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Abstract—This paper considers the classification of linear
subspaces with mismatched classifiers. In particular, we assume
a model where one observes signals in the presence of isotropic
Gaussian noise and the distribution of the signals conditioned
on a given class is Gaussian with a zero mean and a low-rank
covariance matrix. We also assume that the classifier knows only a
mismatched version of the parameters of input distribution in lieu
of the true parameters. By constructing an asymptotic low-noise
expansion of an upper bound to the error probability of such a
mismatched classifier, we provide sufficient conditions for reliable
classification in the low-noise regime that are able to sharply
predict the absence of a classification error floor. Such conditions
are a function of the geometry of the true signal distribution, the
geometry of the mismatched signal distributions as well as the
interplay between such geometries, namely, the principal angles
and the overlap between the true and the mismatched signal
subspaces. Numerical results demonstrate that our conditions
for reliable classification can sharply predict the behavior of a
mismatched classifier both with synthetic data and in a motion
segmentation and a hand-written digit classification applications.

Index Terms—Classification, mismatch, linear subspace, max-
imum-a-posteriori classifier, error floor.

I. INTRODUCTION

S IGNAL classification is a fundamental task in various
fields, including statistics, machine learning and computer

vision. One often approaches this problem by leveraging the
Bayesian inference paradigm, where one infers the signal class
from signal samples or measurements based on a model of the
joint distribution of the signal and signal classes ([1], Chapter
2).
Such joint distribution is typically inferred by relying on

pre-labeled data sets. However, in practical applications, the
methods used to estimate the distributions from training data
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inevitably lead to signal models that are not perfectly matched
to the underlying one. This can be due to an insufficient number
of labeled data, the noise in the pre-labeled data [2]–[4], or due
to the non-stationary statistical behavior [5].
It is therefore relevant to ask the question:
What is the impact that a mismatched classifier, i.e., a classi-

fier that infers the signal classes based on an inaccurate model
of the data distribution in lieu of the true underlying data dis-
tribution, has on classification performance?
We answer this question for the scenario where the data

classes are constrained to lie approximately on a low-dimen-
sional linear subspace embedded in the high-dimensional
ambient space. Indeed, there are various problems in signal
processing, image processing and computer vision that conform
to such a model, some of which are:
• Face Recognition: It can be shown that, provided that
the Lambertian reflectance assumption is verified, the
set of images taken from the same subject under dif-
ferent lighting conditions can be well approximated by a
low-dimensional linear subspace embedded in the high-di-
mensional space [6]. This is leveraged in several face
recognition applications [7]–[9].

• Motion Segmentation: It can also be shown—under the
assumption of the affine projection camera model—that
the coordinates of feature points associated with rigidly
moving objects through different video frames lie in a 4 di-
mensional linear space [10]–[12]. This is leveraged in [10]
to design subspace clustering algorithms that can perform
motion segmentation.

• In general, (affine) subspaces or unions of (affine) sub-
spaces can also be used to model other data such as images
of handwritten digits [13].

Our contributions include:
• We derive an upper bound to the error probability associ-
ated with the mismatched classifier for the case where the
distribution of the signal in a given class is Gaussian with
zero-mean and low-rank covariance matrix.

• We then derive sufficient conditions for reliable classifica-
tion in the asymptotic low-noise regime. Such conditions
are expressed in terms of the geometry of the true signal
model, the geometry of the mismatched signal model and
the interaction of these geometries (via the principal angles
associated with the subspaces of the true and mismatched
signal models as well as the dimension of the intersection
of such subspaces).

• We finally provide a number of results, both with synthetic
and real data, that show that our sufficient conditions for re-
liable classification are sharp. In particular, we also use our
theoretical framework to determine the number of training
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samples needed to achieve reliable classification in a mo-
tion segmentation and a hand-written digit classification
applications.

A. Related Work

The concept of model mismatch has been widely explored by
the information theory and communication theory communities.
For example, in lossless source coding problems, mismatch be-
tween the distribution used to encode the source and the true dis-
tribution is shown to lead to a compression rate penalty which is
determined by the Kullback-Leibler (KL) distance between the
mismatched and the true distributions [14, Theorem 5.4.3].
In channel coding problems, mismatch has an impact on the

reliable information transmission rate that has been character-
ized via inner and outer bounds to the achievable rate and error
exponents of different channel models [15]–[19]. The problem
of mismatched quantization is considered in [20].
The concept of mismatch has also been explored in the ma-

chine learning literature [5]. In particular, [5] studies the impact
on classification performance of training sets consisting of bi-
ased samples of the true distribution, expressing classification
error bounds as a function of the sample bias severity and type.
The effect of label noise in the training sets is also considered
in classification algorithms such as Support Vector Machines
[3] and Logistic Regression classifiers [4]. See also [2] for an
overview of the literature on classification in presence of label
noise.
Signal classification and estimation using mismatched

models is also considered in [21]–[24]. For example, [23]
expresses bounds to the error probability in the presence of mis-
match via the -Divergence between the true and mismatched
source distributions, and [24] expresses the mean-squared error
penalty in presence of mismatch in terms of the derivative
of the KL distance between the true and the mismatched
distributions with respect to the decoder signal to noise ratio
(SNR). In particular, the work in [23] is closely related to our
work in the sense that it also establishes bounds to the error
probability in the presence of mismatch. The bounds presented
in [23] are more general since they do not assume a particular
form of probability density functions. Our work, on the other
hand, leverages the assumption that signals are contained in
linear subspaces in order to derive an upper bound that sharply
predicts the presence or absence of an error floor. The bounds
in [23] fail to capture the presence or absence of an error floor
when specialized to the proposed signal model.

B. Organization

The remainder of this paper is organized as follows:
Section II introduces the observation and signal models, the
Mismatched Maximum-a-Posteriori (MMAP) classifier and
the geometrical quantities associated with the signal and the
mismatched model that are essential for the description of
the MMAP classifier performance. The upper bound to the
error probability associated with the MMAP classifier and the
asymptotic expansion, which provide sufficient conditions for
reliable classification in the low-noise regime, are given in
Section III. In Section IV the theoretical results are validated
via numerical experiments. Applications of the proposed bound

in a motion segmentation task and in a hand-written digit clas-
sification task are given in Section V. The paper is concluded in
Section VI. The proofs of the results are given in the Appendix.

C. Notation

We use the following notation in the sequel: matrices,
column vectors and scalars are denoted by boldface upper-case
letters , boldface lower-case letters and italic letters

, respectively. denotes the identity matrix and
denotes the zero matrix. The subscripts are

omitted when the dimensions are clear from the context.
denotes the -th basis vector in . The transpose, rank and
determinant operators are denoted as and ,
respectively. denotes Euclidean norm of the vector and

denotes the spectral matrix norm of the matrix . The
image of a matrix is denoted by and the kernel of a matrix
is denoted by . The sum of subspaces and is denoted
as and the orthogonal complement of is denoted as

. denotes the natural logarithm, and the multi-variate
Gaussian distribution with the mean and covariance matrix
is denoted as . We also use the following asymptotic
notation: if , where ,
and if .

II. PROBLEM STATEMENT

We consider a standard observation model:

(1)

where represents the observation vector, rep-
resents the signal vector and represents
observation noise, where denotes the noise variance per di-
mension.1We also assume that the signal is drawn from
a class with prior probability ,
and that the distribution of the signal conditioned on a given
class is Gaussian with mean zero and (possibly) low-rank
covariance matrix , i.e.,

(2)

with . Therefore, conditioned on a given
class , the signal lies on the linear subspace spanned by
the eigenvectors associated with the positive eigenvalues of the
covariance matrix .
The classification problem involves inferring the correct class

label associated with the signal from the signal observation
. It is well known that the optimal classification rule, which

minimizes the error probability, is given by the Maximum-A-
Posteriori (MAP) classifier [1, Ch. 2.3]:

(3)

where represents the a posteriori probability of class
label given the observation and

(4)

1This noise vector can also model the fact that data does not always lie exactly
on a low-dimensional subspace but rather approximately on a low-dimensional
subspace [13].
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TABLE I
MAIN QUANTITIES USED IN THE ANALYSIS

Fig. 1. System Model.

represents the probability density function of the observation
given the class label .
However, we assume that the classifier does not have access

to the true signal parameters and
but rather to a set of mismatched parameters
and , where is the mismatched a

priori probability of the -th class and is the mismatched co-
variance matrix associated with the class with

.2 (See Fig. 1.)
Such a Mismatched-MAP (MMAP) classifier delivers the

class estimate

(5)

where denotes the mismatched a posteriori proba-
bility of class label given observation and

(6)

denotes the mismatched probability density function of the ob-
servation given the class label .
The probability of error associated with a MMAP classifier is

given by:

(7)

where

(8)

and is the unit-step function. This error probability cannot
be calculated in closed form, but it can be easily bounded.

2We assume that and are known. Since we study the scenario where
, the assumption that is known exactly is immaterial.

TABLE II
RELATIONSHIPS BETWEEN THE QUANTITIES USED IN THE ANALYSIS

Our goal is to study the performance of the MMAP classifier
by establishing conditions, which are a function of the geom-
etry of the true and mismatched signal models as well as the
interaction of such geometries, for reliable classification in the
low-noise regime i.e., such that .

A. Geometrical Description of the Signals
Our characterization of the performance of theMMAP classi-

fier will be expressed via various quantities that embody the ge-
ometry of the true signal model, the geometry of themismatched
signal model, and their interplay. The quantities central to the
analysis are given in Table I and the relationships between the
presented quantities are summarized in Table II.
1) Quantities Associated With the Geometry of the True

Signal Model or the Mismatched Signal Model: The signal
space corresponding to class and the mismatched signal
space corresponding to class , which are subspaces of ,
are denoted as and , respectively. An or-
thonormal basis for is denoted as and
an orthonormal basis for is denoted as ;
these quantities follow directly from the truncated eigen-
value decompositions and
where and

are diagonal matrices
containing the positive eigenvalues of and , respectively.
Note that and .
2) Quantities Associated With the Interplay Between the

Geometry of the Mismatched Signal Models: We consider
quantities that reveal the relationship between the mis-
matched signal spaces of classes and . In particular, such
quantities follow from the decomposition of the subspace

, which spans the mis-
matched signal subspaces of classes and , given by:
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where
• represents an orthonormal basis for the
intersection and is the dimension of

. This intersection is associated with class
as well as class ;

• represents an orthonormal basis for the or-
thogonal complement of in and

is the codimension of in .
can be interpreted as the subspace of the mis-

matched signal space corresponding to class that is only
associated with class and not with class ;

• represents an orthonormal basis for the or-
thogonal complement of in and

is the codimension of in .
can be interpreted as the subspace of the mis-

matched signal space corresponding to class that is only
associated with class and not with class .

Note that together with and complete
the basis for and , respectively, i.e.,

and .
3) Quantities Associated With the Interplay Between the Ge-

ometry of the True Signal Model and the Mismatched Signal
Model: We also consider quantities that capture the interaction
between the signal space corresponding to class and the mis-
matched signal spaces of classes and . Such quantities are
given by the decomposition of given by:

where
• and

represents an orthonormal basis for
where . can be
interpreted as the subspace of signal space corresponding
to class that is orthogonal to ;

• and
represents an orthonormal basis for the

orthogonal complement of in
where ; then,

is the codimension of
in . can be interpreted as the

subspace of signal space of class that is not orthogonal
to , i.e., it complements in .

Note that .
4) Principal Angles and Distance Between Subspaces: Fi-

nally, our results will also be expressed via the principal angles
between certain subspaces. In particular, consider a subspace
with an orthonormal basis , where , and
a subspace with an orthonormal basis , where

, and define . Then the principal an-
gles between and are given by
the singular value decomposition (SVD):

(9)

where and are orthonormal matrices
and is a rectangular diagonal matrix containing the
singular values: . Each singular value

corresponds to the cosine of the principal angle between
and , i.e., [25, Ch. 8.7].
The principal angles are used to define various distances on a

Grassmann manifold [26]. We will be predominantly using the
max correlation distance between two subspaces

(10)

which is a function of the smallest principal angle , and the
min correlation distance between two subspaces

(11)

which is a function of the largest principal angle between
the two subspaces. Note that we slightly abuse the notation in
the second term of (10) and (11), as and are bases for the
subspaces, not subspaces.
5) Interpretation: It is instructive to cast some insight on

the role of these various quantities in the characterization of the
performance of the MMAP classifier.
Consider a two-class classification problem that involves dis-

tinguishing class 1 from class 2 in the low-noise regime (so
). It is clear that the MMAP classifier will associate an

observation with class 1 and an observation
with class 2; in turn, the MMAP classifier may as-

sociate an observation either with class 1 or 2. In
general, the observation associated with class 1 is such that

.
The following example demonstrates the classification of

by the MMAP classifier where the covariance matrices
are assumed to be diagonal.
Example 1: We take the covariance matrices to be

The relevant quantities (see Table I) are given as:

and

We also determine and :

Assume now that and note that
. Therefore, will be classified as class

1 by the MMAP classifier. In contrast, assume now that
and note that contains . Therefore

may be classified as class 2.
Next, we modify the mismatched model of class 2 as

which leads to . Note now that does not
contain and will not be associated
uniquely with class 2 by the MMAP classifier.
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It is now clear that the relationship between subspaces
and will play a role in the characterization

of conditions for perfect classification in the low-noise regime.
The next example demonstrates the role of principal angles in

the conditions for perfect classification in the low-noise regime.
Example 2: We take the signal space bases as:

The relevant quantities (see Table I) are given as:

and . The geometry of the signals
and decision regions is presented in Fig. 2(a). Note now that

can potentially be associated to the cor-
rect class 1 depending on the distance (computed according to
an appropriate metric) between and and the
distance between and . In particular, the angle
between and is greater than the angle be-
tween and , which leads to misclassification
of signals from class 1. On the other hand, if we take

the angle between and is smaller than the
angle between and , which leads to perfect
classification of signals from class 1 in the low-noise regime.
This case is presented in Fig. 2(b).
The ensuing analysis shows how these various quanti-

ties—which are readily computed from the underlying geom-
etry of the true subspaces and the mismatched ones—can be
used as a proxy to define sufficient conditions for perfect classi-
fication in the low-noise regime. In particular, these quantities
bypass the need to compute the decision regions associated
with the MMAP classifier in order to quantify the performance.

III. CONDITIONS FOR RELIABLE CLASSIFICATION

We now consider (sufficient) conditions for reliable classifi-
cation in the low-noise regime. We derive these conditions di-
rectly from a low-noise expansion of an upper bound to the error
probability associated with the MMAP classifier.
The following upper bound to the probability of error associ-

ated with a MMAP classifier will play a key role in the analysis.
Theorem 1: Set . Set

(12)

Then the error probability associated with the MMAP classifier
in (7) can be bounded as follows:
• If with , then

(13)

Fig. 2. The two plots illustrate the decision regions associated with the 2-class
MMAP classifier for different values of and in the limit
. Transparent blue and red regions indicate the decision region where MMAP
outputs class labels 1 and 2, respectively. Blue line represent the signal sub-
space and red line represent the signal subspace . Dashed blue
line represents the mismatched signal subspace . The subspace bases
are given in Example 2. (a) Example of wrong classification with the MMAP
classifier, (b) Example of correct classification with the MMAP classifier.

where

(14)

• If with then .
Proof: The proof appears in Appendix.

This upper bound to the error probability of the MMAP
classifier can capture the fact that the error probability may
tend to zero as the noise power approaches zero, depending
on the relation between the true signal parameters and the
mismatched ones. In particular, the upper bound to the mis-
classification probability of class is expressed as a function
of the covariance matrix of class , the mismatched covariance
matrix of class and the mismatched covariance matrices of
classes . In contrast, the bound proposed in [23] expresses
the upper bound to the error probability as a function of the
sum of -divergences between the true and the mismatched
distributions of class , for all classes . Therefore, it does not
capture the interplay between mismatched models of different
classes. In addition, when specialized to the proposed signal
model, the bound in [23] always predicts the presence of an
error floor (see Section IV).
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The following Theorem presents a low-noise expansion of the
upper bound to the error probability of the MMAP classifier.
Theorem 2: The upper bound to the error probability of the

MMAP classifier in (13) can be expanded as follows:
• Assume that , the following conditions hold:

(15)

(16)

and take , where

(17)

and where the value of is given in
the Appendix. Then
— If :

(18)

— If :

(19)

where .
• Assume , such that conditions (15) or (16) do
not hold. Then

(20)

Proof: The proof appears in Appendix.
The expansion of the upper bound to the error probability em-

bodied in Theorem 2 provides a set of conditions, which are a
function of the geometry of the true signal model, the geometry
of the mismatched signal model, and the interaction of the ge-
ometries, that enable us to understand whether or not the upper
bound to the error probability may exhibit an error floor. In par-
ticular, in view of the fact that we use the union bound in order to
bound the error probability of a multi-class problem in terms of
the error probabilities of two-class problems, these conditions
have to hold for every pair of class labels . We can
note that:
• The upper bound to the probability of error exhibits an
error floor if either (15) or (16) are not satisfied for some
pair . The interpretation of condition (15) is
straightforward by noting that the subspace con-
tains vectors of class that are orthogonal to the subspace

, which is the subspace uniquely associated with
class . Then, condition (15) states that such vectors must
also be orthogonal to the mismatched subspace uniquely
associated with class , i.e., . The interpretation
of condition (16) is obtained by reformulating the expres-
sion as:

(21)

Note that is the norm
of the projection of onto . Therefore, (16) re-
quires that the norm of vectors in , which are asso-
ciated with class , projected onto , which is also
associated with class , is greater than the norm of vectors
in projected onto , which is associated
with class .
Equation (21) is also implied by

(22)

which requires that the largest principal angle between
and is smaller than the smallest

principal angle between and .3 Demon-
stration of this condition is provided by Example 2 in
Section II.A.

• On the other hand, the upper bound to the probability of
error does not exhibit an error floor if conditions (15) and
(16) are satisfied for all pairs and .
In particular, necessary and sufficient conditions for
depend on the dimension of the various subspaces and

their relation, i.e., for all pairs such that
is necessary and sufficient for . For

example, if the rank of all covariance matrices associated
to the mismatched model is the same, i.e., if , for

, then is necessary
and sufficient for . Note that a positive value for
indicates that there is at least one vector in that is
not contained in , or equivalently, there exists at
least one vector in that has a non-zero projection
onto , therefore leading to reliable classification of
signals from class .

• Note that parameters do not play a role in the char-
acterization of the necessary and sufficient conditions for

. In fact, the conditions for do not depend on
a particular value of , provided that .

• Note also that the value of represents a measure of ro-
bustness against noise in the low-noise regime, as it de-
termines the speed at which the upper bound of the error
probability decays with . In particular, higher values
of will represent higher robustness against noise, in the
low-noise regime. For example, on assuming for

, we observe that larger values of corre-
spond to larger values of . Therefore, as expected, higher
levels of robustness are obtained when the overlap be-
tween and , i.e., dimension of ,
is reduced.
We also discuss how the value of in (17) relates to the
value of for the non-mismatched case.4 In particular,
we assume that and that the true and
the mismatched covariance matrices are diagonal. Then for
the non-mismatched case

3The detailed derivation of this statement is reported in Appendix.
4Note that our comparison involves upper bounds on the error probabilities

rather than the actual error probabilities.
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and for the mismatched case

Therefore, in the non-mismatched case is at most
and it decreases as the dimension of the intersection of
the signal spaces of classes and increases. In the mis-
matched case is also at most , but it decreases as the
dimension of the intersection of the signal space of class
and the mismatched signal space of class increases, and
as the dimension of the intersection of the signal space of
class and the noise subspace of the mismatched classifier,
i.e., , increases. It can also be easily
verified that the value of for a non-mismatched 2 class
problem obtained in [27] matches the value of derived
via the proposed bound. Note that the bound analyzed in
[27] is different than the bound proposed in this paper and
it is only valid for non-mismatched models.

• The constant in (19) distinguishes the upper bounds
for different mismatched models with a constant , in the
low-noise regime, and is determined as the ratio of vol-
umes of subspaces associated with true and mismatched
signal subspaces and their interaction. See Appendix for
the detailed expression.

Theorem 2 therefore leads immediately to sufficient condi-
tions for reliable classification in the low-noise regime.
Corollary 1: If

(23)

(24)

and such that , then
.
Proof: This follows directly from Theorem 1, since

.
Corollary 2: If

and
(25)

then .
Proof: The proof appears in Appendix.

Note that the conditions in Corollary 2 are implied by (hence
are weaker) the conditions in Corollary 1.
The conditions for reliable classification are particularly

simple for the scenario where true and mismatched covariance
matrices are diagonal.
Corollary 3: Assume are diagonal. If

(26)

and such that , then
.
Proof: The proof appears in Appendix.

Note that in diagonal case the sufficient conditions for perfect
classification simplify only to inclusion of subspaces. Recall the
Example 1 where we demonstrate that the signals in
may be associated with class or with class . Condition (26)
formalizes the intuition that the signals in must be or-
thogonal to , which is uniquely associated with class
.
We finally illustrate how our conditions cast insight onto the

impact of mismatch for a two-class case where the mismatched
subspaces are a rotated version of the true signal subspaces.
Example 3: Consider a two-class classification problem

where and
and

(27)

where and are orthogonal matrices,
and .5 By defining

(28)

(29)

it follows that

(30)

The proof is in the Appendix.
This example provides sufficient conditions for reliable clas-

sification in the low-noise regime by relating the degree of mis-
match—measured in terms of the spectral norm of the matrix

—to the minimum principal angle between sub-
spaces. It states that the larger the minimum principal angle be-
tween the spaces spanned by signals of class 1 and class 2, i.e.,
the larger , the more robust is the classifier against mis-
match, where the level of mismatch is measured by .
The maximum robustness against mismatch is obtained when

, which means that signals from class 1 and class 2 are
orthogonal.
This example also provides a rationale for state-of-the-art fea-

ture extraction mechanisms where the signal classes are trans-
formed via a linear operator prior to classification. In partic-
ular, assume that and correspond to the covariances of
signals in class 1 and 2 after the transformation : the example
suggests that the operator should transform the signal covari-
ances so that is small (i.e., so that the signals from class
1 and 2 are close to orthogonal) in order to create robustness
against mismatch. Such an approach is considered, for example,
in [28], where signals are transformed by a matrix, which pro-
motes large principal angles between the subspaces. Note that
the work in [28] is not motivated on the basis of robustness
against mismatch, but rather on intuitive insight about classi-
fication of signals that lie on subspaces.

IV. NUMERICAL RESULTS

We now show that our conditions for reliable classification
in the low-noise regime are sharp, by revisiting the Examples

5This condition insures that the mismatched subspaces are not completely
orthogonal to the signal subspaces.
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TABLE III
MISMATCH EXAMPLES GIVEN IN SECTION II.A

Fig. 3. Simulation results for the examples in Table I. In all plots, the black line corresponds to the true error probability obtained via simulation, the red
line corresponds to the proposed upper bound to error probability given in Theorem 1 and the dashed orange line corresponds to the upper bound in [23]
(with KL-divergence). (a) . (b) . (c) . (d) .

Fig. 4. Black, blue and red lines correspond to the simulated error probabilities
for examples given by (32), (33) and (34), respectively. Dashed black, blue and
red lines correspond to the upper bound given in Theorem 1 for examples given
by (32), (33) and (34), respectively.

1 and 2 presented in Section II.A. The model parameters and
results are summarized in Table III.
Fig. 3 shows the estimated true error probability, which is

obtained from simulation6, the upper bound to the error proba-
bility given in Theorem 1 and the bound proposed in [23] (using
the KL-divergence) as a function of . Note that the proposed
upper bound to the error probability and the derived sufficient
conditions give a sharp predictions of an error floor, and also
that the bound proposed in [23] always exhibits an error floor.
In case (a), condition (15) in Theorem 2 is not satisfied for

, i.e.,
, therefore, via Theorem 2 we conclude that the upper

bound exhibits an error floor. The results in Fig. 3 show that in
this case the true error probability also exhibits an error floor.
In case (b), conditions (15) and (16) are satisfied and .
Therefore, via Theorem 2, the upper bound to the error prob-
ability approaches zero, which also implies that the true error
probability approaches zero, in the low-noise regime.
For cases (c) and (d) the intuition is provided by the Corollary

2, where in the case of the one-dimensional subspaces the con-
cept of principal angles simply reduces to the notion of angle

6In our simulations, signals are drawn independently from the true distribu-
tion and are classified by the MMAP classifier.

between two lines. In particular, in case (c) the condition (25) in
Corollary 2 is not satisfied for , and we observe an
error floor in the true error probability. On the contrary, in case
(d) the conditions (25) in Corollary 2 are satisfied which imme-
diately implies perfect classification in the low-noise regime.
We now explore how different mismatched models affect the

value of . Consider the following 2-class example in with
orthonormal basis vectors , where the signal
spaces are:

(31)

and various mismatched signal spaces are:

(32)
(33)
(34)

It is straightforward to verify that the sufficient conditions for
perfect classification given by Theorem 2 hold for all three pairs
of mismatch models (32), (33) and (34). Furthermore, one can
also determine the values of as 0.5, 1 and 1.5, where values
of do not depend on , for the mismatched models given
by (32), (33) and (34), respectively. As observed in Section III,
a higher value of implies a higher robustness to noise. Sim-
ulation results of the true error probability and the values of
the upper bounds as given in Theorem 1 are plotted in Fig. 4.
One can observe that increasing values of (associated with
the upper bound to the error probability) correspond to steeper
decrease of the true error probability as . Moreover, the
values of obtained via the upper bound match the values of
obtained from the simulation of the true error probability for all
the examples (32)–(34).

V. APPLICATIONS

We finally show how theory can also capture the impact
of mismatch on classification performance in applications
involving real world data. We consider a motion segmentation
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Fig. 5. Normalized singular values of data matrices corresponding to: (a) mo-
tions in the Hopkins dataset and (b) digits in the MNIST dataset. For Hopkins
dataset only the first 15 out of 58 singular values are shown. For MNIST dataset
only the first 200 out of singular values are shown for the first
3 classes. (a) Hopkins dataset, (b) MNIST dataset.

application, where the goal is to segment a video in multiple
rigidly moving objects, and a hand-written digit classification
application. In both tasks we concentrate on a supervised
learning approach, in which we are given a number of labeled
samples, which are used to estimate the model (training set) and
a number of unlabeled samples that we want to classify (testing
set). Our aim is to determine the minimum size of the training
set needed to guarantee reliable classification of the testing set.

A. Datasets
For the motions segmentation task we use the Hopkins 155

dataset [29], which consists of video sequences with 2 or 3
motions in each video. The motion segmentation problem is
usually solved by extracting feature points from the video and
tracking their position over different frames. In more details, in
this application, observation vectors are obtained by stacking
the coordinate values associated to a given feature point corre-
sponding to different frames, and the objective of motion seg-
mentation is that of classifying each feature point as belonging
to one of the moving objects in the video [10].
Theoretical results show that the features points trajectories

belonging to a given motion lie on approximately 3 dimensional
affine space or 4 dimensional linear space [10]–[12]. We vali-
date that empirically by observing the decay of singular values
of the data matrix associated with a given motion, which is
shown in Fig. 5(a). Note that singular values are close to zero
for singular value indices that are greater than 4.
For the experiment we consider a video with 3 motions7,

where number of samples of class 1, class 2 and class 3 is 236,
142 and 114, respectively. The rule adopted to pick the video

7Denoted as “1RT2RCR” in the dataset.

Fig. 6. Phase transition of true error rate and phase transition given by the
upper bound to the error probability as a function of number of training sam-
ples . Black corresponds to an error floor of the true error rate, white
corresponds to reliable classification, and red line denotes the phase transition
predicted via Theorem 2 for a given probability . (a) ,
(b) .

was the maximal possible feature points—samples—for each
motion. The ranks of the true and the mismatched covariances
is always set to 4. We also split the dataset samples randomly
into a training set and a testing set, where the training set con-
tains samples per class.
For the hand-written digit classification task we use the

MNIST dataset [30], which consists of 28 28 grey scale
images of hand-written digits between 0 and 9. We obtain
observation vectors by vectorizing the images.
The decay of singular values associated with the data matrix

of MNIST digits is shown in Fig. 5(b). Note that the singular
values do not approach zero as fast as in the case of the Hop-
kins dataset. We can argue that the classes in the MNIST dataset
are only “approximately low-rank”, i.e., the covariance matrix
associated with the class can be expressed as ,
where is low-rank and accounts for the deviation
from the perfectly low-rank model. In view of the presented
signal model this can be interpreted as a classification of sig-
nals with low-rank covariance matrix at finite . The
sufficient conditions for perfect classification in the case of “ap-
proximately low-rank” model will now predict what number of
training samples is required to achieve the best possible error
rate for the given classification problem.
The ranks of the true and the mismatched covariances is al-

ways set to 20 in the experiments. Such rank leads to capturing
approximately 90% of the energy of the signals. The split into
training and testing set is provided by theMNIST dataset, where
the training set contains approximately samples
per class.

B. Methodology
We obtain the class-conditioned covariance matrices by re-

taining only the first principal components of the estimated
covariances obtained via the maximum likelihood (ML) esti-
mator8 for each class. The covariance matrix associated with the
“true model” of class is obtained by estimating the covariance
matrix on all available data samples of class , and the covari-
ance matrices associated with the “mismatched model” of class
are obtained by estimating the covariance matrix on data

samples of class .

8Note that this is equivalent to computing the empirical covariance matrix.
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Fig. 7. The worst case error rate and phase transition predicted via Theorem 2 for a given probability are plotted for classification of MNIST digits. Solid red
and blue lines correspond to worst case error rates for and , respectively. Dashed vertical lines denote the phase transition predicted via Theorem
2 for (red) and (blue). (a) Classification of 2 digits. (b) Classification of 5 digits. (c) Classification of 10 digits.

Results are produced as follows: in each run samples are
drawn at random from the training set for various values of

, and the signal covariances are estimated. The
error rate of theMMAP classifier is then evaluated on the testing
set. At the same time, we also determine if sufficient conditions
for perfect classification as in Theorem 2 hold. We run 1000
experimental runs with the Hopkins dataset, where in each run
dataset is split at random into training and testing sets. We run
20 experimental runs with the MNIST dataset, where in each
run the draw of the samples from the training set is random
for .
The particular choice of samples in the training set can lead to

high variability in the mismatched models, especially for small
number of training samples. Therefore, in the following, we
have chosen to report the results as follows:
• we state that analysis predicts reliable classification if the
sufficient conditions in Theorem 2 hold with probability
over the different experiment runs;

• we also state that simulation predicts reliable classification
if the true error probability is 0 with probability over
different experiment runs;

• if the simulated error rate exhibits an error floor we report
the worst case error rate with probability : the error rate
that is achieved at least with probability over all exper-
imental runs.

C. Results

The results for the Hopkins dataset are reported in Fig. 6.
We observe that the phase transition predicted by analysis

approximates reasonably well the phase transition obeyed by
simulation. In particular, we can use our theory to gauge the
number of training samples required for perfect classification
in the low-noise regime. As expected, we also observe that
the larger value of gives more conservative estimates of the
required training samples. This holds for both simulation and
analysis.
We also observe that identical trends hold for other values

of . In particular, for simulation does not show a
phase transition and likewise analysis does not show a phase
transition either (these experiments are not reported in view of
space limitations). In contrast, for both simulation and
analysis predict a phase transition in the error probability.

The results for the MNIST dataset are reported in Fig. 7. Note
that the number of training samples per class is the same for all
classes, i.e., .
In contrast to the results with the Hopkins dataset, the error

rate obtained on theMNIST dataset exhibits an error floor. How-
ever, we observe that the worst case error rate reduces with a
higher number of training samples and reaches an error floor at
sufficiently large number of training samples. We also observe
that the phase transition obtained via Theorem 2 predicts rea-
sonably well the number of training samples needed to reach
the error floor.
Finally, note that real data are not drawn from Gaussian dis-

tributions or perfect linear subspaces (the two main ingredients
underlying our analysis). Nevertheless, we have shown that the
derived bound has practical value even when the two assump-
tions do not hold strictly.

VI. CONCLUSION
This paper studies the classification of linear subspaces with

mismatched classifiers, i.e., classifiers that operate on a mis-
matched version of the signal parameters in lieu of the true
signal parameters. In particular, we have developed a low-noise
expansion of an upper bound to the error probability of such
a mismatched classifier that equips one with a set of sufficient
conditions—which are a function of the geometry of the true
signal distributions, the geometry of the mismatched signal dis-
tributions, and their interplay—in order to understand whether
it is possible to classify reliably in the presence of mismatch in
the low-noise regime.
Such sufficient conditions are shown to be sharp in the sense

that they can predict the presence (and the absence) of a classifi-
cation error floor both in experiments involving synthetic data as
well as experiments involving real data. These conditions have
also been shown to gauge well the number of training samples
required for reliable classification in a motion segmentation ap-
plication using the Hopkins 155 dataset and a hand-written digit
classification application using the MNIST dataset.
Overall, we argue that our conditions can also be used as a

proxy to develop linear feature extraction methods that are ro-
bust to mismatch. In particular, our study suggests that such
methods ought to orthogonalize the different classes as much
as possible in order to tolerate model mismatch. This intuition
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has been pursued in recent state-of-the-art linear feature extrac-
tion methods.

APPENDIX

A. Preliminaries
We introduce additional quantities and Lemmas that are

useful for the proofs.
a) Quantities:We define the projection operators:

(35)

(36)

where and are given as in Section II.A. In addition
to the bases and for the and , respec-
tively, we also introduce the bases for the and
as and , respectively. We de-
fine the projection operators onto this subspaces:

(37)

We also define

(38)

(39)

and write

(40)

where and
. Note that

(41)
(42)

in view of the fact that and and
. The last equality simply follows from

the definition of and , and the definitions of
and given in Section II.A:

(43)

(44)

Finally, we present a decomposition of . We write

(45)

where

(46)
(47)
(48)
(49)

for some vectors and
. Note also that

and .

b) Lemmas:
Lemma 1: The following equality holds:

Proof: By leveraging the definition of in (36) we have

Lemma 2: The following statement holds:

(50)

(51)

Proof: First, note that

Then we write the following

(52)

(53)

Note that the singular values of and
correspond to the cosines of the principal angles between and

and , and and , respec-
tively. We then consider the SVDs

(54)
(55)

where the dimensions of matrices and
follow from the dimension of the and as

shown in (9). We can now express (51) as

(56)

It is straightforward to see that (50) implies (51).
Lemma 3: The following equalities and inequalities hold:

(57)

(58)

(59)

Proof: The inequality in (57) is due to the fact that
and is a lower bound to the minimum

positive eigenvalue of . The inequality in (58) is due to the
fact that is positive semidefinite and that is an upper
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bound for the largest eigenvalue of . The equality in (59) fol-
lows from the definition of the projector .
Lemma 4: Assume that

and (60)

(61)

Denote by the smallest eigenvalue of

Then

(62)

Proof: Note that (49) implies
, and the condition (61) also implies

. Then, we can write

(63)

(64)

and we note that condition (61) implies the lower bound
. Moreover, all the eigen-

values of are contained in the interval
[31, Theorem 26], so that ,
and, on leveraging Cauchy-Schwarz inequality, we also have

.

B. Proof of Theorem 1
We prove Theorem 1 by using the fact that

and by leveraging the union bound.
Recall from (7) that the error probability associated with the

MMAP classifier can be expressed as

(65)

where is the error probability for
signals in class . Via the union bound, we can state that

(66)

where

(67)

(68)

We will denote . Now, by letting
we can upper bound the step function to obtain

(69)

where we recall

If , then the integral in (69) converges .
Therefore, we can bound the error probability as follows:

(70)

where

(71)

If then the integral in (69) does not
converge. Therefore, we trivially bound the error probability as

.

C. Proof of Theorem 2
The proof is presented in two parts. First, we establish suffi-

cient conditions for ; second, we establish conditions
for the upper bound to the probability of misclassification to ap-
proach zero as the noise approaches zero.
1) Positive Definiteness of : The following two Lemmas

gives sufficient conditions for .
Lemma 5: Assume that ,

(72)

(73)

(74)

where is the smallest eigenvalue of
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Then

(75)

Proof: To show this we first produce a lower bound:

(76)

(77)

(78)

where and

(79)

by using the equalities and inequalities (57)–(59) and (62).
Now, by using standard algebraic manipulations, it is possible

to show that the choice (74) leads to , hence (75) holds.
Lemma 6: Assume that ,

(80)

(81)

Then

(82)

Proof: We prove the Lemma by constructing the lower
bound

(83)

(84)

by using the inequalities equalities and inequalities (57)–(59)
and (62), and by noting that . The choice (81) then leads
to (82).
2) Part 2: Low-Noise Expansion: To obtain the low-noise

expansion of the upper bound to the error probability we first
present two supporting Lemmas.
Lemma 7: Assume that condition (72) given in Lemma 5

holds. Assume also that and (73) and (74) given in
Lemma 5 hold, or that and (81) given in Lemma 6
holds. Then and .

Proof: Assume that (72), (73) and (74) are satis-
fied. By definition, and, as

a consequence of (72), it also holds ,
which leads to . Moreover, it is straight-
forward to note that . Then,
in order to prove that , we show that

.
Namely, by leveraging the equality in (59) and inequality in
(62), we can write

(85)

where have been defined in (47) and (48). If
then the right hand side of (85) is always strictly positive, unless

. Then, since the condition in (74) implies ,
we can conclude that and
and . Therefore,

.
Assume now that (72), and (81) are satisfied.

In this case

, where
we have used the fact that eigenvalues of contained
in the interval . Since (81) implies we conclude,
via an argument similar to that in previous paragraph, that

and .
Lemma 8: Assume that condition (72) given in Lemma 5

holds. Assume also that and (73) and (74) given in
Lemma 5 hold, or that and (81) given in Lemma 6
holds. Then, as , we can write

(86)

where , and is given as

(87)

and

(88)

(89)

Proof: Note first that the sufficient conditions imply
via Lemma 7. We can write the eigenvalue decomposition of
:

(90)

where is orthogonal and
contains the positive eigenvalues of

, with .
Now, we can write

(91)
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where . We also denote by the prin-
cipal submatrix of order obtained by deleting the rows
and the columns of thematrix . Note that

, where the matrix is ob-
tained by picking all the columns from the identity matrix with
the column indices different from . Then, the Poincaré
separation theorem [32, Corollary 4.3.37] guarantees that the
eigenvalues are bounded by the minimum and the max-
imum eigenvalues of , which correspond to the minimum and
maximum eigenvalues of . Moreover, as , while
the diagonal elements of grow unbounded, the eigen-
values of , and therefore, also the determinant of ,
are bounded.
Then, we can use the determinant decomposition in [33, The-

orem 2.3] to express as follows. If :

(92)

where

(93)

and the summation is over all possible ordered subsets of
indices from the set . Otherwise, if :

(94)

where

(95)

Now we show that (87) holds. We first assume
and take the right hand side of (92) and multiply it by

to get

(96)

Note now that for all
and .

Therefore, (87) holds for the case . To show
the derivation of for the case we use the
same technique where we multiply by the
right hand side of (94) to get

(97)

As we can write

. This concludes the derivation
of (87). Note also that , since the pseudo-determinant
and the determinants in (87) are greater than zero.
We now provide the low-noise expansion of the upper bound

to the probability of misclassification.

Assume that sufficient conditions for positive definiteness of
do not hold. Then, the upper bound to the proba-

bility of error is chosen to be , so that in general it does
not tend to zero as tends to zero.
Assume now that the sufficient conditions for as

given in the first part of the proof hold . Then, the upper
bound to the probability of misclassification can be written as
follows:9

(98)

We will now produce a low-noise expansion of (98) in order to
understand whether or not . The following
low-noise expansions are trivial:

(99)

(100)

The low-noise expansion of is more involved and it is
provided in Lemma 8.
Then, it follows immediately that the low-noise expansion of

each term in the upper bound to the probability of error in (98)
is given by

(101)

where

(102)

(103)

and
(104)

It follows immediately that the low-noise expansion of the upper
bound to the probability of error in (98) is given by

(105)

where and where
.

D. Proof of Corollary 2
Assume and

(106)

9Note that a value for which satisfies the conditions for always
exists and therefore does not affect the derivation of the low-noise expansion.
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Note that implies

(107)

(108)

where we have used result in Lemma 2 in the Appendix A.
By taking or it is straightforward to

show that (108) implies (15) and (16), thus obtaining conditions
identical to those in Corollary 1.

E. Proof of Corollary 3
We prove the corollary by showing that in diagonal case (16)

always holds. Note first that

It is also straightforward to establish that (16) holds if and only if
, and this always holds since

and .

F. Derivation of Example 3
We prove statement (30), by showing that

(109)

together with implies the sufficient conditions for
perfect classification in Corollary 2.
Assume and are given and the singular values of

are known. We also know that . We can
write

(110)

On leveraging [34, Theorem 1], we can state that the -th
singular value associated with lies in the interval

,
where is the -th singular value of . Then, we can
write the upper bound

(111)

where the first inequality follows from the SVD separation the-
orem [35, Theorem 2.2]. Note also that

(112)

where the singular values of are bounded by
. By leveraging (111) we can further

bound the singular values as .
Note now that if and only if

, which implies

(113)

and is also equivalent to

(114)

where denotes the cosine of
the smallest principal angle between and

denotes the cosine of the
largest principal angle between and . The
equivalence between (113) and (114) follows straight from the
definition of min and max correlation distances. It is now easy
to verify that implies (114), since
is a lower bound for the cosine of the largest principal angles
between and , and is an upper bound to the
cosine of the smallest principal angles between and .
Finally, the same arguments can be used to show that

. This concludes the proof.
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