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Abstract 

Nitrogen CCSs (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from 

human immunodeficiency virus), ovalbumin, α1-acid glycoprotein and thyroglobulin were measured with 

a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this 

instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from 

chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified 

by their negative ion fragmentation spectra obtained by collision-induced decomposition (CID). Several 

other larger glycans, however, although existing as isomers, produced only asymmetric rather than 

separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be 

detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID 

spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift 

times of all fragment ions with an asymmetric ATD profile in this work and in the related earlier paper 

on high-mannose glycans, usually suggested that separations were due to conformers or anomers, 

whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. 

Although some significant differences in CCSs were found for the smaller isomeric glycans, the 

differences found for the larger compounds were usually too small to be analytically useful. Possible 

correlations between CCSs and structural types were also investigated and it was found that complex 

glycans tended to have slightly smaller CCSs than high-mannose glycans of comparable molecular 

weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell 

on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents 

contributing to larger CCSs. 

 

 

Keywords 

T-wave ion mobility; N-linked carbohydrates; isomers; hybrid N-glycans; complex N-glycans, negative 
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Introduction 

N-glycans are those glycans attached to asparagine residues in glycoproteins when these residues are 

in an Asn-Xxx-Ser(Thr) motif where Xxx is any amino acid except proline. Structural analysis of these 

glycans typically involves their release from glycoproteins by chemical or enzymatic methods and can 

result in very complex mixtures as shown in Figure 1. Over one hundred individual species have been 

recorded in some cases1. Subsequent analysis is usually by mass spectrometry or HPLC2-6. In the first 

of this two-part series on high-mannose N-glycans7, it was shown that the use of ion mobility adds 

another dimension to such mass spectrometric analyses particularly when combined with negative ion 

collision-induced dissociation (CID) and in this paper, we extend the methods to the structural analysis 

of hybrid and complex N-glycans with particular reference to the use of these techniques to separate 

isomers. The ability of any analytical technique to be able to identify isomeric compounds in complex 

mixtures is of particular importance in analyses of this type because many of the N-glycans released 

from glycoproteins are isomeric. 

 

Biosynthesis of N-glycans involves attachment of a glycan of composition Glc3Man9GlcNAc2 to the 

asparagine residues, followed by removal of the glucose residues and four of the mannose moieties to 

give the high-mannose N-glycan Man5GlcNAc2 (1, Scheme 1 (see Scheme 1 of the first paper in this 

series7 for the structures of these compounds)). This glycan is a substrate for GlcNAc-transferase I 

which adds a GlcNAc residue to the 2-position of the mannose residue attached to the 3-position of the 

branching mannose to give 2 which then becomes the substrate for other enzymes. One pathway 

involves addition of galactose to the 4-position of the added GlcNAc to give 3 followed by addition of 

sialic acid to the 3- or 6- positions of this galactose residue. This sugar chain is known as the 3-antenna 

and these compounds are known as hybrid glycans. Alternatively or additionally, the two mannose 

residues can be removed from the mannose attached to the 6-position of the branching mannose of 2 

to give 4 and 5 followed by addition of GlcNAc (7), galactose (8-10) and sialic acid to this antenna (the 

6-antenn) as described above. Further enzymes add fucose to the core GlcNAc (11, -16) and additional 

GlcNAc-Gal-Neu5Ac antennae to either or both of the outer mannoses to give isomeric triantennary 

glycans such as 17 and 18 (and non-fucosylated analogues, e.g. 19 and 20), and the tetra-antennary 

glycans 21 and 22. Fucose residues can also be added to antenna, such as in structure 23, found in 

α1-acid glycoprotein. GlcNAc residues (termed ‘bisecting GlcNAcs’) can also be added to the 4-position 

of the branching mannoses as in compounds 24-44 found in the ovalbumin (24-36) and the IgG (37-44) 

samples. All of these latter compounds are known as complex glycans. All of these high-mannose, 

hybrid and complex glycans possess the common trimannosyl-chitobiose core structure 45, a feature 

that greatly assists structural identification. 

 

From Scheme 1, which contains the structures of the glycans discussed in this paper, it can be seen 

that several of the glycans, particularly 5 and 6; 8 and 9; 10, 25, 26 and 52; 11 and 12; 14 and 15; 17, 

18 and 23; 29, 30 and 40, 27 and 28; 31 and 32; 38 and 39; 42 and 43; 48 and 49 are isomeric. Although 

mass spectrometry is capable of assigning compositions and providing branching and linkage 

information to the glycans, it is not a very powerful technique for discriminating between isomers unless 

preceded by a chromatographic inlet system. For N-linked glycans, at least, negative ion CID has been 

shown to be better than positive ion methods at detecting the presence of isomeric glycans in mixtures 

because of the predominance of cross-ring fragment ions that produce diagnostic mass-different ions 

for the isomers rather than the predominantly abundance-different glycosidic cleavage ions common to 

positive ion spectra8-11. In the previous paper on high-mannose glycans7, ion mobility, which separates 

on the basis of shape as well as mass and charge, combined with negative ion CID, was shown to be 

capable of partial resolution of several isomers of these compounds. Several other investigators have 

also used ion mobility to separate isomeric carbohydrates12-15 (and see previous paper for earlier 

references and the review by Gray et al.16), but only a few have examined N-glycans17-20. With reference 

to N-linked glycans, Plasencia et al.20 and Jiao et al.21 have proposed three structures for the glycan of 

composition Hex5HexNAc4 from ovalbumin and Isailovic et al.22 have reported differences in the arrival 

time distributions (ATDs) of sialylated biantennary N-glycans from human serum but, in this case, 

specific structures were not identified.  

 

Several of the isomers encountered in the work on high-mannose glycans showed only marginal 

separation, detected only by asymmetric ATDs. Nitrogen collisional cross sections (CCS)s could not, 
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therefore, be measured directly. However, CCSs of these compounds were obtained by plotting ATDs 

of mass-different isomer-specific fragment ions from their negative ion CID spectra 23,24. One of the 

problems encountered in the previous work7 was the appearance of asymmetric ATDs suggesting the 

presence of isomers but which were later shown to be due mainly to separation of reducing-terminal 

anomers25. Such anomers, or possibly additional conformers, could be differentiated from the isomers 

by similarity in the asymmetric ATD profiles between the molecular and fragment ions. In this paper, we 

report the estimated nitrogen CCSs of several complex and hybrid glycans and use of extracted 

fragment ATDs to estimate the corresponding CCSs of isomers that do not produce resolved ATDs. 

Reduction was used to eliminate effects produced by anomers. 

 

In addition to isomer separation, we26,27 and other investigators17,28-31 have found that ion mobility is an 

excellent technique for effectively separating glycan or glycopeptide signals from those of other 

materials, particularly when ions are formed in different charge states. Neutral glycans yield 

predominantly singly-charged glycan peaks unlike many contaminating compounds that produce 

multiply charged ions. Within singly charged ion band there is frequently separation between 

compounds of different structural type, such as glycans and polyethylene glycol (PEG)32 and even 

between N-glycans and linear glycan polymers. Consequently, in this paper, we also examine the effect 

of glycan structure on the ability of ion mobility to differentiate glycans with particular structural 

characteristics such as the presence of core fucose or bisecting GlcNAc residues.  

 

Materials and Methods 

Materials 

N-linked glycans were released with hydrazine33,34 from the well-characterised glycoproteins porcine 

thyroglobulin35,36, chicken ovalbumin37-39 bovine fetuin40 and α1-acid glycoprotein (AGP)41,42 obtained 

from Sigma Chemical Co. Ltd., Poole, Dorset, UK. N-glycans from gp120 expressed in CHO cells and 

from immunoglobulin G (IgG) were released with protein N-glycosidase F (PNGase F) from within 

NuPAGE gels essentially as described by Küster et al.26,43 and as described in the previous paper7. 

Sialylated glycans from AGP were desialylated by heating with 1% acetic acid at 80oC for 30 mins. 

Methanol was obtained from BDH Ltd. (Poole, UK) and ammonium phosphate was from Aldrich 

Chemical Co. Ltd. (Poole, UK). Dextran from Leuconostoc mesenteroides was obtained from Fluka 

(Poole, UK).  

 

Reduction of glycans 

Glycans from ovalbumin, fetuin, thyroglobulin and AGP (about 0.1 mg of each mixture) in 

dimethylsulfoxide (DMSO, 100 μL) were acidified to pH 3.3 with acetic acid (2 μL) and reduced with an 

excess of sodium cyanoborohydride (~0.1 mg, Aldrich Chemical Co. Ltd. Poole, UK) overnight. The 

DMSO was evaporated and the samples were cleaned as described below. 

 

Sample preparation for mass spectrometry 

Following release from the glycoproteins, all glycan samples were cleaned with a Nafion® 117 

membrane as described earlier by Börnsen et al.44 before examination by mass spectrometry. They 

were then dissolved in a solution of methanol:water (1:1, v:v) containing ammonium phosphate (0.05 

M, to maximize formation of [M+H2PO4]- ions, the most common type of ion normally seen from 

biological samples). Samples were then centrifuged at 10,000 rpm (9503 x g) for 1 min to sediment any 

particulate matter. 

 

Ion mobility mass spectrometers 

Travelling wave ion mobility experiments were carried out in nitrogen with the original (termed G1) 

Waters Synapt travelling wave ion mobility mass spectrometer (TWIMS), (Waters, Manchester, UK)45 

fitted with an electrospray (ESI) ion source and with the newer Synapt G2 and G2Si instruments 

(Waters). Waters thin-wall nanospray capillaries and, later, gold-coated borosilicate glass capillaries46 

prepared in-house, were used for introducing the samples. Ion source conditions were: ESI capillary 

voltage, 1.0-1.2 kV cone voltage, 100-180 V, ion source temperature 80°C. The T-wave velocity and 

peak height voltages were 450 m/sec and 40 V respectively unless otherwise specified. Fragmentation 

was performed after mobility separation in the transfer cell with argon as the collision gas. The Synapt 

G1 instrument was externally mass calibrated with sialylated N-glycans released from bovine fetuin, the 
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other two instruments were mass-calibrated with dextran oligomers from Leuconostoc mesenteroides 

(negative ion measurements) or with caesium iodide (both positive and negative ion. Data acquisition 

and processing were carried out using the Waters DriftScope (version 2.8) software and MassLynxTM 

(version 4.1). The scheme devised by Domon and Costello47 was used to name the fragment ions. 

Additionally, ions containing the 6-antenna and core mannose residue by formal loss of the chitobiose 

core and 3-antenna are referred to as D ions48. 

 

Nitrogen CCSs were determined using dextran oligomers (Glc2-Glc13) to calibrate the travelling wave 

cell of the Synapt G2 and G2Si instruments. They were obtained directly on a modified Synapt 

quadrupole/IMS/oa-TOF MS instrument containing a linear (not travelling wave) drift tube (Waters MS-

Technologies, Manchester, UK)49-53. CCS calibration of the G2 and G2Si instruments was performed 

with the method described by Thalassinos et al.54 as described in the previous paper7. The corrected 

drift times of the glucose oligomers and CCSs were fitted by a power law equation of the type Y = Axn 

which May et al.55 have confirmed adequately fits data of this type. Projected helium CCSs were made 

with a helium:nitrogen cross correlation plot of CCSs of dextran recorded with the linear instrument (R2 

= 0.9989). Cross section measurements will be placed in the Glyco-Mob ion mobility database56. 

 

Results and Discussion 

Results for high-mannose glycans reported earlier7 showed that many isomers of these N-glycans could 

be detected by ion mobility using extracted fragment ATDs. In addition, those having the full 

complement of mannose residues on the 6-branch of the 6-antenna, were shown to produce relatively 

larger nitrogen CCSs than corresponding glycans where this mannose was missing. However, when 

these glycans were reduced, the ATDs from the larger glycans became more symmetrical and the 

difference less noticeable25. Asymmetry of the ATDs from higher mass high-mannose glycans was 

found to be due to partial resolution of anomers rather than isomers. Consequently, in the present study, 

glycans were also reduced to remove effects of anomer separation. CCSs of the reduced glycans were 

similar to but sometimes varied by several Å2 in either direction from the CCS values of the unreduced 

glycans (Table S1).  

 

We looked for features in both the reduced and unreduced hybrid and complex N-glycans that might be 

correlated to structure in addition to the ability of ion mobility to separate isomeric N-glycans. Glycans 

from chicken ovalbumin, thyroglobulin, IgG, AGP (desialylated) and gp120 were taken as representative 

examples. Negative ion mass spectra of the glycans released from these glycoproteins are shown in 

Figure 1. 

 

General effects of structure on nitrogen collisional cross sections 

Figure 2a shows a plot of the measured nitrogen CCSs of all major glycans from the glycan mixtures 

(high-mannose, hybrid and complex) against m/z in negative ion mode. In general, these fell roughly 

on the same trend line without any particular trend identifying a particular glycan type. Possible 

exceptions were the glycans Hex4GlcNAc3 (4) and Hex4GlcNAc4 (8, 9) which gave slightly smaller CCSs 

than those falling on the general trend line. The same result was seen after reduction (Figure 2b). In 

positive mode (Figure 2c), the same differences were seen although they appeared to be a little more 

pronounced whereas, after reduction (Figure 2d), the smaller high mannose glycans (particularly 

Man5GlcNAc2 (1) and Man6GlcNAc2 (46) showed significantly larger CCSs. 

 

Effect of substituents on nitrogen collisional cross sections of biantennary glycans 

At a more detailed level, some trends were observed between fucosylated and bisected glycans 

obtained from IgG. The glycans in this glycoprotein (profile shown in Figure 1c) are biantennary complex 

carbohydrates with (13-16) and without (7-10) a fucose residue on the core GlcNAc and also, with a 

bisecting GlcNAc residue (37-40 and 41-44). Figure 3 shows the negative ion m/z:cross section plots 

of these compounds (phosphate adducts) measured with the Synapt G2 instrument. A parallel 

experiment with [M+Cl]- adducts on the G1 instrument gave identical results  (not shown). The plots 

from the major fucosylated glycans with zero, one and two galactose residues (compounds 13-16, 

commonly known as G0F, G1F and G2F respectively) produced a linear relationship. A similar result 

was obtained for the corresponding compounds without fucose (7-10) but the plot was displaced 

towards shorter drift times (Figure 3). Thus, fucosylated glycans showed longer drift times and nitrogen 
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CCSs than their unfucosylated counterparts of similar molecular weight. Similar results were obtained 

in positive ion mode ([M+Na]+ ions) and from the G2 instrument (data not shown). When sialic acid was 

attached to the antennae, a similar effect was obtained; i.e. the presence of the core fucose residue 

produced a relative increase in the drift time of the trend line. 

 

Corresponding plots were made with the biantennary glycans containing a “bisecting” GlcNAc residue 

with (compounds 41-44) and without (37-40) a fucose residue. In each case, the plots were linear and 

the presence of the bisecting GlcNAc caused a shift to longer drift times although the effect was not as 

great as that for fucose. The effect of both a core-fucose residue and a bisecting GlcNAc was roughly 

additive (Figure 3). Again, similar results were obtained from the G1 instrument with [M+Cl]- ions. 

Unfortunately, the ions from the unfucosylated compounds with bisecting GlcNAc residues in the 

positive ion spectra of the IgG samples were not abundant enough to give reliable readings for the 

CCSs.  

 

Resolution of isomers 

In general, the resolution of the ion mobility cell of the Synapt instruments was not sufficient to separate 

many of the isomers present in these samples. However extracted fragment ATDs of diagnostic 

ions23,24,57,58 allowed the components at several m/z values to be deconvoluted as shown in the 

examples below. Comparisons of CCSs measured in this way with those measured directly with the 

drift tube instrument validated this approach. Nitrogen and projected helium CCSs of the glycans 

reported in this paper are listed in Table 1. Below are examples where this technique allowed isomers 

to be detected. 

  

Glycans of composition Man3GlcNAc3 and Man3GlcNAc3Fuc1: The ability of ion mobility to separate 

isomers of small N-linked glycans was demonstrated earlier with the Waters Synapt G1 instrument 

using the two Man3GlcNAc3 isomers (5, 6, Scheme 1) from chicken ovalbumin19 (glycan profile in Figure 

1a). Although three peaks were detected in negative ion mode, only compounds 5 and 6 were identified. 

Later work with the G259 and G2Si instruments, reported here, reproduced the positive ion separation 

but only resolved two isomers in negative ion mode even though the resolution was higher and 

suggesting that, in fact, only two compounds were present. Resolution of the two isomers was almost 

to baseline in positive ion mode ([M+Na]+ ions, m/z 1136) (Figure 4a) although somewhat less so in 

negative mode with the [M+H2PO4]- ions (m/z 1210, Figure 4b). Reduction of the glycans made no 

difference to the separation. Structural assignments of the isomers were made by negative ion 

fragmentation (Figure 4e,f). These spectra showed that the isomer with the largest cross section had a 

GlcNAc residue attached to the 6-antenna (6) as indicated by the D, D-18, 0,3A3 and 0,4A3 ions at m/z 

526, 508, 454 and 424 respectively (Figure 4f). These ions contain the branching mannose residue and 

substituents from the 6-antenna11. The linkage position of the GlcNAc residue to the 6-antenna was not 

determined. The isomer with the smaller cross section was the 3-substituted isomer 5 as shown by the 

appearance of the D, D-18, 0,3A3 and 0,4A3 ions 162 mass units lower at m/z 323, 305, 292 and 262 

(Figure 4e). The positive ion spectra (Figures 4c and 4d) were virtually identical to each other and 

differed mainly in the relative abundance of the ion at m/z 388 ([Gal-GlcNAc+Na]+). This difference did 

not allow the individual isomers to be identified, clearly emphasising the advantage of using negative 

ion fragmentation for deducing the structures of N-glycans. Jiao et al.21 in an MSn study also reported 

the presence of isomers of the Man3GlcNAc3 glycan containing a GlcNAc residue on either antenna but 

their experiment did not involve ion mobility and did not allow the compounds to be separated. A third, 

bisected isomer reported in their paper was not detected by us using ion mobility and negative ion CID 

with the G2Si instrument. Although it is possible that this isomer might have been responsible for the 

third peak reported earlier with the G1 instrument, the reported spectrum19 was not consistent with a 

bisected structure of this type. CCSs are listed in Table 1. 

 

The fucosylated analogues of these isomeric glycans (11, 12), present in the mixture of glycans 

released from thyroglobulin (Figure 1b) and gp120 (Figure 1d) also showed separation but the 

difference in nitrogen CCSs were less, such that only a single broad ATD peak was observed. Possibly 

different linkage isomers were present to those being separated than for the un-fucosylated isomers 

discussed above, but this was not determined. However, the CID spectra did confirm substitution of the 

third GlcNAc residue on either antenna. As discussed below, other pairs of isomers were found that 
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gave different estimated nitrogen CCSs and where the unfucosylated pair gave better separations than 

those isomers bearing a core-fucose. These isomers  (11, 12) were also separated as nitrate adducts 

from thyroglobulin (equivalent to m/z 1356.4 in the glycan profile of phosphate adducts shown in Figure 

1b) but, in this case, the molecular ion at m/z 1321.5 was coincident with that from an abundant doubly 

charged sialylated glycopeptide giving a complicated CID spectrum (Figure 5a). This situation provided 

an excellent example of where ion mobility could be used to separate these compounds. The fragments 

from the doubly charged ion, which fell in a different mobility band (Figure 5b), were removed by 

selecting only the singly charged ions from the DriftScope display (Figure 5b). Then, the CID spectra 

were extracted from each side of the ATD peak from the N-glycan (Figures 5d and 5e). These spectra 

were characteristically different and showed that the second isomer (Figure 5e) was the one with the 

GlcNAc residue on the 6-antenna (12). The diagnostic ions for this isomer were the D, [D-18]- and 1,3A3 

ions at m/z 526, 508 and 454 respectively10,11. In the spectrum recorded from the left-hand edge of the 

ATD peak (smaller cross section), these ions were missing but the D and [D-18]- ions were replaced by 

the corresponding ions 203 mass units lower at m/z 323 and 305 respectively showing that the GlcNAc 

residue was located on the 3-antenna (11). Although the shape of the ATD peak (Figure 5b) did not 

reflect the presence of these isomers, they were detected by differences in the extracted fragment ATDs 

(from Figure 5d and 5e) which maximized at different positions within the width of the ATD peak (Figure 

5c), confirming the presence of isomers (indicated by the two dotted lines in Figure 5c). As with the 

related unfucosylated glycan from ovalbumin (5, 6), the positive ion spectra for the two isomers showed 

little difference except for the relative abundance of the ion at m/z 388 and did not allow structures to 

be assigned to the ions. 

 

Hybrid glycans from gp120: Other isomeric compounds that could be separated by ion mobility were 

the hybrid glycan pairs H5N3 (2, 47)27 and H5N3F1 (48, 49, positive ion)59 reported in earlier publications. 

Negative ion spectra of compounds 48 and 49 are shown in Figure 6 together with that of 

Hex6GlcNAc3Fuc1 (50, Figure 6a) released from gp120 to illustrate the general fragmentation of these 

hybrid glycans. 2,4A6 and 2,4A5 cross-ring  fragment ions at m/z 1437 and 1234 respectively together with 

the B5 fragment at m/z 1377 define the β1→4-linked chitobiose core and the presence of the fucose 

residue at the 6-position of the reducing-terminal GlcNAc. The cross-ring fragment at m/z 424 (Gal-

GlcNAc-O-CH=CH2-O-) is diagnostic for the galactose-terminated antenna and the composition of the 

6-antenna is specified by the D, D-18, 0,3A4, 0,4A4 and B2α ions at m/z 647, 629, 575, 545 and 503 

respectively. All fragment ions show the same profile as the ATD of the molecular ion as would be 

expected for a single compound. 

  

The ion at m/z 1680.5 in the negative ion CID spectrum of the gp120 glycans contains the two 

compounds (48 and 49). It shows an asymmetrical ATD peak attributable to these two compounds and 

extracted fragment ATDs clearly resolve two constituents (inset to Figure 6c). Plotting spectra from 

each side of the ATD peaks from these compounds (with and without fucose) allowed reasonably clean 

spectra of each of the constituents to be extracted (Figure 6b and 6c, with fucose and see Figure 4 from 

reference27 for the compounds without fucose). Thus, the 2,4A6(5), 2,4A5(4) and B5(4) ions at m/z 1275, 1072 

and 1215 respectively (Figure 6), which have the same asymmetric profile as the molecular ions, define 

the same core and fucose location in both compounds 48 and 49. The first constituent (48, Figure 6b) 

produced the 1,3A3 cross-ring fragment at m/z 424 confirming the Gal-GlcNAc antenna and a shift of the 

D, D-18, 0,3A3, 0,4A3 and B2α ions to m/z 485, 467, 413, 383 and 341 respectively reflecting the absence 

of one mannose residue from the 6-antenna. The linkage position of the mannose on the 6-antenna 

was not determined. The spectrum of the second constituent (49, Figure 6c) exhibited D, D-18, 0,3A3, 
0,4A3 and B2α ions at the same mass as in the spectrum of compound 1 reflecting the extra mannose in 

the 6-antenna. Positive ion spectra of these two glycans, extracted from an asymmetrical ATD peak 

have been published59. 

 

Nitrogen CCSs were calculated from these fragment ions using extract fragment ATDs (G2Si 

instrument) by the method described by Thalassinos et al.54 (Table 1). As was found in the earlier study 

on high-mannose glycans, drift times extracted from ions in the full mass spectrum were slightly higher 

than those measured from the same ion when selected for fragmentation and, consequently, an offset, 

calculated from the difference in drift times of the ions at m/z 1655 measured in the total mass spectrum 

and when the ion was selected for fragmentation. This method gave nitrogen CCSs of 385.4 and 405.0 
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A2 for compounds 48 and 49 respectively. Compound 37 was considerably more abundant than 

compound 49 and its cross section was measured directly from the full spectrum. The value of 385.7 

A2 agreed very well with that measured by the fragment ion method for the first peak, thus validating 

the method. 

 

The ion at m/z 1534.5 (Hex5GlcNAc3) in the negative ion spectrum of the gp120 glycans was produced 

by the corresponding compounds (2, 47) without fucose. These compounds were similarly separated 

by ion mobility (not shown) and nitrogen CCSs of 373.9 A2 and 357.6 A2 respectively were measured 

for the two compounds by extracted fragment ATDs. Glycans with and without core fucose and with 

only four hexose residues (Hex4GlcNAc3 and Hex4GlcNAc3Fuc1, m/z 1372.4 and 1518.5 respectively) 

in the spectrum of gp120 glycans appeared to lack the Gal-GlcNAc-containing species and to be 

represented by only the hybrid glycans (4 and its core-fucosylated analogue 51). The spectrum of 

Man4GlcNAc3 (4) is shown in Figure 6d. 

 

Glycans of composition Hex5GlcNAc4 (m/z 1737.6) from ovalbumin: The glycan of composition 

Hex5GlcNAc4 from ovalbumin has predominantly the bisected hybrid structure 25 and is used as a 

reference standard because it has always been assumed to be a single compound. Its CID spectrum 

(Figure 7c) contained a prominent ion at m/z 629 formed as a fragment of the D ion (formal loss of the 

chitobiose core and the 3-antenna) by elimination of the bisecting GlcNAc residue. This prominent ion 

(m/z 629), in the absence of the related D ion, has been shown to be diagnostic for bisecting glycans 

with three mannose residues in the 6-antenna10,11 confirming the structure of glycan 25. However, a 

recent publication20 reported three peaks in the mobility spectrum of the [M+2Na]2+ ion from this glycan 

(per-methylated derivative) obtained from ovalbumin from the same commercial source. These 

compounds were assigned the structures 25, 26 and 52 on the basis of molecular modelling. Three 

compounds of this composition were also detected from ovalbumin by Saba et al.60 using SymGlycan 

software but, in this case, isomers 10, 25 and 52 were proposed. Relative quantities were not reported. 

The symmetrical ATD peak (Figure 7a) and mobility-separated fragmentation spectrum of this 

compound as its [M+Na]+ and [M+2Na]2+ ions recorded by us from our sample with the Synapt G2 and 

G2Si  instruments showed little evidence of more than one compound (25). Also, ion profiles of most 

fragment ions in the negative ion spectrum ([M+H2PO4]- ion) from both the PNGase F- and endoH-

released glycan were virtually identical. Figure 7b shows the ion profiles from the PNGase F-released 

glycans. It has yet to be determined if permethylation increases the ability to separate these isomers or 

if our sample has a different composition from the one used by Plasencia et al.20. 

 

The minor ion at m/z 424 ([Gal-GlcNAc-O-CH=CH-O]-) in the spectrum shown in Figure 7c, is a 1,3A 

cross-ring cleavage ion and is an abundant (frequently the base peak) diagnostic ion for glycans 

containing Gal-GlcNAc chains11 as in the example above and suggests the presence of compounds 10 

or 26 in trace amounts. The ion at m/z 466 (Gal-GlcNAc + 101) is also characteristic of this structural 

feature. The ATD profile of the ion at m/z 424 was slightly displaced to the left (smaller cross section) 

compared with those of the other fragment ions (Figure 7b) suggesting that it was not from compound 

26 (assuming that the same relationship exists between CCSs in positive and negative ion modes). The 

positive ion cross section of compound 26 reported by Plasencia et al. was considerably higher than 

that of the main compound (25). Figure 7d shows the spectrum extracted from the left-hand region of 

the ATD peak (8.9 - 9.8 msec, Figure 7a). It contained prominent ions at m/z 688 and 670, 

corresponding to the D and D-18 ions from the biantennary glycan 10. In addition, the cross section of 

this glycan calculated from the fragment ions matched that of the biantennary glycan 10 (obtained from 

IgG and de-sialylated fetuin, Table 1); Figure 7a shows the ATDs of this compound (from bovine fetuin) 

and compound 25 (from ovalbumin) showing a similar difference in drift times. The smaller cross section 

of the complex biantennary glycan (10) compared with the bisected hybrid glycan (25) is consistent with 

the results on general trends discussed above. Slightly better separation of these compounds has been 

obtained previously in positive ion mode59. 

 

The fragmentation spectrum of glycan 52, reported by Plasencia et al, would contain a prominent E-

type fragment ion at m/z 507. An extracted fragment ATD of this ion gave two peaks; one was coincident 

with the bisected compound (25), the other displayed a longer drift time. However, this extracted 

fragment ATD, although suggestive, was not enough to confirm the presence of compound 52. 
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Plasencia et al. report a cross section smaller than that of glycan 25. In our sample, therefore, the peak 

at m/z 1737 (Hex5GlcNAc4) appears to consist mainly of the bisected glycan 25, together with a very 

small amount of the biantennary glycan 10. Definitive evidence for the presence of compounds 26 and 

52 in our sample was not obtained. Reduction gave only a single ATD peak with no sign of isomer 

separation. Unfortunately, the recent study by Jiao et al.21 on isomers from ovalbumin did not include 

this compound. 

 

Glycans of composition Hex4GlcNAc4 (m/z 1575.5) from ovalbumin: Many of the other ions from 

ovalbumin are produced by isomers37 but few could be separated by ion mobility with the G2 instrument. 

One instance where isomers were partially separated was the peak at m/z 1575.5 corresponding to 

Hex4GlcNAc4 (phosphate adduct, Figure 8). In this example, three compounds were detected. The 

composition corresponded mainly to the structures 8 and 9 and the presence of these compounds was 

confirmed by extracted fragment ATDs of the 1,3A3, D and D-18 ions (Inset to Figure 8). The negative 

ion CID spectrum of this ion (Figure 8) was more complicated than that observed from reference spectra 

of compounds 8 and 9 (obtained from IgG), consistent with work by Jiao et al.21 who reported the 

presence of five isomers at this mass following investigations by MSn on permethylated samples. Da 

Silva et al.37, on the other hand, only reported the presence of the bisected compound 24. This latter 

compound should produce a D-221 ion at m/z 467 and this ion was present, although at a relatively low 

abundance. Its cross section was similar to that of the 6-Gal isomer of the biantennary glycan (9). 

Reduction gave a similarly shaped ATD peak as that shown in Figure 8a (slightly extended at the right-

hand edge) consistent with the presence of isomers. 

 

Biantennary glycans: The biantennary glycans from IgG (glycan profile in Figure 1c) with one 

galactose residue (8, 9, 14, 15) exist as isomers with the galactose residue on either antennae. The 

presence of these isomers can be clearly seen in the negative ion fragmentation spectrum (Figure 9c, 

mixed isomers) by the two sets of D and D-18 ions at m/z 526/508 (3-galactose isomer 14) and at m/z 

688/670 (6-galactose isomer 15), consistent with the data in Figure 9 and with HPLC data, the isomer 

with the galactose on the 3-antenna was the more abundant. It would be expected that these isomers 

would show a difference in drift time and this was found to be the case for the pair 8 and 9 without 

fucose (as in Figure 8a). A difference of about 5 Å2 was measured. Extracted fragment ATDs of the 

diagnostic fragments are shown in Figure 9a where it can be seen that the isomer with the galactose in 

the 6-antenna has the longer drift time and, hence cross-section. Its longer drift time is consistent with 

the result from the Man3GlcNAc3 isomers (above). However, no isomeric separation could be achieved 

in either the G1 or G2 instruments with the corresponding pair of isomers (14 and 15) with a fucose 

residue on the core. Figure 9b shows the relevant single fragment ion profiles. However, some limited 

separation was found earlier for chlorine adducts of the glycans released with the enzyme endo H and, 

thus, missing the terminal GlcNAc residue with its attached fucose61. 

 

Triantennary glycans: Two triantennary structures are commonly found in N-glycan mixtures. These 

have structures 17, 18, 19 and 20, and are readily identified by their production of diagnostic ions62. 

The isomers with two branches on the 3-antenna (17, 19) gives rise to a prominent fragment at m/z 831 

and D and D-18 ions at m/z 688 and 670 whereas, in the spectrum of the other isomers (18, 20), the 

ion at m/z 831 is missing and the D and D-18 ions shift to m/z 1053 and 1035 accompanied by another 

fragment (D-36) at m/z 1017. Figure 10 shows a spectrum from gp120 where both isomers occur 

together. Extracted fragment ATDs of these diagnostic ions (m/z 831 and 1035, inset to Figure 10) 

showed that the isomer with the 6-branched antenna has a slightly larger cross section (about 6 Å2) 

than the other isomer but the spectra were rather too weak to obtain a reliable cross section 

measurement. The measurement in Table 1 for glycan 19 was from AGP (Figure 1e). The isomer of 

glycan 19 from AGP where the fucose resides on a GlcNAc of the 3-antenna (23) showed a very slightly 

larger cross section (about 3 A2) than that of the core-fucosylated glycan 17. Extracted fragment ATDs 

of the two sets of 2,4A6, B5 and 2,4A5 (m/z 1843, 1783, 1640 and 1989, 1929, 1786 for compounds 17 

and 23 respectively) revealed the presence of the two compounds and the structures were confirmed 

by the presence of ions at m/z 831 (from 17), the corresponding fucosylated ion at m/z 977 (from 23) 

together with the ion at m/z 670 (Gal-(Fuc)GlcNAc-CH=CH2-O- from 23). 

 

Conclusions 
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The above examples clearly show that ion mobility mass spectrometry adds a further dimension to the 

analysis of N-linked carbohydrates by mass spectrometry. Some isomeric separation was possible in 

both positive and negative ion modes but appeared to be marginally better in positive ion mode with, 

for example, [M+Na]+ ions from Man3GlcNAc3. Fragmentation, however, was considerably more 

informative in negative ion mode and yielded mass different ions from which the structures of the 

glycans and the presence of isomers could be deduced. Thus, good separation of the isomers of 

Man3GlcNAc3 (5, 6) from chicken ovalbumin was obtained and negative ion fragmentation allowed their 

structures to be determined. Several of the other glycans from ovalbumin were isomeric but, although 

some ATD peak broadening was observed with some of them, there was no obvious isomeric 

separation. However, if the compounds were fragmented in the transfer cell, extracted fragment ATDs 

showed that, in several cases, there was some separation within the peaks allowing isomers to be 

detected. The differences in cross section of many of these isomers were only a few Å2 and often less 

than the experimental error in measurements made at different times. Thus, although isomers could 

sometimes be detected using extracted fragment ATDs, use of their estimated nitrogen CCSs for 

identification purposes was sometimes marginal unless internal calibration was used. In general only 

isomers of the smaller complex or hybrid glycans showed significant differences in cross section and it 

was noted that the presence of core fucose generally decreased the ability of ion mobility to separate 

isomers. 

 

Some correlations between nitrogen CCSs and structure were observed. Predominantly, substitution in 

the 6-antenna, as found earlier with the high-mannose glycans, usually produced larger CCSs than 

substitution on the 3-antenna. This effect was observed for the addition of GlcNAc to Man3GlcNAc2, for 

galactosylation of the unfucosylated biantennary glycans and for the isomers of triantennary glycans. 

Glycans carrying a bisecting GlcNAc residue tended to have larger CCSs than isomeric glycans lacking 

this feature.  

 

There is always the possibility with this work that the separation observed in the mobility cell is due to 

conformers of a single compound rather than to isomers. Recent work from this laboratory on reduced 

N-glycans25 has shown that the predominant factor leading to asymmetrical ATD peaks in the larger 

high-mannose glycans is the anomeric configuration of the reducing terminal GlcNAc residue. This 

phenomenon is not new; separation of anomeric mono- and oligo-saccharides by ion mobility, 

particularly as [M+Na]+ ions from methyl glycosides, has been reported on several occasions63-67 and it 

has been proposed that separations reflect the way in which the adducted cation is bound to the 

individual sugar68. Whether this effect applies to the location of the phosphate adduct in the compounds 

reported in this paper has yet to be determined. As noted earlier25, asymmetric ATDs were observed 

from the higher high-mannose glycans leading to uncertainty in the estimated nitrogen CCSs (note the 

larger variation in measurements for Man8GlcNAc2 (53) and Man9GlcNAc2 (54) in Table 1, compared 

to those of the smaller high-mannose glycans 1, 46, 55). These asymmetric ATDs, which were found 

to be due to reducing-terminal anomers, were rendered symmetrical by reduction. In contrast to the 

high-mannose glycans, little or no significant effects attributable to anomeric separations were observed 

with the hybrid and complex glycans. However, for compounds producing asymmetric ATDs, it would 

be wise to fragment the compound and check if the drift time peaks of fragments attributable to potential 

isomers maximise at the same point in time. Following reduction, the smaller high-mannose glycans 

showed larger nitrogen CCSs than complex glycans of equivalent molecular weight but with other 

glycans, although the reduced form generally showed larger CCSs than the unreduced glycans, no 

consistent correlation with structure was noted.  

 

The ability of ion mobility to separate isomers, albeit with rather low resolution at present, will be a great 

asset because one of the disadvantages of mass spectrometry (without fragmentation) is its difficulty in 

distinguishlng between such compounds. The ion mobility resolution obtained with the Synapt 

instruments does not yet match that of an HPLC column but is expected to rise with further instrumental 

developments. Ultimately, it might be possible to achieve adequate separations in the gas phase in 

milliseconds rather than the tens or hundreds of minutes required at present with LC-MS systems. 

 

The work presented here, and by other investigators, shows that ion mobility has much to offer in 

glycobiology and is able to solve problems such as isomer resolution that, up to now, have required 
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chromatographic separation. Combined with its ability to extract glycan ions from complex mixtures and, 

thus, eliminate some clean-up stages26, and by the production of negative ion CID spectra, the 

technique provides a much more rapid and information-rich method for the structural determination of 

N-glycans than has been available up to now. 
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Table 1, Estimated collisional cross sections of hybrid and complex glycans 

(Major isomers of high-mannose glycans included for comparison) 

 

Compound Structurea m/zb Source Instrumentc Cal.d 

Cross section 

Nitrogen Hee 

Å2 SD n Å2 

H3N2 45 1007.3 Ovalbumin G2Si I 284.6 0.16 12 206.6 

H3N3 5 1210.4 Ovalbumin G2Si I 310.0 0.20 9 229.4 

H3N3 6 1210.4 Ovalbumin G2Si I 322.1 0.19 9 240.4 

H5N2 1 1331.4 Ovalbumin G2Si I 339.0 0.18 12 256.1 

H4N3 4 1372.5 Ovalbumin G2Si I 336.0f 0.36 12 253.4 

H3N4 7 1413.5 Ovalbumin G2Si I 347.7 0.19 12 262.6 

H6N2 46 1493.5 Ovalbumin G2Si I 364.1 0.22 12 277.8 

H5N3 2 1534.5 gp120 G2Si E 373.9 - - 287.5 

H5N3 47 1534.5 gp120 G2Si E 357.6 - - 272.2 

H3N4F1 13 1559.5 IgG G2Si I 377.9 1.00 6 290.5 

H4N4 8,9 1575.5 Ovalbumin G2Si I 365.3 0.49 12 278.8 

H3N5 37 1616.5 
IgG G2Si E 378.8 1.36 5 291.2 

Ovalbumin G2Si I 382.4 0.30 12 294.2 

H7N2 53 1655.5 Thyroglobulin G2Si I 387.9 0.53 12 299.2 

H5N3F1 48 1680.5 gp120 
G2 

G2Si 

E 

E 

389.4 

385.4 

- 

- 

1 

1 

300.9 

296.9 

H5N3F1 49 1680.5 gp120 G2Si E 405.0 - 1 314.5 

H6N3 3 1696.6 Ovalbumin G2Si I 381.0 0.61 12 293.1 

H4N4F1 14,15 1721.6 
IgG G2 E 399.0 1.2 4 309.5 

Thyroglobulin G2Si I 398.8 0.78 3 308.6 

H4N4F1 14,15 1721.6 Thyroglobulin G2Si I 397.5 0.65 19 308.2 

H5N4 10 1737.6 

IgG, 

Fetuin 

AGP 

G2 

G2 

G2Si 

E 

E 

E 

392.0 

388.4 

392.4 

0.29 

1.30 

0.57 

9 

5 

2 

303.2 

299.5 

303.5 

H5N4 25 1737.6 Ovalbumin G2Si I 393.5 0.28 12 304.8 

H3N5F1 41 1762.6 
IgG 

IgG 

G2 

G2Si 

E 

E 

407.3 

403.8 

0.17 

1.49 

4 

5 

316.8 

313.2 

H4N5 29,30,40 1778.6 Ovalbumin G2Si I 401.5 0.33 12 311.9 

H8N2 53 1817.6 Thyroglobulin G2Si I 418.5f 2.28 12 327.0 

H3N6 27,28 H3N6 Ovalbumin G2Si I 411.4g 0.30 12 321.2 

H5N4F1 16 1883.6 
Thyroglobulin G2Si I 418.8 0.96 19 327.3 

AGP G2Si E 418.0 0.28  326.6 

H4N5F1 42,43 1924.6 IgG G2Si E 420.4 0.21 5 328.5 

H5N5 
40 

1940.6 
IgG G2Si E 421.6 - - 329.3 

29,30 Ovalbumin G2Si I 420.6h 0.58 12 330.3 

H9N2 54 1979.6 Thyroglobulin G2Si I 434.1f 1.34 12 342.0 

H4N6 31,32i 1981.7 Ovalbumin G2Si I 427.6 0.56 12 335.5 

H3N7 33 2022.7 Ovalbumin G2Si I 434.5 0.66 12 341.3 

H5N5F1 44 2086.7 IgG 
G2 

G2Si 

E 

E 

443.9 

439.4 

0.30 

0.95 

4 

4 

349.2 

345.7 

H6N5 19 2102.7 AGP G2Si E 441.8 0.78 2 348.8 

H4N7 35 2184.7 Ovalbumin G2Si I 453.1 0.90 12 359.0 

H3N8 34 2225.8 Ovalbumin G2Si I 462.0 0.55 12 366.4 

H6N5F1 17 2248.7 AGP G2Si E 464.5 0.35 2 368.8 

H7N6 22 2467.8 AGP G2Si E 484.9 0.00 2 - 

H7N6F1 21 2613.9 AGP G2Si E 510.4 0.42 2 - 
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a) Structures are in Scheme 1. 

b) [M+H2PO4]- ion. 

c) Measurements with the G2 instrument were averages of those made at various times over three 

years.  

d) I = Internal calibration. E = External calibration; these were made on the same day and are the 

mean values obtained by varying the gas flow, wave velocity and wave height. 

e) Estimated from helium/nitrogen correlation plot. 

f) Asymmetric peak 

g) Major isomer (minor isomer too low in abundance to give an accurate cross section measurement). 

h) Isomers detected by fragment ion plots. 

i) Isomers not resolved. 
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Legends for figures and schemes 

Scheme 1. Structures of the N-glycans discussed in the text. Symbols for the glycan constituents and 

linkages between them are:  = GlcNAc,  = mannose,  = galactose,  = fucose. Solid connecting 

line = β-linkage, broken line = α-linkage. The angle of the lines shows the linkage position:  

 
For more information see69. Compositions are given by H = hexose, N = GlcNAc, F = fucose. 

Monoisotopic masses listed below the compositions are of the [M+H2PO4]- ions. 

 

Figure 1. Negative ion ESI spectra of N-glycans released from (a) chicken ovalbumin, (b) porcine 

thyroglobulin, (c) human IgG, (d), gp120 and (e) α1-acid glycoprotein (AGP). Symbols for the structures 

shown in this and the other figures are as defined in the legend to Scheme 1 with the addition of  = 

Neu5Ac (sialic acid). Numbers in bold accompanying the structures are listed in Scheme 1. 

 

Figure 2. (a) Plot of CCS against m/z for the phosphate adducts of the N-glycans. Numbers refer to the 

structures listed in Scheme 1. (b) A similar plot of the phosphate adducts of the reduced glycans. (c) 

Plot of cross section against m/z for the sodium adducts of the N-glycans (positive ion mode. (d) 

Corresponding plot of the sodium adducts of the reduced glycans. Black circles, biantennary glycans; 

red circles, high-mannose glycans; inverted green triangles, Man3GlcNAc2-8 series; yellow triangles, 

remainder of ovalbumin glycans; blue squares, tetra-antennary glycans; pink squares, triantennary 

glycans. 

 

Figure 3. Plot of estimated nitrogen CCSs against m/z for the phosphate adducts of biantennary 

glycans from IgG with zero, one and two galactose residues. The four lines connect these glycans 

having additional core fucose (13-16, red circles), bisecting GlcNAc (37-40, green inverted triangles), 

both fucose and bisecting GlcNAc (41-44, yellow triangles) and no additional substituents (7-10, black 

circles). Error are standard deviations (n = 5). 

 

Figure 4. (a) ATD plot of m/z 1136 (Man3GlcNAc3, 5, 6, M+Na]+ ion) from chicken ovalbumin recorded 

with the Synapt G2 instrument (wave velocity 600 m/sec, wave height 40 V) showing separation of 

isomers. (b) Corresponding negative ion plot ([M+H2PO4]- ions, wave velocity 450, wave height 40 V), 

(c and d) Positive ion CID spectra of the compounds producing the two peaks in the ATD profile shown 

in panel a. (e and f) Negative ion CID spectra of the compounds producing the two peaks in the ATD 

profile shown in panel b. Fragment ions are labelled according to the scheme proposed by Domon and 

Costello47. 

 

Figure 5. (a) Negative ion CID spectrum of the ion at m/z 1321 from the nitrate adducts of N-glycans 

released from porcine thyroglobulin (G1 instrument, wave velocity 450 m/sec, wave height 14 V) (b) ion 

mobility profile of m/z 1321 showing separation of singly and doubly charged ions (c) extracted fragment 

ATDs from the singly charged ion at m/z 1321 obtained in the transfer cell (d) CID spectrum from the 

leading edge of the mobility peak (compound 11) (e) CID spectrum from the trailing edge of the mobility 

peak (compound 12). 

 

Figure 6. (a) Negative ion CID spectrum of the hybrid N-glycan Gal1Man5GlcNAc3Fuc1 (50, m/z 1842.6). 

(b) Negative ion CID spectrum of the hybrid N-glycan Gal1Man4GlcNAc3Fuc1 (48, m/z 1680.5). (c) 

Negative ion CID spectrum of the hybrid N-glycan Man5GlcNAc3Fuc1 (49, m/z 1680.5). The inset shows 

extracted fragment ATDs of diagnostic fragment ions from the spectra shown in panels b and c. (a) 

Negative ion CID spectrum of the hybrid N-glycan Man4GlcNAc3 (4, m/z 1372.4). 

 

Figure 7. (a) ATD profiles of the [M+H2PO4]- ions from the isomeric biantennary (10) and hybrid (25) 

glycans of composition Hex5GlcNAc4 (m/z 1737). Both peaks have been normalized to 100%. (b) 

Extracted fragment ATDs of diagnostic fragment ions for the peak at m/z 1737.6 from chicken 
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ovalbumin. The spectrum is shown in panel c. Most ions arise from the bisected hybrid glycan (25). (d) 

Negative ion CID spectrum of the biantennary complex glycan Man5GlcNAc4 (10, m/z 1737.6). The ion 

at m/z 424 characterizes the biantennary structure. 

 

Figure 8. (a) ATDs of the D, D-18 and D-221 fragment ions from the [M+H2PO4]- ions of the 

monogalactosylated biantennary glycans (8, 9) and bisected hybrid glycans (Hex4GlcNAc4, m/z 1575.5 

from ovalbumin showing slight separation of the isomers. (b) Negative ion CID spectrum of the peak at 

m/z 1575.5 from chicken ovalbumin containing a mixture of the glycans 8, 9 and 24. 

 

Figure 9. (a) ATDs of the D and D-18 fragment ions from the [M+H2PO4]- ions from the 

monogalactosylated biantennary glycans (8, 9, m/z 1575.5) from IgG showing slight separation of the 

two isomers (8, 9). (b) Corresponding plots from the core-fucosylated glycans (14, 15) showing no 

separation. (c) Negative ion CID spectrum of the [M+H2PO4]- ions from the two fucosylated 

monogalactosylated biantennary glycans (14, 15) from IgG with D and D-18 ions confirming the 

presence of the two isomers. 

 

Figure 10. Negative ion CID spectrum of the mixture of the two triantennary glycans 17 and 18 

(Gal3Man3GlcNAc5Fuc1, m/z 2248.8 from gp120 (JFRC). The isomer with the branched 3-antenna (17) 

is characterized by the ions at m/z 831 (E), 688 (D) and 670 (D-18) and the isomer with the branched 

6-antenna (18) produces the ions at m/z 1053 (D), 1035 (D-18) and 1017 (D-36)62. The inset is of the 

ATD profiles of the ions at m/z 831 and 1035 showing slight separation. 
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Abbreviations 

ATD, arrival time distribution; CCS, collisional cross section, CID, collision-induced decomposition; ESI, 

electrospray ionization; Fuc, fucose; G1, Waters Synapt ion mobility mass spectrometer, first 

generation; G2, Waters Synapt ion mobility mass spectrometer, second generation; G0, G1, G2, 

biantennary glycans with zero, one and two galactose residues respectively; G0F, G1F, G2F, Core 

fucosylated biantennary glycans with zero, one and two galactose residues respectively; Gal, galactose, 

Glc, glucose; GlcNAc, N-acetylglucosamine; HEK, human embryonic kidney; HPLC, high-performance 

liquid chromatography; Hex, hexose; IgG, immunoglobulin G; LC, liquid chromatography; Man, 

mannose; MS, mass spectrometry; Neu5Ac, N-acetylneuraminic acid (sialic acid); PAGE, 

polyacrylamide gel electrophoresis; PEG, polyethylene glycol; PNGase F, protein N-glycosidase F; 

TOF, time-of-flight; TWIMS, T-wave ion mobility spectrometry. 
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