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Abstract—A new algorithm (LBFGS-B-PC) which combines
ideas of two existing convergent reconstruction algorithms,
relaxed separable paraboloidal surrogate (SPS) and limited-
memory Broyden-Fletcher-Goldfarb-Shanno with boundary con-
straints (LBFGS-B), is proposed. Its performance is evaluated
in terms of log-posterior value and regional recovery ratio.
The results demonstrate the superior convergence speed of the
proposed algorithm to relaxed SPS and LBFGS-B, regardless
of the noise level, activity distribution, object geometry, and
penalties.

I. INTRODUCTION

IN emission tomography, maximum a posteriori (MAP)
reconstruction is one of the strategies to obtain recon-

structed images with desired properties, such as accurate
reconstruction with low statistical noise [1]. MAP reconstruc-
tion maximises the posterior likelihood. Various optimization
algorithms can be used to obtain this maximum. Since each
algorithm approaches the MAP solution in a different way,
the convergence rate varies between algorithms. For achieving
quantitative accuracy in a clinically feasible reconstruction
time, algorithms that converge in a relatively low number of
iterations are preferable. The aim of this study is to propose a
new algorithm LBFGS-B-PC which combines preconditioning
(PC) with the use of a quasi-Newton optimization algorithm
(LBFGS-B [4]). Its performance is evaluated and compared
with relaxed SPS [3] and LBFGS-B.

II. METHOD

A. Objective Function and Preconditioning

MAP reconstruction is performed by maximizing a function
Φ consisting of 2 parts, the likelihood L and the penalty
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Fig. 1. Illustration of contour-plots of the objective function before and after
preconditioning for different cases of problems.

function R with a parameter β controls the strength of the
penalty.

Φ = L− βR (1)

In the optimization literature, preconditioning is used to
achieve faster convergence rate. Fig. 1 illustrates different
types of problems that need different preconditioners.

B. Optimization Algorithms
1) Relaxed SPS: Instead of considering the true objective

function, the optimization can be transferred to separable
paraboloidal surrogates (SPS). Ahn [2] introduced a modifica-
tion of the original SPS algorithm [3] using relaxation to be
able to cope with subsets. This “relaxed SPS” version uses a
precomputed denominator related to the Hessian. Given the
current image estimate xold and the measured data g, the
image is updated by:

xnew = xold + ζD2∇Φ, ζ = α
1+γ and

D2 = diag{P tdiag{ 1
g+1}P · 1}

(2)

where D represents the preconditioner, ζ is the relaxation
parameter, P is the system matrix and ∇Φ is the gradient
of the objective function.

The algorithm can be interpreted as preconditioned gradient
descent using a diagonal approximation of the Hessian as
preconditioner. The algorithm is independent of global scaling
1 and the preconditioner can be precomputed. However, as
only a diagonal preconditioner is used (as in Fig. 1 Case 1),
potential slow convergence is expected.

1The global scaling is in the sense that g̃ = Px̃ = λPx leads to the same
results for all λ > 0.



2) LBFGS-B: This is a quasi-Newton algorithm that esti-
mates non-diagonal approximations of the Hessian by using
previous iterations. The optimization is achieved by minimiz-
ing the objective function Φ along a search line p which is
constructed by the LBFGS-B algorithm [4]:

xnew = xold + δ?p, δ? = arg min
δ≥0

Φ(xold + δp), (3)

where where p = H̃−1∇Φ(xold) with H̃ the approximation of
the Hessian at the current iteration. Although the algorithm can
cope with the Case 2 in Fig. 1 in a low-dimensional problem,
for image reconstruction the number of variables to estimate
is very large and the approximated Hessian can potentially
lead to slow convergence. Besides, the line search part of the
algorithm makes it sensitive to global scaling.

3) LBFGS-B-PC: We propose to use analytical informa-
tion about the objective function to circumvent the above
mentioned deficiencies of LBFGS-B. In particular, LBFGS-
B-PC uses LBFGS-B in a transformed coordinate system that
corresponds to the relaxed SPS preconditioner D:

Φ′(x′) = Φ(x), x′ = D−1x (4)

where x′ and Φ′ are the image and objective function in the
transformed coordinate, respectively. By combining ideas of
the two algorithms, we intend to achieve faster convergence
and being independent of scale.

C. Penalty Functions
We use Gibbs-type penalties which penalize the difference

between pixels within a given neighborhood N :

R(x) =
1

2

∑
k∈N

ωjkψ(xj − xk) (5)

where ωjk indicates the weight between pixel j and its neigh-
boring pixel, k. We compare results for 2 potential functions ψ:
the Quadratic penalty (QP) and the Rescaled logcosh penalty
(LP)

ψ(x) =
1

ρ2
log(cosh(ρx)) (6)

The factor 1
ρ2 was introduced in order to have the same

behaviour as the QP around 0. The prior is more edge-
preserving for larger ρ. ρ = 1.8 in the experiments.

D. Data
The projection data were generated to simulate the GE

Discovery STE in 2D. To study the effect caused by different
phantom geometries, both cylindrical and XCAT phantom
were used (Fig. 2). The corresponding attenuation maps can
be found in Fig. 3.

1) Cylindrical phantom: The phantom contained 4 regions
of interest (ROIs), 2 hot spots and 2 cold spots. The activity
ratios of the cold and hot regions to the background were 0.5
and 2, respectively. For each group of activity levels, different
attenuation materials simulating the effects of bone and soft
tissue were applied to each spot. To assess possible noise
effects, we generated three sets of data with different level
of Poisson noise (total counts were 297 K, 594 K and 1.18 M
respectively).

Fig. 2. Reconstructed images from relaxed SPS at 1000th iteration for
cylindrical phantom with total counts 594 K (left) and XCAT phantom (right).
Quadratic prior with β = 0.1 was applied for both images.

Fig. 3. The corresponding attenuation maps.

2) XCAT phantom: A slice from the XCAT torso phantom
[5] was used for evaluating all the algorithms under a more
realistic condition. We inserted a hot lesion into the right side
of the lung region. The activity ratio of the lesion to the normal
lung region was 2. Similarly with the cylindrical phantom,
both non-uniform attenuation effect and Poisson noise were
considered. However, only one noise level with total counts
of 838 K was generated.

E. Reconstruction

All the data were reconstructed by relaxed SPS, LBFGS-B
and the proposed LBFGS-B-PC with penalty factors of 0.1
and 0.3. The first algorithm had been implemented in STIR
[6]. For the last two, we used the Fortran implementation
from [4] but using STIR for calculating the objective function
and its gradient. The initial image for all algorithms was the
reconstructed image from maximum-likelihood expectation-
maximization (MLEM) [7] at 1st iteration.

F. Analysis

The convergence rate of each algorithm was evaluated in
terms of log-posterior value and normalized regional recovery
ratio (RR). We define convergence of ROI values if the total
RR reaches the value obtained at 1000 iterations of SPS with
error less than 1%. The RR and total RR were calculated using
the following equations:

RR =
RBR(x)

RBR(xtrue)
, RRtotal =

√√√√ n∑
i

RRi
2 (7)

where RBR is the region of interest (ROI) to background ratio
and n is the number of ROIs. The size of the analyzed ROI
were 11 by 11 pixels and 7 by 7 pixels squares for cylindrical



Fig. 4. The logarithm of objective function value (Φ) plotted against iteration
numbers for cylindrical (left) and XCAT (right) phantom with β = 0.1. The
results from relaxed SPS with QP and LP are almost overlapped with each
other for XCAT phantom.

Fig. 5. The RR values plotted against iteration numbers for β = 0.1
(cylindrical phantom).

and XCAT phantom, respectively. The ROIs were drew in
the center of the hot or cold spot. For all the conditions
with cylindrical phantom, we tabled the required number of
iterations for achieving convergence of ROI to have a better
comparison.

III. RESULTS

The objective function values plotted against the iteration
numbers for both phantoms with β = 0.1 are shown in
Fig. 4. Fig. 5 shows the RR values plotted against iteration
numbers for cylindrical phantom with β = 0.1. Independent
of the penalty type, object geometry and activity distribution,
LBFGS-B-PC converged faster than other methods. From
table I, it can be observed that the convergence rate was
independent of data noise level for all algorithms. We did not
show results for larger penalty strength (β = 0.3) and the RR
values and comparison table for XCAT phantom with β = 0.1,
since they were consistent with those from cylindrical phanto
with β = 0.1.

IV. DISCUSSIONS

For MAP reconstruction, ideally an algorithm is used that
converges to the MAP solution, such that the resulting image
is independent of the chosen algorithm, as long as sufficient
number of iterations were used. While this was indeed the

TABLE I
THE REQUIRED NUMBER OF ITERATIONS FOR ACHIEVING CONVERGENCE
OF ROI VALUES FOR ALL CONDITIONS (CYLINDRICAL PHANTOM). THE

VALUES FROM DIFFERENT NOISE LEVELS ARE LISTED FROM HIGH TO LOW
NOISE LEVEL (FROM LEFT TO RIGHT) AND SEPARATED BY A SLASH. FOR
LBFGS-B AND LBFGS-B-PC, WE LIST IN BRACKETS THE NUMBER OF

CALLS TO THE OBJECTIVE FUNCTION (i.e. A FORWARD- AND
BACK-PROJECTION) AS THIS CAN BE A FAIR COMPARISON OF RUN-TIME

TO RELAXED SPS.

relaxed SPS LBFGS-B LBFGS-B-PC
QP, β = 0.1 91/121/125 11/13/19 (28/32/44) 9/9/9 (22/22/22)
QP, β = 0.3 338/342/342 23/16/15 (52/38/36) 7/7/7 (18/18/18)
LP, β = 0.1 75/91/102 9/18/18 (24/42/42) 6/12/12 (16/28/28)
LP, β = 0.3 309/326/322 15/12/16 (36/30/38) 12/7/7 (28/18/18)

case for the algorithms used in this study, the required number
of iterations depended on the algorithm, but also on the
object and other factors. The convergence rate of RR for
all 3 algorithms was largely insensitive to the penalty type
(Fig. 5) and noise level (table I). Relaxed SPS was slower for
higher penalty strength and its convergence rate depends on
activity distribution (Fig. 4). Both LBFGS-B and LBFGS-B-
PC were insensitive to all factors we have studied. However,
the convergence rate of LBFGS-B-PC is significantly superior
to the others. Our initial experiments indicate that LFBGS-B-
PC is a promising algorithm for MAP image reconstruction.
In future work, we will investigate its performance on more
realistic data.
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