

theory does spend time closer to the data in the 3 K to 4 K region, but this is in

the course of a collapse down to a low value that necessarily requires the curve to

cross the data at some point. This is to be expected in light of the nature of the

two differences, one of which increases the specific heat at low temperatures, and

the other of which decreases it at high temperatures. Second, the deficiencies in

the new model are easily understood in terms of known phenomena not treated

by the theory, that being the failure to account for paired and other correlated

monopole states, which increase the specific heat in the vicinity of the peak and,

by entropic accounting, decrease it elsewhere.

It is notable that the closer match of the CMS theory to the data in the pre-

peak region is similar to the performance of the Bjerrum pair theory in figure

3.13. In both cases the insufficiency of the basic theory to account for paired

monopole states is addressed by a factor that increases the excited state population

in the low-temperature region: for the Bjerrum theory, an explicit addition of

monopole pair states that later becomes unphysical, and for the CMS theory, an

overweighting of the statistical weight of the monopole state relative to the ground

state.

3.2.9 Fitted Values of Specific Heat and Effective Chemical

Potential

As noted in section 3.2.3, there is some uncertainty regarding the values of the

microscopic parameters of DTO. The above discussion uses the values from [31].

Here, we use a lattice constant a = 4.3786 Å [81], and a Dy3+ magnetic moment

of 9.87µB for DTO [89], and allow the chemical potential ν0 for DTO and HTO to
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Table 3.2: Fitted Spin Ice Chemical Potentials

Temperature proxy low fit full range high fit

HTO YTO 5.4453 5.5156 5.5625
HTO LTO 5.4453 5.4922 5.3516
DTO YTO 3.9688 3.9922 3.9219
DTO LTO 3.9453 3.9688 3.7344

vary freely to obtain a best fit.

The data was fitted for both titanate spin ices using an unweighted least squares

fitting procedure. In such a procedure a specific heat curve is generated according

to Debye-Hückel theory for a given ν0, then the sum of the squares of the differ-

ences between the theoretical values and the experimental values at each point

is calculated. The value of ν0 which gives the smallest sum is the returned esti-

mate. The fit was run over three temperature ranges, the region before the peak

(T = 1.2 K for DTO, T = 1.9 K for HTO), the full range from 0 K < T < 10 K,

and for 4 K < T < 10 K for the YTO and LTO proxy specific heat estimates. In

figures 3.17 and 3.18 we see the results for HTO and DTO respectively. The fitted

ν0 values are listed in table 3.2.

The HTO values typically vary by less than 10% from the 5.7 K established

value. The DTO values vary more strongly, by more than 10% from the 4.35 K.

The fits for DTO are notably superior to those using the literature parameter

values. The theoretical peak has moved closer to the experimental peak, and the

post-peak region is significantly improved, with little distinction between theory

and experiment until T = 5 K, where the exact value of the magnetic heat capacity

becomes uncertain.

However, this does not establish that the DTO chemical potential value pre-

dicted by the literature is incorrect. The use of a fitting procedure can create a

false accuracy, which is why non-fitted curves were presented first in this inves-

tigation. Referring to table 3.2 and recalling the literature ν values of 5.7 K for

HTO and 4.35 K for DTO, we see that the fitted values are always lower. This

is explained by reference to the lack of accounting for Bjerrum pairs noted in the

above section. Bjerrum pairs, by remaining bound and so having lower Coulomb
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Figure 3.17: Magnetic specific heat of HTO compared to results of fitted Debye-Hückel theory.
The blue symbols use a scaled YTO proxy for the phonon heat, the green symbols a scaled LTO
proxy. The red line is a fit to the YTO data, with ν0 = 5.52 K for HTO and 3.99 K for DTO.

energy, allow lattice sites to become excited at lower energies than needed to cre-

ate unbound free monopoles. The form of Debye-Hückel theory described above is

unable to properly account for this, but it can crudely approximate it by lowering

the chemical potential, which has the same theoretical effect of lowering the lattice

site excitation energy and the same practical effect of increasing the height of the

peak as sites are filled earlier, but decreasing the high-temperature heat capac-

ity as the system runs out of excited states to occupy on its way to maximum

entropy. As such the fitted chemical potential values are not true chemical poten-

tials but slightly modified ‘effective chemical potentials’ which partially account

for the presence of Bjerrum pairs and other monopole complexes.

This accounting is however only partial. The fitted curves in figures 3.17 and

3.18 are still subject to the same problems as faced by the theoretically predicted

curves in figures 3.11 and 3.13. Figure 3.19 shows the results of fitting the curve

to the most extreme part of the DTO data, the LTO proxied specific heat for

T > 4 K. This result is notably worse than the earlier fits and the non-fitted



138 CHAPTER 3. DEBYE-HÜCKEL THEORY
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Figure 3.18: Magnetic specific heat of DTO compared to results of fitted Debye-Hückel theory.
The blue symbols use a scaled YTO proxy for the phonon heat, the green symbols a scaled LTO
proxy. The red lines is a fit to the YTO data, with ν0 = 5.52 K for HTO and 3.99 K for DTO.

curves, as it fails to match the shape of the curve in its fitted region, and while

it raises the peak height, it also moves it to a lower temperature, resulting in a

poor fit in all regions. This demonstrates that even with an effective chemical

potential lowered to allow low-energy monopole formation, Debye-Hückel theory

cannot account for bound monopole pairs. It also demonstrates that the theory

cannot achieve low values of magnetic heat capacity at high temperatures without

losing its ability to model lower temperatures, underlining the incompatibility of

Debye-Hückel theory at high temperatures with some previous estimates of the

phonon specific heat.

3.2.10 Comparison with Simulations

The simulations of V. Kaiser [86] were previously used to shed light on the con-

tribution of the lattice to the heat capacity of spin ice. Here they are compared

directly with the predictions of Debye-Hückel theory. Comparison with simula-

tions offers different benefits to comparison with experiment. In a simulation the
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Figure 3.19: Magnetic specific heat of DTO compared to results of fitted Debye-Hückel theory.
Blue symbols use a scaled YTO proxy for the phonon heat, green symbols a scaled LTO proxy.
The red line is a fit to the LTO data for T > 4 K, with ν0 = 3.73 K.

theoretical model and its parameters can be specified exactly. While one cannot

be certain that the model so specified is actually realised in the physical world

(though this can itself be supported by experiment), the accordance of an analytic

theory with the model it is intended to describe can be tested.

In figures 3.20 and 3.21 simulated data with and without double charges is

compared against the similar Debye-Hückel theories. The simulations used values

of ν = 4.35 K for DTO and ν = 5.7 K and for HTO, and identical parameters

were used for the Debye-Hückel calculations. The double charge case is similarly

successful as with the experimental data, with a peak deficiency complemented by

an excess in the high-temperature tail. Notable however is that the single charge

case is also effective (and flawed) in the same way. A simulation of a dipolar model

with double defects excluded is described successfully by the Debye-Hückel model,

demonstrating it is robust not just across varying parameter values but varying

fundamental physics as well.

Also notable in the results is that the divergence of the analytic Debye-Hückel
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Figure 3.20: Dipolar spin ice simulations (circles) and Debye-Hückel theory (lines) for HTO. The
blue includes double charges while the red excludes them.

prediction from the simulated prediction at high temperatures is very similar for

both single and double charges, in each material. This indicates that the inclusion

of the double-charge correction in Debye-Hückel theory captures very closely the

actual effect of double charges on the high-temperature specific heat. The three-

way agreement of experiment, analytic theory and simulation, especially for HTO,

strongly suggests that double monopoles are an important element of the thermal

physics of spin ice near saturation, and cannot be safely discounted.

3.2.11 Cadmium Erbium selenide

The discussion so far has focused on pyrochlores, but the theory is not specific

to any crystal structure so long as spin ice behaviour itself exists, that is, fer-

romagnetically coupled Ising spins are arranged along the bonds of a diamond

lattice.

The spinels (AR2X4) are another cubic crystal structure. The series CdLn2X4

(where Ln is a lanthanide and X = Se, S) has been found to be a rich source

of magnetic frustration in which the lanthanide ions form a frustrated sublattice



3.2. DEBYE-HÜCKEL THEORY AND EXPERIMENT 141

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

temperature/K

s
p

e
c
if

ic
 h

e
a
t/

J
 K

−
1
 m

o
l 
D

y
−

1

Dysprosium Titanate Simulations and DH Theory

 

 

double charge (sim)

single charge (sim)

double charge (theo)

single charge (theo)

Figure 3.21: Dipolar spin ice simulations (circles) and Debye-Hückel theory (lines) for DTO. The
blue includes double charges while the red excludes them.

[90]. In 2010, Lago et al. [39] presented evidence that the spinel cadmium erbium

selenide (CdEr2Se4, CES) realises a spin ice lattice with its Er3+ ions. This presents

a useful test case for Debye-Hückel theory, to see if it can generalise to a different

crystal structure that is nevertheless similar in the ways the theory claims are

important.

As with the pyrochlores it is necessary to remove the non-monopolar contribu-

tions to the specific heat. Lago et al. [39] identified two major contributions: the

phonon contribution, as in the pyrochlores, and also the first excited state of the

crystal electric field. They used fits for the energy of the first excited CEF level

and the Debye temperature of a T 3 Debye phonon model, obtaining 46.96 K and

167.84 K respectively. Their findings are displayed in figure 3.22.

As with the DTO results of Hiroi et al. discussed in section 3.2.2, the specific

heat reaches zero at 10 K in their fit, but this can similarly be called into question

in light of the theoretical expectation of a non-negligible monopolar contribution at

high temperatures. Slightly different parameters for the CEF excited level and the

Debye temperature can obtain a magnetic specific heat persistent even to 10 K. In

figure 3.23 a variation with values of 170.84 K and 48.96 K respectively is similarly
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Figure 3.22: The heat capacity of CdEr2Se4 (black circles) split into its theoretical phonon
(purple), crystal field (green), total non-magnetic (red) and implicit magnetic (blue) components.
Reprinted figure with permission from J. Lago et al., Physical Review Letters, 104, 247203, 2010.
[39] Copyright 2010 by the American Physical Society.

successful in describing the specific heat for T > 10 K, but has significantly dif-

ferent results for the specific heat at 10 K in comparison to Debye-Hückel theory,

as shown in figure 3.24, plotted using a chemical potential of 3.52 K derived using

equation 3.49 from the J value (−0.15 K) and D value (0.97 K) provided in the

Lago et al. paper [39].

Neither fit in figure 3.24 is wholly satisfactory. While the CES data clearly

has the same Schottky peak form seen in the canonical HTO and DTO spin ices,

the Debye-Hückel theory for CES does not match or exceed the experimental data

in the post-peak region as it does for those compounds, despite the low ν0 value

derived from the J value. A broad secondary peak is visible which collapses down

to match the theory (for the new parameters) or to zero (for the Lago et al. [39]

parameters) at 10 K. In figure 3.25 the Debye-Hückel prediction is added to the

CEF and phonon contributions and compared to the raw experimental value up

to 20 K.

http://dx.doi.org/10.1103/PhysRevLett.104.247203
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Figure 3.23: The heat capacity of CdEr2Se4 (black circles) split into its theoretical phonon
(purple), crystal field (green), total non-magnetic (red) and implicit magnetic (blue) components.

Figures 3.22 and 3.23 suggests an explanation for the anomalous behaviour.

The CEF curves in both begin significantly rising past 5 K and are at almost half

of their maximum value at 10 K. This suggests a significant occupation of excited

crystal field states at low temperatures. As the ideal spin ice state depends on

the spins being bound absolutely parallel to the tetrahedral axes, such an occu-

pation could significantly disrupt the spin ice physics, potentially producing both

the broad peak and a collapse in magnetic heat capacity in line with Lago et al.’s

fitted parameter values. However, if the broad peak is due to some additional

nonmagnetic factor and the true monopolar heat capacity is obtained by subtract-

ing it, then there is scope for the fit to be similar to those of the canonical ices

within the bounds of the uncertainty of the high temperature specific heat. Care-

ful measurements and separations of the sources of the heat capacity of CES will

be required to resolve these issues.
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Figure 3.24: Cadmium erbium selenide experimental data and theory. The red circles represent
the previous CES heat capacity work of Lago et al.[39]. The green circles are the divergent result
obtained by slightly modifying their fitted values. The blue line is the prediction of double-charge
continuum Debye-Hückel theory for this data

Despite these difficulties CES is similar in behaviour to the spin ices and Debye-

Hückel theory has a degree of success in capturing its magnetic specific heat in

the low-temperature region, demonstrating its applicability across variable crystal

structures.

3.3 Summary

The above analysis has shown that heat capacity predictions from Debye-Hückel

theory agree with experimental data for three spin ice materials of differing en-

ergy levels and crystal structures, despite the radical difference between the elec-

trolytes the theory was originally conceived to describe and the frustrated mag-

netic crystals it is applied to here. The theory is theoretically improved from the

version presented by Castelnovo et al. in 2010 [4], as it contains a microscopi-

cally correct form of the partition function and incorporates the effect of double

charges. These improvements allow the theory to describe the heat capacity even
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Figure 3.25: The heat capacity of CdEr2Se4 (black circles) plotted with its theoretical phonon
(purple), crystal field (green), Debye-Hückel (red) and total theoretical (blue) components.

into high-temperature regions approaching 10 K, much higher than the 2 K pre-

viously thought to represent the limit of spin ice behaviour in figure 2.4, and

in a high-density region not normally thought accessible to Debye-Hückel theory.

There is furthermore reason to believe that the heat capacity of spin ices in the

10K region is larger than has previously been suggested.

The principal limitation of the theory is its failure to account for the complete

heat capacity near the peak. The most obvious explanation of this is that the

theory does not yet incorporate Bjerrum pairs of monopoles. This limitation has a

counterpart in a persistent, but smaller overestimation of the specific heat at high

temperatures.
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Chapter 4

Magnetic Relaxation

Monopoles, being effective magnetic charges, can carry magnetic current and so

mediate the process of magnetisation under field. In his original 2005 paper [3],

Ryzhkin derived a theory of magnetic relaxation in spin ice on this basis. Recent

work by Revell et al. [5] and Paulsen et al. [7] has examined relaxation at low

temperatures and found Ryzhkin’s description incomplete. In this section Paulsen

et al.’s data will be examined in the light of Ryzhkin’s original model, Revell et

al.’s proposed model, and a new model proposed by Steven Bramwell [74] and the

implications of their successes and failures for the monopole physics of spin ice will

be explored.

4.1 Magnetic Relaxation Theory I

In section 2.4 Ryzhkin’s 2005 theory [3] was outlined. It can be used to derive an

expression for DC relaxation in one dimension. Recalling equation 2.24:

ji = µiniµ0(QiH− ηiΦΩ),

converting vectors to scalars along one axis, substituting magnetic current density

J = ∂M/∂t = jQ, susceptibility χT = Q2/Φ, and M = QΩ, the equation can be

rewritten as

J = κ(H − χ−1
T M) (4.1)

147
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with monopole conductivity κ = ucQ2µ0, where monopole mobility u = u+ = −u−,

monopole concentration c = c+ + c−, and monopole charge Q = Q+ = −Q−. c

is related to the dimensionless monopole density x as x = cV0, where V0 is the

volume of a diamond lattice site.

So, substituting J for the partial differential, we obtain

∂M

∂t
= κ(H − χ−1

T M). (4.2)

Here H is the internal field Hi, but can be converted to a function of the applied

field Ha with the substitution Hi = Ha − DM , where D is the demagnetising

factor.

∂M

∂t
= κ(Ha − aM), (4.3)

where a = D + χ−1
T .

This becomes zero when Ha = aM , at which point the reaction field from

the monopole movement (represented in the change in M) negates the applied

magnetic field. This reaction field is not a phenomenon of magnetic fields but is

an effective field created by the entropy cost of ordering the spin lattice underlying

the monopole vacuum.

A monopole movement in a given direction consists in an Ising spin flip from a

particular orientation to the opposite orientation [3]. Oppositely charged monopoles

moving in the opposite direction utilise the same type of flip. Aggregate magnetic

current polarises the spin network, introducing an entropy cost to further polarisa-

tion. This creates an effective reaction field, which is the cause of the impossibility

of a sustained DC current in spin ice [42]. Under high fields, the network can

be completely polarised, and monopole movement in the field direction becomes

impossible as the available paths are all oriented against the direction of travel.

With the substitutions M0 = Ha/a, m = M/M0 and ν = aκ0, we obtain

∂m

∂t
= ν(1−m). (4.4)

This differential equation in m can be solved to yield
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m(t) = 1− e−νt. (4.5)

This is a straightforward expression for the magnetisation as a function of time in

a DC field, which can be tested against experimental data.

4.2 Ryzhkin’s Theory and Experiment

Ryzhkin’s theory has previously been tested against AC relaxation data at tem-

peratures of 4.5 K and above and found to be effective ([54] and see section 2.4.1).

At those temperatures, the monopole population is approaching saturation. In

this section, the test is performed at temperatures of 0.6 K and below where the

monopoles instead approach the dilute limit, and different processes may come

into play.

4.2.1 Experimental Methods

Paulsen et al. [7] performed a number of magnetic relaxation measurements on

dysprosium titanate and have kindly made their data available for this investiga-

tion. Crystals of DTO were cooled to measurement temperature by a ‘classic’ or

‘conventional’ cooling method involving a thermal reservoir, or by a rapid ‘mag-

netothermal avalanche quench’. The crystals were grown in oxygen flow but not

annealed, and were of yellow colouration.

In conventional cooling, the sample is heated to 900 mK, then cooled to the

measuring temperature over 3000 seconds, and regulated there for 600 seconds

before the magnetic field is applied and measurement begins.

In an avalanche quench, the sample is magnetised by an applied field of −0.2 T,

and cooled to 75 mK. Then, the magnetisation is reversed by an applied field

of 0.2 T, which heats the sample to approximately 900 mK though the release of

magnetic Zeeman energy from the spins. It then is allowed to rest for four seconds,

during which it cools rapidly due to direct contact with the cold sample holder.

Finally, the field is switched off, creating another quench and a return to 900 mK,

then a rapid cooling into the sample holder.
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The crystals were then exposed to a 5 mT magnetic field and the relaxation of

the magnetisation measured at constant temperature.

4.2.2 Results
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Figure 4.1: Magnetisation of conventionally cooled DTO (blue symbols) compared against the-
oretical results of Ryzhkin (green lines).

The value of the single parameter ν can be extracted from the ‘half-life’ of an

experimental m vs. t curve, thus:

m(t1/2) = 1/2 = 1− e−νt1/2 , (4.6)

ν =
− ln(1/2)

t1/2
, (4.7)

where t1/2 is the time taken for the magnetisation to reach half of its saturation

value, which can be read off from the data directly.

This allows the theory to be compared directly against the data without free

parameters, in Figure 4.1. Two problems are immediately apparent. Firstly, the
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theoretical curve is the wrong shape, with too sluggish a start followed by too

sharp an increase. Secondly, the theoretical curve assumes that magnetisation

starts at zero at time zero. However, the experimental curve does not appear to

be approaching that point. These results are similar in both avalanche quenched

and classic cooled data sets.
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Figure 4.2: Avalanche quenched DTO from 0 to 20 s. Line is a guide for the eye and does not
imply any continuity of measurement.

Examining the earliest time period of the 400mK curve on linear axes in Fig-

ure 4.2, d2m/dm2 appears to be negative, and so the curve convex, which is not

consistent with the early stages of an exponential increase to a limit such as our

expression describes, but is consistent with the late stages of one. This suggests

that there is an initial, very fast process that increases the magnetisation to some

low level, which is then overtaken by the more conventional process our expression

attempts to describe. Recent work has suggested that this might be an adiabatic

(involving no heat transfer) susceptibility [91].

This phenomenon will not be considered fully in this section, but to compensate

for it the expression can be modified to have the boundary condition m(0) = m0
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m(t) = 1− (1−m0)e−νt (4.8)

with m0 being the maximum contribution of the initial process, to correct the

results once the complete contribution is present. The earliest time points will

remain erroneous until the initial process is properly accounted for.

4.3 Magnetic Relaxation Theory II

Ryzhkin’s basic theory is clearly insufficient to describe spin ice relaxation be-

haviour. Three proposed modifications of the expression will be examined here:

the linear Wien effect model, the stretched exponential model, and the recombi-

nation model.

4.3.1 Linear Non-Ohmic Model

In 2009, Bramwell et al. [59] reported that the second Wien effect occurs in

dysprosium titanate.

As described in section 1.5.3, the second Wien effect or the ‘field dissociation ef-

fect’ is a phenomenon in electrolytes in which conductivity increases under electric

fields due to the field dissociating bound ion pairs and so increasing the population

of free charge carriers [48]. An analogous magnetic effect would be expected in

spin ice under the magnetolyte model, due to magnetic fields both splitting bound

Bjerrum pairs and inducing spin flips in otherwise ice-rule site pairs that lie along

the field axis. This has significance for the theory of magnetic relaxation described

above as it is mediated by movement of charge carriers.

Bramwell proposed adding a field-dependent term to the conductivity [74].

This approach has been shown to work extremely well in numerical simulations of

the monopole conductivity in spin ice [61]. Beginning from the kinetic equation in

equilibrium in a vacuum:

dx

dt
= kf (1− x)− krx2 (4.9)

where kf is the monopole formation rate, kr is the monopole destruction rate and
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x is the dimensionless monopole density. Initially we can simplify this by assuming

x� 1 due to the low temperature to obtain

dx

dt
= kf − krx2 (4.10)

where the x2 term remains due to the assumption kr � kf .

Bramwell introduces a linear wien effect on the formation rate kf :

kf = k0
f (1 + b) (4.11)

an approximation of equation 1.114 valid for small b, where b is the Onsager factor

[48]

b =
Q3|H|

8πµ0k2
BT

2
, (4.12)

which is the magnetic equivalent of the electrical Onsager factor of equation 1.113

with substitutions e→ Q, E → H and ε0ε→ µ0µ with µ = 1.

Now if the equation is linearised with x = x0 + ∆x:

d∆x

dt
= k0

fb− 2krx0∆x. (4.13)

and write b as

b = β|Ha − aM |, (4.14)

β =
Q3

8πµ0k2
BT

2
. (4.15)

Using the substitution m = M/M0 and the definition b0 = βHa this can be

simplified:

b =
b0

Ha

|Ha − aM | =
b0

Ha

∣∣∣∣1− a

Ha

M

∣∣∣∣ =
b0

Ha

∣∣∣∣1− M

M0

∣∣∣∣ , (4.16)

b = b0|1−m|, (4.17)

recalling from Ryzhkin’s magnetic current equation [3] that Ha = aM0 with M0

the equilibrium value of M .
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At equilibrium under no field dx/dt = 0 and at equilibrium under field d∆x/dt =

0. Therefore

kf = krx
2
0, (4.18)

k0
fb = 2krx0∆x, (4.19)

giving

∆x0 =
x0b

2
(4.20)

where ∆x0 is the maximum value of ∆x reached at equilibrium. Now define

q = ∆x/∆x0.

This is a dimensionless measure of how close the magnetolyte is to saturation

of additional Wien effect monopoles, and leads to

∆x = q∆x0 =
qx0b

2
. (4.21)

Now consider equation 4.3, Ryzhkin’s magnetic current equation. If we consider

that κ = κ(x), a linear function, we can define

κ = κ0(1 +
∆x

x0

) = κ0(1 +
qb0

2
), (4.22)

∂M

∂t
= κ0(1 +

qb0

2
)(Ha − aM). (4.23)

If we make a final assumption that the Wien effect is instantaneous, so q = 1,

we obtain

∂M

∂t
= κ0(1 +

b

2
)(Ha − aM), (4.24)

where b = β|Hi| = β|Ha−aM |, so using the substitutionsM0 = Ha/a, m = M/M0,

ν = aκ0 and g = Haβ/2 = b0/2:

∂m

∂t
=
dM

dt

1

M0

= ν(1 + g(1−m))(1−m). (4.25)

This can be solved under the boundary m(0) = 0 to yield
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m(t) = 1 +
1

g − (1 + g)eνt
, (4.26)

or with the offset boundary m(0) = m0 to yield

m(t) = 1 +
1

g + 1+g−m0g
m0−1

eνt
. (4.27)

A consequence of this addition is the appearance of an m2 term in the expression

4.25.

4.3.2 Stretched Exponential

Revell et al. [5] reported that DTO magnetic relaxation proceeds as a stretched

exponential with a slow long-time tail. On their own account this is surprising,

as stretched exponentials are typically associated with disordered systems such

as spin glasses. Spin glasses (see section 1.3) are characterised by disordered

organisation and orientation of magnetic spins, induced by magnetic frustration

and structural disorder. By contrast spin ices have ground state disorder in their

spin configuration due to the large number of ice-rule compliant solutions, but

ideally form a regular lattice with no structural disorder [13].

Their measurements took two forms: a direct-field quench at 5 mOe and a mea-

surement of the imaginary susceptibility χ′′ as a function of frequency, transformed

into a time function via the fluctuation-dissipation theorem:

C(t) = 〈M(0)M(t)〉 = 2kT

∫ ∞
−∞

χ′′(ω)

ω
cos(ωt)dω. (4.28)

Monte Carlo simulations reported in the same paper found that surface con-

ditions could recreate the stretched exponential and the addition of spin-stuffing

defects the long-time tail.

Their results are presented in figure 4.3, and an equivalent presentation of the

Paulsen et al. [7] data in figure 4.4. It is important to note that the overlap

between the two sets of data is limited. The Revell et al. [5] data ranges in

temperature from 0.475 K to 1.1 K with most sets > 0.65 K, while the three

sample temperatures presented from the Paulsen et al. data range from 0.4 K to
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0.6 K. Nevertheless the data sets demonstrate similar behaviour.

Figure 4.3: Black lines are direct-field quench measurements, red lines are determined from equa-
tion 4.28 and green lines are results of doped DSI simulations. From left to right, temperatures
are 1.1 K, 1.0 K, 0.9 K, 0.8 K, 0.675 K, 0.55 K and 0.475 K. The blue dashed line represents a
gradient of stretching factor β = 0.8. Reprinted by permission from Macmillan Publishers Ltd:
Nature Physics (Revell et al. 2013 [5]), copyright 2013.

We see an initial exponential drop off in both, followed by long-time tails

brought out by the logarithmic plot. The tails indicate a slowdown near satu-

ration proposed by Revell et al. [5] to be caused by defect pinning, and this

phenomenon will be considered in the second section. In this section the focus is

on the development of the magnetisation before saturation is reached, the shape of

which is unfortunately obscured by the logarithmic plot that highlights the long-

time tail. It is this behaviour that is explained by Revell et al. using a stretched
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Figure 4.4: d.c. magnetisation curves of DTO at 400, 500 and 600 mK. Field strength 50 Oe.
The long-time tail is clearly visible.

exponential.

An additional behaviour is visible in the Paulsen et al. data. After the long-

time tail is established, a sharper drop-off reappears at even longer times, longer

than those displayed on the Revell et al. data. However this is plausibly an

illusion arising from the method used to invert the data to bring out the long-

time tails. This method chooses the final point of the complete set of data as

the reference value for the maximum magnetisation and as such the data will

necessarily eventually collapse to a zero unplottable on logarithmic axes. As such

the secondary drop-off is probably not significant.

As noted, data from two measurement methods are presented in the Revell

et al. [5] figure, and in their figure it can be seen that the results in the pre-

saturation region, though transformed onto equivalent axes and obscured by the

logarithmic plot, differ significantly. The simulations in turn principally emulate

the Fourier-transformed AC data rather than the directly measured data. The

stretched exponential form displayed against the data is rendered plausible by the
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work done depicted but has not been clearly tested against conventional magneti-

sation curves, and furthermore lacks a strong theoretical basis beyond the analogy

between spin ices and spin glasses. As such it is here considered as one hypothesis

among others.

Their expression is:

C(t) = 〈M(0)M(t)〉 = e(−t/τ)β . (4.29)

A stretched exponential function in our notation with m(0) = 0 is:

m(t) = 1− e−(νt)β , (4.30)

or with m(0) = m0:

m(t) = 1− (1−m0)e−(νt)β . (4.31)

As with the previous functions, the magnetisation was normalised with m =

M/Mmax and ν was extracted from the data. This leaves one free parameter β,

the stretching factor.

4.4 Comparison with Experiment

4.4.1 Fitting Multiparameter Theories to Experimental Data

Application of these theories to the data is not as straightforward as for the

Ryzhkin [3] theory. The Ryzhkin theory had one parameter, ν, which could be

taken from the data in a straightforward way. The new theories have two param-

eters internal to the theory, ν and either g or β, plus the offset parameter m0

introduced to compensate for the low-temperature behaviour discussed above.

The best approach to take to the anomalous short-time offset m0 depends on

its origin. If it is a problem with the instrument that leads to the magnetisation

value being incorrectly reported, then it should be dealt with by correcting this

problem in the data itself. If it is a phenomenon in the sample of very fast or

residual low-level magnetisation then the use of the m0 limits above would be
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appropriate, as it represents a real change in m, which produces a real change in

the results according to the theories.

As the size of m0 (in table 4.1) appears to vary with cooling method, which

would affect the magnetic properties of the crystal via increased monopole pop-

ulation but not immediately obviously the instrument, my judgement is that a

change in the theoretical limiting values is the most justified approach.

The remaining two values, ν and either g or β, can be collapsed into a single

parameter by choosing the ν value to match the half-life of the data similarly to

with the Ryzhkin model. This allows a single-variable fit to be performed assuming

a known value of m0, or a two-variable fit if m0 is known.

The values for m0 and ranges of values for β and g were determined by fitting

over different ranges of the data. Originally, two-parameter fits were attempted

over the entire curve, but several of these produced implausible negative values for

m0 to obtain marginal improvements in the curves nearer saturation.

The curves were divided into four sections, at 1/4, 1/2 and 3/4 of the maximum

value ofm. A two-variable fit ofm0 and g or β in the regionm < 1/4 was performed

for each temperature to determine a reference m0, as the low-temperature region is

most strongly dependent on the size of m0. This value was used for single-variable

fits over 0 < m < 1 to produce the plots in figure 4.5. It was then used for fits in

the region m < 3/4 and 1/4 < m to produce ranges for g and β.

Random error in the results is not large enough to be significant in this part

of the investigation, though it creates manageable noise in section 4.5.

4.4.2 Results

In figure 4.5 the results of the complete range fits for the two improved models are

compared against the conventionally cooled data from figure 4.1. Both are clear

improvements over the plain expression, which is an expected result as they have

an additional variable to fit.

In figure 4.6 residual plots highlight the differences more clearly. In each case

the non-Ohmic conductivity model has a smaller maximum deviation from the

experimental data than the stretched exponential. With the curves pinned to the

data at the midpoint of the magnetisation process, the stretched exponential has
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Figure 4.5: Conventionally cooled dysprosium titanate at 400 (blue circles), 500 (blue squares)
and 600 mK (blue triangles), against respective linear non-Ohmic (green) and stretched expo-
nential (red) curves for each temperature.

a tendency to overestimate the results and the non-Ohmic model to underesti-

mate. In either case these tendencies could be removed by slight alterations to ν.

Increases would have the effect of moving the curve left and the residual curve up-

wards, and decreases the opposite. However, this would be at the cost of accuracy

in the central region.

Table 4.1 shows the parameter values for the fits. We see that β lies in the

range 0.7 < β < 0.83, consistent with the results of Revell et al. who found

0.7 < β < 0.8. The g values range from 1.9 < g < 6.3. However, the expression

for the Onsager parameter (equation 4.12) predicts g = 0.64 at 0.4 K, g = 0.41 at

0.5 K, and g = 0.28 at 0.6 K. This is a difference of an order of magnitude and

cannot be explained by appealing to uncertainty in the theory.

A solution is suggested by the work of Pomaranski et al. [66], who found

that the thermal relaxation time of DTO is expected to be extremely long at

low temperatures, more than 104 seconds below 1 K and with a runaway below

0.45 K. If this is caused by the monopole destruction rate becoming very slow
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Figure 4.6: Difference between m values for the conventionally cooled experimental data (blue
reference line) and linear non-Ohmic (green) and stretched exponential (red) best fits at 400
(upper), 500 (middle) and 600 mK (lower).
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Table 4.1: DTO Relaxation Model Parameters (variable temperature)

Temperature m0 param. low fit high fit full range

400 mK(cc) 0.0269 ν 1.86× 10−4 2.39× 10−4 2.37× 10−4

g 6.3 4.6 4.6
500 mK(cc) 0.0241 ν 8.2× 10−3 6.4× 10−3 6.4× 10−3

g 2.6 3.7 3.7
600 mK(cc) 0.0243 ν 2.2× 10−1 1.7× 10−1 1.7× 10−1

g 1.9 2.9 2.9
400 mK(aq) 0.0376 ν 3.24× 10−4 2.9× 10−4 2.9× 10−4

g 8.3 9.4 9.4
500 mK(aq) 0.0503 ν 1.03× 10−2 1.03× 10−2 1.03× 10−2

g 2.4 2.4 2.4
600 mK(aq) 0.0601 ν 2.74× 10−1 2.72× 10−1 2.71× 10−1

g 1.4 1.4 1.5

Temperature m0 param. low fit high fit full range

400 mK(cc) 0.0114 ν 9.03× 10−4 8.71× 10−4 8.77× 10−4

β 0.76 0.71 0.71
500 mK(cc) 0.0148 ν 2.08× 10−2 1.97× 10−2 1.99× 10−2

β 0.79 0.71 0.72
600 mK(cc) 0.0218 ν 4.81× 10−1 4.57× 10−1 4.56× 10−1

β 0.83 0.74 0.74
400 mK(aq) 0.0201 ν 1.9× 10−3 1.8× 10−3 1.8× 10−3

β 0.72 0.65 0.66
500 mK(aq) 0.0318 ν 2.53× 10−2 2.45× 10−2 2.46× 10−2

β 0.79 0.74 0.75
600 mK(aq) 0.0371 ν 5.14× 10−1 5.07× 10−1 5.07× 10−1

β 0.82 0.79 0.79
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Figure 4.7: Normalised thermal relaxation versus time at stated nominal temperatures for a
single Dy2Ti2O7 crystal. Reprinted by permission from Macmillan Publishers Ltd: Nature
Physics (Pomaranski et al. 2013 [66]), copyright 2013.

at low temperatures, due to low monopole population decreasing the likelihood of

encountering a counterpart to annihilate with, spin freezing, monopole pinning or

other factors, then an excess population of monopoles may persist to the start of

experimental time at t = 0. Figure 4.7 is reproduced from Pomaranski et al. [66]

and demonstrates the long thermal relaxation times.

The effect of these long relaxation times would be an excess population of

monopoles at t = 0, which may be larger than the additional population introduced

by the second Wien effect. When interpreted through the linear Wien effect model,

this will lead to a very large apparent value for the Onsager parameter g.
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It is possible to approach the description of the magnetisation directly from the

assumption of an excess initial monopole concentration rather than through the

Wien effect. This approach will be studied preliminarily in section 4.5.5 below.

4.4.3 Avalanche Quenching
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Figure 4.8: ‘Avalanche quenched’ dysprosium titanate at 400 (blue circles), 500 (blue squares)
and 600 mK (blue triangles), against respective square magnetisation (green) and stretched
exponential (red) curves for each temperature.

In figure 4.8 the results for the avalanche quenched data are displayed. The

results are similarly superior to the Ryzhkin model as in the conventionally cooled

data. At 400 mK the non-Ohmic model is superior except at the earliest times,

but for 500 and 600 mK the difference is less pronounced. This is made clear in

the residual plots in figure 4.9.

Of note in the avalanche quenched data is the magnetisation overshoot. Near

saturation m reaches values greater than 1, then decays to the terminal value.

Paulsen et al. [7] suggest that the avalanche quench places the crystal out of equi-

librium such that it explores states with oscillatory behaviour. When interpreting
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Figure 4.9: Difference between m values for the avalanche quenched experimental data (blue
reference line) and linear non-Ohmic (green) and stretched exponential (red) best fits at 400
(upper), 500 (middle) and 600 mK (lower).
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Figure 4.10: ‘Avalanche quenched’ dysprosium titanate at 400 (blue circles), 500 (blue squares)
and 600 mK (blue triangles), against respective square magnetisation (green) curves, using con-
ductivity (ν) values from the conventionally cooled data in table 4.1, with g = 12.3, 5, 3.6
respectively.

magnetisation and residual plots for avalanche data, one should bear the existence

of the overshoot in mind.

If we look at the parameter results in table 4.1 we see the results for 500

and 600 mK are not what would be expected given our conclusions from studying

the conventionally cooled data. The avalanche quenched 400 mK result for g is

substantially increased from its conventionally cooled counterpart, but that of the

other avalanche quenched values is reduced. As avalanche quenching increases

monopole overpopulation, we should expect all g values to be increased.

Light is shed on this difficulty by considering the ν values. In theory ν is pro-

portional to monopole density x absent the Wien effect or overpopulation, while g

captures the time-dependent increase in these quantities (in effect, time-dependent

increase in ν). If the only difference between the data at a given temperature is

increased monopole concentration from rapid cooling, then their ν values should

be identical and the g values should increase to account for the overpopulation.
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However, in all three cases the ν values change from the original. To match the

curve shape, the fits partially capture the monopole population increase with the

ν value and then apply a smaller g value.

It is possible to use an alternative method: take ν values from the standard fits

in each conventionally cooled case and increase g to obtain a good fit. In figure

4.10 the νs for 400, 500 and 600 mK are fitted with g = 12.3, 5 and 3.6 respectively.

These values successfully approximate the curves, but with decreasing success as

T increases. The fits yielded by the procedure are inferior to those generated by

a free fit and the values themselves lie outside the estimated error range. Either

the linear non-Ohmic model fails to describe the shape of the curve properly, or it

fails to return parameter values that make sense in its own terms. Alternatively,

the non-equilibrium behaviour that creates the magnetisation overshoot at these

temperatures also alters the behaviour of the magnetisation before saturation.

Of the two improved models the linear non-Ohmic conductivity model has

clearer microscopic foundations, but comparing the results across the conventional

and classic cooled models demonstrates that either the model or our understanding

of its meaning is insufficient.

More light will be shed on this by considering the data from another perspec-

tive.

4.5 Effective Conductivity and Monopole Popu-

lation

Take equation 4.4, the normalised magnetic current equation:

dm

dt
= ν(1−m),

where ν is the altered conductivity aκ. This can be rearranged to yield

dm/dt

1−m
= ν,

which gives conductivity ν as an experimental variable, given m(t) measurements

[74]. In Ryzhkin’s model ν has no dependence on time, but in the next section
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it will immediately become clear that the quantity (dm/dt)/(1−m) does change

with time. The two improved theories that better capture the m vs. t behaviour

produce different results for this quantity, so it is convenient to define:

dm/dt

1−m
≡ ν̃

and call ν̃ the ‘effective conductivity’.

4.5.1 Avalanche Quenching and Conventional Cooling

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

7

8
x 10

−3

time/s

(d
m

/d
t)

/(
1
−

m
) 

/ 
1
/s

Effective Conductivity vs. Time at 400mK

 

 

Figure 4.11: Effective conductivity ν̃ = (dm/dt)/(1 − m) for conventionally cooled (blue) and
avalanche quenched (green) DTO versus t at 400 mK.

Assuming the conductivity is not otherwise affected by the choice of cooling pro-

cess, examining the ν̃ plots can reveal the effects of each process on the monopole

population.

In figures 4.11, 4.11 and 4.13 the avalanche quenched and conventional cooled

data for each temperature is displayed. The data is chaotic in regions where

density of points relative to magnetisation rate is high enough that experimental
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Figure 4.12: Effective conductivity ν̃ = (dm/dt)/(1 − m) for conventionally cooled (blue) and
avalanche quenched (green) DTO versus t at 500 mK.

error, negligible above, causes significant changes in dm/dt. Additionally, at 500

and 600 mK the magnetisation overshoot causes 1−m to pass through zero, which

creates a discontinuity in ν̃. However, the behaviour of the effective conductivity

is still easily perceptible outside these regions.

In each case the avalanche quenched data yields a higher ν̃ than the conven-

tional data. At 400 mK the difference is pronounced, but at 500 mK and 600 mK

it is significantly attenuated. If we take ν and hence ν̃ to be linear in x, this is

consistent with the theory that spin ice takes a long time to equilibrate and so

rapid cooling will leave it far from equilibrium with a high monopole population.

Under this theory the greater difference between ν̃ values at lower temperatures

arises from the lower equilibrium value at the target temperature. The system con-

verges towards the equilibrium value faster the further above equilibrium it is due

to monopole recombination overcoming monopole creation processes, as pictured



170 CHAPTER 4. MAGNETIC RELAXATION

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time/s

(d
m

/d
t)

/(
1
−

m
) 

/ 
1
/s

Effective Conductivity vs. Time at 600mK

Figure 4.13: Effective conductivity ν̃ = (dm/dt)/(1 − m) for conventionally cooled (blue) and
avalanche quenched (green) DTO versus t at 600 mK.

by the kinetic equation for the system:

dx

dt
= kf (1− x)− krx2.

in which x is the monopole population proportion, kf is the rate of monopole

formation acting on 1 − x free sites, and kr is the monopole recombination rate

proportional to the square of the population. As such the lower the target temper-

ature for cooling, the more dramatic the difference will be between fast and slow

cooling processes.

ν̃ and so implicitly x both decrease over time, indicating that the monopole

population is not in equilibrium. There are two factors in the above discussion

which can produce this effect: the second Wien effect and the failure to equili-

brate on experimental timescales. Either case will produce an overpopulation of

monopoles at t = 0 which will then be reduced by recombination. A third factor

is reported by Kaiser et al. [61]. They report that under fields, the equilibrium

monopole population of a magnetolyte drops. Their expression is:
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x(H) = x(0)

(
1− 2

3

(
µ0µH

kBT

))
. (4.32)

This yields x(H)/x(0) ratios of 0.27 at 400 mK, 0.53 at 500 mK, and 0.67

at 600 mK, suggesting a significant role for this effect here. In the real system

we might expect there to be an overpopulation of monopoles arising from failed

equilibration combined with an additional overpopulation arising from the Wien

effect, which then declines to a lower equilibrium point established by the field.

An objection can be raised here that the increase in population arising from the

second Wien effect should be permanent, as increasing the formation rate kf will

increase the equilibrium monopole population xe. This neglects the importance of

the reaction field. The reaction field as described by Ryzhkin [3] is a geometric

polarisation of the spin network, and inhibits field-driven monopole formation in

the same way it inhibits DC currents. Monopole pairs are formed by spin flips,

and as the population of spins that can be flipped in the direction of the field

diminishes, further polarisation becomes entropically disfavoured. The effect of

the reaction field in eliminating the increase in kf is realised in the additional

(1−m) term that multiplies g in equation 4.25.

The assumption that the size of ν̃ is linearly proportional to x at a given

temperature also allows testing of the theory that there are mechanisms beyond

insufficient sample equilibration involved in the magnetic relaxation behaviour of

spin ice. At higher temperatures the monopole population will relax to equilibrium

faster, and if sufficiently fast this would eliminate the non-equilibrium contribution

to monopole population, leaving only the Wien effect and whatever other effects are

involved. The possibility of this is presaged by the reduction of g with increasing

temperature.

This is in fact what the data reveals, as can be seen in the 500 and 600 mK plots

in figures 4.12 and 4.13. In these plots the avalanche quenched and classic cooled

data are proportionally closer to one another than in the 400 mK, suggesting that

the effect of rapid cooling is reduced and their behaviour is closer to equilibrium.

Therefore at these temperatures the effect of experimental overpopulation is not

very large and overpopulation is dominated by other factors.

However, even though overpopulation is of reduced importance at these tem-
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peratures, g (see table 4.1) is still much larger than expected from the Wien effect,

as discussed in section 4.4.2. This indicates that there are other factors affecting

monopole population or movement, and supports a significant role for magnetic

reduction of xe and the surface effects discussed by Revell et al. [5].

An incidental implication of this result about overpopulation is that it demon-

strates that the magnetisation overshoot discussed above cannot be the result of

excessive population alone, but must be due to some other consequence of the

avalanche quenching process, or another phenomenon.

4.5.2 Linear Non-Ohmic Model

Ryzhkin’s simple model (of [3]) is an insufficient model for spin ice, but a sim-

ilar transformation can be performed with the linear non-Ohmic model and the

stretched exponential model.

From equation 4.25:

∂m

∂t
= ν(1 + g(1−m))(1−m),

dm/dt

1−m
= ν̃ = ν(1 + g(1−m)). (4.33)

This describes the alteration of the conductivity from an initially increased

level represented by the g factor as it reduces to a normal level with the saturation

of m. Now take the expression for m(t) in this model, using the non-offset form

for simplicity as the offset does not enter into the expressions here in a significant

way:

m(t) = 1 +
1

g − (1 + g)eνt
. (4.34)

From this one can derive:

dm/dt

1−m
= ν̃ = ν

(
1 +

1

eνt(1 + 1/g)− 1

)
. (4.35)

An expression for ν̃ in g, ν and t that can be tested directly using values derived

from above fits.



4.5. EFFECTIVE CONDUCTIVITY AND MONOPOLE POPULATION 173

It is also possible to determine the value of g from the limiting values of N .

Take the following limits:

ν̃(0) = ν

(
1 +

1

(1 + 1/g)− 1

)
= ν(1 + g) = ν̃0,

ν̃(∞) = ν

(
1 +

1

∞(1 + 1/g)− 1

)
= ν = ν̃e,

and obtain

g =
ν̃0

ν̃e
− 1, (4.36)

i.e. if ν̃ is a linear function of x, the value of g is determined by the ratio of x0,

the monopole population at t = 0, to xe, the monopole population in equilibrium

at that temperature in field.

4.5.3 Stretched Exponential Model

An expression for ν̃ can also be obtained from the stretched exponential. By

deriving from equation 4.30 the stretched exponential equation:

m(t) = 1− e−(νt)β ,

dm

dt
= νβ(νt)β−1e−(νt)β = νβ(νt)β−1(1−m), (4.37)

ν̃ =
dm/dt

1−m
= νβ(νt)β−1. (4.38)

We see that the stretched exponential introduces an effective (νt)β−1 factor to

the conductivity. If β = 1 then this is 1 and there is no change from the plain

Ryzhkin model. If β < 1, then the conductivity changes according to a negative

power law that passes through the plain model at t = 1/ν = τ , the relaxation time

in Revell et al.’s paper [5].

While this has a similar effect to the non-Ohmic model in increasing and then

diminishing the conductivity, it does not have an immediately obvious microscopic
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interpretation.

4.5.4 Comparison with Experiment
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Figure 4.14: Effective conductivity ν̃ = (dm/dt)/(1 − m) versus t for DTO at 400 mK (blue
dots), with theoretical predictions by linear non-Ohmic (green line) and stretched exponential
(red line) models.

In figure 4.14 the results of these two methods are compared to results from the

conventionally cooled magnetisation data at 400 mK. The conventionally cooled

data are used for comparison to avoid the difficulties created by the m > 1 anomaly

in the avalanche quenched data. The figures derived from full fits of the m vs. t

data in table 1 were used to provide parameters.

We see that both models provide a good estimate of ν̃ in the intermediate

region of the decline in ν̃ corresponding in time to the most rapid increase in m.

However outside of this region they fail.

In the early time period the two models bifurcate. The stretched exponential

experiences an upward runaway to infinity while the non-Ohmic model becomes

flat as it approaches its limiting ν̃0 value.
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Figure 4.15: Effective conductivity ν̃ = (dm/dt)/(1 − m) versus t for DTO at 500 mK (blue
dots), with theoretical predictions by linear non-Ohmic (green line) and stretched exponential
(red line) models.

In the late time period both models fail to approach a low enough value of

ν̃. The stretched exponential continues its power-law decline while the non-Ohmic

model approaches its limiting value of ν, representing the total extinguishing of the

monopole superpopulation, but the experimental data falls off more rapidly than

the stretched exponential to a level orders of magnitude smaller than the limiting

value ν. This is the ‘long-time tail’ observed in the Revell et al. [5] measurements,

caused by a reduction of dm/dt compared to the value it should have relative to

(1−m) in the above theories.

The explanation proposed by Revell et al. [5] is defect pinning. If an imper-

fection in the DTO crystal creates a lattice site which hosts monopoles at a lower

energy than surrounding normal sites, a monopole that enters them will find itself

surrounded by potential barriers and, as monopoles cannot be destroyed except by

annihilation with opposite-charge poles, will remain there until thermally agitated

out or so annihilated. In their paper Revell et al. [5] report that simulations of

spin ice stuffed with additional Dy3+ spins reproduce the long-time tail.
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Figure 4.16: Effective conductivity ν̃ = (dm/dt)/(1 − m) versus t for DTO at 600 mK (blue
dots), with theoretical predictions by linear non-Ohmic (green line) and stretched exponential
(red line) models.

This effect manifests as a reduction of the mobility, and is much more pro-

nounced near saturation than in the period of rapid magnetisation change. When

the sample has not yet polarised, a large population of monopoles will be available

to conduct magnetic current. As the magnetisation approaches saturation, the

monopoles trapped in defects and unable to contribute to the polarisation of the

network become proportionally more important in the already mostly polarised

sample.

The pinning effect is also visible on close examination of the m vs. t plots. In

figure 4.5, there is a slight overshoot of both models at all temperatures when m

is near 1. It is this behaviour that is blown up and made visible in the logarithmic

plot of figure 4.4 and the ν̃ plots of figures 4.14, 4.15 and 4.16.
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Figure 4.17: Numerical (blue circles) and real-analytic (green line) predictions for x in the
recombination model, with x0 = 0.3, xe = 0.1, kr = 0.01. The red line is the non-Ohmic model
under appropriate parameters to replicate the boundary conditions.

4.5.5 The Recombination Model and Monopole Superpop-

ulation

As noted in section 4.4.2, the system can be approached directly from the notion

of recombination from overpopulation. Bramwell [74] developed this approach as

follows: The kinetic equation for x is:

dx

dt
= kf (1− x)− krx2, (4.39)

where kf is the monopole formation rate, kr is the monopole destruction rate and

x is the dimensionless monopole density.

Under the conditions x << 1 and kf << kr, this can be approximated to:

dx

dt
= kf − krx2. (4.40)
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At equilibrium x = xe and dx/dr = 0, so:

kf = krx
2
e, (4.41)

x2
e =

kf
kr

= ke, (4.42)

dx

dt
= kr[ke − x2], (4.43)

where kr is a rate with dimension 1/t and can be set to determine the unit of time.

This can be solved with the boundaries x(0) = x0 and x(∞) = xe to yield:

x(t) = xe tanh

[
xekrt+ tanh−1

(
x0

xe

)]
, (4.44)

which, through equation 4.5, can be used to determine m as ν = ν(x).

Equation 4.44 returns complex values for x if x0 > xe, which is the case in the

systems being considered here. However under the assumption that the real part

of the expression is the real quantity represented by x, it can be shown that this

quantity gives the same result as a numerical solution of equation 4.43.

In figure 4.17 the results of plotting together the analytic solution, the numer-

ical solution, and a non-Ohmic model with appropriate parameters to replicate

the boundary conditions. The curves for the numerical and analytic solutions are

identical, demonstrating that the real part of the analytic solution of equation 4.44

is a valid measure of x as predicted by recombination kinetics. The curve for the

non-Ohmic model is similar but not identical, suggesting that a fully developed

overpopulation model could refine the predictions of that model. However, as the

Wien effect still exists in spin ice [61], a complete model would still have to account

for the Onsager factor.

4.6 Magnetisation Behaviour Change with Field

More light can be shed by considering data taken at multiple fields. O. Petrenko

[92] has supplied measurements of DTO in several fields at 500 mK. The DTO

crystal was of yellow colour.

In figures 4.18 and 4.19 the data is plotted as M/Ha vs. t. Two features
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Figure 4.18: M/Ha vs. t curves for DTO at 0.01 (blue), 0.025 (green), 0.1 (red) and 0.25 T
(teal).

are immediately clear: first, that the magnetisation does not saturate on the ex-

perimental timescale, and second, that the recorded magnetisations have large y

intercepts, indicating a late start to the experimental clock. Visible in figure 4.19

is that the 0.1 T data is particularly far from saturation.

The former presents a problem for generation of m = M/Mmax, which can be

addressed by using a range of estimates of the discrepancy to produce a range

of fitted values. The latter is a more extreme form of the m0 offset considered

above and can be addressed with the same techniques, with greater ease as there

are explicit zero time values given for the magnetisation, removing the need to

attempt to determine m0 from curve fitting or other means of estimation.

In figure 4.20 the curves for 0.01, 0.025, 0.1 and 0.25 T are presented with non-

Ohmic and stretched exponential fits. Notable is that the 0.1 T data has a worse fit

in the upper half, was rejected as too far from saturation to be safely analysable. In

table 4.2 parameter values are presented. As the curves are incomplete a segmented

fitting procedure as was done for the Paulsen et al. [7] data is impractical. Instead
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Figure 4.19: M/Ha vs. t curves for DTO at 0.01 (blue), 0.025 (green), 0.1 (red) and 0.25 T
(teal) on logarithmic time axis.

there are two sets of values presented at each field strength, one fitted to the raw

curves and one fitted to curves with a maximum M value increased by a factor of

1.01.

On table 4.2 we see that values of g increase with increasing field, with the

exception of the unmodified 0.1 T data which was identified as anomalous above.

This supports the theories that the non-Ryzhkin magnetic relaxation is due to field-

dependent effects such as the Wien effect or field-dependent equilibrium population

reduction. Notably, the progression of g with field in the 1.01× values is close

to linear, with the exception again of the 0.1 T data. However, the significant

difference between the two sets of values for g underlines their uncertainty. For

the stretched exponential, ν does not change monotonically with field, though β

consistently decreases with the exception of the anomalous 0.1 T set.

In figure 4.22 ν̃ is plotted against t, under the assumption that the recorded

maximum m is the actual maximum m. In this plot the four curves collapse

onto one another, with the exception of the 0.1 T curve previously noted as being
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Figure 4.20: Approximate m vs. t curves for DTO (blue circles) against and linear non-Ohmic
(green line) and stretched exponential (red line) best fits at Ha = 0.01 (upper) and 0.025 T
(lower) applied fields.

far from saturation at its maximum point. This suggests that in this region of

the curves ν̃ has no strong field dependence. Given the substantial changes in g

under the linear non-Ohmic model it might be expected for these curves to differ.

However, examination of the fitted values for ν reveals minimal change with field,

excepting for the 1.01× linear non-Ohmic model. In the linear non-Ohmic model

ν defines the long-time limit of ν̃, with g altering the early part of the curve (see

equation 4.35). As the data begins midway through the magnetisation curves,

substantial differences in the curve shapes could be ‘hidden’ before the t = 0

point. If ν(x) is minimally changed by field but g is altered strongly, this suggests

the main factor altering the shape of magnetisation curves in applied fields is the
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Figure 4.21: Approximate m vs. t curves for DTO (blue circles) against and linear non-Ohmic
(green line) and stretched exponential (red line) best fits at Ha = 0.1 (upper) and 0.25 T (lower)
applied fields.

Wien effect, not field-dependent reduction in xe, which would come into play at

long times. If, however, the curves are similar throughout their entire course, this

would suggest that the Wien effect is not very important for spin ice magnetisation.

4.7 Summary

The magnetic relaxation behaviour of dysprosium titanate and, by analogy, other

spin ices cannot be explained by taking a value for the magnetic conductivity

at a given temperature and deriving a magnetisation curve from it. The (effec-
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Table 4.2: DTO Relaxation Model Parameters (variable field)

Field param. m/1.00 m/1.01

0.01 T ν 3.16× 10−4 2.47× 10−4

g 4 5.4
0.025 T ν 2.49× 10−4 1.72× 10−4

g 8.7 13
0.1 T ν 9.07× 10−4 3.23× 10−5

g 31.2 87.4
0.25 T ν 2.4× 10−4 5.33× 10−5

g 23.4 112.8

Field param. m/1.00 m/1.01

0.01 T ν 9.32× 10−4 8.96× 10−4

β 0.71 0.69
0.025 T ν 1.2× 10−3 1.1× 10−3

β 0.64 0.62
0.1 T ν 9.31× 10−4 8.68× 10−4

β 0.58 0.55
0.25 T ν 9.67× 10−4 8.26× 10−4

β 0.66 0.58

tive) conductivity changes over the course of the relaxation process. There are

several candidate mechanisms for this. Three of them affect the monopole popula-

tion: the second Wien effect creating excess monopoles when a magnetising field is

turned on [59], the long relaxation time of low-temperature spin ice leaving excess

charge-carrying monopoles in the system [66], and the reduction of the equilibrium

monopole population by applied fields [61]. Besides these population-based expla-

nations, Revell et al. [5] suggest that surface effects and pinning of monopoles on

lattice defects play a role, and have supported this contention with simulations

that would not be affected by the failure to equilibrate with cooling.

The magnetisation curves can be approximated by using stretched exponen-

tials, but more successful fits can be obtained by using a theory based on a linear

approximation to the second Wien effect. However, this theory returns values

for the Wien effect which are much larger than theoretically predicted, and shows

signs of breaking down at high monopole concentrations. This suggests that factors



184 CHAPTER 4. MAGNETIC RELAXATION

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

time/s

(d
m

/d
t)

/(
1
−

m
)

Effective Conductivity of DTO Under Field (500mK)

 

 
H

a
 = 0.01 T

H
a
 = 0.025 T

H
a
 = 0.1 T

H
a
 = 0.25 T

Figure 4.22: Effective conductivity ν̃ versus time for DTO under applied fields of 0.01, 0.025, 0.1
and 0.25 T

beyond the Wien effect are important, and a more general recombination-based

model such as that outlined above may achieve greater accuracy. However, such a

model would still not account for surface effects or charge pinning.



Chapter 5

Praseodymium Zirconate

5.1 Quantum Spin Ice

Quantum spin ice is a variety of spin ice in which quantum fluctuations create

a quantum spin liquid with additional excitations to classical spin ice [38]. In

a theoretical quantum spin ice, there are transverse exchange couplings between

spins on a much lower energy scale than the longitudinal couplings that generate

the ice rule behaviour in classical spin ice. The manifold of ice rule states forms

the background on which the transverse couplings act perturbatively, and reduce

the barriers between different ice-rule states [93].

The first-order terms are exchange terms between rings defined on hexago-

nal loops tin the pyrochlore lattice. These rings of spins can be flipped without

causing ice-rule violations. This regime of perturbatively small interactions on

the background of the ice rules manifold defines a ‘quantum spin liquid’, with its

own excitations. For appropriate parameter values the spin ice can manifest both

‘visons’ akin to electric charges (though not sources of the physical electric field

as magnetic monopole excitations are of H), and gapless excitations with linear

dispersion and two transverse polarisations, akin to photons [94].

Therefore, the quantum spin ice manifold has in theory an emergent quantum

electrodynamics, akin to how the classical spin ice manifold has an emergent mag-

netic charge. However, experimental observation this behaviour is dependent on

finding materials with the appropriate parameters. In recent years there has been

185
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work on identifying and characterising real spin ices with quantum fluctuations.

In this section a report by Kimura et al. [8] of quantum fluctuations in a ‘spin-

ice-like’ compound praseodymium zirconate (Pr2Zr2O7, PZO) will be examined

in light of the Debye-Hückel theory developed above, and their experimentally

determined entropy compared to a new measurement using a different method.

This will shed light on both the efficiacy of the method and the physics of PZO.

5.2 Praseodymium Zirconate

In 2013 Kimura et al. [8] reported that PZO has spin ice properties. PZO is

a rare earth pyrochlore crystal like DTO and HTO, but outside of the dyspro-

sium/holmium titanate/stannate/germanate group that has dominated spin ice

research to date. Previous work by Matsuhira et al. [95] had established that

PZO has spin freezing but no long-range correlations down to 76 mK, which are

necessary but not sufficient conditions for spin ice.

Kimura et al. performed thermomagnetic, neutron scattering and heat capac-

ity measurements. Particularly among the magnetic measurements, the inverse

susceptibility of PZO at low temperatures (figure 5.1a reproduced from their pa-

per) reveals an effective magnetic moment µeff = 2.5µB. This is significantly

smaller than that of DTO. In DTO the very large magnetic moment of Dy3+ ions

is necessary to overcome an antiferromagnetic exchange interaction and produce

ferromagnetic spin ice behaviour, but in PZO a ferromagnetic superexchange inter-

action mediated by the oxygen atoms dominates to create the necessary interaction

between the tetrahedral vertex spins [8].

The authors examined both elastic and inelastic scattering from PZO. The

elastic scattering measurements (figure 5.2a reproduced from their paper) revealed

the existence of pinch points similar to those in HTO [46]. In contrast, the inelastic

scattering, while producing similar behaviour otherwise, has no evidence of pinch

points. Kimura et al. argue that this demonstrates the existence not just of

monopoles but monopoles with quantum dynamics [8]. The breadth of the pinch

points they argue is representative of the density of ice-rule violating tetrahedra,

i.e. magnetic monopoles.

The results of their heat capacity measurements are shown in figure 5.1f repro-
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Figure 5.1: (a) is the real part of the AC susceptibility of PZO. The inset is the DC field H
divided by the magnetisation M for 10 K > T > 2 K. (b) is the imaginary part of the AC
susceptibility. (c) is the specific heat of DTO and PZO with magnetic (CM ) and nuclear (CN )
parts shown separately. The inset is CM vs. 1/T . (g) is the entropy of DTO and PZO from an
S0 = 0 baseline with reference lines at the spin ice maximum entropy and the maximum entropy
minus the Pauling ground state entropy. Reprinted by permission from Macmillan Publishers
Ltd: Nature Communications (Kimura et al. 2013 [8]), copyright 2013.

duced from their paper. The PZO heat capacity has the same single peak form as

DTO, but a lower and broader peak. Kimura et al. noted this difference of shape

and proposed that it was due to quantum dynamics. Figure 5.3 shows that even

if PZO parameters are input to the Debye-Hückel theory developed in this thesis,

it is impossible to achieve a heat capacity curve of the correct shape. The loca-

tion of the peak suggests a chemical potential of approximately 6 K, but changes

in chemical potential do not produce significant changes in peak height, and all

Debye-Hückel curves lack the peak breadth of PZO, most noticeable at low tem-

peratures where there is significant specific heat down to 0.2 K. This suggests that

the monopole dynamics of PZO are sufficiently altered that classical Debye-Hückel

theory is no longer an effective description.
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Figure 5.2: (a) is a Q-map of inelastic neutron scattering in PZO with energy transfer of
0.25 meV. (b) is the Q-map of elastic neutron scattering with pinch points clearly visible.
Reprinted by permission from Macmillan Publishers Ltd: Nature Communications (Kimura et
al. 2013 [8]), copyright 2013.

In figure 5.1d Kimura et al. plot the entropy of PZO against that of DTO, and

compare it to the expected values for ideal spin ice. However, on their analysis

while PZO does reach the spin ice saturation entropy, it has not yet saturated itself

at this point and continues to increase past the expected maximum, suggesting a

total entropy gain greater than for DTO. This implies either the saturation entropy

is larger, or the ground state entropy is smaller, than for the classical spin ices.

5.3 Determination of Entropy from Magnetisa-

tion Measurements

In 2013 L. Bovo and S. T. Bramwell [75] outlined a new method of measuring the

entropy of spin ices, based on Maxwell’s relations.
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Figure 5.3: Specific heat of praseodymium zirconate estimated using Debye-Hückel Theory.

As outlined in section 1.2, thermodynamic systems in equilibrium are defined

by sets of state variables, so related that all but one can be defined independently

simultaneously. In magnetic systems the three variables are magnetic moment I,

internal field Hi and temperature T [16]. The Maxwell relations can be defined

among these three variables and S, yielding equations 3.45 and 3.46.

If one can obtain values for the change of magnetisation with temperature at

a given field for a large number of closely-spaced fields, one can then numerically

integrate the data at a given temperature across the fields up to Hi to obtain

the entropy difference between the system in field Hi and zero field. If Hi is

large enough to completely order the system magnetically, then it will have zero

magnetic entropy under field, and the entropy change will be the total entropy

contained in the magnetic interactions of the system at zero field.

Bovo et al. [75] applied this method to measuring the entropy of dysprosium

titanate. Here it is applied to PZO as a further test of the method and to shed
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light on the ground state entropy of the material.

It is worth noting at this point that the third law is only apparently violated in

spin ice, as the work of Pomaranski. et al. [66] has shown that the entropy of DTO

continues to drop toward a true ground state with sufficiently long relaxation times.

In this method, this would manifest through changes to the quantities interpreted

through equation 3.46. Particularly, as the entropy approaches zero ∂I/∂T would

have to approach zero for all fields Hi. This implies that the magnetic properties

of spin ice alter at least slightly if it is allowed to equilibrate fully.

Compared to determining the entropy via integration of the specific heat, this

method has the advantage that it can make absolute measurements. Specific heat

measurements can only determine the relative change in entropy between two tem-

peratures, and require an absolute reference point to pin the derived curve to if

they are to yield an absolute entropy value. In theory, the third law of thermody-

namics guarantees S = 0 at T = 0 as an absolute reference point, provided one

can get close enough to absolute zero, but as spin ice has demonstrated the true

ground state may be impractical to attain in practice, leaving the question open

what the effective ground state entropy of a system such as classical or quantum

spin ice is, provided it can still be treated with equilibrium thermodynamics in

practice.

5.4 Experimental Procedure

Magnetisation as a function of applied field was measured at different temperatures

by L. Bovo, using a vibrating sample magnetometer for the Quantum Design

PPMS. The field was applied along the [111] axis with strength ranging from 0 to

14 T at intervals of 0.01 T up to 0.4 T, 0.02 T up to 1 T, 0.1 T up to 7 T and

0.5 T up to 14 T. The measurement was taken every 0.1 K from 1.9 to 3.1 K, then

at T − 0.1 K, T and T + 0.1 K for T = 3.5, 4, 4.5, 5, 6, 7, 8, 9 and 10 K. The

PZO crystal weighed 0.0418 g with cuboid dimensions 0.168 × 0.138 × 0.324 cm,

yielding a demagnetising factor of approximately 0.19 [96].
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5.5 Application of the Method
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Figure 5.4: Experimental magnetic moment I vs T at internal field 0 < Hi < 14 T in PZO. Lines
are guides for the eye.

First, the data must be converted to measure I against the internal field Hi.

By converting the I values to equivalent M values, the He value for each point

can be transformed into an equivalent Hi value using the standard expression:

Hi = He −DM (5.1)

where the demagnetising factor D is an approximate value for the shape of the

crystal. After this transformation the values of H corresponding to the values of

I or M will be inconsistent between the different temperatures, but interpolation

of each data set to a set of standard H values can reestablish consistency.

In figure 5.4 I is plotted against T for all values of H. The general structure

is visible in the decline in I as temperature increases, as occupancy of higher-

energy states defined by the H field becomes more probable. Examination of

the plot reveals two problems for the analysis: Firstly, the magnetisation does
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Figure 5.5: Temperature change in magnetic moment dI/dT vs. internal field Hi at 2.2 K
(upper), 5 K (middle) and 9 K (lower). Blue lines are taken between T − 0.1 K and T + 0.1 K,
green line are taken between T − 0.1 K and T , red lines are taken between T and T + 0.1 K.
Teal lines are the expression aHe−bH fitted between 3 and 10× 106 A/M.

not saturate at temperatures higher than 3 K, which indicates that the entropy

calculated at these temperatures will be systematically deficient. Secondly, there

are numerous more minor irregularities which persist across a range of H values

at various temperatures and will introduce errors into measures of ∂I/∂T .

Each ∂I/∂T point was determined from a set of three I vs. T points at each

given Hi value, with T values at the reference temperature and 0.1 T either side.

The ∆I and ∆T were taken between each of the three possible pairs of points

to produce three values for ∆I/∆T and hence ∂I/∂T , consisting of a central

‘reference’ value (defined between the lowest and highest T ) and upper and lower
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Figure 5.6: Temperature change in magnetic moment dI/dT vs. internal field Hi at 2.9 K (upper)
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shapes.

bounds (defined between the lower or higher T and the central value).

To obtain the entropy from these points it is necessary to integrate them across

all values of Hi. In figure 5.5 the three sets of ∂I/∂T values are plotted against

Hi at three example temperatures. The value of the entropy at each temperature

is determined by the area under the curves.

Notable in these plots is the large amount of noise in the curves. As at each

temperature dI/dT is calculated for each of the three possible pairings of three

close points, any one point being anomalous will produce two anomalous ∆I/∆T

values and one unaffected by the anomaly. In each of the upper two graphs of

figure 5.5, this can be clearly seen in the mirrored anomalous behaviour of the

red and green curves around the well-behaved blue central curve. This approach

means that the anomalies in the data do not dominate the calculation and instead
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help define the error at each temperature. This source of error can be reduced

by smoothing over larger temperature ranges, but this approach exacerbates the

non-saturation problem described below as it requires obtaining points from higher

temperatures where failure to saturate is more acute.

A second immediate problem with the application of this method is apparent

in figure 5.5 (lower), where at maximum H the curve has not yet reached a point

where the change in area is small. This is a manifestation of the failure of the

sample to completely magnetise also visible in figure 5.4. It is reasonable to believe

the curve has the same overall single peak shape as in 5.5 (upper), but at high

temperatures the sample does not fully magnetise at experimentally accessible

fields.

To attempt to compensate for this, a trial expression ∂I/∂T = aHie
−bHi was

used to approximate the shape of the curves and extend them past the limit of the

data. If the expression is a good phenomenological fit to the data this will provide

estimates of the entropy at higher temperatures at the cost of an increase in the

error.

The results of this for 2.2 K can also be seen in figure 5.5. The teal curves,

fitted by both a and b to the experimental data reference curves, are less divergent

from it in the high-field region than the two error bounding curves and so does

not introduce a major new source of error. However, a potentially significant

systematic error can be seen at high Hi in the 5 K figure, where the trial expression

goes to zero while the experimental data retains a long tail.

While at 2.2 K this does not produce a very large error, at 5 K the gap between

the trial expression and the experimental data is clearly apparent. The failure of

the magnetisation to saturate at these temperatures potentially introduces a major

deficiency in calculated entropy. Examining figure 5.4, the change in M with T at

maximum H becomes perceptible above 3 K, so systematically low values for the

entropy may be expected above this temperature.

Some temperatures have more severe errors. In figure 5.6 (upper) the ∂I/∂T

graph for 2.9 K displays a clearly aberrant form. At 2.9 K the PPMS changes its

cooling mechanism, and this affects temperatures from 2.8 to 3 K. Similarly at 10K

as seen in figure 5.6 (lower), the data has clearly been corrupted by instrumental

error.
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Figure 5.7: Experimental magnetic moment I vs T at internal field 0 < Hi < 14 T in PZO.
Detail of figure 5.4. Points marked with circles are at 1.1, 1.2, 1.3, 1.4 and 1.5 T applied field.
Lines are guides for the eye.

The nature of this error can be seen in figure 5.7. At 10.1 K the magnetisation

develops an upward ’kick’ at low field that persists until applied field 1.4 T, at

which point it abruptly vanishes. This creates the discontinuity visible in the 10 K

data in figure 5.6. Similar, though smaller anomalies appear at other temperatures

and fields, such as the one visible in figure 5.7 at 9K. The cause of these anomalies

is unknown, but that they appear for particular temperatures and persist over a

range of fields suggests that they are random errors associated with the instrument,

as the order of operations of the experiment is to measure in increasing field at

a fixed temperature. It is also possible that they represent some inconsistent

behaviour in the sample itself.

Additionally to these corrupt sets, the I vs. H data for 2 K and 8.1 K is

missing due to experimental error. These absences make it impossible to produce

a full trio of ∂I/∂T curves at 2, 2.1 and 8 K as in each case only one of the three

point pairs can be defined.

Due to the ample supply of points at other temperatures, these temperatures

have been excluded from the entropy plots in the next section. The absences do
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not significantly affect the results, but they do underline the difficulty of and care

required for measuring the entropy using magnetic saturation.

5.6 Comparison with Previous Measurements
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Figure 5.8: Entropy of PZO vs. temperature. Blue uncorrected, red with data extended using
phenomenological expression.

The results of the calculation of entropy from the magnetic quench data can be

seen in figure 5.8, with and without the phenomenological extension. As one would

expect, the extension increases the estimated entropy at each point. Above 5 K the

random errors become large, and by 9 K the data has become effectively unusable.

Above 4 K the decline in the entropy values expected from incomplete saturation

becomes apparent, as there is no consistent increase in the calculated entropy

despite figure 5.1g showing a continued increase in the entropy derived from specific

heat until it approaches saturation near 10 K. Therefore, for comparison with the

Kimura et al. data, the magnetic saturation data will be discarded above 4 K as
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Figure 5.9: Entropy of PZO vs. temperature. Red circles are absolute values derived from
magnetisation measurements with phenomenological extension. Teal and purple points are data
from [8] with an assumed ground state entropy of R/2ln(3/2) (teal) or R/2ln(3/2)−0.36 (purple).
Yellow line is drawn at the spin ice maximum entropy Rln(2).

systematically unreliable as well as prone to large error. Sufficient points remain

between 2 and 4 K to judge the effectiveness of the method in this region, and

extract useful results.

In figure 5.9 the extended data is plotted alongside the results of Kimura et al.

using different estimates of the ground state entropy S0. Multiple values are used

because specific heat over a temperature range only defines the change in entropy

over that range, and must be added to a value for the entropy at the lower limit

to return an absolute entropy value. As the temperature range for this data comes

close to zero, the third law of thermodynamics might be expected to imply that

the lower limit should be zero, but as discussed above, the ground state entropy

of spin ice is not zero on short experimental timescales as it does not equilibrate

on such timescales. However, it is also not a given that the apparent ground state

entropy of PZO will be the same as that of classical spin ice. As such, two different
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values of S0 are combined with the Kimura data and compared against the data

from this report.

The first estimate assumes S0 is equal to the Pauling entropy [21]:

S0 = (R/2)ln(3/2) JK−1mol Pz−1, (5.2)

based on the spin ice properties of PZO. This produces absolute values larger than

those calculated using the magnetic saturation method. As the calculations are ex-

pected to contain a deficiency due to incomplete saturation and high-H deficiency

of the extension expression, this is not unexpected. However, the discrepancy at

low temperatures is more than expected given that figures 5.4 and 5.5 suggest the

sample has almost saturated at these temperatures. Furthermore, at high temper-

atures the expected entropy crosses over the spin ice maximum entropy Rln2, and

is visibly continuing to increase. While it is theoretically possible that this high

maximum entropy is correct and due to unknown properties of PZO, the disagree-

ment with the absolute measurements at low temperatures suggests that instead,

the ground state entropy of PZO is reduced.

The second estimate takes S0 = (R/2)ln(3/2)−0.36 JK−1mol−1, a value which

does not have theoretical justification, but which brings the Kimura et al. data in

line with our absolute value derived from magnetic saturation. As known system-

atic errors in the magnetic saturation value such as the failure to saturate imply

higher values than those calculated, this provides a lower bound on the ground

state entropy of PZO, with allowances for the remaining random errors. Using

this absolute scaling, the Kimura et al. data and ours are in agreement until 4 K

save for an outlying point at 2.3 K. Above 4 K, the experimental absolute entropy

values fall away from the specific heat derived values. This is the same point at

which the lack of saturation in figure 5.4 becomes visible.

At high temperatures, the specific heat derived data approaches but does not

cross the S = Rln2 JK−1mol−1 entropy value of a saturated spin ice state. This

result suggests that the ground state entropy of PZO on short timescales is S0 =

(R/2)ln(3/2) − 0.36 JK−1mol−1, with phenomena not found in the classical spin

ices reducing the entropy from the Pauling entropy SP = (R/2)ln(3/2) JK−1mol−1.

One possibility is that the quantum fluctuations enable the system to search for
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the true ground state of the ice rules manifold more quickly than classical spin

ice. In this case the low temperature specific heat would increase with extended

relaxation times, more rapidly than found by Pomaranski et al. [66], and the third

law would be reestablished in PZO more quickly than for classical spin ices.

Regarding the magnetic saturation method in general, this investigation demon-

strates that it can produce meaningful results that shed light on current debates.

It also demonstrates that there are significant obstacles to its application. Ex-

tremely powerful magnetic fields are required to completely eliminate magnetic

entropy in materials such as PZO, and the measurements are prone to error even

at low temperatures. However, it should be noted that if good specific heat data

exists for the material, only one reliable absolute entropy point is required to place

relative entropy data derived from specific heat on an absolute scale, and this point

can be taken with great care at a low temperature where saturation is possible.
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Chapter 6

Conclusion

The above work demonstrates that a complete version of Debye-Hückel theory

can approximate the magnetic heat capacity of the spin ices dysprosium titanate,

holmium titanate and cadmium erbium selenide. In particular, it demonstrates

that the theory is still effective above 2 K, where previous work [4] considered the

spin ice phase to have broken down and the theory to not be effective.

Making the theory effective in this high-temperature region requires incorpo-

rating terms for ‘double charges’, higher-energy defects where all constitutive spins

are oriented in or out of the tetrahedron. The addition of these terms predicts sig-

nificant magnetic heat capacity up to 10 K or higher. By contrast, the theory is

notably unsuccessful in the region near T = 1 K, where the heat capacity reaches a

Schottky peak. The heat capacity predicted by Debye-Hückel theory in this region

is consistently much lower than that observed in experiment.

This points to the most important deficiency of the given theory: a failure

of the theory to account for bound monopole pairs (Bjerrum pairs), and possibly

higher correlations as described by Zhou et al. [36]. However, a näıve addition

of terms for Bjerrum pairs fails, leading to a grossly overestimated heat capacity,

and incorrect values for the total entropy, in my view because no clear distinction

can be drawn between bound and free monopoles at high monopole densities.

A second theoretical deficiency is that the main theory presented above was

formulated for a continuum. Debye-Hückel theory for a lattice has been derived

[80], but the solution is only formally valid for the class of Bravais lattices which

201
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does not include the diamond lattice, and its performance in this context was

slightly inferior to the continuum model. Further work on lattice Debye-Hückel

theory could determine that if combined with a proper theory of Bjerrum pairing

it yields a more effective theory of spin ice, or that the worse performance is simply

a true reflection of the fundamental limitations of the theory.

One proposed spin ice for which the theory was not effective was praseodymium

zirconate (PZO), which has a heat capacity peak lower and broader than can be

achieved with Debye-Hückel theory. PZO is identified by Kimura et al. [8] as

exhibiting quantum monopole dynamics, which would place it among the ranks of

the quantum spin ices, a type of spin ice where quantum fluctuations act on the

set of spin ice states. This type of material has attracted significant scrutiny in

recent years (see Gingras et al. 2014 [38]). This failure of Debye-Hückel theory for a

quantum ice suggests that in such materials monopole interactions are significantly

altered, and determining how, and whether the theory can be extended to cover

them, is a promising line of research.

For classical spin ices, this work demonstrates the importance of careful study

of the heat capacity, particularly in the 2 to 10 K region. What initially appear as

reliable conclusions regarding non-monopolar factors may cause significant errors

in the estimation of the magnetic specific heat if even slightly erroneous. While

theory and argument for persistence of the monopolar specific heat into this region

has been presented, its exact level by 10 K cannot be stated with complete confi-

dence for any of the materials presented here. The success of Debye-Hückel theory

in particular and the persistence of monopolar behaviour in general is similarly

somewhat uncertain at such high temperatures, though the errors only become

large above approximately 7 K, below which the theory is clearly established as

effective. This work also reveals a direction for exploration of additional spin ice

materials. While previous work [36] has indicated that novel behaviour may be ac-

cessible at lower monopole chemical potentials, synthesising spin ices with higher

chemical potentials would enable study of monopole behaviour at higher tempera-

tures, where it interacts with thermally activated phenomena such as crystal field

excitations. It would also enable testing the theory that higher chemical potentials

will be more successfully described by Debye-Hückel theory.

For locating such new spin ices, the possibilities of pyrochlores such as dys-
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prosium or holmium titanate, stannate or germanate are known, but the spin ice

behaviour in the spinel CdEr2Se4 raises the prospect of discovering additional spin

ices in alternative crystal structures. The spinel CdEr2S4, with sulphur replacing

selenium, has been suggested to be another spin ice candidate in recent work by

Legros et al. [97]. Beyond mere spin ice, recent simulations by Guruciaga et al.

[98] have mapped the possibilities of varying values of J and D that produce either

monopole liquids or an ordered phase of interpenetrating double monopole sub-

lattices, which might be called spin anti-ice, and suggest transitions between the

two are possible at different temperatures in the same material. Expanding the

catalogue of real spin ices would enable these claims to be tested experimentally.

More generally, this work has demonstrated that Debye-Hückel theory is ef-

fective at high concentrations of charged particles, provided the temperature is

high enough that the average electrostatic or magnetostatic interaction energy is

smaller than the average thermal energy. This result could be translated back into

the original Debye-Hückel context and suggests that the theory may be successful

at describing hot electrolytic solutions.

The above work also studies the DC magnetic relaxation of spin ice. It confirms

the result of Revell et al. [5] that the original 2005 model of Ryzhkin [3] is not able

to describe the relaxation behaviour of spin ice, but is inconclusive on prospective

replacements.

Two main improved models were tested: A stretched exponential proposed by

Revell et al. [5] and a model based on the Wien effect proposed by Bramwell [74].

Their performance when fitted to relaxation data is similar. However, the strength

of the Wien effect required to obtain a good fit is much higher than that predicted

by Wien’s theory. This is evidence for the influence of a failure of the monopole

population to reach equilibrium, as seen in the work of Pomaranski et al. [66],

which will have an effect similar to a strong Wien effect. In addition to these

effects, we should expect to see a contribution from the surface effects identified in

simulations by Revell et al. [5], but not given a complete description or theoretical

treatment in that publication.

The quantity (dm/dt)/(1 − m) = ν̃, called here ‘effective conductivity’, con-

firmed the existence of defect pinning as identified by Revell et al. [5], and also

revealed ways in which the models tested were failing to correctly describe the
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relaxation of spin ice that were not easily perceivable in magnetisation graphs.

When applied to data across differing field strengths, the curves of change in ν̃

over time collapse onto one another in the experimental time range, which may

suggest a diminished role for the field-dependent Wien effect in magnetisation, but

the limitations of the variable field data prevent a firm conclusion. The quantity

has a clear physical interpretation as the rate of magnetisation change controlled

for changes in both the applied field and the Ryzhkin reaction field, and may be

of interest to future investigators.

Future work can attempt to isolate and characterise these effects individually.

Extended equilibration times before measurement will allow samples to equilibrate

properly down to lower temperatures, which will isolate the non-equilibrium effects

from the Wien and surface effects.

A characterisation and theoretical study of the surface effects noted as impor-

tant by Revell et al. [5] may validate the use of a stretched exponential to describe

them or suggest a new form - in either case, the mere success of a stretched expo-

nential in one case does not imply that it is the best or most theoretically justified

expression to do so. Depending on the nature of the surface effects, it may also be

the case that they can be distinguished from the Wien effect by the latter’s field

dependence. Theoretical, empirical or simulation studies may also yield values for

the parameters used in the many expressions in this paper that will reduce the re-

quirement to introduce uncertainty with multivariable fits. As with Debye-Hückel

theory, a magnetisation curve with no fitted parameters may be compared with

the experimental curves to reveal deficiencies in the theory. By paying attention

to all three effects, a complete theory of spin ice magnetisation behaviour may be

achievable.

While the m0 zero time offset may merely be a parochial experimental error it

should be checked for in future, as if it is replicated it will be either a universal

experimental error or a genuine phenomenon, and either is of interest. Observing

it clearly requires obtaining data as early as possible after the magnetic field is

switched on.

In the final section of this work, a method of absolute magnetic entropy mea-

surement proposed and used by L. Bovo [75] was tested on PZO. PZO was found to

have a ground state entropy reduced from that of classical spin ice, and additionally
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its specific heat profile does not match that of a Coulomb gas described by Debye-

Hückel theory. This suggests that the ground state of PZO on short timescales is

not the ice rules manifold of classical spin ice, and its higher-temperature physics

are also distinct such that Debye-Hückel theory is no longer even an approximate

description as for classical spin ice.

The method itself was discovered to be unable to produce accurate measure-

ments at high temperatures, but provided better data at lower temperatures.

Stronger magnetic fields would make available use of the magnetic saturation

method at higher temperatures to clearly determine the magnetic specific heat,

and materials with magnetic behaviour which saturates at lower applied fields will

be more accessible than spin ices.

Easier is to use the method at lower temperatures for samples which are not

amenable to conventional specific heat measurement. Powder samples are difficult

to measure with traditional calorimetry as the physical structure and so thermal

relaxation profile of the powder is uncertain. The magnetic saturation method,

by virtue of not relying on thermal relaxation for its data, is not affected by

this problem so long as the magnetisation process does not cause uncompensated

heating in the sample itself. Additionally, the method can directly measure the

entropy of materials whose zero point magnetic entropy is uncertain.

Taken together these results suggest that despite the profusion of work on spin

ice over the last two decades, and the branching out of study into artificial and

quantum spin ices, classical spin ice remains a source of interesting physics, and

one that can shed light on these other ices by comparison.
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