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Abstract: The three dimensional (3D) problem of a solid block sliding into water along an 

inclined beach is investigated. The main part of the block is an infinite wedge cylinder and the 

front of the body is part of an elliptical cone. Incompressible velocity potential theory is used 

together with fully nonlinear boundary conditions. When gravity is ignored, it is found that 

self-similar solution is possible. The boundary element method is used to solve the problem. The 

free surface shape is updated together with the potential on the free surface until the flow has 

become self-similar. Convergence studies are taken with respect to marching step and element size. 

Simulations are made for different bodies and different beach angles. Extensive results are 

provided for the pressure as well as the free surface shape, and their implications in physics are 

discussed.  

Key words: 3D sliding block; Impact with liquid; Velocity potential theory; Fully nonlinear 

boundary conditions; Boundary element method. 

1. Introduction 

A wave generated by the land movement is always of great interest in nature and engineering. 

At an extreme level, tsunami can be caused by landslide (Synolakis et al., 1997). The problem in 

this context has been investigated by Liu et al. (2005) through experiments and numerical 

simulations. At a less dramatic and local level, wave generated by a sliding solid block can also be 

seen when a newly built ship, or a sailing boat, or a rescue boat is launched into the water, during 

which accidence can occur. Another example is when an ice block breaks from an iceberg and 

slides into the sea. This is becoming more and more a concern as more ships are passing though 

the North Pole. In particular a ‘blue’ Arctic Ocean is predicted to occur in the summer time from 

the middle of this century (Hong, 2012) and some new Trans-Arctic shipping routes may become 

viable (Smith and Stephenson, 2013). A further example is the impulsive wave in reservoir created 

by the sliding mass (Zweifel et al., 2006). 

The work done by Liu et al. (2005) focused on the wave runup and rundown during a 3D mass 

sliding into water. In addition to the experiment, they undertook numerical simulations based on 

the Navier-Stokes equation together with the large eddy simulation. The mathematical problem 

was solved using the finite volume method with the volume of fluid method for the free surface 

tracking. Here we consider a similar problem in different context. Although our 3D body is also a 

wedge shaped one, the wedge is on the upright position when it slides along a sloping beach, 

while in Liu et al. (2005) one of the side surfaces of the wedge lies on the beach. Our work here is 
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undertaken in the context of fluid/structure impact when the body slides into the water. The entry 

speed U  is relatively large or the period of sliding t  is rather short, on the basis /t g U . 

Therefore the acceleration g  due to gravity is ignored. About the viscosity, its effect at large 

speed or large Reynolds number is expected to be confined within the boundary layer. The length 

scale of the effect is of order t  , where   is kinetic viscosity. This is unlikely to be 

significant when /t g U . Thus the viscosity is also neglected. Subsequently, we will use the 

incompressible velocity potential theory with the fully nonlinear boundary condition on the 

instantaneous free surface. The problem at each time step will be solved by the 3D boundary 

element method. This is similar to the mathematical model and solution procedure in Wu and Sun 

(2014) and Sun and Wu (2014). It allows us to capture some local results with high resolution. 

Two limiting cases in the present analysis are highly relevant to the problems which have been 

receiving extensive interest. As the sloping beach tends to be vertical, the sliding wedge problem 

tends to that of two dimensional (2D) wedge entering water. The fully nonlinear solution of such a 

problem was first obtained by Dobrovol’skaya (1969) who used the function introduced by 

Wagner (1932) to reduce the problem of water entry of a wedge to a nonlinear integral equation. 

Zhao and Faltinsen (1993) then solved this problem by the boundary element method in the time 

domain and provided the details on some of the challenges in numerical solution in this kind of 

problem. Semenov and Iafrati (2006) considered an asymmetric wedge using the integral 

hodograph method. The 2D problem in the physical domain is converted into that in the first 

quadrant of a parameter plan. Integro-differential equations were derived in the parameter plan 

based on the velocity magnitude and its direction. The method was further extended by Semenov 

and Wu (2013) for a water wedge impacting with a non-flat surface. The free fall problem of a 

wedge in three degrees of freedom entering water obliquely was solved by Xu, Duan and Wu 

(2010) using the boundary element method.   

Another limiting case is when the sloping beach tends to be horizontal. In such a case the 

problem tends to that of the 3D bow wave of a wedge shaped ship front at high speed (due to the 

fact that the gravity has been ignored). Bow wave is a major contributor to the wave making 

resistance which can be a significant part of the total drag experienced by a ship (Larsson and 

Baba, 1996). The flow near the bow can be highly complex. In the early work on the 2D bow 

wave, Dagan and Tulin (1972) showed that at lower Froude number there is a stagnation point on 

the body. At large Froude number, a jet will be developed along the body surface. It will then 

leave body tangentially. After it reaches a peak it will fall back to the main fluid domain. The 

problem was further considered by Dias and Vanden-Broeck (1993) who allowed the jet to fall 

into the Riemann second sheet mathematically and therefore there was no secondary impact 

between the fallen jet and main liquid. This can be viewed as that the jet and main flow are on the 

two sides of a zero thickness sheet. They occupy the same space but they do not interact directly. 

Shakeri et al. (2009) investigated divergent ship bow waves experimentally based on the 

mechanism of the 2D+T theory.  
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In general, the case considered in the present work is one of the 3D fluid/structure impact 

problems. For the fully 3D problem, Miloh (1991) solved the problem of a sphere in oblique water 

entry through the variable separation method in the spherical coordinate system. The free surface 

was assumed to remain flat and the velocity potential on the free surface was assumed to remain to 

be zero. Wagner theory has also been used in various 3D problems. Scolan and Korobkin (2001), 

Korokin and Scolan (2006) considered a blunt-body impact onto the free surface. Moore et al. 

(2012) solved the problem of the oblique water entry of 3D bodies at small deadrise angles and 

they gave the leading order pressure on some axisymmetric bodies. For the problem with the fully 

nonlinear free surface boundary conditions, Sun and Wu (2013a, 2013b) considered the 3D water 

entry problems using the boundary element method, in which the mesh was regularly regenerated 

to account for the large deformation of the free surface and the variation of the wetted surface. The 

information obtained in the old mesh was transferred to the new mesh. Wu and Sun (2014) further 

considered a 3D problem with a non-fixed body shape. A related 3D problem of a water cone 

hitting an inclined wall was considered by Sun and Wu (2014). They showed that when the inner 

angle of the water cone tended to zero while the incoming flow rate remained finite, the result 

would tend to the steady flow of a water cylinder hitting the wall.  

In general, the 3D fluid/structure impact problem is an extremely challenging one. The rapid 

and large deformation of the fluid boundary makes both analytical and numerical solutions very 

difficult to be solved. The work discussed above is only for some specific problems and overall 

the solutions obtained are still very much limited. The present work is another step in this 

direction. It focuses on a 3D block sliding along an inclined beach. The main body of the 3D block 

is a wedge cylinder and the sharp edge of this cylinder is replaced by a small elliptical front. It is 

illustrated that the self-similar solution is possible for such a problem and the self-similar solution 

is obtained in time domain. As the body slides into water, the liquid will move up along the beach 

as well as along the body surface. The beach, the wedge and the free surface will merge at a local 

point where the waterlines on the beach and on the wedge surface will also intersect. The overall 

deformation of the free surface and variation of the wetted surfaces of the beach and the body are 

more complex than those in previous works. All these present some new challenges in the 

numerical techniques adopted. It needs great care in mesh generation and its quality. In particular 

this has to be ensured during remeshing which is applied regularly to track the highly deformed 

free surface and continuously varying wetted surfaces of the beach and the body. The self-similar 

behaviour of the water motion and the pressure has been shown in Section 3. The convergence 

study with mesh and time step is also undertaken. Various numerical results are then provided and 

their implications are discussed. 

2. Mathematic Model and Numerical Procedures 

2.1. Mathematic model  
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(a)                        (b)                                     (c)  

Fig.1. Sketch of the problem, (a) Full body shape, (b) Side view, (c) Half numerical model. 

There has been some work on a 2D wedge sliding into water (Iafrati et al., 2007; Iafrati, 2013). 

In the present paper, a 3D solid block sliding along a flat inclined beach at constant speed U will 

be considered and the sketch of the problem is shown in Fig.1. The space-fixed coordinate system 

O xyz
 
is defined with x  along the direction of the forward speed or the beach, y

 
on the 

intersection line between the undisturbed free surface and the beach surface and z  perpendicular 

to the beach. When z  is a constant, the main part of the cross section of the body is a triangle, or 

wedge shaped. Based on the potential flow, the velocity at a sharp corner of a solid body can be 

singular due to discontinuity of normal direction of the body. The effect of this singularity is 

usually localized. In the problem of 2D water entry of a horizontal wedge, the singular behaviour 

does not affect the global solution. Principally, it is because the edge of the wedge is fully 

submerged and is away from the free surface. Here the edge of the wedge would cut through the 

free surface. Any local singular behaviour would affect the free surface elevation near the edge 

and the error would propagate into other areas. Thus, the sharp corner ( , 0)x Ut y 
 
of the 

wedge is rounded by part of an ellipse.  

We assume that the fluid is inviscid and incompressible and flow irrotational. The velocity 

potential 
 
can be introduced, which satisfies the Laplace equation in the fluid domain  

2 =0                                      (1) 

The body which we consider is symmetric about 0y   plane. The present problem will be 

solved in the domain with 0y  . We assume at time 0t  , the tip of the body at the cross 

section of 0z   will pass the origin of the coordinate system. The wedge part of the body 

surface can then be written as 

1( ) tany x Ut                                    (2) 

in which, 
1  is the half inner angle of the wedge, which is assumed to remain unchanged in the 

z  direction. At each cross section where z  is a constant, the tip of the wedge ( , 0)x Ut y 

is replaced by part of an ellipse. Its shape can be written as 

2 2 2( + ) ( ) ( )x Ut bz cy ez  
                             

(3) 

in which b , c  and e  are constants. This equation shows that the major and minor axes of the 
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ellipse at each cross section changes with z , starting from zero at 0z  . The two surfaces in 

Eqs (2) and (3) will form an intersection line on which we shall ensure that the normal of the 

surface is continuous. On the intersection line both Eqs (2) and (3) are satisfied. Replacing y  in 

Eq.(3) with Eq.(2), we have  

2 2 2 2 2 2

1(1 tan )( ) +2 ( ) ( ) 0c x Ut bz x Ut b e z                      (4) 

We consider the cross section at each given z . Within this section, the slope of the curve on the 

wedge part can be written as 

 1tan
dy

dx
                                     (5) 

while the slope on the ellipse side is  

2

1

+

( ) tan

dy x Ut bz

dx c x Ut 





                                (6) 

Equating Eqs (5) and (6) to ensure the continuity at the intersection, we have 

2 2

1(1 tan )( )c x Ut bz   
                            

(7) 

This then means a line L  can be taken at the intersection, which can be tangential to both sides. 

Substitution of Eq. (7) into Eq. (4) gives 

2 2( )b e
x Ut z

b


  

                                
(8) 

Comparing the coefficients of Eqs (7) and (8), we have 

2
2

1 2 2 2
tan

( )

e

c b e
 


                               (9) 

Combination of this equation with Eq.(2) means that the intersection of the two surfaces is a 

straight line. The cross product of this line and the line L  mentioned in Eq.(8) can give the 

normal direction of the surface, which are continuous at the intersection. With the above body 

configuration, and the impermeable boundary condition for the velocity potential, we have on the 

body surface 

/ xn Un                                    (10) 

where ( , , )x y zn n nn  with  

2 2

1 1

2 2 2
2 2

2 2 2 2 2 2

sin , cos ( ) /

( ) ( )
, , ( ) /

( ) ( ) [ ( ) ( ) ]

x y

x y z

n n x Ut b e z b

x Ut bz c y b x Ut b e z
n n n x Ut b e z b

A A A

A x Ut bz c y b x Ut b e z

       


    
      


        

，

，       (11) 

If we let 
xn , yn , 

zn  in the second line approach the intersection, we can confirm that the 

normal tends to that in the first line, or the normal is continuous. The undisturbed free surface can 

be written as  

2tanz x 
                                   

(12) 
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in which 
2  is the angle between the beach surface and the horizontal plane. On the disturbed 

free surface, the kinematic and dynamic boundary conditions on the space fixed coordinate system 

O xyz
 
can be respectively written as 

t z x x y y                                      (13) 

 2 2 21

2
t x y z                                    (14) 

in which ( , )z x y . On the beach surface, we have 

0, 0z
n


 


                                (15) 

Far away from the body, the fluid is assumed to be undisturbed and thus we have 

2 2 20, 0x y z                             (16) 

2.2. Self-similar solution 

The distance s Ut  that the body has travelled along the beach is used as the length scale. A 

stretched coordinate system together with the corresponding potential   can be defined as 

x sx , y sy , z sz , sU                       (17) 

The body constructed in the previous section is in fact based on a combination of a wedge and an 

elliptical cone. During water entry of each of these bodies separately, the generated free surface 

flow may be self-similar when the gravity effect is ignored. Here we verify that the self-similar 

solution, in which 
 
and / s   are not explicitly a function of s  in the stretched 

coordinate system, can be possible when a wedge and cone are combined. The Laplace equation, 

the beach surface condition in Eq.(15) and the far field boundary condition in Eq.(16) clearly 

retain their forms and do not contain s  in the stretched coordinate system. The shape of the body 

surface can be written as 

2 2

1

2 2 2 2 2

( 1) tan , 1 ( ) /

( 1 ) ( ) ( ) , 1 ( ) /

y x x b e z b

x bz cy ez x b e z b

       


        　　
                

(18) 

The body surface boundary condition in Eqs (10) and (11) can be respectively written as 

/ xn n                                     (19) 

2 2

1 1

2 2 2
2 2

2 2 2 2 2 2

sin , cos , 1 ( ) /

1 ( 1) ( )
, , 1 ( ) /

( 1 ) ( ) [ ( 1) ( ) ]

x y

x y z

n n x b e z b

x bz c y b x b e z
n n n x b e z b

A A A

A x bz c y b x b e z

       


    
      


        

，

       

(20) 

The free surface boundary conditions in Eqs (13) and (14) can be written as 

x y z x x y yx y           
                      

(21) 

 2 2 21

2
x y z x y zx y z            

                  
(22) 
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It can be seen that none of the above equations contain s  explicitly. Therefore self-similar 

solution can be expected for this body geometry.  

If we redefine s  in Eq.(17) as 

2tans Ut                                      (23) 

In the body fixed coordinate system O x y z    , Eqs (21) and (22) can be written as 

2( ) tan ( 1)x y z x x y yx y              
           

                  
(24) 

 2 2 2

2

1
( ) tan

2
x y z x x y zx y z              

                         (25)          
   

in which 
21 / tanx x    , y y  , z z   and O  is located at the tip of the wedge cylinder. 

As 
2 0  , or the beach tends to be horizontal, the left hand sides of Eqs (24) and (25) become 

zero and the two equations will be identical to the boundary conditions for the steady flow. The 

wedge is horizontal in such a case and extends to x  . Although this is not a typical ship of 

finite length, the result near the front of the body can capture some important features of the bow 

flow, as in the 2D case considered by Dias and Vanden-Broeck (1993). 

2.3. The solution procedure through the boundary element method 

Using Green’s identity, the Laplace equation in fluid domain can be converted into an integral 

equation over the boundary with the Green function G . The potential at point p  can be written 

as 

( )
( ) ( ) ( ) q

q G
A p p G q ds

n n


 

  
  

  
                      (26) 

where ( )A p  is the solid angle at point p . The Green function could be defined as 1/ pqG R , 

where pqR
 
is the distance between points q  and p . With such a definition, the integration in 

Eq.(26) is performed over the entire boundary of the fluid domain. We notice that on the planes 

0y   and 0z  , 0
n





 in this problem. Thus, if G  is chosen as  

2 2 2 2 2 2

2 2 2 2 2 2

1 1
=

( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( ) ( )

q p q p q p q p q p q p

q p q p q p q p q p q p

G
x x y y z z x x y y z z

x x y y z z x x y y z z


         

 
         

     (27) 

it also satisfies 0
G

n





 on both 0y   plane and 0z   plane. As a result, the integration in 

Eq.(26) needs to be performed only on body surface, free surface and far field surface, with 0y   

and 0z  .  

The boundary element method is used to solve Eq.(26). The boundary is first divided into small 

quadrilateral elements and within each element the potential and its normal derivative are assumed 

to vary linearly.  
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1

( , )
K

k k

k

x y z h  


   r i j k r                              (28) 

1

( , )
K

k k

k

h   


 ,  
1

( , )
K

k
kk

h
n n

 
 



 


 
                         (29) 

in which, =4K  is the total number of the nodes in each element, kh  are the shape functions. 

  and   are the local intrinsic coordinates and r  is the position vector from the origin. The 

shape function kh  can be chosen as  

1 2

3 4

1 1
(1 )(1 ), (1 )(1 )

4 4

1 1
(1 )(1 ), (1 )(1 )

4 4

h h

h h

   

   

     

     

                    (30) 

where 1 1    and 1 1   . Discretizing the whole boundary in Eq.(26) into EN

quadrilateral elements and substituting Eqs (28) and (29) into Eq.(26), we obtain 

1 1

1 1
1 1

1 1

1 1
1 1

( ) ( ) ( , ) ( , )

( , ) ( , )

E

E

N K

k n

n k k

N K

k k n

n k

A p p G h J d d
n

G
h J d d

n


      

      

 
 

 
 











  

  

               (31) 

where the Jacobian ( , )nJ    is 

1

( , ) ( , )
K

n k k

k

J h c   


                           (32) 

and kc  is the modulus of the cross product of the vectors from node k  to its two neighbouring 

nodes within the quadrilateral element. It ought to mention that the integration in Eq.(31) is 

performed for each element at a given n  and the corresponding integrand is defined within this 

given element. The discretized integral equation (31) can be written in the following matrix form  

     
1

1
d d d d d

d

N N N N N
N

H M
n




  


 
     

                   (33) 

in which, dN  is total number of nodes, H  and M  are respectively the matrixes obtained by 

integrating 
G

n




 and G  along the boundary. This equation can be used to obtain the unknown 

quantities on the boundaries.  

The surface integrations in Eq.(31) can be performed using the Gauss integration with respect to 

the variable   and   directly when the field point p  is not located at the element where the 

source point q  is. When these two points p  and q  are on the same element, there is a 

singularity in the Green function and its normal derivative. To deal with that, integration of 
G

n



  

over the element is obtained through (Brebbia, 1978; Wang and Yeo, 1996) 
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1,

dN

ii ij

j j i

H H
 

                                      (34) 

For the singularity in G , let us assume that it exists at the node of 0   . The integration 

will then have the form 

1 1

1 1

( , )f
d d

R

 
 

  

                               

 (35) 

where ( , )f    is regular at 0   . Following the procedure of Telles (1987), we use the 

transformation cosR  , sinv R  . Eq.(35) then becomes  

2 ( )

0 0
( , )

R

f dRd
 

                                   (36) 

in which the singularity disappears. 

For the self-similar problem, the boundary conditions on the free surface in Eqs (21) and (22) 

can be satisfied through iteration. It starts with an assumed potential on the free surface together 

with its shape. Once the solution of Eq.(26) is obtained through the BEM, the elevation of and the 

potential on the free surface can be updated through Eqs (21) and (22). Eq.(26) is then resolved 

and the process continues until the convergence has been achieved. This is the procedure used by 

Sun and Wu (2014) for a 3D water column impacting on a flat wall, in which Eqs (21) and (22) 

are imposed in an integral form. During the simulation, the elements may be distorted. As a result, 

the mesh may have to be regenerated regularly and the results from the old mesh have to be 

transferred to the new one (Sun and Wu, 2013a).  

As the self-similar problem is a special case of the general transient problem, it can be also 

solved in the time domain. In the physical system, we can assume that the body has already been 

put into water with a small distance 
0s s  at the beginning of the simulation. The free surface at 

such a moment is assumed to be undisturbed and the potential on the water surface is zero. We 

should notice that 0s  can be chosen arbitrarily small and indeed at 0s s  or any s  

subsequently, the tip of the body on the beach is always at 1x   in the stretched coordinate 

system. Eq.(26) can then be solved through BEM. In the stretched coordinate system, Eqs (13) and 

(14) can be written as 

z x x y y

s

s


    


  

                           
 (37) 

 2 2 21

2
x y z

s

s


  


   

                           
(38) 

They can be used to update the free surface and potential at the next time step. Eq.(26) is then 

solved again and the process continues with the time step until the desired stage (Sun and Wu, 

2013a, 2013b). As in the iteration process for Eqs (21) and (22), the mesh may become distorted 

during the simulation and remeshing may have to be applied every several time steps. As 
0s  can 

be chosen arbitrarily small, the assumption made at the initial stage does not have lasting effect for 

this problem. After a numerical transition period, the solution becomes physical. In particular, the 
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flow will tend to be self-similar for the present case, and the solution will tend to that obtained 

from the iteration method above. This in fact has been verified by Sun and Wu (2013a, 2013b) 

through a similar problem on water entry of 3D bodies. 

It should be mentioned that the shape of the free surface in this case is highly complex.   may 

not be always single valued. 
x  or y  

in Eqs (37) and (38) can be very large or even tend to 

infinity. This can cause major difficulty in the numerical calculation. To solve this problem, a local 

coordinate system ˆˆˆO xyz
 

is introduced, in which ẑ  is normal to the free surface, and x̂  and 

ŷ  are in two tangential directions perpendicular to each other. In this coordinate system, we 

consider a point with fixed x̂  and ŷ , or 
ˆ

0
x

s





, 

ˆ
0

y

s





, which can also be written as 

ˆ
ˆ

sx
x

s





, 

ˆ
ˆ

sy
y

s





                               (39) 

The free surface elevation in the ẑ  direction can then be obtained from (Sun and Wu, 2013b) 

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ

x y z x x y y

s
x y

s

 
      


    

                    (40) 

The potential at this newly elevated point can be obtained from 

 2 2 2

ˆ ˆ ˆ ˆˆ ˆ

ˆ 1
ˆ ˆ

2
x y z x y z

s s
x y

s s

   
     

 
      

              
(41) 

As ẑ  is in the local normal direction, we have ˆ
ˆ 0x   and ˆ

ˆ 0y  , which avoids the difficulty 

due to extremely large derivative. On the intersection line between free surface and the body or 

beach, or the waterline, the wave elevation should move along the body surface. Especially on the 

intersection line between the flat wedge surface and the smooth ellipse front, ẑ  should be along 

this intersection line to ensure that the wave elevation is along this intersection, which can 

improve the performance of the numerical simulation.  

When the solution of Eq.(26) is found at each given time step, the pressure can be obtained 

from the Bernoulli equation  

1
( )

2
tp                                       (42) 

in which, 
 
can be found directly once the potential has been obtained. For the general 

transient problem, the term 
t  in Eq. (42) cannot be obtained directly from the potential at this 

particular instant. Here we adopt the procedure which treats it as another harmonic function 

satisfying the Laplace equation. On the free surface, 0p   gives 

 2 2 21

2
t x y z                                   (43) 

On the body surface, we have (Wu, 1998) 

t xU
n n

  
 

 
                                (44) 
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We may define 2 ( , , ) ( , , )tU x y z x y z 
 
and 

1x      (Wu et al., 2004). Obviously 
1  

satisfies the Laplace equation. On the body surface, we have 

1 0
n





                                  (45) 

and on the free surface, Eq. (43) gives 

1

1

2
x       

                          
(46) 

The condition at the control surface at the far field can be written as  

1 0                                   (47) 

The solution of 
1  can be then found in a manner similar to that used for   and the pressure 

can be obtained from the following equation 

2

1/ ( / 2) (2 2 )p xC p U         
               

(48) 

For the self-similar problem, the pressure coefficient can be obtained directly from  

2
(2 2 2 2 )

/ 2
p x y z

p
C x y z

U
     


       

            

(49) 

The force coefficient in the x  direction can be obtained by integrating the pressure pC  along 

body surface 

x

f p xC C n ds                                 (50) 

3. Numerical results and discussions 

The fluid boundary in the present case includes the body surface which is in fact a combination 

of a vertical wedge and an elliptical cone, and the free surface which will become curved and 

highly distorted as the body slides into water. To generate mesh for such a complex boundary 

using boundary elements is always a challenging task. This is further complicated by the fact the 

boundary changes or deforms during the simulation and the mesh has to be regenerated regularly. 

Here at the start of the simulation 0s s , the waterline of the body surface is divided into aN  

segments. Each of these nodes are then linked with the body tip on the beach ( 1x  , 0y  , 0z  ) 

to form aN  lines, one of which corresponds to line L  defined in Eq. (8). These lines will then 

intersect with bN  lines at different z  to form a mesh on the body surface. Using the nodes on 

the waterline of the body, aN
 
lines are drawn in the radial direction of the free surface, varying 

from the waterline of the beach along the x  axis to the y  axis. cN  lines will then be drawn 

along the circumferential direction to form mesh on the free surface. As the simulation continues, 

all these lines will be curved in the 3D space. This causes some major difficulty in remeshing and 

interpolation. Here we follow the procedure in Sun and Wu (2013a, 2013b). The element nodes 

along the lines in the radial direction of the free surface are redistributed during the simulation. 

Taking the waterline of the beach for example, the smallest segment length d  is used near the jet 
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root. Away from the jet root, the element size increases at a fixed ratio r . Assuming that the 

length of the first mesh line is (1)l  and the arc length of node n  is 
ns , then for the i th line of 

length ( )l i
 
in the radial direction, the arc length of the node n  will be ( ) / (1)ns l i l . The n th 

node of each line along the radial direction will be linked together in the circumferential direction 

and a new mesh will be generated.  

A solid block with 1 / 6  , / 0.8e b   and 1b   sliding along a beach with inclined angle 

2 / 6   is used to show how results from the present simulation evolve into self-similar flow 

and how the results become convergent with respect to time step and element size. The far field 

control surface is taken at 
2 2 2 10x y z   , which has been found to be sufficiently far. The 

free surface elevations in O y   system at different time are given in Fig.2 through 
0/s s , in 

which the red part is the wetted surface of the body, the blue part is the free surface, the grey part 

is the beach, 2 2cos sinx z     is along the free surface and 2 2sin cosx z      is 

perpendicular to the free surface. The simulation starts at 0s s  at which the free surface is taken 

as flat. It can be seen from the figures that the water surface from the simulation climes quickly 

along the body surface and the beach surface when 
0/s s  is relatively smaller. In particular, the 

free surface deforms significantly. The variation of the wetted surface and the deformation of the 

free surface slow down in the stretched coordinate system, as 
0/s s  increases or the time 

increases. These changes then diminish and the results become stable at 
0/ 5s s  . This shows that 

the problem is no longer time dependent in the stretched coordinate system and it has become 

self-similar. In Fig.3, the pressures along transverse sections 0.3z   and 0.6z   at different 

time 
0/s s
 
are given. Similar to the variation of free surface, there is a numerical transition period. 

At the initial time step, or 
0/ 1s s  , the pressure of 0.3z   near the free surface is very large 

and negative. The result gradually tends to a stable value as 
0/s s  increases. 

  

(a)  (b)
 
 



13 
 

 

  

(c)  (d)  

  

(e)  (f)  

Fig.2. Free surface elevation at different time 
0/s s , (a) 0/ 1s s  , (b)

 0/ 1.3s s  , (c) 0/ 1.6s s  , (d) 

0/ 2s s  , (e) 0/ 3s s  , (f) 0/ 5s s  . 
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(a)                                          (b)  

Fig.3. Pressure at different time 
0/s s , (a) 0.3z  , (b) 0.6z  . 

The pressure distribution along three representative lines, or the intersection line between the 

body and beach, the intersection line L  between the wedge and the elliptical cone, and the 

intersection line between the body and 0y   plane, are given in Figs 4(a), 4(b) and 4(c). It can 

be seen that the curves for pressure on the solid block from different meshes and time steps are 

graphically indistinguishable. This means that the present results have converged with respect to 

time step and element size. 
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Fig.4. Convergence study through pressure distribution, (a) The intersection line between the body and the beach 

surfaces ( 0z  ), (b) The intersection line L  between the wedge and the elliptical cone (see Eq.(8) ), (c) The 

intersection line between the body and 0y 
 

plane. d  in the figure denotes the size of the element at the jet 

root of the waterline of the beach. 

More detailed results for the body in Fig.2 are provided in Fig.5, at 0z  , 0.1z  , 0.2z  , 

0.3z  , 0.4z  , 0.5z  , 0.6z   respectively. The projections of these cross sections, the 

undisturbed waterline and the disturbed waterline onto O xy  
plane are shown in Fig.5(a), while 

the pressures at these sections are given in Fig.5(b). The figure shows that the peak pressure is at 

0y   
for all these sections, and its value is around 1.2 when 0.5z  . At 0.6z  , the peak 

pressure at 0y   suddenly decreases to around 0.8, which indicates a large local pressure 

gradient in the z  direction. This in fact can be seen in Fig.4(c). It shows that the pressure is 

nearly constant when 0.5z  . After that the pressure experiences a sharp decrease. The reason 

for that is that 0.6z   is near the undisturbed free surface. When the fluid particle on the free 

surface moves towards the body, its path is blocked and has to move upwards. This leads to a large 

acceleration and therefore a large pressure gradient in the z  direction. In Fig.5(b), we also notice 

a large pressure gradient in the y  direction near 0y  . This is because the incoming flow 

towards the body has to bend itself to move along the body surface direction, leading to a large 

acceleration and thus large pressure gradient. When z  increases, the curvature of body front 

along O xy
 
plane will become smaller and thus the pressure variation there with y

 
will also 

become smaller.  
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(a)                                   (b)     

Fig.5. A solid block of 
1= /6  , / 0.8e b  , 1b   sliding along a beach of 

2 / 6   into water, (a) 

Projection of cross sections of constant z  onto O yz  plane, (b) Pressure distribution along the lines of 

constant z . 

Further results are provided in Figs 6 and 7 for the cases with the same b , 1  and 
2  as 

above but different body fronts of / 0.7e b  , 0.8 and 0.9. The variation of the pressures with the 

front shape at a fixed z  are given through 0.2z   and 0.4 in Figs 6(b) and 7(b) respectively. 

These figures show that the local variation of the front does not have too much overall effect on 

the pressure distribution. Figs 6(a) and 7(a) show that as /e b  increases the front of the cross 

section at given z  becomes less blunt. A less blunt front, however, corresponds to a larger local 

pressure variation, as shown in Figs 6(b) and 7(b). This is similar to what was observed in Wu and 

Sun (2014) for water entry of an expanding paraboloid, where the explanation for such behaviour 

is given. Along the body front line itself, or the intersection line between the body and 0y   

plane as shown in Fig.8(a), the pressure distribution for different /e b  is given in Fig.8(b). All 

the pressures are close to each other at the body tip ( 1x  ). We should notice that this point 

corresponds to 0z  . The cross section at 0z  , or on the beach, is always a triangle, which 

does not change with /e b . Away from that point the pressure is significantly affected by the 

variation of /e b .  
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(a)                                            (b)  

Fig.6. The intersection line of the body cross section with 0.2z   and pressure distribution along the 

intersection line at different /e b . (a) Body cross section shape, (b) Pressure. 
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(a)                                             (b)  

Fig.7. The intersection line of the body cross section with 0.4z   and pressure distribution along the 

intersection line at different /e b . (a) Body cross section shape, (b) Pressure. 
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(a)                                              (b)  

Fig.8. The intersection line between the body and 0y   plane and pressure distribution. (a) Free surface 

elevation, (b) Pressure. 

We now consider the case of a given solid block with 
1= /6  , / =0.8e b  and 1b   sliding 

along beaches of different angles. The pressure distributions on the body surface at 0.2z   and 

0.4 are given in Fig.9 for 
2 / 3  , / 4  and / 6 . We notice that at small 

2  the plane of 

constant z  tends to be horizontal while at large 
2  

the plane tends to be vertical. The latter is 

expected to experience larger impact force. Thus Fig.9 shows that the pressure at larger 
2  

is 

bigger than that at smaller 
2 . In Fig.10(a), the free surface elevation in the 0y   plane is given 

while in Fig.10(b) the pressure distribution along the intersection of the 0y   plane and the 

body surface is provided. Larger 
2  

corresponds to a smaller deadrise angle, or the angle 

between the intersection line with 0y   plane and the undisturbed free surface. Thus the 

pressure increases significantly. In particular, similar to other impacts at small deadrise angle, the 

location of the peak pressure has moved from the tip to the jet root, as the fluid particles need to 

take a larger turn locally. Figs 11(a) and 11(b) show the pressure along the line L  defined in 
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Eq.(8) and the intersection line between the body and the beach surface ( 0z  ) respectively. For 

these two lines, the peak pressure is at the body tip ( 1x  , 0z  ), and the pressure deceases along 

the line from body tip to the waterline. The total force coefficient in the x  direction is given in 

Table 1.  
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Fig.9. The pressure, 
1= /6  , / =0.8e b , 1b  . (a) 0.2z  , (b) 0.4z  . 
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(a)                                         (b)  

Fig.10. Wave elevation and pressure on intersection of the body and 0y   plane, (a) The free surface elevation, 

(b) Pressure. 
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(a)                                        (b) 

Fig.11. The pressure along (a) the line L  defined in Eq.(8) and (b) the intersection line between the body and the 

beach surface ( 0z  ). 

Table 1 Force coefficient ( 1 / 6  ) 

2  /3  /4  /6  

x

fC  0.545 0.273 0.131 

Figs 12(a) and 12(b) give the pressures at 0.2z   and 0.4z   respectively, on bodies of 

different inner angle 
1  

sliding on a beach of 
2 = /4  . The body will become blunter when the 

inner angle 
1  

increases. The pressure will increase significantly and its peak will move from the 

front of the body to the jet root where the flow takes a shape turn. The resultant force 
x

fC
 
is 

given in Table 2. 
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Fig.12. The pressure at different 
1 ( / =0.8e b , 1b  , 

2 = /4  ). (a) 0.2z  , (b) 0.4z  .  

Table 2 Force coefficient ( 2 / 4  ) 

1  /3  /4  /6  

x

fC  2.728 0.929 0.273 

4. Conclusions 

Water entry of a 3D solid block along an inclined flat beach has been analysed based on the 
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velocity potential theory with the fully nonlinear boundary conditions, using the boundary element 

method. It has been demonstrated that the flow can be self-similar when the body is a combination 

of an infinite wedge and an elliptical cone. Method has been developed to overcome the 

difficulties in mesh generation and its regeneration during the simulation, which becomes highly 

complex due to the distortion of the free surface. Studies have been undertaken to show that the 

results have converged with respect to both time step and element size. The numerical results 

obtained show that although the shape of the elliptical front of the body does not have too much 

overall effect on the pressure distribution, the pressure along body front line changes significantly 

with the variation of the front shape. For a less blunt body with a smaller inner angle, pressure 

along the cross section perpendicular to the body axis is smaller. However, it also corresponds to a 

larger local pressure gradient near the front. The peak pressure may occur at the body front where 

flow bifurcation occurs, or the relative incoming flow along the symmetry line will split and move 

along the both sides of the body. However, as the problem resembles that of water entry impact or 

bow wave, depending on the inner angle of the body and inclination angle of the beach, very large 

local pressure and pressure gradient can occur where the flow direction bends suddenly, especially 

at the jet root. The present work is one step forward for the highly complex 3D fluid/structure 

impact problem. Further work is required for more general cases, such as to include the free 

surface breaking and secondary impact.  
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