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Abstract. This work describes Microstructure Imaging Sequence Sim-
ulation Toolbox (MISST), a practical diffusion MRI simulator for devel-
opment, testing, and optimisation of novel MR pulse sequences for mi-
crostructure imaging. Diffusion MRI measures molecular displacement
at microscopic level and provides a non-invasive tool for probing tissue
microstructure. The measured signal is determined by various cellular
features such as size, shape, intracellular volume fraction, orientation,
etc., as well as the acquisition parameters of the diffusion sequence. Nu-
merical simulations are a key step in understanding the effect of various
parameters on the measured signal, which is important when developing
new techniques for characterizing tissue microstructure using diffusion
MRI. Here we present MISST - a semi-analytical simulation software,
which is based on a matrix method approach and computes diffusion
signal for fully general, user specified pulse sequences and tissue mod-
els. Its key purpose is to provide a deep understanding of the restricted
diffusion MRI signal for a wide range of realistic, fully flexible scanner
acquisition protocols, in practical computational time.

1 Introduction

Diffusion MRI (dMRI) has become one of the most important imaging modali-
ties to probe tissue microstructure with many applications in biomedical imaging
[1,2]. The dMRI signal measures the displacement of the water molecules inside
the tissue and is sensitive to the configuration of cellular membranes, therefore
it provides relevant information for characterising tissue properties at the mi-
cron level. By developing geometrical models of the tissue and relating them
to the acquired dMRI data, it is possible to estimate cellular features such as
size, shape, volume fraction, dominant orientation etc. Such estimates provide
valuable biomarkers for studying the brain structure or for diagnosing and mon-
itoring diseases. In order to develop fast and reliable acquisition protocols, a
good understanding of the most relevant tissue features which affect the dMRI
signal as well the influence of different acquisition parameters is very important.

Numerical simulations provide a cheap and powerful tool to investigate the
effect of various sequence parameters and tissue features on the measured signal.
With synthetic data, we can investigate the ability of various imaging techniques,
such as AxCaliber [3], ActiveAx [4], VERDICT [5], to estimate microstructural
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parameters from the data. We can also analyse the effect of including additional
tissue features in the model, e.g. fibre dispersion [6] or size distribution [7], of
varying acquisition parameters [8] or introducing novel diffusion sequences [9],
in a controlled way with known ground truth.

Diffusion MR data synthesis can be divided into three broad categories:
Analytical models have a closed form solution which approximate the diffu-

sion process in bounded geometries under various assumptions. Such approaches
include the Short Pulse Gradient (SGP) approximation [10] or the Gaussian
Phase Distribution (GPD) approximation [11,12,13]. The signal is fast to com-
pute, however it departs from ground truth values when the assumptions are
broken and cannot recover some signal features such as diffusion-diffraction pat-
terns.

Semi-analytical models are based on matrix operators to calculate the time
evolution of the diffusion signal inside simple geometries. Such approaches in-
clude the matrix formalism introduced by Callaghan [14] or the Multiple Cor-
relation Function (MCF) technique [15]. The diffusion signal can be computed
for arbitrary gradient waveforms, is accurate and relatively fast to compute,
however, these techniques can be used only for simple geometries with known
solutions of the diffusion equation (parallel planes, cylinders, spheres [11], spher-
ical shells [12], triangles [16]).

Numerical models simulate the diffusion process either by numerical solutions
of the diffusion equation in a known substrate (e.g. [17],[18]) or using a Monte-
Carlo approach (e.g. [19], [20]). Such techniques can represent more complex and
realistic diffusion substrates, however, they are computationally demanding and
do not provide the same level of mathematical insight as analytical models do.

Analytical approximations of the dMRI signal are fast to compute but not
very accurate, while numerical simulations have higher accuracy and can repre-
sent complicated geometries but require significantly more computational power.
In simple geometries, semi-analytical approaches represent the middle ground,
providing accurate signal calculations in a short computational time.

In this work we present the MISST software package, which is based on a
semi-analytical approach, namely the 3D extension [21] of the matrix method
proposed by Callaghan. MISST simulates the diffusion MRI signal for general-
ized, user defined, gradient waveforms and a variety of diffusion substrates. The
matrix method has been used so far in various research studies to help validate
the GPD approximation for oscillating gradients [13], to analyze the sensitivity
of pulsed and oscillating gradients to axon diameter [8] as well as to investigate
the properties of a newly introduced diffusion sequence, namely double oscillat-
ing diffusion encoding [9]. MISST combines a powerful method for simulating
diffusion MRI signal with a wide range of diffusion substrates in a flexible, user
friendly software package.

2 Theory

This section presents the theory behind the building blocks of MISST.
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2.1 Diffusion contrast

Diffusion MRI contrast is obtained by applying a magnetic field gradient with

zero first moment at echo time, i.e.
∫ TE

0
G(t) · dt, where G denotes the effective

gradient after accounting for the effect of inversion pulses from the imaging
sequence. Thus, the phase acquired by each spin is φ(t) = γ

∫ t

0
G(t′) · r(t′)dt′

and the measured diffusion signal decay of the spin ensemble E = 〈exp(iφ)〉.
In case of free (Gaussian) diffusion and gradient with a fixed orientation for

each measurement, the signal has the well known form:

E = exp(−bD), where b = γ2
∫ TE

0

∣∣∣∣∫ t

0

G(t′)dt′
∣∣∣∣2 dt. (1)

For a generalized gradient waveform, equation 1 needs to be expanded to a tensor
form [22]:

E = exp(− < B,D >), where B = γ2
∫ TE

0

F(t)FT (t)dt, F(t) =

∫ t

0

G(t′)dt′,

(2)
<,> denotes the tensor inner product and D is the diffusion tensor.

In case of diffusion restricted within closed pores, the solution is not straight-
forward and the signal depends on the propagator P (r0, t0|r1, t1) which repre-
sents the probability that a particle moves from position r0 at time t0 to position
r1 at time t1 [23].

Matrix formalism To simulate restricted diffusion, MISST uses the 3D exten-
sion of the matrix method (MM) [14,24], which is based on a multiple propagator
approach [25]. MM provides a generic framework for evaluating the restricted
diffusion signal E in a closed form under generalised gradient waveforms. The
pulse sequence is divided into narrow intervals τ , as illustrated in Fig. 1 and the
gradient amplitude g0(kτ) is discretized into steps of size gstep. Thus, at time
kτ the amplitude of the diffusion vector is mkq where q = (2π)−1τgstep, and
mk = b(g0(kτ)/gstep)c.

The signal E is calculated as a product of matrix operators which describe
the phase evolution inside the boundaries:

E = S(q)R[A(q)]m2R...R[A(q)]mK−1RST (−q), (3)

where the elements of the matrices S, A and R have the following definitions

Sn(q) = V −1/2
∫
un(r) exp(i2πq · r)dr,

Rnn = exp(−λnDτ),

Ann′(q) =

∫
u∗n(r)un′(r) exp(i2πq · r)dr; (4)
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Fig. 1: Schematic representation of a generalized waveform which is repeated before
and after the refocusing pulse in a spin-echo sequence. The gradient waveform along
each direction is discretized in K steps.

V is the pore volume, q = qĝ where ĝ is the unit gradient vector and un and
λn are the eigenfunctions and eigenvalues of the diffusion equation in the given
geometry.

The above method has recently been extended for gradients with time vary-
ing orientation [24]. In the case of fixed orientation, the vector q is the same
at every time point kτ which allows the precalculation of matrices A(q) and
S(q). However, when the gradient orientation is time-dependant, the vector q
is different at different time points and the matrices also depend on time. Thus
equation 3 becomes:

E = S(qĝ1)R[A(qĝ2)]m2R...R[A(qĝK−1)]mK−1RST (−qĝN), (5)

where ĝk denotes the gradient orientation at time kτ .
Calculating the matrices A(qĝk) element-by-element at each time point is

too computationally expensive. To decrease computational time, MISST uses an
efficient implementation based on the Taylor expansion of the matrices, which
has been proposed and validated in [24].

2.2 Tissue models

MISST simulates the diffusion signal from a variety of multi-compartment tissue
models. Thus, the overall signal is computed as a weighted sum over different
compartments:

E =

n=N∑
n=1

fnEn, with

n=N∑
n=1

fn = 1, (6)

where En and fn are the signal and the volume fraction of the nth compartment
and N is the total number of compartments in the model. For compartments
exhibiting Gaussian diffusion, the signal is computed according to equation 2,
while for restricted compartments it is calculated according to equation 5.
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3 Software implementation

3.1 General overview

MISST is implemented in Matlab using a modular design and is schematically
represented in Fig. 2. This implementation allows the user to choose between var-
ious diffusion sequences which are widely used in the literature and/or to define
their own sequences as well as to build a large variety of tissue models by eas-
ily combining the diffusion signal from basic compartments. The package is open
source and available for download http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST.

3.2 Implementation details

In order to generate the diffusion signal, the user inputs the parameters of the
diffusion sequences and of the tissue model. The simulator outputs the diffusion
signal and, optionally, the Jacobian of the signal.

Input parameters
Diffusion sequences: The diffusion measurements are represented as a struc-

ture, commonly denoted as ”protocol”, which stores the information regarding
the effective diffusion gradient G and the time discretization τ . The 3D gradient
waveform is specified as a M x 3K matrix, where M is the number of diffusion
measurements and K is the number of gradient points in one measurement along
each direction. The gradient does not necessarily need to be repeated after the
180 rf pulse, nevertheless, the gradient integral should be zero. We provide a set
of examples how to generate the discrete gradient waveforms for several diffu-
sion sequences which are widely used in the literature: pulsed gradient spin echo
sequences (PGSE), sinusoidal/square/trapezoidal oscillating gradients (OGSE),
double pulsed field gradients, stimulated echo sequences, etc. A detailed descrip-
tions for the parametrization of each sequence can be found in the software
documentation.

Tissue models: For the diffusion substrates, MISST provides a flexible design
of multi-compartment tissue models by combining basic building blocks which
have different diffusion characteristics. The different basic models are illustrated
in Fig. 2 and follow the nomenclature presented in [26]. Currently, there are sev-
eral multi-compartment white matter models available in MISST, nevertheless,
other substrates can be easily implemented by combining different compart-
ments. The information related to the diffusion substrate is represented as a
structure commonly referred to as ”model”. The user needs to specify the model
name as well as the model parameters such as diffusivity, radius (for cylinders
and spheres), volume fractions of different compartments, etc.

Output parameters
MISST outputs a vector of normalized diffusion signals corresponding to

each measurement in the protocol, for the diffusion substrate specified by the
tissue model. Optionally, the simulator can output the signal Jacobian, i.e. the
derivatives of the signal with respect to the model parameters. For instance, if
the protocol has M measurements and the model has P parameters, the Jacobian
is an M × P matrix.

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST
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Fig. 2: Schematic representation of MISST, showing the input and output parameters
as well as the basic diffusion compartments.

4 Simulations and results

4.1 Signal validation

The first set of experiments validate the restricted diffusion signal computed
from MISST against the Monte Carlo (MC) diffusion simulator in Camino [19]
in a substrate consisting of parallel cylinders with radius R = 3 µm and intrinsic
diffusivity D = 2 ·10−9 m2/s, oriented along the z axis, as illustrated in Fig. 3a).

To show the true potential of MISST, in the first simulation we test a protocol
with M = 50 fully generalized gradient waveforms, which are generated by
random numbers for gradients in x,y and z directions. To ensure a null gradient
integral, the waveforms with a duration of 20ms are repeated before and after
the 180 rf pulse, as schematically illustrated in Fig. 3b). We set the maximum
gradient strength to 500 mT/m and we use a time step τ = 0.1 ms. For the MC
simulations we used 200000 walkers and the same time step τ . The plot in Fig.
3c) presents the diffusion signal computed using the two methods. The signal
difference between MISST and MC is less than 0.16% for all data points. The
computational time necessary for MISST to generate this data set was 5s, while
the MC simulation took 10min.

The second simulation investigates an acquisition protocol consisting of dou-
ble pulsed field gradient sequences (dPFG) which vary the angle between the
gradients in the plane perpendicular to the cylinder axis. A schematic represen-
tation of the sequence is illustrated in Fig. 3d). The sequence parameters for this
simulation are: gradient strength G = 500 mT/m, pulse duration δ = 2ms, pulse
separation ∆ = 50 ms, mixing time τm = {0, 2, 10} ms and angle ϕ between the
gradient directions from 0 and 2π. The plots in Fig. 3e) show the dependence
of the dPGSE signal as a function of the angle between the gradients for three
different mixing times, when the signal was generated either using MISST or MC
simulations. Similarly to the previous simulations, the signal difference between
the two methods is less than 0.3% for all the data points. In this case, MISST
calculations were performed in 10s, while the MC simulation took 1h 20min.

The third analysis shows that MISST can reproduce important features of the
restricted diffusion signal which cannot be accurately modelled with simpler ana-
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Fig. 3: a) Schematic representation of the diffusion substrate; Schematic representation
of b) the random gradient waveform and c) the corresponding diffusion signals obtained
using MISST (line) and MC simulations (symbol); Schematic representation of d) the
dPGSE sequence and e) the corresponding diffusion signals obtained using MISST
(line) and MC simulations (symbol); Schematic representation of f) the PGSE sequence
and g) the corresponding diffusion-diffraction patterns obtained using MISST.

lytical approximations like GPD, such as diffusion-diffraction patterns when the
wave vector q = (2π)−1γGδ is increased [27,28]. In this simulation we use stan-
dard PGSE sequences with δ = 3 ms, ∆ = 100 ms and G = {0, 50, 100, ..., 2000}
mT/m. The diffusion-diffraction patterns depend on the restriction size, as illus-
trated in Fig. 3g) for parallel cylinders with three different radii R = {4, 5, 6} µm.

4.2 Application example

MISST software can be used for a wide range of applications, from validating
analytical approximations [13], to analysing the sensitivity of various diffusion
measurements [8] or understanding the contrast of novel sequences [9]. Here we
illustrate an example of using MISST to compare the sensitivity of PGSE and
OGSE sequences to pore diameter in cylindrical restriction. We investigate two
situations: 1) the gradient is orthogonal to the cylinder axis and 2) the gradient
is not perfectly perpendicular, deviating by a small angle θ = 10◦. We analyse a



8

Fig. 4: Sensitivity of PGSE (N = 1) and OGSE (N > 1) sequences to cylinder radius
for a wide range of sequence parameters. The star denotes the most sensitive sequence.

wide range of practical sequence parameters with gradient strength G ∈ [0, 300]
mT/m, δ ∈ [0, 60] ms, ∆ = δ + 10ms and N = {1, 2, ..., 5} gradient lobes, as
illustrated in Fig. 4a). In this simulation we use a two-compartment tissue model
with parallel cylinders (R = 3 µm, D = 1.7 ·10−9m2/s, volume fraction f = 0.7)
and hindered extracellular space in the tortuosity limit (D‖ = 1.7 · 10−9m2/s,
D⊥ = (1 − f) · D‖). We account for the effect of T2 decay with a constant
T2 = 70ms. An in-depth analysis of PGSE vs. OGSE sensitivity to pore diameter
is presented in [8].

Figure 4b) plots the sensitivity of PGSE (N = 1) and OGSE (N > 1) se-
quences with a wide range of parameters. The results show that in the case when
the gradient direction is orthogonal to the cylinder orientation, PGSE sequences
have the highest sensitivity, however, if the gradient is no longer perfectly per-
pendicular or there is fibre dispersion (not shown here), OGSE sequences with
low frequency yield the highest sensitivity. This analysis shows the importance
of numerical simulations for exploring optimal combinations of sequence param-
eters in an intuitive way.

5 Discussion

This work introduces MISST, a software package that simulates the diffusion
MRI signal from a variety of pulses sequences and diffusion substrates. Being
open source, the user can easily tailor the software to explore their own research
question, allowing faster development in the field of diffusion MRI.

MISST implements the 3D extension of the matrix method, which allows
the computation of restricted diffusion signal for flexible, user defined, gradient
waveforms. We provide details of the implementation, as well as examples of
tissue models and gradient waveforms. The signal calculation is accurate and
preserves important signal features such as diffusion-diffraction patterns, yet it
is orders of magnitude faster to compute compared to MC simulations, which
makes it practical for many applications.

One limitation of the matrix method is that it can be used to calculate the
restricted diffusion signal only for basic geometries with well known solution of



9

the diffusion equation such as parallel planes, cylinders, spheres, spherical shells
as well as triangles. Another limitation is the fact that diffusion in extracellular
space needs to be computed separately, thus the accuracy of the signal depends
on the complexity of the chosen model. Although boundary relaxation effects
can be accounted for in the matrix method formalism, the exchange between
intra and extracellular spaces cannot be readily incorporated.

Future work aims to provide the template for more diffusion sequences which
have been recently developed in the literature (double oscillating diffusion encod-
ing, q-mas and other sequences with isotropic encoding) as well as more diffusion
compartments such as cuboids and finite cylinders [7].

The novelty of MISST is that it simulates dMRI signal for any user-defined
diffusion gradient waveform, from a standard PGSE to more advanced sequences
which are of great interest to the research in this field. Moreover, due to its mod-
ular construction, the user can easily combine various diffusion compartments to
create models that are representative of various tissue types, such as grey mat-
ter, white matter or tumours. All these features are combined in a user-friendly,
open source software package.

References

1. D. K. Jones. Diffusion MRI: theory, methods and application. Oxford University
Press, 2010.

2. H. Johansen-Berg and T. E. J. Behrens. Diffusion MRI: from quantitative mea-
surement to in vivo neuroanatomy. Academic Press, 2009.

3. Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser. AxCaliber: a method
for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance
in Medicine, 59:1347–1354, 2008.

4. D. C. Alexander, P. L. Hubbard, M. G. Hall, E. A. Moore, M. Ptito, G. J. M.
Parker, and T. B. Dyrby. Orientationally invariant indices of axon diameter and
density from diffusion MRI. NeuroImage, 52:1374–1389, 2010.

5. E. Panagiotaki, S. Walker-Samuel, B. Siow, S. P. Johnson, V. Rajkumar, R. B. Ped-
ley, M. F. Lythgoe, and D. C. Alexander. Noninvasive quantification of solid tumor
microstructure using VERDICT MRI. Cancer Research, 74:1902–1912, 2014.

6. H. Zhang, P. L. Hubbard, G. J. M. Parker, and D. C. Alexander. Axon diameter
mapping in the presence of orientation dispersion with diffusion MRI. NeuroImage,
56:1301–1315, 2011.
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