
1 

 

University College London 

Mechanical Characteristics of 

Monopile Foundation in Sand for 

Offshore Wind Turbine 
 

 
 

 

Nuo Duan 
 

 

 

 

 

 

Department of Civil, Environmental and Geomatic Engineering 

 

University College London (UCL) 

 

 

 

 

A thesis submitted for the degree of 

 

Doctor of Philosophy 

 

September 2016 

 
 

 



2 

 

        



3 

 

Abstract 

 

The behaviour of monopile foundations for offshore wind turbines deviates from 

classical assumptions and accumulated experience mainly due to their large diameters 

and reduced slenderness. The offshore environment, which is characterised by a large 

number of load cycles from wind and waves, poses an additional challenge because 

cyclic loads may change the soil properties which in turn influence the pile’s responses 

to the loads. Both of these issues are still not well understood and not being properly 

incorporated in current design guidelines. 

In drained sands, the accumulating displacements can lead to foundation failure. In 

addition, the effects of long-term cyclic loading on the foundation’s deformation and 

especially on its serviceability must also be studied. 

The purpose of this work was to provide an insight into both aspects, by developing a 

reasonable numerical tool for the soil-pile interaction. In order to achieve these goals, 

the investigations were designed to firstly carry out a comprehensive literature review 

on related issues such as the p-y analysis, cyclic induced soil deformation and stiffness 

effects, and the simulation of soil foundation interaction by means of numerical model 

tests in a reduced scale using the Discrete Element Method (DEM). 

Several DEM models were developed in this research, including (1) a modified method 

of generating specimens for 2D DEM centrifuge model, (2) DEM analysis of rigid pile 

installation effects (3) a micromechanics study of rigid monopile under monotonic 

loading using DEM, (4) a discrete element method centrifuge model of rigid monopile 

under cyclic lateral loads, (5) a 2D DEM rigid monopile model under combined loading 

condition (appendix). 
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Chapter 1  

Introduction 

 Background 

The offshore wind industry is experiencing rapid expansion in many countries. This trend 

is driven by rising demand for renewable, sustainable and green energy sources and strong 

public support. Increasing political and social pressures to reduce carbon dioxide emissions 

and society’s overdependence on fossil fuels have increased the need for sustainable energy 

sources such as wind energy (Doherty and Gavin, 2012). 

Wind power currently offers a very competitive source of renewable energy, and therefore 

the market for offshore wind farms is projected to expand rapidly within the next decade. 

Building offshore wind turbines is an essential part of the European government strategy 

to achieve the target of 20% of energy from renewable sources by 2020 (Lombardi et al., 

2011). Both the UK and Irish governments aim to provide 30-35% of their electricity 

generation from renewables by 2020 (Gavin et al., 2011).  

The offshore wind industry currently relies on subsidy schemes by the government to be 

competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is 

vital that costs are significantly reduced for future projects. This can be partly achieved by 

introducing new technologies and partly through optimization of existing technologies and 

design methods (Kallehave et al., 2015). One of the areas where costs can be reduced is in 

the support structure, where better designs, cheaper fabrication and quicker installation 

might all be possible.  

The prevailing support structure design is the monopile structure, where the simple design 

is well suited to mass-fabrication and the installation approach, based on conventional 

impact driving, is relatively low-risk and robust for most soil conditions. The range of 
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application of the monopile for future wind farms can be extended by using more accurate 

engineering design methods, specifically tailored to offshore wind industry design.  

Support foundations for offshore wind farms are generally more complex than for onshore, 

involving greater technical challenges such as design requirements to withstand the harsh 

marine environment and the long-term impact under large wave loading. In fact, various 

support foundation concepts employed in the wind industry (see Figure 1.1.1) have been 

adopted from the offshore oil and gas industry. The choice of foundation solution depends 

on local seabed conditions, water depth and financial constraints (Igoe et al., 2013). 

 

Figure 1.1.1 Foundation concepts for offshore wind turbines (Doherty and Gavin, 2012). 

 

The most common type of support structure used so far is the monopile (see Figure 1.1.2). 

This type of structure is therefore the main focus point of this study. The current research 

will focus on investigating the complex behaviour of the offshore rigid monopile under the 

effects of various loadings and determining the governing soil mechanisms that control the 
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long-term accumulated rotation and deformation. Its focus lies exclusively on pile 

foundations embedded in sands.  

 

Figure 1.1.2. Foundation distribution for offshore wind turbines.(Doherty and Gavin, 

2012) 

 

Gravity base is the basic foundation for the oil and gas platform. Jacket structure is more 

suitable for deeper water and heavier turbines (Esteban et al., 2011, Fischer, 2011). In the 

future, it is expected that floating structures, which are currently under the research and 

development stage, will be widely used, especially for water depths greater than 50 m 

(Saleem, 2011). Such floating platforms for wind turbines will impose many new design 

challenges.  

From the various foundation systems described above, only monopiles will be researched 

in this thesis since these are by far the most popular solution used worldwide, with 75% in 

share, compared to only 5% for jacket/tripod options (Achmus and Abdel-Rahman, 2005, 

Climate and Renewables, 2011). However, it is estimated that by 2020, between 50% and 

60% of new offshore wind turbines (OWT) will be supported by monopiles and a further 

35-40% by jacket/tripod systems. The main reason for this shift is the attraction of 

jacket/tripod systems for deeper sea locations, which provide consistently higher wind 

speeds and hence greater wind energy (Tempel and Molenaar, 2002).  
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Figure 1.1.3. Foundation concepts for monopile (Arshad and O’Kelly, 2013). 

 

Figure 1.1.3 shows the main components of an OWT system, including a typical monopile 

foundation, the substructure, transition piece, tower, rotor blades and nacelle (hub). The 

nacelle contains key electromechanical components of the wind turbine, including the 

gearbox and generator. The gearbox may cause efficiency losses for the wind turbine and 

is a particular source of noise. The substructure connects the transition piece or tower to 

the foundation at seabed level. The transition piece provides a means of correcting for any 

vertical misalignment of the foundation that may have occurred during its installation. In 

some cases, the foundation can extend to above the water surface, thereby also serving as 

a substructure by connecting directly to the transition piece or tower. The tower is made of 

a steel plate rolled into conical subsections that are cut and rolled into the required shape, 

and then welded together. The towers are usually manufactured in 20 m to 30 m sections, 

with transportation to the site being the limiting factor (Malhotra, 2010). OWTs are 

currently installed with either pitch-regulated blades or variable rotational speed systems 

in order to allow optimization of power production over a wide range of prevailing wind 



28 

 

speeds. The rotational speed of the main rotor shaft is typically between 10 and 20 rpm 

(Alderlieste, 2011, Malhotra, 2010). Most of the existing wind farms lie in relative shallow 

water, which is less than 10 m depth in most cases (total length of monopile from 30 m to 

40m), and monopiles with diameters ranging from 2 to 4 m are used to support those 1.5-

3.5 MW turbines (Peralta, 2010). Doherty et al. (2011) predicted that 70% of the wind 

farms, either in construction or in planning, will be located in deeper water in the future. 

In addition, larger diameter wind turbines are coming into service as they have a higher 

capacity of 5 to 7 MW. Since its introduction in the offshore, the monopile has become 

larger, heavier and has been installed in deeper depths. The diameter limit these days is 

around 6 m and there are already concepts of 7 m; the maximum weight can be as massive 

as 1000 tonnes. It was believed that monopiles could only be installed in water depths up 

to 25 metres but they were installed up to depths of 34 metres at the Greater Gabbard wind 

farm in 2011. This development can be attributed to the increasing diameters of the 

monopiles. According to experts, an increase in the diameter of the monopile by 1 metre 

generally means that the pile can be installed in water with depths 10 metres deeper. This 

implies that a 7 m diameter monopile might be installable in water depths around 40m 

(Saleem, 2011).  

At present, monopiles are by far the most widely adopted substructure-foundation system 

for modern offshore wind farms located in shallow water depths (≤40 m). Cyclic lateral 

and moment loading on the monopile are resisted by horizontal earth pressures mobilised 

in the surrounding soil along the monopile embedded length. The monopile embedment 

length is dependent on seabed characteristics and total applied load. An embedment length 

of 30 m is usually considered sufficient to meet design criteria, including vertical stability 

and horizontal deflection requirements which are set for the 10% pile diameter in most 

research (Tricklebank, 2008, Musial et al., 2006). Both deeper water depth and larger 

turbines will generate higher magnitude of wind and wave loading. All of these will 

increase the probability of extreme environmental conditions. 
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Criteria for rigid monopile behaviour have been proposed by various researchers (Poulos 

and Hull, 1989, Doherty and Gavin, 2012, Leblanc et al., 2010b, Klinkvort and Hededal, 

2013). Table 1.1.1 summarised the rigid monopile characteristics. 

Table 1.1.1 Rigid monopile characteristic  

Parameters Dimension of rigid monopile 

Depth in seabed (Lembedded) 18-30 m (5-6 times the diameter) 

Pile diameter (dpile) 5-6 m 

Slenderness ratio 

(Lembedded /dpile) 

4-6 

Elastic modulus of the soil 

(Es) 

1. <14 MPa (the transition from rigid to flexible pile 

behaviour occurs in the range from Es ≈ 14 MPa 

to Es ≈ 1121 MPa, this definition was followed 

the equation 4.8 < (
E𝑠L4

E𝑝Ip
) < 388.6  (Poulos and 

Hull, 1989, Leblanc et al., 2010b)) 

2. <100 MPa (in very stiff sand) (Doherty and 

Gavin, 2012) 

Pile wall thickness 0.05-0.07 m (Leblanc et al., 2010b)   

Material Steel (Klinkvort and Hededal, 2013) 

Rigidity parameter  

(Rrigidity) 

R𝑟𝑖𝑔𝑖𝑑𝑖𝑡𝑦 = (
E𝑝Ip

E𝑠
)0.25 (Poulos and Hull, 1989) 

 

For the uniform soil which is having constant stiffness parameters with depth, Poulos and 

Hull (1989) suggested that a pile behaves rigidly if the length is less than 1.48Rrigidity and 

behaves flexibly if the length exceeds 4.44Rrigidity. When the soil is a non-homogeneous 

soil where stiffness increases linearly with depth, form zero at the surface, this will be 

referred to as a “Gibson” soil. A pile behaves rigidly if the length is less than 1.1Rrigidity and 

behaves flexibly if the length exceeds 3.3Rrigidity (Poulos and Hull, 1989). In Figure 1.1.4, 
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the length normalised by the rigidity parameter (Lpile/Rrigidity) is plotted as a function of 

slenderness ratio (Lpile/dpile) for piles with a wall thickness of 0.05m where L is Lpile , R is 

Rrigidity and D is dpile. Figure 1.1.4 (a) indicates that the monopiles with slenderness ratios 

in the range 4-6, and installed in loose sand ( Es = 10 MPa) are very likely to exhibit rigid 

failure according to the relationships proposed by Poulos and Hull (1989). However, for 

very stiff sand with an Es value of 100 MPa, the failure mechanism is less certain (see 

Figure 1.1.4 (b)), with typical monopile geometries falling in the transition range between 

rigid and flexible behaviour. 

 

Figure 1.1.4 Pile failure mechanism for soils with (a) Es=10 MPa and (b) Es=100 MPa 

(Doherty and Gavin, 2012) 

 

Poulos and Hull (1989) indicated that the rigid case would happen when the Es < 10 MPa, 

however, Doherty and Gavin (2012) mentioned that the monopile behaviour tends toward 

the rigid case when the soil stiffness is significantly less than 100 MPa. On balance, the 

value of Es (10 MPa) mentioned by Poulos and Hull (1989) is also falling in the range Es < 

100 MPa proposed by Doherty and Gavin (2012). By observations from model tests of 

monopiles installed in dense sand subjected to lateral loads, Leblanc et al. (2010b) also 
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pointed out that for most sands encountered the monopile behaviour tended toward the 

rigid case when the soil stiffness was significantly less than 100 MPa. 

 

Figure 1.1.5. Typical excitation ranges of a modern offshore wind turbine (Leblanc, 

2009). 

 

Dynamic amplification and large excitation forces affect monopiles in a cumulatively 

unfavourable manner. Site-specific spectral densities for wind and waves can be derived 

from available measured data, met-ocean databases or numerical models. The excitation 

ranges, 1Ω and 3Ω, and the realistic normalised power spectra representing aerodynamic 

and hydrodynamic excitation are illustrated in Figure 1.1.5 (1Ω and 3Ω denote the 

frequency bands of the rotor rotation and the blade passing, typically in the range of 0.3 Hz 

and 1 Hz respectively.). So far, offshore wind turbines are designed with the first natural 

frequency, f1, in the range between 1Ω and 3Ω. In the wind industry sector this is referred 

to as a “soft-stiff” structure. However, it is possible to design a “soft-soft” structure with 

the first natural frequency below 1Ω, or a “stiff-stiff” structure with the first natural 

frequency above 3Ω. The choice of frequency range for f1 sets criteria for the stiffness of 

the foundation; in general, less steel is required for a soft structure. Also, a softer structure 

requires a smaller diameter of the tower and monopile body which reduce the 

hydrodynamic loads (Leblanc, 2009, Cui and Bhattacharya, 2015, Cuéllar, 2011, Arshad 

and O’Kelly, 2013). However, issues of fatigue or ultimate capacity may become the 

dominant design drivers (Leblanc, 2009). In addition, it is anticipated that each of these 

foundations will experience many millions of cycles of loading during their intended design 
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life of 25 to 30 years (Lombardi et al., 2013). Therefore, one of the biggest concerns with 

the design of monopiles is their behaviour under very large numbers of cycles of lateral 

and moment loads. 

 

 Monopile design guidelines API 

The design of a monopile relies on standards and empirical data originating from the 

offshore oil and gas sector. However, the loading of an OWT is very different, in both 

magnitude and character, from that of the oil and gas installations. The completed structure 

is subjected to a large number of cyclic, lateral and moment loads (due to both wind and 

wave loading) in addition to axial loads. Compared with the platform of the oil and gas 

sector, the type of cyclic loading is different from other forms of cyclic loading such as 

earthquake loading in terms of frequency, amplitude, and number of cycles. The cyclic 

loading occurs not only during extreme conditions but also during normal service 

conditions. This can lead to an accumulated rotation of the wind turbine tower, adversely 

affecting its ultimate strength or fatigue life. Therefore it is of great importance to 

investigate the effects of cyclic loading to monopile (Leblanc et al., 2010). The inadequacy 

of the current methodology for predicting the cyclic loading response of pile means that 

improved models, incorporating factors affecting the cyclic behaviour, must be developed. 

A series of recommended practices for OWT has been published through the American 

Petroleum Institute (API) under their Subcommittee on Offshore Structures (API, 1969, 

API, 2000, API, 2007). Several design and certification guidelines for offshore wind 

turbines have been developed. Most of them are based on the experience from offshore 

wind turbines installed in European coastal areas. Of these guidelines, Det Norske Veritas 

(DNV) also is the general design code for offshore wind turbine structures, but in practice 

much focused on bottom-fixed structures. In DNV, an installation tolerance is specified 

together with a tolerance for the total rotation owing to installation and permanent 

accumulated deformations. This is usually expressed as a requirement to the rotation or tilt 

of the pile at the pile head, where the pile head is defined as the position along the pile in 
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level with the seabed. If, for example, the tolerance for the total rotation at seabed is 0.5° 

and the installation tolerance at seabed is 0.25°, then the limit for the permanent 

accumulated rotation becomes 0.25° at seabed. 

The API is a leader in the development of petroleum and petrochemical equipment and 

operating standards. These standards represent more than 60 years of industry design 

experience. Many API standards have been incorporated into state and federal regulations 

and adopted by the International Organization for Standards (ISO) for worldwide 

acceptance. Originally, API developed by O'Neill and Murchison (1983) was based on the 

model of an elastically supported beam with non-linear springs for the lateral load-

deflection. The relationship between the lateral stress p and the lateral displacement y was 

then called the “p-y curve”. However, the development of p-y relationship relies to a high 

degree on empiricism, using data obtained primarily from two full-scale load tests reported 

by Cox et al. (1974). These tests were conducted using two slender piles, with diameter 

0.61 m and length 21 m. The piles were subjected to static and cyclic lateral load. To assess 

the validity of the method, systematic studies were conducted by Murchison and O’Neill 

(1984), which proved the method to be superior to other methods. However, the validity of 

the method relies on very few tests on relatively flexible driven steel piles subjected to 

cyclic loading. 

𝑝(𝑦) = 𝐴 𝑃𝑢(𝑧) 𝑡𝑎𝑛ℎ (
𝐾𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑧

𝐴 𝑃𝑢
𝑦)   

1.2.1 

For the API p-y formulation shown in equation 1.2.1, there are four important governing 

parameters: 

 Ultimate resistance Pu 

Ultimate resistance at a given depth is determined by the minimum of Pus (modified shear 

wedge failure) and Pud (modified block flow failure of the soil at deeper levels). The C 

coefficient can be chosen from Figure 1.2.1. 
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Figure 1.2.1. C coefficients and for API RP2A (API, 2007). 

 

𝑃𝑢 = 𝑚𝑖𝑛 (𝑃𝑢𝑠, 𝑃𝑢𝑑)   

1.2.2 

𝑃𝑢𝑠 = (𝐶1𝑧𝑑𝑒𝑝𝑡ℎ + 𝐶2𝑑𝑝𝑖𝑙𝑒)𝛾𝑧𝑑𝑒𝑝𝑡ℎ   

1.2.3 

𝑃𝑢𝑑 = 𝐶3𝑑𝑝𝑖𝑙𝑒𝛾𝑧𝑑𝑒𝑝𝑡ℎ   

1.2.4 

 Initial modulus of subgrade reaction Kmodulus 

The applied initial subgrade reaction modulus is obtained from Meyer and Reese (1979) 

and directly evaluated from Reese et al. (1974). The initial subgrade reaction modulus is 

defined from the theory of linear elasticity (Terzaghi, 1955). 

 The initial stiffness distribution with depth zdepth 
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zdepth is the distance to soil surface. The current p-y formulation assumes the initial stiffness 

to increase linearly with depth, however, as is well recognised for sand, and the response 

is governed by the isotropic stress level.  

 The representation of the strain level 

The effect of long-term cyclic loading of monopiles placed in sand is possible to be a 

critical design factor and the effect of change in load characteristics, sand parameters, and 

the number of load cycles have not been properly examined. Lateral and moment cycling 

increase pile head stiffness, independently of the relative density. This contrasts with the 

current degradation of API p-y curves to account for load cycling. The cyclic p-y envelope 

curves do not account for any cyclic load characteristics or number of cycles. Initial 

stiffness of the p-y curve is independent of the pile diameter dpile and increases linearly with 

depth zdepth. More consistent results are apparently obtained by making the initial stiffness 

less sensitive to depth in sands and more dependent on the pile diameter (Sørensen et al., 

2010). Doherty and Gavin (2012) found that for loads above 50 kN the API method would 

be expected to under predict the moment resistance of the pile as the lateral load resistance 

was significantly under estimated. 

API p-y formulation does not properly account for changes in strain levels in the soil as a 

result of diameter variations. Moreover, the formulation seems to provide a poor 

representation of the small strain stiffness variation with depth and the rate of stiffness 

degradation with increasing shear strain. API also assumes the pile to exhibit a Rankine-

type failure in determining 𝑃𝑈. This assumes that a frictionless interface exists between the 

pile and the soil (or that the pile is perfectly smooth), whereas in reality the pile will exhibit 

friction as the sand flows around the pile shaft (Doherty and Gavin, 2012).  Achmus and 

Abdel-Rahman (2005), Achums (2008) and Augustesen et al. (2010) had compared static 

lateral load-deflection predictions made for large monopiles in sands under monotonic 

loading by both finite element and p-y calculations, reporting that the standard API method 

might not be appropriate for assessing pile head deflections. 
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The rigid mode of failure gives rise to considerable doubts on the validity of applying the 

existing p-y curves (which were developed to match the response of flexible piles) used to 

predict the behaviour of offshore monopiles. API needs to be calibrated for rigid pile 

behaviour to determine the initial stiffness and ultimate capacity (Doherty and Gavin, 

2012), and this research will only focus on rigid pile. 

 

 Highlights on monopile research 

While large-diameter monopile foundations are able to withstand larger self-weight, higher 

cyclic horizontal loading and more harsh loading conditions, the applicability of the present 

methods is questioned by various researchers (Achmus et al., 2010, Leblanc et al., 2010a, 

Leblanc et al., 2010b, Lesny, 2010, Rasmussen et al., 2013). Moreover, there is generally 

a poor level of consideration given to the key aspects of the long-term behaviour of piles 

subjected to cyclic loading in current practice (for example, API and DNV). An improved 

design method is required that can be specifically used for the design of large-diameter 

monopiles.  

Bond and Jardine (1991) reviewed the problems of measuring local (radial and shear) 

stresses accurately on displacement pile shafts, demonstrating that very stiff cells that 

conform very closely with the pile surface are required to obtain meaningful information, 

particularly in stiff soils, while they also showed that reliable local stress measurements 

are critically important in testing alternative hypotheses regarding the effects of pile 

installation, equalization and (static or cyclic) load testing. It is very difficult to get the 

constitutive model of particles from site experiments. Zhu et al. (2009), Jardine et al. (2009) 

reinforced the same points. 

Klinkvort (2013) has summarised that the main limitation of the current design 

methodology for monopiles is that it uses a semi-empirical approach, based on testing on 

slender piles. Using a semi-empirical approach that is not calibrated to the given pile 
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behaviour should be avoided. The monopile foundation for offshore wind turbines tends to 

behave in a more rigid way. This is illustrated in Figure 1.3.1, showing a comparison 

between a rigid pile and a slender pile. It can be seen that a rigid pile tends to rotate around 

a rotation point and thereby generates soil pressure over the total length of the pile. A 

slender pile will not have a single rotation point, rather the pile deflects around multiple 

rotation points. The load is mainly taken by the upper layers and no deflection will develop 

at the pile toe. The effect of moving from a slender pile behaviour to a more rigid pile 

behaviour can change the response of the pile (Poulos and Hull, 1989). The main 

differences between the original test piles and the piles used today for wind turbines are; a) 

the diameter of the piles is 5-10 times larger, b) they behave in a rigid way and c) the ratio 

between moment and shear force is much larger. The main effects have to be investigated 

in order to verify that the current practice is valid also for rigid large diameter monopiles 

for offshore wind turbines.  

 

Figure 1.3.1. Rigid pile vs slender pile (Klinkvort, 2013). 

 

From the literature, the capacity of monopile, deformation and phenomenon of loading 

were analysed. The lateral design of the large-diameter monopile required for OWT is 

normally governed by the deformational behaviour rather than by the ultimate resistance. 

This is because the strict serviceability conditions for pile-head rotation and for the 
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structure’s inclination normally imply soil reactions well below the ultimate lateral 

resistance (Lesny, 2008).  

API currently assumed that the soil stiffness will not degrade with time. However, 

accumulation of displacement and change in stiffness of the soil-pile system are possible 

over time due to cyclic loading. The relation between the cyclic loading and its parameters, 

such as the number of load cycles and the load amplitude is not considered in the design 

standards (Rasmussen et al., 2013). Although the cyclic parameter A=0.9 is introduced, the 

applicability to the large diameters of the monopile is not confirmed yet. The consideration 

of a cyclic loading by the factor 0.9, independent of amplitude, number of cycles and soil 

conditions, seems to be oversimplified. An attempt was made to derive corrections to the 

initial stiffness of the API p-y curve by adding both a stress-level and a diameter correction 

(Kallehave et al., 2012). The predicted displacement patterns are sensitive to most 

parameters, including very small strain stiffness, rate of stiffness degradation, and 

anisotropy. A need for modification of particularly the small strain stiffness variation with 

depth and the rate of stiffness degradation with increasing shear strain is required to obtain 

a more accurate determination of the soil stiffness for large-diameter piles. 

Although some researches on large-diameter monopile foundation behaviour have been 

carried out using the FEM, this approach was not able to explain the micro mechanism. 

Therefore, it is important to understand the soil mechanism around monopiles.  

The impact of cyclic loading depends on the loads applied and the interactions between the 

soil, foundation and structure. During the cycle loading tests, there also are many influential 

factors, such as: the pile aspect ratio (Lpile/dpile), the pile-end soil conditions, the cyclic 

loading period, the soil stiffness, the responding accumulating displacements and the 

sequences in which different batches of cycles are applied. These factors will be the core 

parameters for the investigation in this research. Furthermore, there is an uncertain 

interdependence of the soil stiffness and the cycle number. For example, the long-term 

cyclic loading acting on the foundation may change the soil stiffness. However, this 

hypothesis will need to be verified by further research that targets longer data records. In 
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summary, the current design methodology is not capable of predicting either the effects of 

soil densification or the long-term movements of the monopile. 

In this project, software PFC-2D will be used to model a framework applied to explore 

how cyclic loading could impact on a typical large offshore wind turbine pile, considering 

realistic foundation conditions and pile shape in soil-structure analyses.  

 

 Motivation and aim of this project 

In the literature, there is an abundant number of experimental studies and macroscopic 

analytical models for soil-pile interactions, but seldom analyses of soil behaviour around 

the pile under cyclic lateral loading in the microscopic view. The core objective of this 

project is trying to use micromechanical research method to study the large scale problems, 

establish a connection between micromechanics and micro phenomenon. This research 

focuses on the investigating of the sand properties around the monopile when it is subjected 

to lateral cyclic loading. At the same time, it will gather detailed micromechanical 

information for a better understanding of the complex phenomena related to the pile-soil 

interaction. This will not only improve the current understanding of the behaviour of 

monopile under cyclic loading, it also assists the experimentalists to design better 

experiments in order to capture the appropriate information around the soil. 

The following are the detailed objectives of the project: 

1. To build a reliable numerical DEM soil model and sample which can be used for the 

cyclic loading test, and this model and sample can be compared to existing experiment 

results. 

2. To understand and explain the physical phenomena during the pile installation. 

3. To understand and explain the physical phenomena surrounding a pile when it is 

subjected to the lateral, vertical and combined loads. 
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4. To understand and explain the long term performance of wind farm foundations when 

subjected to a large number of loading cycles. 

4.1. What is the general trend of pile displacement due to cyclic lateral loading in the 

long term? 

4.2. What are the main factors that influence the generation of accumulated rotation 

and what is their relevance for the overall behaviour of the pile? 

4.3. What are the mechanical explanations of the main physical phenomena occurring 

in the surrounding sand in the long term? 

 

 Thesis outline 

The whole thesis is divided into seven chapters. Chapter 1 is the introduction that explains 

the background information from literature and the motivation of this project. This 

introduces the analysis of the limitations of the current design approach, the gap between 

the current major researches, and the open questions in the offshore wind farm field.  

In Chapter 2 the research methodology is mainly described and computational algorithms 

used in the DEM simulations are briefly introduced. This is followed by four chapters 

(Chapters 3-6) which report the results of the DEM simulations that have been performed 

during the PhD research programme. Each of these chapters includes a literature review of 

corresponding experimental work and/or DEM simulation work.  

Chapter 3 provides results of model and sample preparation. In both cases all the 

simulations were performed with the mean stress held constant. The effects of pile 

installation are reported in Chapter 4.  Chapters 5 and 6 present the monotonic loading and 

cyclic loading respectively. Finally, in Chapter 7, some conclusions on the work presented 

in this thesis are provided and further developments are suggested. 
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Chapter 2  

Research methodology 

 Experimental methods 

For the experimental research methods, there are several main methods such as: in situ tests, 

1-g tests and centrifuge tests. Experimental approaches for in-situ test interpretations 

include the construction of reconstituted deposits of sands or clays with varied setups, stress 

regimes, and histories. These include small experimental setups with optical measurements 

or radiography (e.g. Allersma (1988), large 1-g model calibration chambers (e.g., Schnaid 

and Houlsby (1992), or centrifuge deposits subjected to miniature in-situ testing in flight 

(e.g., Esquivel and Silva (2000). Field prototypes can also be built, instrumented, installed, 

and load tested for two levels of interpretation: (1) collection of in-situ test data and 

information and (2) direct measurement of the full-scale response, e.g., retrieval Imperial 

College test pile (Jardine et al., 1998). The experimental methods will be detailed and 

discussed in the following chapters, such as: Chapter 4, sections 4.2.1.1, 4.2.2.2 and 4.2.3.1. 

Below is given a brief description of the centrifuge tests which were carried out by 

Klinkvort (2013). Due to the detailed test procedures provided by him and the suitable 

dimensions of the model and pile, this centrifuge test was chosen to be modelled by using 

DEM in this research. 

In the centrifuge tests of Klinkvort (2013), the soil sample was placed in a centrifuge to 

ensure stress similarity. The centrifuge tests were all performed in drained dense 

homogeneous Fontainebleau sand with a relative density of approximately 90%, in order 

to model the North Sea offshore conditions. The rotation of the centrifuge introduces an 

increased gravitational force. The beam centrifuge facility was constructed at Danish 

Technological University (DTU) in 1976 (see Figure 2.1.1). The capacity of the beam 

centrifuge is approximately 100 g ton and is capable of providing an artificial gravitation 

of around 90g. The maximum arm or radius of the centrifuge is 2.63 m. The increase in 
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gravity (η) can be calculated from Newton’s second law of motion as η = Rω2/g. Where R 

is the radius to the point of interest, ω is the rotational frequency and g is the natural 

gravitational acceleration. The model closed-end monopile was placed in the soil container 

and a loading actuator was mounted on top of the soil barrel. The load setup allowed for 

in-flight installation and lateral loading with a high load eccentricity to simulate full-scale 

conditions better and because the initial observation reported by (Klinkvort et al., 2010, 

Klinkvort and Hededal, 2010) indicated that it was important to the modelling. 

 

Figure 2.1.1. Photograph of the geotechnical centrifuge at DTU under testing (Klinkvort, 

2013). 

 

The monopile was installed in-flight by a jack with a deformation controlled rate of 2 mm/s. 

The electrically powered jack has a capacity of 20 kN. The pile ready for installation is 

shown in Figure 2.1.2 (a). After monopile installation, the jack was removed and a beam 

had to be mounted for lateral loading. The fully equipped monopile, which was ready for 

lateral load testing is shown in Figure 2.1.2 (b).  
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    (a)                                         (b) 

Figure 2.1.2. (a), Photographs of the setup before installation; (b), Photo of the setup 

before laterally loading (Klinkvort, 2013). 

 

 

Figure 2.1.3. Sketch of centrifuge test setup (Klinkvort, 2013). 
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A sketch of the setup is shown in Figure 2.1.3. The strong box had a diameter of db = 500 

mm and the height of the sand sample was hz = 388 mm. The radius to the sand surface 

with this setup was 2.221 m and the diameter of the pile is 40 mm. The average grain size 

of the Fontainebleau sand is 0.18 mm, hence, dpile/d50 > 200. The main results from the 

centrifuge tests were all derived from this setup. 

 

 Numerical methods 

The most powerful way of modelling granular media is by numerical techniques. 

Numerical modelling has many advantages over the analytical models and the physical 

models. In numerical modelling, boundary conditions may be controlled precisely or even 

there can be no boundary by using a periodic cell, stresses and strains which may be 

measured over any volume within the sample. Any parameter may be varied while keeping 

the other parameters unchanged, any data are accessible at any stage of the test, and the 

same starting state can be used many times (Gong, 2008). 

The numerical simulation offers an insight into the fundamental behaviour of the system 

that is normally not available by means of experimental investigations. For instance, the 

stress-path followed by the soil elements surrounding the pile and the stiffness evolution 

along the pile’s embedded depth, are some of the key aspects that can be studied with a 

numerical model but are hardly traceable in model tests or in-situ conditions. From the 

preceding review of existing work, it seems clear that numerical models are a viable tool 

to model laterally loaded piles which allows features, such as pile/soil interface. So far, 

most researchers like to use Finite Element Method (FEM) and DEM (Cuéllar, 2011).  

The FEM is a useful tool in the analysis of boundary value problems for any continuous 

medium. It also is a convenient and reliable approach to account for the continuity of the 

soil mass and the nonlinearity of the soil-pile interactions. There are numerous problems 
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in solid mechanics where the FEM is the easy tool for the analysis. For example, in the area 

of plasticity, performing nonlinear analysis by means of analytical or semi analytical 

formulations are tedious, especially for complicated geometries such as a pile in layered 

soil. Such nonlinear analyses can be solved with the FEM to a much easier extent. Seismic 

loading problems can also be solved using the FEM. In continuum analysis, the soil 

surrounding the pile is treated as a three-dimensional continuum with assumptions made 

on its stress-strain behaviour or its constitutive relationships. It is also observed that the 

FEM model is capable of predicting the plastic shakedown response of the pile (Giannakos, 

Gerolymos, & Gazetas, 2012). Yang and Jeremić (2002) have showed results from a FEM 

study on the behaviour of a single pile in elastic-plastic soils. The analysis included single 

pile behaviour in sand, clay and layered soils. Based on the results presented, it is concluded 

that three-dimensional finite element analysis using very simple elastic-plastic soil models 

can predict the pile head deflection with very good accuracy. Mardfekri et al. (2013) 

studied using FEM to account for soil-pile interactions. The results indicate that for the 

special case considered here the p-y method provides a reasonable accuracy, in spite of its 

simplicity, in predicting the lateral defection of single piles. A simplified linear FEM 

analysis of piles is also investigated and the influence of accounting for the pile diameter 

in the simplified linear FEM model is evaluated. It is shown that modelling the pile as a 

line with beam-column elements results in a reduced contribution of the surrounding soil 

to the lateral stiffness of the pile and an increase of up to 200% in the predicted maximum 

lateral displacement of the pile head. Niemunis et al. (2004) proposed the High-Cycle 

Accumulation model and accumulation law for the prediction of long-term deformations 

of offshore wind power plant foundations calculated through FEM.  

Generally, FEM can handle a wide variety of engineering problems: Solid mechanics, 

Dynamics, Heat problems, Fluids and Electrostatic problems. However, the disadvantages 

also are obvious, because the most common numerical model FEM is inadequate to 

simulate grain migration and sand convection. The effect of long term loading on monopile 

cannot be found from the results of triaxial experiments nor numerical analysis with regular 

constitutive models. When using FEM to predict the trend of cyclic loading, strains are 
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determined for every load cycle in the load history. This can accumulate computational 

error when calculating strains for thousands of cycles and the process is time consuming. 

Hansen (2012) indicated that all strains in the soil were reversible when the numerical 

model was a poro-elastic model. This means that the soil is unable to attain any permanent 

deformation, hence features such as densification due to the cyclic shearing of the soil 

grains are omitted. With regard to the particles near the pile, their motion, densification 

and breakage will decide the influence of the long term loading. What is more, most FEM 

models did not contain any failure criteria, such as the commonly used Mohr-Coulomb 

failure criterion. The consequence is, that the FEM numerical model is unable to estimate 

the ultimate lateral resistance of the soil. 

 

 DEM 

The discrete element method was first developed by Cundall (1971) to study rock 

mechanics problems and was later extended to investigate granular materials by Cundall 

and Strack (1979a). Cundall and Hart (1992) defined the scope of the application of the 

DEM and summarized fundamental principles governing the modelling of discrete element 

systems. In their definition, the DEM permits the computation of the finite displacement 

and rotation of discrete bodies, including complete detachment, and automatically 

recognises the establishment of new contacts as the calculation progresses. The DEM is 

based on the use of an explicit numerical scheme in which the interaction of the particles 

is modelled contact by contact and the relative motion of the particles is modelled particle 

by particle. Therefore, the DEM makes it possible to analyse the mechanics of granular 

materials at both the micro and macro scale (Itasca, 2004). 

In the DEM, the interaction of the particles is treated as a dynamic process, whereby a state 

of equilibrium exists whenever the internal forces balance. The contact forces and 

displacements of a stressed assembly of particles are found by tracing the movements of 

the individual particles. Movements result from the propagation through the particle system 
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of disturbances caused by specified wall and/or particle motion, and body forces (Itasca, 

2004). The dynamic behaviour is represented numerically by a time-stepping algorithm in 

which it is assumed that the velocities and accelerations are constant within each time-step. 

The solution scheme is identical to that used by the explicit finite difference method for 

continuum analysis. DEM is based upon the idea that the time-step is so small that, during 

a single time-step, disturbances cannot propagate from any particle further than its 

immediate neighbours. Then, at all times, the forces acting on any particle are determined 

exclusively by their interaction with the particles with which they are in contact. 

The calculations in DEM are based on two laws: the application of Newton’s second law 

to the particles, and a force-displacement law at the contacts between the particles (see 

Figure 2.3.1). Newton’s second law is used to calculate the motion of each particle arising 

from the contact and body forces acting upon it. The force-displacement law is used to 

evaluate the contact force from the computed displacement, and then to update the contact 

forces arising from the relative motion determined at each contact point. 

 

Figure 2.3.1. Calculation cycle in PFC-2D 

 

Due to improving computer technology, DEM is becoming an important method in many 

scientific fields and is playing a greater role in industry. For instance, it is applied in the 

mining industry to simulate industrial particle flows (Cleary, 2000), in chemical 

engineering to simulate segregation phenomena in systems consisting of particles of 
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different sizes (Hoomans et al., 2000) and to study the fabric and structure of granular 

materials under loading, and for developing constitutive relations for soil using disks and 

spheres (Oner, 1984, Zhang and Cundall, 1986, Bathurst and Rothenburg, 1988). Recently 

DEM simulations are more and more used to solve selected real problems involving 

granular materials, especially in the geotechnical engineering field. This method involves 

a series of difficulties, which are related to the definition of the model itself and to the 

calibration of its micromechanical parameters (Calvetti, 2008).  

DEM is useful when looking into macro and micro scale problems. It becomes an 

extremely useful tool, if applied with wisdom, to identify the correct micromechanical 

behaviour, as it is clear that the future of soil mechanics lies in producing accurate 

constitutive models that have sound micromechanical bases. In contrast to continuum 

modelling, the DEM assumes that the soil mass is composed of discrete particles which 

can displace independently from one another and interact only at contact points (Cundall 

and Strack, 1979a). Considering the discrete nature of soils, DEM can conceptually provide 

better simulations of particulate behaviour at the microscopic scale than continuum models. 

Consequently, DEM has been used by many researchers to model both laboratory and field 

behaviour (e.g. Cundall (1989); Iwashita and Oda (1998);Cheng et al. (2003), O’Sullivan 

and Cui (2009), Cheng (2004)). 

The effect of long term loading on monopile cannot be found from the triaxial test and 

regular constitutive model. With regard to the particles near the pile, their motion, 

densification and breakage will decide the influence of the long term loading. That is why 

it is necessary to focus on the microscale discrete particles which cannot be modelled with 

FEM. With the development of modern computers, the numerical particle model can be 

used to simulate the whole process. Some characteristics of the constitutive model will 

appear from the numerical model automatically. Consequently, DEM is proved to be an 

efficient tool in simulating the complicated problems of granular flow and solid mechanics. 

DEM analysis has been shown to accurately simulate observed soil behaviour (e.g. 

Thornton (2000), Cui and O’Sullivan (2006), Zhao and Evans (2009), O’Sullivan (2011b), 
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Cheng et al. (2004)). O’Sullivan (2011a) found that the application of DEM was increasing 

within the geomechanics research community in the past and these literature studies could 

be broadly classified as 

 Documentations of DEM algorithm modifications;  

 Validation of DEM models;  

 Calibration of DEM models;  

 Analyses of the relationship between microscale mechanics and the macroscale 

material response;  

 Development of interpretation techniques;  

 Simulations of element tests;   

 Simulations of field-scale boundary value problems. 

 

 PFC-2D 

The most common DEM simulation software used in the previous listed literature is the 

PFC-2D which is developed by ITASCA consulting group. As a particle-flow model, PFC-

2D is used to simulate the mechanical behaviour of a system consisting of finite distinct 

particles. In this system, all individual particles displace independently from each other and 

only interact at the contacting point between two particles. Two basic terms describing the 

mechanical behaviour of this system are the particle movement and inter-particle force 

acting at the contacting point and the relationship between these two terms is based on 

Newton’s law of motion. Initially, the default shape of the single particle is circular. 

However, as for other complex behaviour, particles can be bonded together to arbitrary 

shapes. It should be noted that the particle-flow model provided in PFC-2D is based on 

some basic assumptions, which are (Itasca, 2004): 

1. All particles are treated as rigid bodies. 

2. The contacts occur over a quite small area, such as at a contacting point. 
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3. A soft-contact approach is used to the behaviour at the contacts, and this allows rigid 

particles to overlap one another at contact points. 

4. The magnitude of the overlap is related more to the contact force rather than the particle 

size. 

5. Bonds can exist at contacts between particles. 

6. All initial particles are circular, but any super-particles with arbitrary shape can be 

created by the clump logic. 

A contact-stiffness model is usually used to reflect the elastic relationship between the 

contact force and relative displacement for any two touching entities (may be particle-

particle or particle-wall) in normal (kn) and shear (ks) direction. PFC-2D provides two 

stiffness models: a linear model and a simplified Hertz-Mindlin model. In the linear model, 

the forces and relative displacements are linearly related by the constant contact stiffness, 

which is a function of the intrinsic stiffnesses of the two contacting entities. In the 

simplified Hertz-Mindlin model, the forces and relative displacements are nonlinearly 

related by the non-constant contact stiffness, which is a function of the geometric and 

material properties of the two contacting entities as well as the current value of the normal 

force. It is noted only the linear model is used in this study. 

The linear model is the default one and it is generally adequate for most cases. This model 

shows the linear relationship between the contact force and the relative displacement, and 

it resulted from the intrinsic contact stiffness between any two touching entities. It is noted 

that the contact stiffness between contacting entities is not defined by users, but is 

computed by the particle stiffness kn and ks. By assuming that the stiffness of any two 

touching entities act in series, the contact normal secant (kn) and shear tangent (ks) stiffness 

is expressed by: 

𝑘𝑛 =
𝑘𝑛

(𝐴)𝑘𝑛
(𝐵)

𝑘𝑛
(𝐴) + 𝑘𝑛

(𝐵)
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2.4.1 

𝑘𝑠 =
𝑘𝑠

(𝐴)𝑘𝑠
(𝐵)

𝑘𝑠
(𝐴) + 𝑘𝑠

(𝐵)
   

2.4.2 

where the superscripts (A) and (B) denote the two entities in contact. 

𝐸 =
𝑘𝑛

2(1)
   

2.4.3 

where the E is the Young’s modulus of assembly. 

 

 Micromechanical study using DEM 

2.5.1 Measurement circle  

Various parameters within a PFC-2D model can be measured over a given circular area. 

The location and size of the measurement circle are specified by the user. 

Measurement circles can be defined to measure stress, porosity and coordination number.  

 

2.5.2 Stress 

The stress tensor is calculated in a PFC-2D model within a measurement circle. This stress 

is the average stress, taking into account the area of all balls with centroids within the circle. 

It is not a point measure as in continuum analyses. The procedure used to calculate stress 

accounts for the effect of porosity. 



52 

 

Stress is a continuum quantity and therefore does not exist at each point in a particle 

assembly, because the medium is discrete. In the discrete PFC-2D model, contact forces 

and particle displacements are computed. These quantities are useful when studying the 

material behaviour on a micro-scale, but they cannot be transferred directly to a continuum 

model. Averaging procedures are necessary to make the step from the micro-scale to a 

continuum. The stress computation procedure relates the two in-plane force components of 

all contact and parallel-bond forces acting on each particle whose centroid lies within the 

measurement circle to a force per-unit-length of particle boundary, which must then be 

divided by a thickness value in order to obtain a stress quantity.  

The average stress tensor 𝜎𝑖𝑗 in a volume V of material, is defined by 

𝜎𝑖𝑗 =
1

𝑉
∫ 𝜎𝑖𝑗

 

𝑉

𝑑𝑉  

2.5.1 

where 𝜎𝑖𝑗  is the stress tensor acting throughout the volume. For a particulate material, 

stresses exist only in the particles; thus, the integral can be replaced by a sum over the 𝑁𝑝 

particles contained within V as 

𝜎𝑖𝑗 =
1

𝑉
∑ 𝜎𝑖𝑗

(𝑝)

𝑁𝑝

 𝑉(𝑝) 

2.5.2 

where 𝜎𝑖𝑗
(𝑝) is the average stress tensor in particle (p). In the same way, the average stress 

tensor in a particle (p) can be written using Eq. 2.5.2 as 

𝜎𝑖𝑗
(𝑝) =

1

𝑉(𝑝)
∫ 𝜎𝑖𝑗

(𝑝)

 

𝑉(𝑝)

𝑑𝑉(𝑝)  
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2.5.3 

The identity  

𝑆𝑖𝑗 = 𝛿𝑖𝑘𝑆𝑘𝑗 = 𝑥𝑖,𝑘𝜎𝑖𝑗𝑆𝑘𝑗 = (𝑥𝑖𝑆𝑘𝑗),𝑘 − 𝑥𝑖𝑆𝑘𝑗  

2.5.4 

holds for any tensor 𝑆𝑖𝑗 , where the notation [,i ] denotes differentiation with respect to the 

coordinate xi . Applying this identity to the stress in a particle, one can write 

𝜎𝑖𝑗
(𝑝) =

1

𝑉(𝑝)
∫ [(𝑥𝑖𝜎𝑘𝑗

(𝑝)),𝑘 − 𝑥𝑖𝜎𝑘𝑗,𝑘
(𝑝))]𝑑𝑉(𝑝)

 

𝑉(𝑝)

  

2.5.5 

The stresses in each particle are assumed to be continuous and in equilibrium. In the 

absence of body forces, the equilibrium condition is 𝜎𝑖𝑗,𝑖 = 0. The volume integral in Eq. 

2.5.5 is rewritten as a surface integral by applying the Gauss divergence theorem to the 

first term and noting that the second term vanishes in the absence of body forces such that 

𝜎𝑖𝑗
(𝑝) =

1

𝑉(𝑝)
∫(𝑥𝑖𝜎𝑘𝑗

(𝑝))𝑛𝑘𝑑𝑆(𝑝)

 

𝑆(𝑝)

 =
1

𝑉(𝑝)
∫ 𝑥𝑖𝑡𝑗

(𝑝)

 

𝑆(𝑝)

𝑑𝑆(𝑝)  

2.5.6 

where 𝑆(𝑝) is the particle surface; 𝑛𝑘 is the unit outward normal to the surface; and 𝑡𝑗
(𝑝) is 

the traction vector. Since each particle is loaded by point forces acting at discrete contact 

locations, the above integral can be replaced by a sum over the 𝑁𝑐 contacts as 

𝜎𝑖𝑗
(𝑝) = −

1

𝑉(𝑝)
∑ 𝑥𝑖

(𝑐)𝐹𝑗
(𝑐)

𝑁𝑐

 

2.5.7 
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where 𝑥𝑖
(𝑐) and 𝐹𝑗

(𝑐)
 are the location and force, respectively, acting at contact (c). These 

forces include both forces resulting from contact at a point and parallel-bond forces.  

The contact location can be rewritten as 

𝑥𝑖
(𝑐) = 𝑥𝑖

(𝑝) + |𝑥𝑖
(𝑐) − 𝑥𝑖

(𝑝)|𝑛𝑖
(𝑐,𝑝)  

2.5.8 

where 𝑥𝑖
(𝑝)is the location of the particle centroid; and 𝑛𝑖

(𝑐,𝑝)  is the unit-normal vector 

directed from the particle centroid to the contact location and is a function of both the 

contact and the particle. 

By substituting Eq. 2.5.8 into Eq. 2.5.7 and noting that 

∑ 𝐹𝑗
(𝑐)

𝑁𝑝

≡ 0 

2.5.9 

for a particle in equilibrium, one obtains: 

𝜎𝑖𝑗
(𝑝) = −

1

𝑉(𝑝)
∑|𝑥𝑖

(𝑐) − 𝑥𝑖
(𝑝)|𝑛𝑖

(𝑐,𝑝)𝐹𝑖
(𝑐)

𝑁𝑝

  

2.5.10 

Note that this tensor is available for each particle. 

The average stress tensor within a volume V of material could now be computed by 

applying Eqs. 2.5.2 and 2.5.10 to all of the particles within V. A difficulty in interpretation 

arises, however, when applying this procedure to the particles within the area defined by a 

measurement circle, since many of the particles will intersect the measurement circle. In 

PFC-2D, only the particles with centroids that are contained within the measurement circle 
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are considered in the computation of the average stress tensor. In order to account for the 

additional area of particles that is being neglected, a correction factor based on the porosity, 

is applied to the computed value of stress. The correction factor and the final expression 

used to compute the average stress tensor are derived in the following analysis. 

The correction factor is determined by assuming that a uniform stress field 𝜎0 exists within 

the measurement circle, and writing two separate expressions for the average stress. The 

correct expression for the average stress 𝜎, within a measurement circle of volume 𝑉𝑚, is 

given by  

𝜎 =
1

𝑉𝑚
∑ 𝜎(𝑝)𝑉(𝑝)

𝑁𝑝

 =
1

𝑉𝑚
𝜎(𝑝) ∑ 𝑉(𝑝)

𝑁𝑝

= 𝜎0 (
∑ 𝑉(𝑝)

𝑉𝑚
) = 𝜎0(1 − 𝑛) 

2.5.11 

where the summation applies to all particles and portions of particles contained within 𝑉𝑚, 

and n is the porosity within 𝑉𝑚 (assuming that the particles are disks of unit-thickness). An 

alternate incorrect expression for the average stress �̃� is given by 

�̃� =
1

𝑉𝑚
∑ 𝜎(𝑝)𝑉(𝑝)

𝑁𝑝

 = 𝜎0 (
∑ 𝑉(𝑝)

𝑁𝑝

𝑉𝑚
) 

2.5.12 

where the volume summation is only takes over the 𝑁𝑝  balls with centroids contained 

within the measurement circle. The relation between the two alternate stress expressions is 

given by 

 
𝜎

�̃�
= (

1 − 𝑛

∑ 𝑉(𝑝)
𝑁𝑝

) 𝑉𝑚 

2.5.13 
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The final corrected expression for the average stress within the measurement circle is found 

by eliminating �̃� , using Eq. 2.5.12, to obtain 

𝜎 = (
1 − 𝑛

∑ 𝑉(𝑝)
𝑁𝑝

) ∑ 𝜎(𝑝)𝑉(𝑝)

𝑁𝑝

 

2.5.14 

The final expression used in PFC-2D to compute the average stress tensor within a 

measurement circle is found by substituting Eq. 2.5.10 into Eq. 2.5.14 to obtain 

𝜎𝑖𝑗 = − (
1 − 𝑛

∑ 𝑉(𝑝)
𝑁𝑝

) ∑ ∑|𝑥𝑖
(𝑐) − 𝑥𝑖

(𝑝)|𝑛𝑖
(𝑐,𝑝)𝐹𝑗

(𝑐)

𝑁𝑐𝑁𝑝

  

2.5.15 

where the summations take over the 𝑁𝑝  balls with centroids contained within the 

measurement circle and the 𝑁𝑐 contacts of these balls;  

n is the porosity within the measurement circle; 

𝑉(𝑝) is the volume of particle (p), taken equal to the area of particle (p) times a unit-

thickness; 

𝑥𝑖
(𝑝) and 𝑥𝑖

(𝑐) are the locations of a particle centroid and its contact, respectively;  

𝑛𝑖
(𝑐,𝑝) is the unit normal vector directed from a particle centroid to its contact location; and  

𝐹𝑗
(𝑐)

 is the force acting at contact (c) arising from both particle contact and parallel bonds. 
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2.5.3 Porosity 

The porosity is the ratio of the area of the voids between balls within a given region of a 

model to the total area of that region. The porosity is related to the compacted state of the 

model (e.g., a low porosity implies dense packing). The porosity can be measured in a 

model with a measurement circle. The overlap between balls is accounted for in the 

porosity calculation. 

The porosity n is defined as the ratio of total void area within the measurement circle to 

measurement circle area: 

𝑛 =
𝐴𝑣𝑜𝑖𝑑

𝐴𝑐𝑖𝑟𝑐𝑙𝑒
=

𝐴𝑐𝑖𝑟𝑐𝑙𝑒 − 𝐴𝑏𝑎𝑙𝑙

𝐴𝑐𝑖𝑟𝑐𝑙𝑒
= 1 −

𝐴𝑏𝑎𝑙𝑙

𝐴𝑐𝑖𝑟𝑐𝑙𝑒
  

2.5.16 

where 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 and 𝐴𝑣𝑜𝑖𝑑 are the area of the measurement circle and the voids, and 𝐴𝑏𝑎𝑙𝑙 is 

the area of the measurement circle occupied by the balls. 𝐴𝑏𝑎𝑙𝑙 is computed by 

𝐴𝑏𝑎𝑙𝑙 = ∑(𝐴(𝑝)) − 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑁𝑝

  

2.5.17 

where 𝑁𝑝 is the number of particles that intersect the measurement circle; 𝐴(𝑝) is the area 

of particle (p) contained within the measurement circle, and 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the area of particle 

overlap contained within the measurement circle. Note that both partial areas of particles 

that intersect the measurement circle and particle overlaps arising from compressive 

contact forces are accounted for in this computation. 
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2.5.4 Coordination number 

The coordination number is the average number of contacts per ball for balls with centroids 

that fall within a measurement circle. 

The coordination number 𝐶𝑛  is defined as the average number of contacts per particle. 

Only particles with centroids that are contained within the measurement circle are 

considered in the computation 

𝐶𝑛 =
∑ 𝑛𝑐

(𝑏)
𝑁𝑏

𝑁𝑏
  

2.5.18 

where 𝑁𝑏 is the number of balls with centroids that are contained within the measurement 

circle, and 𝑛𝑐
(𝑏) is the number of contacts of ball (b). Note that some contacts are counted 

twice and others once (if one ball of the pair lies outside of the measurement circle). 

 

2.5.5 Contact force 

Each contact-force vector can be resolved into normal and shear components with respect 

to the contact plane. Normal contact forces act normal to the contact plane, while shear 

contact forces act in the contact plane. Positive normal contact forces indicate compression; 

negative normal contact forces indicate tension. 

 

 Summary 

From a large amount of literature on the DEM simulations, it is recognised that DEM has 

been successfully applied to various geotechnical problems. The basic concepts and general 

mathematical backgrounds of PFC-2D have been presented in this chapter. DEM is a 
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powerful tool for fundamental research on the behaviour of granular materials. The main 

disadvantage of DEM simulation is the enormous computational expense, since a very 

small timestep of simulation must be used to ensure the numerical stability and accuracy. 

Many particles are required to guarantee the sufficient number of contacts. It enables the 

investigation of the particle properties which cannot be obtained using continuum 

mechanics, such as interparticle friction, contact forces distribution, as well as coordination 

numbers. The circular shape particles tend to roll excessively and then lead to a lower 

strength of the assembly, so clump of complex particle shape and restraining the rotation 

of circular particles have been developed to solve this problem.  

3D simulation is more realistic, and spherical shaped particles are not close to the realistic 

situation. There is also no rolling resistance applied to the particle contacts. PFC-2D was 

chosen in this research, the main reason was the computational time. Compared with 3D, 

2D can allow a bigger model size if the tests use the same particle size. This design will 

reduce the computer calculation time, particles size effects and boundary effects.  

DEM simulation was built as a replica of a centrifuge experiment. The determination of 

particle parameters (particle shape, particle rotation and friction coefficient) in the DEM 

were important for modelling the behaviour of granular materials. Hence, a series of indices 

were used to validate that the sample was homogenous and realistic. In reality, the friction 

angle of a soil is related more to particle shape than inter-particle friction. So, the friction 

values of DEM chosen were very high. Since there is no rolling resistance applied to the 

particle contacts. Hence, the high friction will help to model the rolling resistance. The 

DEM centrifuge model results, were verified by comparing the p-y curves in the DEM 

model and those on the centrifuge tests. 
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Chapter 3  

DEM model preparation 

 Introduction 

Normally the behaviour of natural soils is complex and hard to characterise adequately by 

conventional non-linear elastic models or elasto-plastic models. However, micro-

mechanics can gain some insights into the behaviour of soils. This chapter presents a 

modified particle generation method, named as the Grid Method (GM), capable of 

generating homogeneous specimens for model scale centrifuge studies using the DEM. The 

DEM specimens were temporarily divided into grids so that soil particles could be created 

in batches into a smaller area. Using the specimen, a 2D DEM-centrifuge model was 

prepared by applying an increased gravity condition, which was then used to study the 

monotonic loading behaviour of a rigid monopile. This formed the DEM-centrifuge model, 

and it was found that the GM was efficient in preparing the dense samples because it 

reduced the overall sample preparation time and managed to generate more homogeneous 

specimens. 

 

 Literature review 

Previously, two main approaches were used to study particle micromechanics. The first 

one uses laboratory experiments on natural sands or rods to observe the evolutions  in the 

contact distribution within the specimen (Drescher and de Josselin de Jong, 1972, Oda, 

1972). There has been a wide range of non-destructive methods that allow the 

microstructures of soils to be observed and a detailed review was found in Oda and Iwashita 

(1999). These methods include the use of nuclear magnetic resonance imaging (MRI), 

laser-aided tomography, X-ray tomography, photoelastic assemblies and even acoustic 

emission. For example, the use of X-ray scanning of computed tomography (CT) (Alfaro 
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and Wong, 2001, Desrues et al., 1996) allows internal fabric and localised patterns of 

deformation of a soil specimen to be observed. Optical microscope (OM) (Oda and Kazama, 

1998), scanning electron microscope (SEM)(Bowman et al., 2001), and even 

environmental scanning electron microscope (ESEM) (Mao and Fahey, 1999, Bolton and 

Cheng, 2001), can be used to identify and study micro-structure or its change. In particular, 

directional voids ratio or pore size distribution function and particle shape orientation. can 

be obtained from SEM analysis. However, the use of a microscope with non-destructive 

loading tests is not easily achieved and is incapable of prepairing exact replicates of the 

physical system (Jiang et al., 2003, Cheng, 2004). 

The second approach is using the numerical method, such as FEM and DEM. Soil 

mechanics have been described based mainly on the continuum approach (FEM) in the past. 

It is only recently that the idea of investigating the micro-structure of soil element was seen 

as important (Oda and Iwashita, 1999, Thornton and Antony, 2000, Thornton, 2000). One 

of the reasons for computing the micro-structure of soil behaviour is to complement the 

conventional method in describing soil behaviour. The main problem of modelling based 

on continuum approaches is parameters that have to be defined and evaluated. These 

parameters are obtained from a curve-fitting process, and sometimes have no clear physical 

meaning. Modelling using DEM, on the other hand, gives a more realistic way of 

reproducing the behaviour of granular soils based on a few micro-mechanical parameters 

(Cheng, 2004). Four different techniques are available for specimen generation: (1) Fixed 

Point Method; (2) Expansion Method; (3) Isotropic compression Method; (4) Multi-layer 

with under compaction method (UCM). Method (1) is a simple method generally used to 

validate DEM codes. Methods (2) and (3) generate essentially dense and loose specimens. 

The last method (4)’s objective was to generate homogeneous DEM specimens for a variety 

of density conditions ranging from very loose to dense states. 
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3.2.1 Fixed point method 

Particle and contact data are obtained from two approaches: (a) Visual observations and 

laboratory testing (photos, density, normal stiffness), and (b) Theoretically derived data for 

regularly-packed ideal cases, such as simple cubic systems. Method (a) was used by some 

researchers (Katsuki et al., 1989), especially in the primary stage of DEM development to 

compare simulated DEM results with experimental observations. Method (b) is often used 

to verify theories and/or DEM codes (2D or 3D). 

 

3.2.2 Expansion method 

When a particle is randomly positioned, a new particle will not be placed if it would overlap 

another particle or a wall. If a particle overlap occurs, the position of the particle will be 

changed slightly to meet the requirement (Itasca, 2004). Furthermore, if after several 

position changes, the requirement is still not satisfied, the particle will be removed. This 

method needs, therefore, a rather large area to form the specimen with the desired number 

of particles. If the initial area is too small, a specimen of a pre-established size cannot be 

formed. If the initial area is too large, i.e. initial computation area is too large, computation 

efficiency will become low with the current techniques used in DEM. To overcome this 

limitation, the expansion method was proposed by a few researchers (Rothenburg and 

Bathurst, 1992). All particles with reduced radii are randomly positioned in a specific area, 

which is very close to actual desired specimen size, and no overlap/contact force is 

developed between any two particles. After all particles are positioned, the radii of all 

particles are restored gradually while the consolidation pressure is kept constant on 

boundaries. The overlap/contact force developed between any two particles during the 

growth process allows particles to move in order to turn the liquid-like specimen into a 

dense specimen. The rigid (or flexible) boundaries are allowed to move accordingly so that 

a stress state is achieved at equilibrium. Once the desired radii are restored, interparticle 

friction coefficients are reset to their normal values. Because the interparticle friction 



63 

 

coefficient is low during particle placement, the expansion method also produces dense 

specimen. The expansion method was shown in reference Rothenburg and Bathurst (1992) 

for planar elliptical particles. 

 

3.2.3 Isotropic-compression method 

First introduced by Cundall and Strack (1979b), Cundall and Strack (1979a), it has been 

used to generate dense specimens in DEM studies. In this method, 

(1) All particles are randomly positioned in a large area (volume) in such a manner that no 

overlap/ contact force is developed between any two particles. 

(2) The interparticle friction coefficient is set to very small values so that interparticle 

sliding is permitted resulting in a dense packing of the particles. Boundary walls are then 

moved inward, or a consolidation pressure is applied on the boundaries. This, in turn, 

allows particles to move so that the liquid-like particle assembly can be compacted into an 

even denser state. The process continues until a target void ratio or stress state is achieved 

at equilibrium. 

(3) The interparticle friction coefficient is then reset to representative values in order to 

carry out the numerical simulation under any given loading conditions. 

While this method is very effective in generating dense specimens, uniformity due to 

boundary effects may not be achieved. This may even be worse for loose to medium- dense 

specimens. Furthermore, equilibrium can only be attained with pressure boundaries when 

the specimen reaches a dense state. Thornton (2000) and Masson and Martinez (2001) 

modified slightly the isotropic compression method in order to generate a loose specimen 

by setting the interparticle/wall-particle friction coefficient to their normal values. 

However, the effect of their modification on specimen uniformity was not discussed in 

their papers, but some arching effect could explain the presence of large pores in the central 
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part of the specimen. This arching effect was maintained even as walls continued to move 

inward to compress the specimen. 

 

3.2.4 Multi-layer with under compaction method (UCM) 

Jiang et al. (2003) described the multi-layer with under compaction Method (UCM). Its 

objective was to generate homogeneous DEM specimens for a variety of density conditions 

ranging from very loose to dense states. Particles are divided evenly to form several layers 

and compacted layer by layer. When compacting the nth layer, all n layers are compacted 

to a state looser than the final target value in order to reduce the effect of compaction energy 

transferred from compaction of successive layers. Under compaction, criteria based on 

average planar void ratio were proposed to achieve uniformity of specimens.  

 

3.2.5 Summary 

For larger scale soil-structure interaction problems, current DEM techniques used for 

generating specimens hardly result in homogeneous and realistic specimens. UCM is useful 

for the element test, because the element sample is small, but there still are some uncertain 

factors for the large scale test. Hence, a modified particle generation method, referred to as 

the GM, is proposed here to generate a homogeneous and realistic specimen for DEM study. 

The detailed introduction will be in the following parts. 

 



65 

 

 The proposed GM method 

3.3.1 Modelling of soil properties 

Centrifuge physical modelling is a widespread technique in the geotechnical field. It makes 

it possible to reproduce in situ stresses in a small-scale model. The main objective of the 

centrifuge tests is to study the stability of piles in sands and clays subject to a large variety 

of cyclic loading histories. Centrifuge testing has proved its efficiency in conducting 

extensive series of tests, as it allows a large range of parameters to be varied while keeping 

associated costs relatively low, when compared to in situ testing.  

For the centrifuge DEM model, sample preparation is important. Current DEM techniques 

used for generating specimens hardly result in homogeneous and realistic specimens. 

Hence, a modified particle generation method, referred to as the GM, is proposed here to 

generate a homogeneous and realistic specimen for DEM study. In contrast to the UCM 

method of Jiang et al. (2003), this proposed technique does not need compaction, as 

compaction potentially induces energy transfer from the upper layers to the underlying 

layers affecting the sample’s homogeneity. In addition, the UCM could not guarantee 

homogeneity within an individual layer. In order to make a specimen more homogeneous 

and to reduce the effort of energy transfer through successive layers, the GM based on the 

explosive method is used in this paper. During the process of GM specimen generation 

without gravity, the PFC model kept cycling until the whole system reached the equilibrium 

state. Then, the specific gravity was given to the existing particles. The PFC model was 

cycled until the equilibrium was achieved again. The final static equilibrium state was only 

induced by the designated 100g self-weight of the particles.  

The scaling laws for centrifuge modelling were presented by Schofield (1980) (see Table 

3.3.1). In this paper all centrifuge tests were conducted at 100 g. All DEM analyses in this 

investigation were performed using the GM DEM-centrifuge method under 100 g.  
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Table 3.3.1 Centrifuge Scaling Laws (Schofield, 1980, Thorel, 2013). 

Parameter Scaling factor 

(Model/Prototype) 

Acceleration (m/s2) Ns 

Force (N) 1/Ns
2 

Stress (N/m2) 1 

Strain 1 

Rotation 1 

Frequency Ns 

Displacement (m) 1/Ns 

Length (m) 1/Ns 

Density 1 

Mass 1/Ns
 3 

Energy 1/Ns
 3 

Time (dynamic) 1/Ns 

Pressure 1 

Bending stiffness 1/Ns
 4 

 

Table 3.3.2 shows the model parameters used in the numerical model. According to the 

PFC-2D manual, the quantitative value of sand normal stiffness is twice its Young’ 

modulus Ep. The determination of the parameters is a trial and error process. The criteria 

used to assess the choice of parameters are the constant, reasonable K0, and realistic vertical 

stress distribution. The material modelled is composed of disks with a maximum diameter 

of 9.0 mm, a minimum diameter of 6.0 mm, an average grain diameter d50=5.85 mm and 

uniformity coefficient Cu = d60/d10 = 1.26 (see Figure 3.3.3). 
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Table 3.3.2 Input parameters for DEM simulations. 

Density of sand particles (kg/m3)  2650 

Density of pile particles (kg/m3)  500 

Particle diameters, d (mm)  Figure 3.3.3 

Sand grain size, d50 (mm)  5.85 

Friction coefficient of the particles μ(-)  0.5 

Sand Young’s Modulus, Ep(Pa)  4e7 

Normal stiffness of particles, kn (N/m)  8e7 

Particle, wall stiffness ratio (ks/kn)  0.25 

Normal stiffness of walls, kn (N/m)  6e12 

Initial average porosity  0.25 

Final average porosity  (after add gravity) 0.185 

Bulk unit weight ɣ bulk (kN/m3)  2115.3 

 

 

Figure 3.3.1. A typical particle assembly at equilibrium before pile installation. 

 



68 

 

3.3.2 The procedure of “GM” and initial stress state 

At the beginning of GM, the planned area of sample was divided into 36 grids (see Figure 

3.3.2 (a)), and there were 6 layers and 6 columns in this region. Each grid was square, and 

each side was of 100 mm in length. The first grid, which was named GM11, was at the 

bottom-left of the model. “GM” is the abbreviation of grids method, then first number of 

“11” means the number of layers, the second number stands for the number of columns. 

Figure 3.3.2 (b) shows the locations of the measurement circles (radius md = 50 mm) 

defined by the PFC intrinsic functions. These measurement circles were used to interpret 

the localized information within each grid. In the following simulations, 5 locations 

(location 1-5 of the Figure 3.3.2 (b)) were picked to compare the final results. 

  
                                  (a)                                                            (b) 

Figure 3.3.2.Schematic view of grid method and the overall dimension (length and 

height) of PFC model. 
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Figure 3.3.3.Distribution of grain sizes in DEM analyses. 

 

Since the proposed GM uses the explosive method for particle generation, particles are 

created at their final radii in specific numbers Nparticle to achieve the desired porosity and 

the number of every type size (20 types followed size distribution Figure 3.3.3) are 

calculated in advance. The following equations 3.3.1-3.3.4 will be used for the calculation 

of initial porosity and particle number in every grid. Am is the area of model, 𝐴𝑃
𝑖
and  𝑁(𝑖) 

is the total particles area of the same specific diameter 𝑟(𝑖)  and the quantity of 

corresponding diameter particles. Regarding the size distribution, there are 20 types of 

particles and every type is 𝑃(𝑖) = 5% proportion of total particles, therefore,  𝑁(𝑖) is the 

same quantitative value for all the types of particles. This calculation procedure can be 

done by the EXCEL. 

𝑁(𝑖) = 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑃(𝑖)    

3.3.1 

𝐴𝑃
𝑖 = 𝑁(𝑖)𝑟(𝑖)

2𝜋    

3.3.2 
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𝐴𝑃 = 𝐴𝑃
1 + 𝐴𝑃

1 + ⋯ + 𝐴𝑃
𝑖     

3.3.3 

𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝐴𝑃

𝐴𝑚
    

3.3.4 

The particles inside each grid were created by PFC code “ball” not “generate”. The codes 

“x” and “y” were used to control the range which should exist in the corresponding grid 

area. Then the particles were given properties as shown in Table 3.3.2 and the number of 

particles in every grid is 280.  In every grid, the sample followed the size distribution (see 

Figure 3.3.3) and initial porosity of 0.25. All particles within each grid were added the 

designated gravity 100g when the initial average porosity was reached. Then the model 

was cycled to equilibrium. The material modelled is composed of disks with a maximum 

diameter of 9.0 mm, a minimum diameter of 6.0 mm, an average grain diameter d50=5.85 

mm and uniformity coefficient Cu = d60/d10 = 1.26. 

Figure 3.3.4 shows the sequence when the particles were created. Rigid walls were used to 

simulate the model’s permanent boundary and the grid’s temporary boundary (see Figure 

3.3.4 (a)). After the generation of GM11 (see Figure 3.3.4 (b)), it moved to GM12 (see 

Figure 3.3.4 (c)). When finished with this layer generation, the vertical walls located in the 

middle of every two grids was going to be deleted. Then the existing sample needed to 

cycle until equilibrium again (see Figure 3.3.4(d)). The particles of the entire layer would 

be generated by this technique. 

When finished the entire layer generation, a certain thin depth (9 mm) of particles on the 

top of this layer were fixed (the green colour in Figure 3.3.4 (e)). Then the generation 

procedure moved to the next upper layer (see Figure 3.3.4 (e)). As the previous layer, from 

Figure 3.3.4 (f) to (h), the generation procedure was repeated. After the generation of the 

second layer, the fixed particles were be released (see Figure 3.3.4 (i)). Then the model 
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was cycled to equilibrium again. The same procedure was repeated until the final grid 

(GM66) was generated. 

 
                  (a)                     (b)                    (c)                    (d)                     (e) 

 
                  (f)                      (g)                    (h)                    (i)                      (j) 

Figure 3.3.4.The procedure of “GM” for generating specimen. 

 

  

(a)                                                                          (b) 

Figure 3.3.5. (a) Initial distribution of void ratio in DEM analyses; (b) Average lateral 

and vertical stress. 

 

Figure 3.3.5 (a) presents the distribution of initial void ratio in the DEM model. The green 

line is average void ration and the red lines are the range for the different locations. With 
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the GM method, the distribution of void ratio is uniform and reasonable. Figure 3.3.5 (b) 

describes the comparison of average lateral and vertical stress distribution for different 

depths and shows K0 is reasonable. 

 

 Results and discussion 

From the microscopic view, soil cannot be considered as homogeneous with respect to the 

overall structure. Normally, density or void ratio is usually used as an index to evaluate 

specimen homogeneity. These properties are measured over a specific volume. The 

determination of the representative elementary area in a DEM sample is of the utmost 

importance for the evaluation of specimen homogeneity. The heterogeneity may be varied 

locally if the ratio of the specified length of representative elementary volume (area) to the 

largest particle (void) diameter is changed. 

To macroscopically characterise the homogeneity of the DEM specimen generated, 

horizontal and vertical band porosity described by using ei, ej were used to evaluate the 

homogeneity of the specimen in both x and y directions. Regarding the measurement circle, 

the radius of measurement circle md is 50 mm and the md /d50 = 8.547 (see Figure 3.3.2 (b)). 

Therefore, the area of measurement circle is enough to express the exact soil characteristics 

belonging to the corresponding location. 

Figure 3.4.1 (a) also shows that the porosity increased slightly from the bottom to the 

surface. Figure 3.4.1 (c), (d) and (e) present the comparison of different locations according 

to the three “set random” seed numbers. The red line is the boundary of minimum and 

maximum. Each grid was confined by rigid boundaries during particle setting. When these 

rigid boundaries were removed, there were gaps along each boundary, which was reflected 

in the porosity distribution, but the porosity variation is acceptable. 
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                                        (a)                                                            (b) 

 
      (c)                                                           (d) 

          
                                         (e)                   

Figure 3.4.1.Comparison of specimen’s porosity or Ko after sample preparation: (a) row 

average with 3-random seeds; (b) column average with 3-random seeds; (c) locations 1-5 

with random seed=9522; (d) locations 1-5 with random seed=10000; (e) locations 1-5 

with random seed=66093. (Note: in (c)-(e), the line with deep blue square marks is the 

row average. Locations 1-5 are shown in Figure 3.3.2(b)).           

 

Figure 3.4.1 shows the comparison of porosity distribution. When the particles were 

generated, there were the variances for the code “set random” in PFC. In Figure 3.4.1 (a) 
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and (b), the tests 1, 2 and 3 used different random seeds, and the results of the three different 

simulations are similar. Then the following model test soil sample is based on the 

simulation using the second random seed.  

 
                                    (a)                                                                         (b) 

Figure 3.4.2.Sample variance: (a) Si, (b) Sj. 

 

For the following equations, eGMij is the grid void ratio, i and j mean the number of row and 

column respectively. ei, ej is the average porosity in i row and j column obtained from Eqs 

3.4.1 and 3.4.2. Sample variance Si and Sj follow the Eqs. 3.4.3 and 3.4.4. 𝑛𝑙𝑎𝑦𝑒𝑟, 𝑛𝑐𝑜𝑙𝑢𝑚𝑛 

are the number of total grids used in layer and column respectively. eiave, ejave are the 

average porosity of row and column. The value of sample variance is sufficiently small, 

and the fluctuation in both row and column is acceptable (see Figure 3.4.2). 

𝑒𝑖 =
𝑒𝐺𝑀𝑖1 + 𝑒𝐺𝑀𝑖2 + ⋯ + 𝑒𝐺𝑀𝑖𝑗

𝑁𝑖
    

3.4.1 

𝑒𝑗 =
𝑒𝐺𝑀1𝑗 + 𝑒𝐺𝑀2𝑗 + ⋯ + 𝑒𝐺𝑀𝑖𝑗

𝑁𝑗
    

3.4.2 

𝑆𝑖
2 =

1

𝑛𝑙𝑎𝑦𝑒𝑟 − 1
∑(𝑒𝑖 − 𝑒𝑖𝑎𝑣𝑒)2

𝑚

𝑖=1
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3.4.3 

𝑆𝑗
2 =

1

𝑛𝑐𝑜𝑙𝑢𝑚𝑛 − 1
∑(𝑒𝑗 − 𝑒𝑗𝑎𝑣𝑒)2

𝑚

𝑗=1

    

3.4.4 

The Figure 3.4.3 (a) and (b) show the average lateral, vertical stress distribution for vertical 

bands. Figure 3.4.3 (c) and (b) express the lateral stress distribution for different depths at 

different vertical bands (see Figure 3.3.2 (b)). For the different vertical bands, there is no 

significant difference. With regard to the different depths, the trend of average lateral stress 

is linear, and this phenomenon followed the theory. This means the uniformity of 

crossrange is good. 

 
                                        (a)                                                                (b) 

 

 
                                          (c)                                                               (d) 
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          (e)                                                                 (f) 

Figure 3.4.3. Comparison of soil stress distribution after sample preparation: (a) 

average lateral stress of column at x axis; (b) average vertical stress of column at x axis; 

(c) lateral stress at locations 1-5; (d) vertical stress at locations 1-5; (e) average lateral 

and vertical stress; (f) average PFC and theory vertical stress.   

  

Figure 3.4.3 (e) describes the comparison of average lateral and vertical stress distribution 

for different depths and shows K0 is reasonable. Figure 3.4.3 (f) expresses the comparison 

of PFC average vertical stress and theory vertical stress distribution for different depths. 

For the theoretical vertical stress, the sample density was calculated after the equilibrium 

state. Then function p=ρgzdepth (p is the vertical stress, ρ is sample density, g is gravity 

(100g), and zdepth is depth) was used to calculate the theoretical vertical stress. From the 

Figure 3.4.3 (f), there is only a slight difference. Figure 3.4.4 shows the K0 of GM is much 

closer to realistic value than RM (Duan and Cheng, 2015). These data can sufficiently 

prove the sample is homogeneous and close to the real sand sample.  

 

Figure 3.4.4.Compare GM K0 value with RM (random method used in Duan and Cheng 

(2016a)). 
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 Description of the pile in model 

For the generation of a pile, the pile was made of 4940 particles whose radius was 1.125mm 

(see Figure 3.5.1). These particles overlapped each other, the distance between the centres 

of two adjacent particles is dpp. This type was used for the four sides: right, left, bottom and 

top. Due to the small size particle, and the short distance between two balls, the surface of 

the pile is sufficiently smooth. Therefore, the roughness can be treated as the value which 

was set at the beginning.  

Regarding the shaft resistance at a specific pile location, the Figure 3.5.2 gives the detailed 

explanation. In this figure, there were five particles which were touched to the two different 

types pile. Red arrows mean the shaft resistance between the pile and particles, and the 

direction shows the shaft resistance which applied on the pile. Negative means the 

resistance pushes the pile downward, and the positive shaft resistance shows that the pile 

was pushed upward. The left pile in the figure is the other proposed pile, the right one is 

the pile which was used in the model.  

  

Figure 3.5.1 Composition of pile in PFC. 
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Figure 3.5.2 Method of calculation for pile shaft resistance in PFC. 

 

At the left type of pile in Figure 3.5.2, the distance of overlap is not sufficiently large, so 

the surface of the pile is not smooth. When the shaft resistance of the pile was calculated, 

this will cause the complex process. Because of the pile surface heave, the y direction of 

the shaft resistance between pile and particle should use a math method to calculate the y 

direction component. Also the normal contact force should be considered. During this 

procedure, there will be caused some mistakes, then this error will be accumulatively 

calculated. Therefore, in this project the pile sharp chosen to be is the right type in Figure 

3.5.2. This type had bigger overlap, which caused the surface of pile is smooth. The 

calculation of shaft resistance became easy, because the direction of the shaft resistance is 

the same as the y direction (vertical direction). In this model, the embedded pile length was 

divided in to 10 parts each with 20mm in length. In the range of this certain distance, the 

whole shaft resistance was summarised, then the final value was used to show the total 

shaft resistance of this length. In the following all analysis, the according coordination is 

the centre of this part in the y axis. 
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 Summary 

In this chapter, a modified method called GM DEM-centrifuge model was described. It 

was aimed to generate homogeneous DEM specimens. Particles are divided evenly to form 

grids. The lateral and vertical stress was calculated to verify the rationality of DEM model. 

The generation of rigid pile also was described, and the pile was made of “clump”. The 

particles of clump were overlapped each other to simulate the smooth surface of pile. 

Finally, the K0 of GM is much closer to realistic value than RM. In addition, the sample 

variance of GM is acceptable. Therefore, this research proof the GM DEM-centrifuge 

model is sufficient to generate an ideal sand sample for comparing with centrifuge 

experiment tests data. 

The main content of this chapter was submitted to Geo-Chicago 2016 and published as a 

conference paper with title “A Modified Method of Generating Specimens for 2D DEM 

Centrifuge Model” (Duan and Cheng, 2016a). 
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Chapter 4  

DEM analysis of pile installation effects 

 Introduction 

This chapter presents a 2D-DEM model that is used to study the effects of pile installation 

in deep foundation. It is accepted widely that the installation method affects pile behaviour, 

but there are still limited studies that compare and analyse the impacts systematically. Most 

constructions use pile foundations and this type of foundation can be executed either by 

extracting soil (non-displacement pile) or by displacing soil (displacement pile). The first 

category includes bored piles, Strauss piles and continuous flight auger (CFA) piles; the 

second category includes other types of piles: driven piles (precast concrete or steel piles), 

Franki piles and Omega piles.  

In principle, the ultimate capacity of a pile is the load at which the load-displacement curve 

shows a sharp plunge, and beyond which the pile undergoes dramatic settlement. The 

bearing capacity of a pile depends on the soil properties and the stress state with which it 

is surrounded. This is because the behaviour of granular material is governed by the 

packing of the grains and the contact stresses in between. The mean stress and the density 

can be described as the soil state, and the soil behaviour is determined on the basis of this 

state and the loading conditions. However, in the case of displacement piles, the installation 

process causes a considerable amount of soil displacement and high levels of (reaction) 

stresses. These effects of pile installation are transmitted to the soil through the interaction 

between sand grains and the pile, resulting in an altered soil state and properties. The 

purpose of this chapter is to analyse the effects of soil characteristics and pile (driven and 

bored) installation methods. The DEM is used to explain the pile behaviour installed in 

granular soils. A rigid bored pile and a rigid driven pile of the same geometry were installed 

into an assembly of soil prepared under a high gravitation force, mimicking the centrifuge 

testing conditions. The impacts of having different soil frictional angles, and when gravity 
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was applied at different stages were discussed. Comparisons of the corresponding pile 

loading behaviour were made, together with showing the different contributions of shaft 

and end bearing resistance. When considering the same pile friction, the driven pile 

performed better in the pile load test. Micro scale information of the particles near the two 

piles was used to explain the observed phenomena. 

 

 Literature review 

4.2.1 Driven pile  

Driven pile foundations can be made from concrete, steel or timber. These piles are 

prefabricated before being placed at the construction site. When these piles are driven into 

the granular soils, they displace the equal volume of soil. This helps in the compaction of 

soil around the sides of the piles and results in the densification of soil. The piles which 

compact the soil adjacent to it are also called a compaction pile. This compaction of soil 

increases its bearing capacity. 

Field research with instrumented piles has led to greatly improved driven pile design 

approaches in sand (Lehane, 1992, Lehane et al., 1993, Lehane and Jardine, 1994, Jardine 

and Chow, 1996, Chow et al., 1997, Gavin and Lehane, 2003a, Gavin and Lehane, 2003b, 

Clausen et al., 2005, Kolk et al., 2005, Lehane et al., 2005, Schneider et al., 2005, Gavin 

and O’Kelly, 2007, Jardine and Chow, 2007, Coop et al., 2005). White and Bolton (2004) 

report detailed particle image velocimetry (PIV) measurements of the displacements and 

strain paths developed around the base of relatively smooth aluminium alloy ‘plane strain’ 

penetrometers during monotonic jacking into silica and carbonate sands that had been 

pressurised and partially unloaded.  

Several numerical simulations have been performed with the Lagrangian approach of the 

FEM in order to investigate the installation processes of jacked, driven or vibratory driven 

piles (Mabsout and Tassoulas, 1994, Henke and Grabe, 2009). Broere and Tol (2006) 
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simulated the bearing capacity of the displacement pile in sand based on the FEM. Apart 

from this, De Gennaro et al. (2008) simulated the pile under the axial load in sand by FEM. 

Although there are many numerical simulations based on FEM to the behaviour of the pile 

and the interaction to the surrounding soil, some insuperable limitations of FEM are still 

pointed out. It is accepted that FEM performs not well in the simulations to discontinue 

such as fractured and granular. Ting et al. (1989) pointed out that there were potential 

problems with the assumption of continua, and it was due to the soil’s inherent granular 

nature and the consequent deformation & failure modes. Li and Li (2014) also stated that 

the FEM was based on the small deformation theory and it was not applicable to some soil 

simulations, such as pile penetration, which was with the large deformation. In addition, 

Campos et al. (2005) stated that most FEM models based on the assumption of the 

mechanics of continua cannot provide an adequate description to one or more effects such 

as anisotropy, stress path dependency, dilatancy and confining stresses dependency. 

 

4.2.2 Cone penetrometer tests 

The cone penetrometer test (CPT) is a method used to determine the geotechnical 

engineering properties of soils and delineating soil stratigraphy. It was initially developed 

in the 1950s at the Dutch laboratory for soil mechanics in Delft to investigate soft soils. 

Based on this history it has also been called the “Dutch cone test”. Today, the CPT is one 

of the most used and accepted in soil methods for soil investigation worldwide. The CPT 

is a reliable, fast and relatively economical in-situ test to obtain information about soil 

stratification and mechanical properties. When the cone shaped penetrometer is pushed into 

the ground, the soil experiences compression, shear deformation and plastic flow, thus 

making the mechanism of CPT complicated. Many investigations have been performed on 

the CPT mechanism in the past and they can be attributed to three methods in general: (1) 

analytical methods; (2) experimental methods; (3) numerical analysis methods. 
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Theoretical analyses include the bearing capacity theory (Terzaghi, 1943, Meyerhof, 1951, 

Hu, 1965) and the cavity expansion theory (Farrell and Greacen, 1966, Rohani and 

Baladixxa, 1981, Vesić, 1972, Yu, 2013, Yu and Houlsby, 1991, Salgado et al., 1998). 

The experimental methods cover: laboratory chamber calibration tests (Ahmadi and 

Robertson, 2004, EI-Keiesh and Matsui, 2008), wedge penetration tests (Durgunoglu and 

Mitchell, 1975) and centrifuge methods (Sharp et al., 2010); 

The aim of CPT is predicting the axial pile capacity and describing the formulations of skin 

friction. There are four main cone penetration tests: Simplified ICP-05, Offshore UWA-05, 

Fugro-05 and NGI-05. Four CPTs based methods for calculating the axial capacity of piles 

in sand are included in the API RP 2GEO commentary. All four CPT methods also include 

the effects of friction fatigue (Brucy et al., 1991, White and Lehane, 2004). Whereafter, 

this effect is taken into account by evaluating local skin friction at incremental depths along 

the pile relative to the depth of the pile tip. 

The simplified Imperial College Pile (ICP)-05 method is a conservative approximation of 

the approach described in Jardine et al. (2005), where dilatancy is ignored and some 

parameter values are conservatively rounded off. 

The Fugro-05 method is developed mainly from a calibration with the large Euripides pile 

load tests, and has a somewhat similar form to that of the ICP-05 method for the friction 

fatigue effects. The skin friction is a function of cone resistance, effective stress and pile 

diameter (Kolk et al., 2005). 

The NGI-05 method is an empirical approach developed over many years, using the 

Norwegian Geotechnical Institute (NGI) database of 85 pile load tests from 35 locations 

and experience with the results of instrumented pile load tests. The development work is 

aimed at a simple formulation of skin friction. In the NGI-05 method, the skin friction 

depends on cone resistance (or relative density), effective stress, open- or closed-end tip, 

tension or compression loading and pile material (steel or concrete) (Aas et al., 2005).  
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The UWA-05 method was developed by the University of Western Australia (UWA) as 

part of a study to compare the three other CPT methods. It is essentially a modification and 

simplification of the ICP-05 method. It has a similar formulation, but reduces the number 

of parameters and introduces an area ratio. This is a simplified method suggested for large 

offshore piles (Schneider et al., 2008). 

For the numerical analysis methods, there are the small strain finite-element method (De 

and Vermeer, 1984), the large strain finite-element method (Wei, 2004, Wei et al., 2005) 

and the strain path method (Baligh, 1985) and DEM. 

Special finite element procedures for steady-state analysis, which neglect the transient 

component of the deformation, have been developed by Herrmann and Mello (1994) and 

Yu et al. (2000). In all these finite element analyses, the penetrometer was assumed to be 

pre-placed in the soil with a borehole, and only a limited number of penetration steps could 

be modelled. Even when the finite element analysis allows for finite strain (Gupta, 1991, 

Kiousis et al., 1988), modelling the whole penetration process is not possible unless large-

scale sliding is permitted at the penetrometer-soil interface. Sheng et al. (1997) presented 

a finite element analysis of cone penetration in cohesive soils. Contact elements, capable 

of finite sliding along the penetrometer surface, were used to model the whole penetration 

process from the ground surface to any depth. The emphasis of their study was on pore-

pressure development around the cone under different penetration speeds. 

An alternative numerical method is the DEM and it is developed and used in geotechnical 

engineering recently. Most studies concentrate on the CPT based on the DEM numerical 

modelling because CPT is well-established in-situ test to classify soil and to estimate the 

soil properties in geotechnical engineering (Robertson, 1986, Been et al., 1987, 

Schertmann, 1977, Sladen, 1989, Yu, 2006). The first DEM numerical simulation to deep 

penetration in sand is applied by Huang and Ma (1994) and they found that the penetration 

mechanism and soil dilatancy in the granular soil are both affected by the loading history. 

Based on their study, Jiang et al. (2006) developed and improved the two dimensional 

DEM simulation to the deep penetration, and described the penetration mechanism from 
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the viewpoints of deformation patterns, displacement paths, velocity field, stress fields and 

stress paths. Arroyo et al. (2011) then developed the numerical modelling of the CPT in 

granular material to three dimensional and provide a potential new way to overcome the 

limitation of the quantitative analysis based on disc-based modelling. Apart from the CPT, 

a few researchers also pay attention to the penetration of the displacement pile (driven pile) 

in granular soils. 

To date, for industrial or field scale problems, DEM is generally applied to pile installation 

and CPT in soil, where large deformation takes place near the cone. Campos et al. (2005) 

used DEM to model the CPT, the numerical implementation used in this research using 

dynamic relaxation, which consists of obtaining the solution of a static problem through its 

dynamic equations. This is achieved when the dynamic problem is correctly damped, 

avoiding oscillations. Jiang et al. (2006) used PFC-2D and conducted two DEM penetration 

tests applying different tip-soil frictions. The penetration mechanism during cone 

penetration was assessed via the monitoring of tip resistance, deformation pattern, 

displacement paths, velocity vector distributions and stress field for each penetration test. 

The results showed that tip resistance increases with increasing penetration depth and 

increasing tip-soil friction. It was also shown that penetration leads to high gradients of 

displacement and velocity fields near the penetrometer. Lastly it was observed that during 

penetration, the soil stresses near the penetrometer increased from their initial values to 

higher peak stresses, which subsequently became constant at values which were slightly 

higher than the stresses upon initiating penetration.  
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Figure 4.2.1. Boundary conditions and observance positions in the DEM analyses (Jiang 

et al., 2006) 

 

While Jin and Zhou (2010) used a coupled method to model the CPT, Zhou et al. (2012) 

also used the coupled 3D version numerical simulation to reproduce the CPT test. 

Mcdowell et al. (2012) research CPT with a new method of sample preparation. Generally, 

the DEM approach provides an alternative to current unrealistic large-displacement FEM 

model for CPT in granular materials, what is more, DEM provides micro-mechanical 

insight into this important boundary value problem (Mcdowell et al., 2012, Arroyo et al., 

2011). 
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            (a)                                                                (b) 

Figure 4.2.2. View of the DEM model components with indication of the main relevant 

dimensions: (a) calibration chamber; (b) cone (Arroyo et al., 2011) 

 

Arroyo et al. (2011) built a virtual calibration chamber to simulate cone penetration tests 

in sand using a 3D DEM model. The particles were represented by single spheres which 

were prohibited from rotating to enable the rotational resistance of non-spherical particles 

to be modelled. The simulation results were compared to experimental tests conducted in 

Ticino sand (Jamiolkowski et al., 2003). The particles used in the DEM models were scaled 

to 50 times larger than the Ticino sand, such that a median particle size d50 of 26.5mm with 

a cone diameter B of 71.2mm was necessary to achieve an appropriate number of particles 

in contact with the cone tip (see Figure 4.2.2). The results showed that under isotropic 

boundary stresses, their numerical results demonstrated good quantitative agreement with 

the predictions of experimentally derived empirical equations for Ticino sand. 
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4.2.3 Bored pile  

The bored piles are executed by gradually removing the soil and advancing the auger in 

depth with up and down movements. For most bored piles, shaft friction is the important 

component of bearing capacity. The conventional empirical design approach has been to 

evaluate the available side shear by applying a reduction factor to an average undrained 

shear strength profile obtained from laboratory tests (Skempton, 1959, Whitaker and Cooke, 

1966, Burland and Cooke, 1974).  

Calibration chamber plate load tests have been used to investigate the load-settlement 

response of nondisplacement piles (Ghionna et al., 1994, Lee, 1999, Lee and Salgado, 

1999). A number of numerical techniques have been identified for the same purpose (Desai 

and Christian, 1977, Lee et al., 1989, Poulos and Hull, 1989, Poulos, 1982). Wehnert and 

Vermeer (2004) introduced the FEM to simulate and analyse the load test on bored piles. 

Unfortunately, opposed to the numerical simulation of bored piles (Wehnert and Vermeer, 

2004) the installation phase leads to significant stress changes compared to the undistorted 

state. These stress changes should be included in the modelling of displacement piles, but 

most codes do not permit the full simulation of the pile installation phase. The large strains 

and deformations that occur are unsuitable for the small strain formulations of generic 

geotechnical FEM codes which incorporate a Lagrangian or an updated Lagrangian scheme. 

Also, the modelling of the complex soil behaviour adjacent to the pile is not straightforward, 

as the soil behaviour is not yet fully understood. 

 

4.2.4 Summary 

The installation process of the piles influences the soil and some of its properties. Several 

investigations have been performed to comprehend the influence of installation effects on 

pile bearing capacity (De Beer, 1988, Peiffer and Van Impe, 1993). Peiffer and Van Impe 

(1993) investigated the development of the stress state around the pile during the pile 

installation processes. It is obvious that the installation process changes the stress state and 
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the void ratio in the surrounding soil. Albuquerque et al. (2011) compared the behaviour 

of 3 types of deep pile (bored, continuous flight auger (CFA) and precast driven piles) by 

the static pile load tests (SPLT) from experimental field to laboratory tests and state that 

the shaft and tip resistance of the bored and CFA piles are similar, although CFA pile 

contributes less disturbance to the surrounding soil at the tip. In addition, they state that the 

precast driven pile with the less cross-section shows the stiffer response and both higher 

shaft and tip resistance. However, the opposite observation is obtained by Adejumo and 

Boiko (2013) in their field tests to the driven and bored piles under the axial load. It shows 

that driven installation technique results in more surrounding soil displacement compared 

to the bored installation technique, and it also results in the decreasing of the bearing 

capacity of the pile (by approximately 12 - 18%) in a fully mobilised soil resistance and 

loading case.   

In parallel with field investigation and laboratorial experimental study, numerical 

simulations were also undertaken to elucidate the mechanic behaviour as well as the 

complex mechanisms involved in the pile installation. The numerical approach to 

modelling installation effects is very promising, and will give valuable additional 

information about the simulated stress-strain behaviour of soil due to installation effects. 

 

 General model description 

All DEM analyses in this investigation were performed using an increased gravity field of 

100 g; details which can be found in Duan and Cheng (2016a). A schematic view of the 

model is shown in Figure 4.3.1, which includes a rigid pile with diameter dpile = 45 mm 

and penetration depth (fully embedded depth), Lembedded = 0.2 m. This results in a prototype 

pile with diameter of 4.5m and penetration length 20m (Lembedded = 4.44dpile). The dimension 

is a typical size of a large rigid monopile for wind turbine foundation. The width of the 

model container is 1.2 m, and the depth is 1.5 m. This width is bigger than the model in 

Duan and Cheng (2016a)in order to further eliminate the boundary effect (dbp = 12.33 dpile, 
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and (D – L) = 8.89 dpile). A view of the particle assembly is also shown in the subset of 

Figure 4.3.1, and d50 = 5.85 mm (dpile = 7.69 d50). The different definitions are shown in 

Figure 4.3.2. H and uy show the applied force and the corresponding displacement.  

 

Figure 4.3.1. Schematic view of the PFC model. (Subset shows a typical particle 

assembly at equilibrium before pile installation.) 

 

Centrifuge testing allows small models to be used to accurately represent the behaviours 

of prototype (full-scale) geotechnical problems. In this study, all simulations were 

conducted under 100 time’s gravity field. 

For larger scale soil-structure interaction problems, current DEM techniques used for 

generating specimens hardly result in homogeneous and realistic specimens. Hence, a 

modified particle generation method, referred to as the Grid-Method (GM), was proposed 
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to generate a homogeneous and realistic specimen for this DEM study (Duan and Cheng, 

2016a). During the process of GM specimen generation, particles in the first grid were 

generated at the initial porosity of 0.25 without gravity, then the grid was cycled until 

equilibrium.  Afterwards, a100 time’s gravity was applied to all the particles in this grid, 

and the system was cycled to equilibrium again. The same process runs for all other grids 

until the whole system reaches the final static equilibrium state, which has an average 

porosity of 0.185. Table 4.3.1 shows the DEM model input parameters. The material 

modelled is composed of disks with a maximum diameter of 7.05 mm, a minimum diameter 

of 5.5 mm, an average grain diameter d50=5.85 mm and uniformity coefficient Cu = d60/d10 

= 1.26.   

 

Figure 4.3.2. Schematic view of the model under vertical load. 

 

Based on a comparison of parameters used in other experiments and DEM simulations, it 

was found that the parameter dpile/d50 was related to the accuracy of experiment and 
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numerical modelling. In this model, for the aim of efficiency, the value of dpile/d50 was 

chosen around 8 which was close to Vallejo and Lobo-Guerrero (2005). A comparison of 

a range of model parameters with other published data is shown in Table 4.3.1. 

Table 4.3.1 General test configurations for various laboratories. 

Diameter 

of pile, 

dpile 

(mm) 

Average 

grain 

diameter, d50 

(mm) 

𝑑𝑝𝑖𝑙𝑒

𝑑50
 

𝑤𝑚𝑜𝑑𝑒𝑙

𝑑𝑝𝑖𝑙𝑒
                                                                     ℎ𝑚𝑜𝑑𝑒𝑙

𝑑𝑝𝑖𝑙𝑒
 

Gravity 

(9.8 

m/s2) 

Case 

1 0.172 5.81 12 25 2000 Zhang and Wang 

(2015) [3D]  

8 0.1735 46.1 30 30 50/100/

150 

Wang and Zhao 

(2014) [2D]  

159.98 7.6 21.1 31.25 10.16 20 Jiang et al. (2014) 

[2D]  

71.2 26.5 2.7 16.86 9.83 1 Arroyo et al. (2011) 

[3D] 

71.2 26.5 2.7 16.86 9.83 1 Butlanska et al. 

(2009) [3D] 

36 2.925 12.3 8.75 8 1000 Jiang et al. (2006) 

[2D] 

30 3 10.0 13.33 26.66 1 Vallejo and Lobo-

Guerrero (2005) 

[2D] 

10 0.22 45.5 21/ 85  40/70/ 

125 

Bolton et al. (1999) 

[centrifuge tests] 

45 5.85 7.69 26.67 13.33 100 Present study [2D] 
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4.3.1 DEM modelling programs 

Table 4.3.2 summarises all the DEM simulation tests, “BE” means bored pile with the flat-

end, and “DE” means driven pile with flat-end. There were 6 tests in total to compare the 

effects of different soil characteristics. Numbers “1, 2, 3” mean the different friction 0.2, 

0.5, 0.8” of the surrounding soils respectively. For all simulations, the friction coefficient 

of the pile is always 0.5. 

Table 4.3.2 General test configurations for DEM models. 

Simulation name BE1 BE2 BE3 DE1 DE2 DE3 

Particles friction coefficient 0.2 0.5 0.8 0.2 0.5 0.8 

 

The embedment depth of the two pile types (driven pile and bored pile) are both 0.2m, but 

their installation methods are entirely different. For driven pile, it was pushed into the soil 

by a stepwise increase of vertical load until the desired depth was reached. Under each 

specific load, the system was cycled to equilibrium until the pile displacement reached its 

maximum, and then the following load was applied. It should be noted here that the pile 

was finally driven to the depth that is a little more than 0.2 m depth (0.2007 m, 0.2015 m 

and 0.2024 m for DE1, DE2 and DE3 respectively). This is to allow for the pile moving 

upwards slightly to a final 0.2 m depth after the applied force was released. This 

phenomenon is considered to be the cause of residual force in driven pile (Zhang and Wang, 

2007, Zhang and Wang, 2009, Liu et al., 2013).  

The PFC inherent “measurement circle” function is introduced here to measure the 

information of soil elements at different locations surrounding the pile. The size and 

locations of these measurement circles were described in Figure 4.3.3; mr is the radius of 

measurement circle and the value is 0.05 m. Note only one side of the model was analysed 

due to the symmetrical nature of the problem. Four levels of depths (with the deepest Level 

1 0.1 m below pile tip, and the shallowest Level 4 at mid-depth of the pile, i.e. 0.1 m above 
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pile tip) were monitored, together with nine horizontal locations (VL1,VL2…VL9).  

 

Figure 4.3.3. The new coordination of PFC model for the measurement circle analyses. 

 

 Pile installation 

4.4.1 Driven pile 

All dimensions and measurements in the following sections are shown in model scale. The 

driven pile was pushed by the increasing vertical load level, such as 0kN, 20kN, 40kN, 

80kN and so on, until around 150kN. The procedure was described in Figure 4.4.1. Figure 

4.4.2 (a) plots the vertical load against the normalised pile penetration when installing at 

different soil conditions, in which the vertical load is calculated by the summation of 

applied vertical load and the self-weight of pile. Although the slopes of the various load-

displacement curves are very similar regardless of soil friction after the pile penetrated the 

soil, the soil with the highest friction coefficient (DE3, =0.8) provides the highest initial 

penetration resistance, hence requiring the highest vertical force to reach a certain 

penetration depth. Figure 4.4.2 (b) shows the total, shaft and base resistance developed 

during installation in the case when the soil friction is 0.5 (DE2). It is clear that total 
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resistance increases approximately linearly with penetration depth, in which the base 

resistance contributes to the majority of the total resistance. It is therefore evident that the 

penetration resistance of piles depends mostly on the base resistance, as reported by Yu 

(2004) and Liu et al. (2012). This should be attributed to the punching shear failure 

mechanism when the pile tip penetrates the soil.  

  

Figure 4.4.1. Procedure of driven pile in DEM model. 

 

The shaft resistance of Figure 4.4.2 (b), on the other hand, increases much more gently than 

the base resistance, and even experiences some drops during driving. This implies that the 

unit shaft resistance may possibly decrease as the area of pile-soil contact increases during 

penetration. This is testified by the profile of unit shaft resistance at different vertical forces, 

as shown in Figure 4.4.3. Sometimes the unit shaft resistance becomes negative, which 

means the applied shaft resistance on pile surface is acting downwards. The reasons for 

this phenomenon are the arching effect and particles size effect. When arching is generated, 

the affected sand particles within in the range of arching are not affecting the vertical load 

but only the self-weight. Part of them are in touch with the pile shaft, the friction is bigger 

than their self-weight. So the shaft resistance will cause the particles to move down with 

the movement of pile. This phenomenon is referred to as ‘friction fatigue’ (Heerema, 1980) 

or the ‘h/R effect’ (Bond and Jardine, 1991). It is widely accepted that changes in radial 
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stress are the key factors governing the magnitude of shaft friction. The changes of porosity 

recorded in the surrounding soil during the pile penetration are shown in Figure 4.4.4.  This 

mainly attributes to the volume reduction of the soil as the sand grains rearrange and repack 

surrounding the pile, which is captured in this simulation.  

   

                                         (a)                                                                     (b) 

Figure 4.4.2. (a) Load-settlement curves installing at different soil conditions (=0.2, 0.5 

& 0.8). (b) Vertical force-displacement curves indicating the variation of total, shaft and 

base capacity for the DE2 ( = 0.5). 

 

Figure 4.4.3. Unit shaft resistance along the pile at different installation depths (DE2). 
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(a)                                                                         (b) 

  

                            (c)                                                                     (d) 

Figure 4.4.4. Porosity distributions during the penetration of driven pile in DEM model. 

 

Figure 4.4.5 shows the lateral soil stresses at 4 specific depths (e.g. Figure 4.4.5 (a): Level 

1 at the deepest depth, and Figure 4.4.5 (d): Level 4 at the shallowest depth) and different 

distances away from the pile (VL1-VL10) while the pile tip has penetrated to different 

normalised depth (y/dpile). It is clear in Figure 4.4.5 (d) that the lateral stress on the pile-
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soil interface reduces drastically lower than the initial K0 stresses after the pile tip passes 

by. 

At levels 2-4 above the pile tip, the general variation of lateral stress displayed a similar 

tendency and matched the penetration process fairly well. As the pile tip penetrated the soil 

and advanced down, the lateral stresses increase sharply as a result of large soil deformation. 

This phenomenon follows the illustration of Yu (2004) and Liu et al. (2012) where a 

penetrating pile base resembles the expansion of a spherical cavity. In the close regions 

from the pile shaft, the lateral stresses increase sharply and reach peak values as the pile 

tip almost penetrates to the level of these locations, and then decreased as the pile tip 

penetrated deeper. Similar trends of the variation in lateral stress have also been observed 

in centrifugal model tests (Leung et al., 2001, Yang et al., 2013) and field tests (Liu et al., 

2012). As the radial distance from the pile axis increases, this “bend” of curves becomes 

less remarkable. Beyond around 6 times the pile diameters, the lateral stresses build up 

uniformly and generally during the whole process penetration. This indicates the zone of 

the highest stress disturbance, showing significant granular behaviour, has an approximate 

extent of 6 times of pile diameters.  

      

(a)                                                                   (b) 
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                            (c)                                                                      (d) 

Figure 4.4.5. Lateral stress distributions during the penetration of driven pile in DEM 

model. 

 

The greatest % increase of induced lateral stress was registered by level 2 at the full 

embedment depth (~ 0.2 m), which is 48% and 173% greater than those by level 3 and level 

4, respectively. This observation indicates that the magnitude of the induced lateral stress 

depends not only on the radial distance but also on the embedment depth or the overburden 

pressure. Hence, the ratio of the increases of lateral stress (∆σh) to the initial horizontal K0 

stresses (σ0) against the normalised horizontal distances are plotted for all the three levels 

in Figure 4.4.6. It is clear that the curves corresponding to the three levels seemed to exhibit 

similar distribution, and restricted in an approximately logarithmic distribution zonal 

region. Then an affecting region of 12~18 pile diameters from the pile shaft can be 

confirmed according to the enveloping lines. This region is consistent with the 

experimental observations by Yang et al. (2013) and field tests Liu et al. (2012).   
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Figure 4.4.6. Variation in normalised maximum increase of lateral stress with 

normalised horizontal distance. 

 

For level 1, which is 2.2dpile lower than the final depth of pile tip, the lateral stresses build 

up gently for each record point. For the farthest VL7 (see Figure 4.4.5 (d)) that is 11dpile 

from the pile shaft, no evident change is recorded at the beginning penetration. This means 

the affecting distance of pile driving is far more than 11dpile (50 increased), which is 

obtained from Figure 4.4.6. 

In Figure 4.4.7, the x-axis was normalised by x/dpile which means the according lateral 

distance from the left side of the pile. 0 means the left surface of the pile. When the pile 

was just penetrated and passed to level 4 (see Figure 4.4.7 (d)), the peak value of lateral 

stress was reached when the vertical force only achieved about 40-60 kN. Then the lateral 

stress when near the pile was decreased. The level 3 (see Figure 4.4.7 (c)) is a little deeper 

than level 4 and the peak value appeared when the applied force was 80 kN. For the level 

2 (see Figure 4.4.7 (b)), it is around the pile bottom and much deeper. Therefore the lateral 

stress maximum value attained when the applied force is 100 kN. Level 4 (see Figure 4.4.7 

(a)) is very deep, so the lateral stress keeps increasing. 
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(a)                                                                           (b) 

  

(c)                                                                             (d) 

Figure 4.4.7. Lateral stress distribution of different level during the procedure of driven 

pile in DEM model. 

 

4.4.2 Bored pile 

The bored pile is simple compared to the driven pile. Before the bored pile was put in the 

soil, the soil which is in the same location as the pile was deleted (see Figure 4.4.8). Then 

the pile was generated instantly and the model kept cycling until equilibrium.  
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Figure 4.4.8. Procedure of bored pile in DEM model. 

 

The model generation procedure of a bored pile is simpler compared to that of a driven 

pile.  Figure 4.4.9 (a) shows the load-settlement curves of the bored pile after the pile is 

installed, and the corresponding mobilised shaft resistance against settlement curves in 

Figure 4.4.9 (b), during the pile load test for piles (Cases 01-04) having different weights. 

Although the load-settlement curves are different, with the heaviest pile settling 

significantly more, the development of shaft resistance looks generally similar reaching a 

similar maximum value of around 20kN. It should be noted, however, that the initial shaft 

resistance of different piles is not exactly the same (see Figure 4.4.9 (b)) but light pile 

experiences negative initial shaft resistance while heavy pile experiences positive and high 

initial shaft resistance. Due to this phenomenon, Case 03 pile (03_BE_2) was chosen for 

the following tests. Figure 4.4.10 shows the effect of soil friction coefficient to the load-

settlement curves for total vertical load (Figure 4.4.10 (a)) and for shaft resistance (Figure 

4.4.10 (b)) for case 03.  From Figure 4.4.10 (a), the soil friction had more obvious 

settlement when the vertical load became larger. Moreover, when the friction of particle is 

bigger, the line remains more linear. This linear range indicates that friction has not been 

fully mobilised fully throughout the pile hence a smaller percentage of sliding between the 

pile surface and adjacent soil particles occurs. As more and more particle sliding happens, 

shaft resistance becomes constant even if vertical load increases. 
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Table 4.4.1 Comparison of 4 different weight piles. 

Simulation name 1 2 3 4 
Displaced 

soil 

Density of pile 

particles (kg/m3) 
66.65 200 500 1000 - 

Weight (N) 1282.918 3849.832 9624.482 19249.16 19037.7 

 

   

                                       (a)                                                                     (b) 

Figure 4.4.9. Comparison of load-settlement curves with pile having different weights. 

 

   

                (a)                                                                     (b) 

Figure 4.4.10. Comparison of load-settlement and shaft resistance-settlement curves of 

bored pile in different soil conditions (=0.2, 0.5 & 0.8). 
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 Comparison and Discussion 

4.5.1 The bearing properties   

Figure 4.5.1 presents the comparison of total load-settlement curves with different 

installation methods after the piles have been installed. Due to the different installation 

methods, the driven pile has higher vertical capacity than the bored pile. When the vertical 

load is less than 25 kN, the curves below exhibit nearly the same trend for both piles. 

However, the bored pile goes deeper into the soil at a faster rate with the same load after 

this point, showing that the driven piles has higher vertical capacity. 

 

Figure 4.5.1. Comparison of load-settlement curve with different installation. 

 

In Figure 4.5.2, the x-axis was normalised by x/dpile which was similar to Figure 4.4.7. 

When the pile length was just pushed to level 4 (see Figure 4.5.2 (g) and (h)) it was the 

first domain which will be affected. This level is relative shallow. Regrading to the level 3 

(see Figure 4.5.2 (e) and (f)), for the bored pile (see Figure 4.5.2 (e)), the peak value of 

lateral stress was reached when the vertical force achieved about 140 kN. However, in 

terms of driven pile the peak value of lateral stress was reached when the vertical force 

only achieve about 120 kN. Then the lateral stress when near the pile was decreased. The 
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level 2 (see Figure 4.5.2 (c) and (d)) is a little deeper than level 3 and around the pile 

bottom, and the phenomena also were the same. Level 1 (see Figure 4.5.2 (a) and (b)) is 

very deep, so the lateral stress keeps increasing. 

Concerning the lateral stress of bored and driven pile, obviously the driven pile is larger 

than the corresponding deep level bored pile. This relationship also can be indicated from 

the Figure 4.5.1. 

 

                                  (a)                                                                      (b) 

 

                                   (c)                                                                      (d) 
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                                      (e)                                                             (f) 

 

                                (g)                                                                 (h) 

Figure 4.5.2. Comparison of lateral stress at horizontal direction with different 

installation, (a)(c)(e)(g): bored pile; (b)(d)(f)(h): driven pile. 

 

4.5.2 Mobilisation of shaft resistance 

The mobilisations of shaft resistances of pile DE2 and BE2 during loading are shown in 

Figure 4.5.3. In Figure 4.5.3 (a), the negative shaft friction occurs over the full pile length 
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before loading. This residual shaft resistance is due to the pile upward moving just after 

generation as the weight of the pile is lighter than the deleted original soil. When the bored 

pile applied the vertical force again, the movement of pile began to turn downwards, then 

the shaft resistance is mobilised and starts to become positive. During the procedure of 

increasing loads, the shaft resistance is generally small at both ends but large in the middle. 

At the final load, the maximum unit shaft at the pile bottom is 113 kPa, which is only one 

third of that for the driven pile as shown in the Figure 4.5.3 (b).  

Table 4.5.1 Driven pile rebound record.  

Test Initial vertical 

load (kN) 

Initial depth (m) Depth after load 

release (0 kN) 

Rebound 

distance (m) 

DE1 116.48 0.210596 0.200756 0.00984 

DE2 128.9 0.213526 0.201576 0.01195 

DE3 151.4 0.218116 0.202456 0.01566 

 

Figure 4.5.3 (b) shows the changes in shaft resistance of DE2 during load procedure, which 

looks very different from the bored pile BE2. Although there also exist negative shaft 

resistances before loading, their magnitudes are much larger than that of the bored pile. 

The residual shaft resistance exhibits an approximately linear distribution with the depth, 

and thus the maximum residual load is certainly located at the pile toe. This distribution is 

similar to those calculated by Poulos (1987) and Altaee et al. (1992). After finishing the 

driving installation and releasing the load, the rebound of soil blows the pile bottom and 

pushed the pile shaft upwards. The rebounds of these three piles are in Table 4.5.1, which 

are enough to reverse the direction of the unit shaft resistance from an upward direction 

during driving to a downward direction.  

With the static loads applied and with the pile DE2 settlements, the direction of shaft 

resistance is reversed again, and the positive shaft resistances are generally mobilised. 

When the load is added to 40 kN, the shaft resistance along the whole depth becomes 
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positive. At this moment, the shaft resistance on the bottom and top of the pile are nearly 

zero, but on the middle is as high as 58 kPa. With the increasing load, the deeper shaft 

resistance is further mobilised, and reaches the peak value of 350 kPa at the final load. This 

value is close to the recommended value for dense sand in the Chinese pile design code.  

   

                                      (a)                                                                (b) 

Figure 4.5.3. Mobilisation of unit shaft resistance of pile, (a) BE2, (b) DE2, during pile 

load tests. 

 

 Summary 

In this chapter, a discrete numerical modelling of pile installation tests was proposed. For 

larger scale soil-structure interaction problems, a modified particle generation method, 

referred to as the Grid-Method (GM), was proposed to generate a homogeneous and 

realistic specimen for this DEM study. Regarding the driven pile, the lateral stress change 

of specific location was recorded. It indicated that the peak value of lateral stress always 

reached before the pile passed this area. 

The tests were conducted with two different processes: bored pile and driven pile. Both 

conditions were performed with similar magnitude of pile embedded depth. Shaft 
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resistance, base capacity and lateral stress were tested. Bored piles were observed to 

develop large settlements immediately during the test, while driven piles initially withstood 

settlements owing to an increase in available base capacity at the start of the penetration. 

For bored and driven pile, the soil with the highest friction coefficient proved the highest 

capacity. 

The main content of this chapter was submitted to Granular Matter for review as a potential 

journal paper with title “DEM analysis of pile installation effect: comparing a bored and a 

driven pile”. 
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Chapter 5  

A micromechanical study of monopile under monotonic 

loading using DEM 

 Introduction 

This chapter presents the data of a numerical model that is used to study the soil-structure 

interaction of a rigid monopile under monotonic loading using the 2D-DEM. At present, 

monopile foundations are widely used to support wind turbines. The response of a 

monopile supporting an offshore wind turbine is still not well described and more research 

is therefore needed. Existing studies of monopiles recorded in the literature mainly adopt 

experimental techniques, including small-scale models in the laboratory or centrifuge 

models under high gravity level, and numerical techniques of FEM. Compared to the 

conventional techniques, DEM has the capability of simulating the discrete movements of 

the granular soil particles around a pile. In this chapter, the DEM numerical method is 

adopted to show the mechanisms governing the soil-structure interaction of the model 

monopole. It is found that the load-displacement curves of the DEM simulations compared 

well with a set of published centrifuge tests data. The vertical and horizontal stress 

distributions at various levels of horizontal load are presented. The information in this 

research has offered insights into further research to improve the design of monopile 

foundations to resist live loads in service. 

 

 Literature review 

The monotonic response has been investigated by different authors. Zhang et al. (2005) 

collected data from 17 different tests both centrifuge and full-scale. They presented a 

method to determine the ultimate capacity of a pile. The model consists of a contribution 
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from the side friction and the resultant soil pressure. The best result was obtained by using 

Rankine’s passive soil pressure coefficient squared for the ultimate soil pressure. 

In order to investigate the pile soil interaction, there are different approaches which can be 

taken. In principle the approaches can be divided into three groups: scaled model, full scale 

model and numerical model. The 1g experiments are relative easy to access and instrument, 

and series with many load cycles can therefore be carried out. The stress distribution in a 

1g experiment is not identical with full-scale condition, therefore scaling to prototype is 

difficult. Centrifuge experiment at Ng is carried out at a stress level corresponding to 

prototype. This makes the scaling to prototype easier but still scaling laws should be used 

with care. When using models in reduced scale the soil sample can be created artificially 

and the soil which is used in the test can therefore by quantified in a high degree. The big 

advantage of the numerical model is that it can investigate stress paths, soil-pile interaction.  

 

5.2.1 p-y curve methodology 

The p-y curves originally introduced by Reese and Matlock (1956) and McClelland and 

Focht (1958) are modelled using the Winkler approach with decoupled springs along the 

pile, each supporting a pile division. For each spring a non-linear p-y curve is created. This 

method evolved primarily from research in the oil and gas industry, as the demand for large 

pile-supported offshore structures increased during the 1970s and 1980s. 

The p-y curve for pile in sand led to recommendations in the standards (API, 2000; DNV, 

2009) for oil and gas installations. In 2004 these recommendations were adopted in the 

standard DNV (2009), which represents the current state-of-the-art for design of monopiles 

in the offshore wind industry. 
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Figure 5.2.1 Graphical definition of p and y, after (Reese et al., 1974) 

 

Reese et al. (1974) and O'Neill and Murchison (1983)  had formulated the theory on p-y 

curves for sand to describe the relationship between soil resistance created in the non-

uniform stress field surrounding the pile and the lateral displacement of the pile under 

lateral load (see Figure 5.2.1). The bending of the pile is described by the fourth-order 

differential equation for beam bending.  

Recommendations for constructing static p-y curves that reproduce local horizontal soil-

pile interactions under monotonic loading can also be found in offshore codes and 

standards, considering soils from silica or carbonate sands to soft or stiff clays. They are 

based on either laboratory data, or in situ data (Jardine et al., 2012). The interactions 

between soil and laterally loaded piles are typically accounted for by the use of p-y curves. 

 

5.2.2 FEM 

In the early stage of FEM, Randolph (1981) presented a 2D FEM solution modelling soil 

as an elastic continuum and the pile as an elastic beam. Muqtadir and Desai (1986) studied 

the behaviour of a pile-group using a 3D programme with nonlinear elastic soil model. An 

axisymmetric model with elastic-perfectly plastic soil was used by Pressley and Poulos 

(1986) to study group effects. Brown and Shie (1991), Brown and Shie (1990b), Brown 
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and Shie (1990a) and Trochanis et al. (1991) conducted a series of 3D FEM studies on the 

behaviour of single pile and pile group with elastic-plastic soil model. In particular, 

interface element was used to account for pile-soil separation and slippage. Moreover, 

Brown and Shie derived p-y curves from FEM data, which provide some comparison of 

the FEM results with the empirical design procedures in use. A number of model tests of 

free- or fixed-headed pile groups under lateral loading has been simulated by Kimura et al. 

(1995) and Wakai et al. (1999) using 3D elasto-plastic FEM. A good correlation between 

the experiments and the analysis has been observed in these studies. All these results 

demonstrated that FEM can capture the essential aspects of the non-linear problem. It is 

noted that there is not much literature reporting on FEM studies of pile behaviour under 

lateral loading in layered soil system. In addition to that, there is a very small number of 

studies on the effects of layering system on the commonly used p-y curve approach.  

With the advance of FEM computing techniques, it is now possible to use 3D FEM 

modelling techniques. For example, Yang and Jeremić (2002), and Fan and Long (2005) 

presented a 3D FEM analysis of laterally loaded piles in soils by modelling soil as an elasto-

plastic material and the pile as a linear-elastic material. Sanjaya et al. (2007) used 

ABAQUS and the p-y method to study the behaviour of laterally loaded pile foundations 

in high marine clay with high potential to swell upon wetting and shrink upon drying. 

Recently, Chik et al. (2009) and Taha et al. (2009) presented a 3D FEM analysis to simulate 

a lateral load test using PLAXIS where soil is modelled with a Mohr-Coulomb elasto 

plastic model. The numerical modelling techniques based on the FEM provide versatile 

tools that are capable of modelling soil continuity, soil nonlinearity, soil-pile interface 

behaviour, and 3D boundary conditions. 

 

5.2.3 Summary 

The pile design for the lateral loads is today normally based on a Winkler model. Recently, 

several empirical and numerical methods have been proposed for analysing the load-
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deformation behaviour of piles subjected to a lateral load. Although these methods make 

lightly different assumptions, they can generally be classified into three main groups: (1) 

empirical methods (Hansen and Christensen, 1961, Broms, 1964), (2) load transfer curve 

methods (Matlock, 1970, O'Neill and Murchison, 1983, Jeong and Seo, 2004), and (3) 

elastic and FEM (Mardfekri et al., 2013, Yang and Jeremić, 2002). Jeong and Seo (2004) 

reported comprehensive studies of laterally loaded structures. They conclude that the load 

transfer curve method for the design of laterally loaded piles is of intermediate complexity 

between the first and third methods. The lateral load transfer curve method, often referred 

to as the p-y curve method, has been studied for many applications in engineering practice. 

However, the response of a monopile supporting an offshore wind turbine is still not well 

described and more research is therefore needed. In order to investigate the response of a 

monopile, it is important to investigate the micro mechanics effects. Only in this way, is it 

possible to determine the mechanism of failure. The monotonic loading is used to 

determine the monotonic pile-soil interaction curves as well as being reference to the cyclic 

tests. And DEM is keen to use for the further micro mechanics research. 

 

 DEM centrifuge modelling 

To investigate the pile-soil interaction under monotonic loading, monotonic tests have been 

modelled by GM-DEM centrifuge model. The sample preparation method was mentioned 

at Duan and Cheng (2016a). Table 3.3.2 shows the model parameters used in the numerical 

model.  

In the PFC-2D model, the boundary was first set in such a way that the size of the model 

was similar to that of Klinkvort (2013). The width of the model is 0.6 m and depth is 0.6 

m. Rigid walls were used to model the boundary. All DEM analyses in this investigation 

were performed using the DEM-centrifuge program. Figure 5.3.1 shows a sketch for 

analysis of pile-soil interaction. Lembedded means the penetration depth, e is the load 

eccentricity. The PFC model of centrifuge test simulated a solid steel pile with diameter 
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dpile = 45 mm and penetration depth 0.2m. There are four horizontal level (level 1, level 2, 

level 3 and level 4) and four vertical levels (VL1, VL2, VL3 and VL4) to measure the soil 

parameters. 

  

Figure 5.3.1 Schematic view of the PFC model.  

 

 Dimensional analysis 

Centrifuge testing allows small models to be used to accurately represent the behaviour of 

prototype (full-scale) geotechnical problems. In this paper all centrifuge tests were 

conducted at 100 g.  

Normally dimensional analysis is used to transform results from model to prototype scale 

(Fuglsang and Ovesen, 1988), however, this requires some knowledge of the relevant 

phenomena to be able to determine the governing parameters for lateral loading of piles, 

e.g. Randolph (1981). Quasi-static lateral loading of the monopile is assumed in this 
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analysis, with no pore pressure build up during loading. The normalised force and 

deflection are defined as 

𝑃 =
𝐻𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝛾 ∙ 𝑑𝑝𝑖𝑙𝑒
3 

 5.4.1 

𝑈 =
𝑢𝑥

𝑑𝑝𝑖𝑙𝑒
 

 5.4.2 

The basic idea in dimensional analysis is that the governing parameter is a function of a set 

of known independent variables. The goal of the analysis is to reduce the number of 

parameters and to form dimensionless groups, which can be used in the extrapolation to 

prototype (Fuglsang and Ovesen, 1988). The basis for the dimensional analysis is the 

Buckingham Theorem, which states that if an equation is dimensionally homogeneous, it 

can be transformed to a set of dimensionless products. The governing parameters should 

be identified in a dimensional analysis. The response is assumed to depend on a set of 

parameters for a laterally loaded stiff monopile, as shown in Klinkvort (2013). Only quasi-

static monotonic and cyclic loading will be investigated in this thesis. This implies that no 

inertia forces are affecting the response and also that only the fully drained case is 

considered.  

First, the governing parameters controlling the total response of a laterally loaded pile are 

identified. The total response is governed by the applied lateral load, 𝐻ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 , the 

corresponding displacement, 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, the geometry and material of the pile and the sand 

behaviour. The pile geometry is described by: penetration depth, L, load eccentricity, e, 

diameter, dpile. The pile material is described by the stiffness which is the same as the 

particle, kn, ks, and the surface roughness of the pile, µ. Finally the sand is described by: 

submerged unit weight γ', sand stiffness, kn, ks, and the mean sand particle size d50. The 
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parameters with the corresponding dimensions are shown in Error! Reference source not 

found..  

 

Figure 5.4.1 Schematic view of the model. 

 

 Relationship between load and lateral displacement 

Figure 5.5.1 shows that there is a clear difference in the load-deflection curve for 

eccentricity of 6.5dpile and 4.5dpile or 2.5dpile. The results matched well with the experiment 

data of Klinkvort and Hededal (2010). Failure is defined as the load corresponding to a 

settlement equal to 10% of the pile diameter. The figures show that, before the failure, the 

results of the DEM model are nearly the same as the centrifuge experiment. Due to the 

good match of the relationship between lateral load and horizontal displacement, it is 

concluded that the numerical scheme adopted in the present investigation should be capable 

of modelling the pile-soil interaction under higher gravity conditions (100 g). In the 

following sections, the case of “2.5dpile” will be studied for the mechanical analysis.  



118 

 

 

(a)                                                                      (b) 

 

                                 (c)                                                                       (d) 

Figure 5.5.1 Comparison of DEM lateral response of pile with experimental test data of 

Klinkvort et al. (2010): (a) e=2.5dpile; (b) e=4.5dpile; (c) e=6.5dpile; (d) comparison of 

three conditions (Duan and Cheng, 2016a) 

 

 Mechanical analysis 

For the mechanical analysis, there were two symbols which were used to explain. PR (3496 

N) is the maximum horizontal loads, and this magnitude is equal to the applied load when 

the pile top displacement reaches 10% pile diameter dpile. Pmax is the maximum applied 

loading, Pmin is the minimum applied load, positive means the left direction and negative 

means the right direction. From equations 5.6.1 and 5.6.2, the 𝜁𝑏 can show the magnitude 

of applied loading, 𝜁𝑐 will describe the direction of applied loads. 
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ζ𝑏 =
𝑃𝑚𝑎𝑥

 𝑃𝑅
 

 5.6.1 

ζ𝑐 =
𝑃𝑚𝑖𝑛

 𝑃𝑚𝑎𝑥
 

 5.6.2 

From Figure 5.6.1, it shows the lateral and vertical stress distribution at different loads 

level. Figure 5.6.1 (a) and (b) describe the vertical stress comparison at passive and active 

sides. These two side trends are opposite. On the passive side, the vertical stress increases 

with the bigger horizontal load. There was the opposite phenomenon which happened on 

the active side. 

  
                                        (a)                                                          (b) 



120 

 

   

                                       (c)                                                            (d) 

Figure 5.6.1 Vertical and horizontal stress distribution comparison of different loads 

level. 

 

Figure 5.6.1 (c) and (d) describe the horizontal stress comparison on the passive and active 

sides. These two side trends are opposite. On the passive side, the horizontal stress above 

a certain point increases with the raising horizontal load. However, the horizontal stress 

above the certain point decreases with the raising horizontal load on the active side. The 

contrary phenomenon occurs again below a certain point. 

 

   

                                    (a)                                                                 (b) 

Figure 5.6.2 Porosity number comparison under different loads level. 
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From Figure 5.6.2, it show the porosity distribution at different load levels. The porosity 

decreases slowly with the increasing lateral load on the passive side. However, the 

phenomenon is complex on the active side. Before the load reached 5000 N, the porosity 

increased a little. During the load 5000 N to 10000 N, the porosity suddenly diminished. 

The reason should be due to the consolidation. 

 

                                    (a)                                                                 (b) 

 

                                    (c)                                                                 (d) 
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                                     (e) 

Figure 5.6.3 Passive side lateral stress distribution comparison of different loads level. 

 

In Figure 5.6.3, the x-axis was normalised by x/dpile which means the according lateral 

distance from the left side of the pile. 0 means the left surface of the pile. When the pile 

length was just pushed to left side (see Figure 5.6.3 (a)), the lateral stress where it is near 

pile increases larger than the far area. Peak value of lateral stress was reached when the 

lateral force achieved the maximum. Then the lateral stress when near the pile was 

decreased. The level 2 (see Figure 5.6.3 (b)) is a little deeper than level 1 and the lateral 

stress increases entirely. For the level 3 (see Figure 5.6.3 (c)), it is around the pile bottom 

and little lower. Due to the rotation of pile, the lateral stress of far area increases larger than 

the parts near the pile. However, the lateral stress of pile closed was decreased first, after 

that, it increased again. The pile tip moved to right, then the left side of pile tip caused the 

gap which reduced the lateral stress. With the movement of pile, the little upper part of pile 

tip kept compacting the left side soil. Hence, the lateral stress increased again.  Level 4 (see 

Figure 5.6.3 (d)) is very deep and around the pile tip and little deeper, so the lateral stress 

keeps decreasing until ζb=1.5, then the lateral stress near the pile keep same, the lateral 

stress of far area increased quickly. 

In Figure 5.6.4, the trends indicate that the lateral stress distribution of different vertical 

area. It is found that the lateral stress of vertical upper area near the pile (Figure 5.6.4 (a)) 
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increases more than the far area (Figure 5.6.4 (d)). However, the upper layer of pile closed 

area change obviously more than deeper area. Further area change more linear. At the 

deeper area near the pile, there show up the decrease of lateral stress when the lateral force 

increase (Figure 5.6.4 (a), (b)). For the area where is around pile tip, when the applied 

lateral force is same, the lateral stress of far vertical area is larger than the pile closed area. 

When the depth is deeper than the pile tip, the lateral stress nearly keeps same. 

 

                                    (a)                                                                 (b) 

 

                                    (c)                                                                 (d) 
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                                   (e) 

Figure 5.6.4 Passive side lateral stress distribution comparison of different loads level at 

different vertical locations. 

 

 

                                    (a)                                                                 (b) 
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                                    (c)                                                                 (d) 

Figure 5.6.5 Passive side lateral stress distribution during the lateral loads increasing. 

 

Figure 5.6.5 shows the lateral soil stresses at 4 specific depths (e.g. Figure 5.6.5 (d): Level 

4 at the deepest depth, and Figure 5.6.5 (a): Level 1 at the shallowest depth) and different 

distances away from the pile (VL1-VL4) while the pile head has been pushed to different 

normalised distance (ux/dpile). It is clear in Figure 5.6.5 (c), (d) that the lateral stress on the 

pile-soil interface reduces drastically first and increases again after the pile was pushed. 

These figures indicates that the change of lateral stress is depended on the locations of 

model. Below the pile tip, the lateral stress is decreasing, and the lateral stress where is 

above the pile rotation centre is increasing. 

 

 Summary 

The key issue was investigated for the design of a monopile support for an offshore wind 

turbine, such as the accumulation of displacements. It was clearly seen that the 

accumulation of displacement compared well with the experimental data. This can prove 

that DEM also is an effective method to research the big scale problems. Before the failure 
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state, the lateral stress of passive side did not change obviously. During the lateral loads, 

the soil state of different depth is different. Also monotonic loading tests can help with the 

analysis of cyclic loading test. 

The content of this chapter was submitted to 7th Civil Engineering Conference in the Asian 

Region and published as a conference paper with title “A Micromechanics Study of 

Monopile under Monotonic Loading using DEM”. 
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Chapter 6  

A discrete element method centrifuge model of monopile under 

cyclic lateral loads 

 Introduction 

Pile foundations are widely used to support various types of structures for situations when 

shallow foundations undergo excessive settlements or have insufficient bearing capacity. 

Monopile foundations are the main type used for wind turbines at present. They are always 

subjected to significant cyclic lateral loads due to wind and wave actions (Duan and Cheng, 

2016b). These cyclic loads will rock the pile and restructure the soil grains surrounding the 

pile. This may change the stiffness of the combined pile-soil system and induce 

accumulated rotation of the tower due to this change. Change in the stiffness of the pile-

soil system changes the frequency of this system which then can interfere with the 

excitation frequencies. The excitation frequencies are the frequencies of the rotor and the 

blades, approximately 0.3 Hz and 1.0 Hz, respectively (Rasmussen et al., 2013). The 

natural frequency of the tower is normally designed to be in-between to avoid resonance 

(Leblanc et al., 2010a). The design criteria are often very strict due to operating behaviour 

and often the accumulated permanent rotation of the tower must not exceed 0.5o. As the 

rotation is an important factor in the design criteria, it is important to investigate the effect 

of long-term cyclic loading on the pile-soil system. However, in the present standards, i.e. 

DNV (2010) and API (2007) cyclic loading is not given much attention. These standards 

use p-y curves based on few full-scale experiments for laterally loaded slender piles and 

use a simple reduction factor to reduce the ultimate soil resistance for cyclic loading. The 

effect of long-term cyclic loading of monopiles placed in sands is possible to be a critical 

design factor and the effect of change in load characteristic, number of load cycles have 

not been properly examined. 
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In field tests, it is difficult to exert cyclic loading on monopiles with large diameters due to 

the limitations of test facilities and high costs. However, centrifuge modelling offers an 

effective way to understand the influence of cyclic loads on piled foundations. Compared 

with field tests, centrifuge tests are more convenient, efficient and cheaper. Centrifuge 

modelling provides an effective tool for researchers in geotechnical engineering as it allows 

the study of geometrically complex problems involving soil non-linearity. Centrifuge 

testing is, however, expensive and time consuming. Consequently, the number of tests 

performed in the study of a given problem is usually low. In addition, there are limitations 

on the amount of data that can be obtained during a centrifuge test. For these reasons, it is 

often beneficial to supplement a centrifuge study with numerical analyses. The numerical 

analyses can provide additional insights into the observed behaviour from the centrifuge 

experiments and allow investigation of certain experimental conditions. 

In this research, a series of cyclic lateral load tests were conducted in the GM DEM-

centrifuge model. The frequency of cyclic loading used in model was discussed. Also, the 

influence of cyclic lateral loads on the pile lateral displacement is investigated. 

 

 Literature review 

6.2.1 The influence of long-term lateral cyclic loading 

The characteristics of the cyclic lateral load include the cycle numbers, the cyclic load ratio 

(minimum load/maximum load in a cycle), and the maximum magnitude of load. The 

cyclic lateral loads can influence aspects of the pile behaviour, including pile head 

displacements, pile secant stiffness, p-y curves, and so forth (Verdure et al., 2003). For a 

safe design of a monopile foundation, fatigue design consisting of cyclic failure manifested 

by dimension of pile, long-term accumulated rotation, deformation and degradation of the 

pile stiffness, should also be addressed besides the maximum static load (Jardine et al., 
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2012). These aspects are the main concerns of monopile behaviour under long-term cyclic 

loading and have to be controlled within the serviceability limit. 

Different research activities have been presented and there is no clear agreement on how 

to deal with possible diameter effects, failure mechanisms etc. The increase in subgrade 

modules was seen to increase proportionally with the depth by Juirnarongrit and Ashford 

(2005) and Fan and Long (2005). However, the investigations were based on slender piles. 

Lesny and Wiemann (2006) and Sørensen et al. (2010) report a diameter effect, but in their 

research the geometrical similarity was not kept constant, which could influence the failure 

mechanisms. The different observations reported show that there is still a need to improve 

the knowledge of rigid laterally loaded monopiles, not only for cyclic loading but also for 

monotonic loading. A more general model describing the soil pile interaction is needed.  

 

Figure 6.2.1 Variation of pile head displacement versus pile diameter in nonlinear 

analyses for sand (Mardfekri et al., 2013) 

 

The effect of the pile diameter with a constant value of the EpIp of the pile was again 

investigated by Mardfekri et al. (2013) for the nonlinear case. Figure 6.2.1 presents the 

results of the three methods for diameters of 1, 2, and 4 m. Again since the SALLOP 
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method is based purely on a Winkler foundation with horizontal springs the results are 

independent of the diameter for a fixed EpIp. The p-y curves give results that vary with the 

diameter but less significantly than the 3D solution. It is interesting to notice that for the 

sand the best agreement is obtained for a diameter of 4 m. For the 1 m diameter the 

prediction of the SALLOP method would be about 40% of the FEM result; with the p-y 

curve it would be about 62%. It seems also that given the lack of a spring acting on the 

bottom face of the pile in the p-y model, for the larger diameter pile the assumption of a 

hinged tip might be more realistic whereas for the smaller diameters it is better to consider 

a free tip. Alderlieste et al. (2011) indicated that pile diameter increases had a more than 

linearly proportional effect on spring stiffness and also improved the static and cyclic 

lateral capacity more than expected by the API formulation. 

The primary design drivers for offshore wind turbine foundations are deformation and 

stiffness rather than ultimate capacity (Leblanc et al., 2010). It is generally assumed that 

the cyclic lateral loading of piles in sand normally involves a rather benign behaviour of 

the pile: an attenuation of the cyclic displacements and only potential serviceability 

problems rather than an eventual loss of mechanical equilibrium. However, such 

assumption is based mainly on experimental tests with a low number of load cycles (Cuéllar 

et al., 2012). 

 

6.2.2 Related theories 

6.2.2.1 p-y method 

Reese and Matlock (1956) developed a method to consider the effect of cyclic loads. It is 

based upon a closed-form solution for a beam on an elastic foundation with a linearly 

increasing soil reaction modulus (LISM) that changes proportionally with depth. The LISM 

method provides a simple procedure for predicting the effect of cyclic lateral loads; 

however, it cannot explicitly account for effects of nonlinear soil response. According to 

field test results of instrumented piles subjected to cyclic loads, Reese et al. (1974) 
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developed a semi-empirical, nonlinear p-y (soil resistance-pile deflection) approach, in 

which degradation factors obtained empirically are used to predict cyclic p-y relationships 

based upon degraded static p-y curves. Additionally, O'Neill and Murchison (1983) 

suggested to generate cyclic p-y curves by reducing the static soil resistance for a given 

deflection. In both approaches mentioned above, the cyclic p-y curves are independent of 

the number of cycles. However, parameters required in this sophisticated approach are 

difficult to obtain from site characterisation studies. Based on previous test data, Long and 

Vanneste (1994) improved the p-y approach to consider the effect of the number of cycles. 

Nevertheless, only 50 or less cycles of lateral loads are executed in most of the tests 

considered. Moreover, the use of p-y curves often fails to account for the permanent 

deformation that accumulates with increasing cycles (Moss et al., 1998). Therefore, 

additional cyclic load tests need to be conducted with many more cycles than previously to 

better understand the influence of cycle numbers. 

Cyclic p-y curves were derived in the 1970s on the basis of tests performed on relatively 

small-diameter piles for soft clays (Matlock, 1970), stiff clays (Reese et al., 1975), and 

sands (Cox et al., 1974). A cyclic loading is considered by reducing p by a constant factor 

0.9 (see equation 6.2.4). The experiments encompass both static and cyclic test with up to 

100 load cycles. The number of load cycles is obviously low. The p-y curves for piles in 

sand were developed based on full-scale load tests on long, slender (slenderness ratio about 

30) and flexible piles with a diameter of 0.61m (Reese et al., 1974). Other tests have been 

conducted validating the p-y curves but all tests are also conducted using slender piles. The 

basis for the p-y curves differs significantly from the piles used as monopiles today as the 

difference in slenderness ratio is pronounced and the amount of load cycles in the tests are 

limited (Rasmussen et al., 2013).  

The shape and magnitude of the p-y curves have often been defined on the basis of full-

scale field tests, simply by measuring the curvature of the pile with strain gauges. The 

double integration (eq.6.2.1) and double derivation (eq.6.2.2) of the pile’s moment Mpile 
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profile provide the lateral displacement 𝑦(𝑧) and soil’s reaction 𝑝(𝑧) respectively. z means 

the depth 𝐸𝑝𝑖𝑙𝑒𝐼𝑝𝑖𝑙𝑒 and is the pile’s bending stiffness. 

𝑦(𝑧) = ∬
𝑀𝑝(𝑧)

𝐸𝑝𝐼𝑝
𝑑𝑧𝑑𝑒𝑝𝑡ℎ

4 

  6.2.1 

𝑝(𝑧) =
𝑑2𝑀𝑝(𝑧)

𝑑𝑧𝑑𝑒𝑝𝑡ℎ
2
 

 6.2.2 

For the case of piles embedded in sand, the piece-wise definition of the curves proposed 

by Reese et al. (1974) was later examined and simplified by Murchison and O’Neill (1984) 

in what is the version ultimately adopted by the API committee. Given its relevance in the 

practice it may be worth briefly summarising the procedure here: 

1. Define at each depth the ultimate soil resistance 𝑃𝑈, as the smallest of the values 

given by the two types of failure (the passive wedge and the lateral flow types of 

failure described before) taking into account that p = Pdpile. P is the pressure exerted 

by the soil at any given point of the pile. The coefficients 𝐶1 through 𝐶3 can be 

obtained from Figure 6.2.2(a). 

2. Compute the adjustment coefficient A(z) as 

𝐴(𝑧) = (3.0 − 0.8
𝑧𝑑𝑒𝑝𝑡ℎ

𝑑𝑝𝑖𝑙𝑒
) ≥ 0.9        

6.2.3 

𝐴(𝑧) = 0.9          𝑓𝑜𝑟 𝑐𝑦𝑐𝑙𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔   

6.2.4 
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3. Estimate the initial modulus of subgrade reaction K on the basis of the angle of 

internal friction φ’, using the chart in Figure 6.2.2 (b). 

4. Approximate the p-y curve at each depth by the following expression 

𝑝(𝑦) = 𝐴 𝑃𝑈(𝑧) 𝑡𝑎𝑛ℎ (
𝐾𝑧𝑑𝑒𝑝𝑡ℎ

𝐴 𝑃𝑈
𝑦)   

6.2.5 

 

Figure 6.2.2 Determination of constants for the p-y curves of a pile embedded in sand 

(API, 2007). a) Coefficients for the ultimate soil resistance. b) Initial modulus of 

subgrade reaction. 

 

It can be noted that the modulus of subgrade reaction K is here assumed to be independent 

of the pile’s diameter 𝑑𝑝𝑖𝑙𝑒 , however, Terzaghi (1955) showed that the coefficient of 

subgrade reaction is inversely proportional to 𝑑𝑝𝑖𝑙𝑒. This was confirmed in Juirnarongrit 

and Ashford (2005) on the basis of FE calculations and full-scale tests, but its adequacy for 
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the large pile diameters that could be required for the monopile foundations of offshore 

wind turbines was questioned in Wiemann (2007), where the following correction for the 

initial modulus of subgrade reaction proposed a new equation. However, this modification 

has been found to have little influence on the overall behaviour of the large-diameter piles 

and to still underestimate the pile head displacement when compared to FEM solutions 

(Lesny, 2008). 

Little and Briaud (1988b) proposed an estimation of the lateral deformations of piles in 

sand due to cyclic lateral loading by means of a p-y curve developed on the basis of pressure 

meter tests with monotonous and cyclic loading. From a cyclic test the “secant shear 

stiffness” G is obtained as a function of the number of cycles. The degradation of G with 

Ncycle is described by 𝐺(𝑁) = 𝐺(𝑁𝑐𝑦𝑐𝑙𝑒 = 1)𝑁𝑐𝑦𝑐𝑙𝑒
−𝑎 .  The constant a in the exponent 

would solely depend on the soil's relative density.  The lateral deformations of the pile after 

Ncycle cycles can be estimated by using a modification of the p-y curve from the monotonous 

test: 𝑦(𝑁) = 𝑦(𝑁𝑐𝑦𝑐𝑙𝑒 = 1)𝑁𝑐𝑦𝑐𝑙𝑒
𝑎. The method could be approved by re-calculations of 

model tests. However, its application to large pile diameters is not confirmed yet and the 

extrapolation of the pressure meter data to large Ncycle -values seems doubtful. 

Some extensions of p-y curve by the number of cycles Ncycle were proposed in the literature 

(Swinianski and Sawicki, 1991, Welch and Reese, 1972). The latter ones e.g. recommended 

the relationship 𝑦(𝑁) = 𝑦𝑠 + 𝑦50𝐶1log(𝑁𝑐𝑦𝑐𝑙𝑒) for dry, stiff clay. Therein 𝑦𝑠 and 𝑦50 are 

the deformation at 100% and 50% of the bearing capacity, respectively, and the factor C1 

considers the amplitude.  

The current methodology accounts for cyclic loading in an incomplete manner. Repetitive 

lateral load tests on two offshore piers in Tampa Bay, reported by Long and Vanneste 

(1994), showed much greater displacements than predicted using the p-y curve proposed 

by Reese et al. (1974). According to Long and Vanneste (1994), the reason for this 

discrepancy is that the cyclic p-y curve does not account for such factors as installation 

method, load characteristics or number of load cycles. The adequacy of the p-y curves used 
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in the current practice for the design of rigid pile foundations with a large diameter, as in 

the case of monopile foundations of offshore wind turbines, has been widely questioned. 

Generally, the recommended p-y curve for cyclic loading is designed primarily for 

evaluation of the ultimate lateral capacity. Important design issues, such as accumulated 

rotation and stiffness changes due to long-term cyclic loading, are poorly accounted for. 

Long-term cyclic loading is likely to densify, or in some circumstances possibly loosen, 

the surrounding soil, resulting in changes to the stiffness of the foundation. Additionally, 

an accumulated rotation during the lifetime of an offshore wind turbine is expected, since 

the cyclic loading often occurs from one direction. The OWT is in dire need of the 

mechanics research of soil around pile. The cyclic loading should be considered by 

“suitable” p-y reduction factors, which are not further specified. Concerning the 

serviceability limit state a calculation of the cumulative deformations in the soil in a 

“suitable manner” is demanded. However, no such method is specified, and the limitations 

are as follows: 

 Cyclic p-y curves are applicable for modelling the head displacements and 

maximum bending moments of long flexible piles of moderate diameter after a 

storm loading history. However, they are inappropriate to model the response of 

large-diameter piles. 

 Cyclic p-y curves are also inappropriate for modelling cases where horizontal 

displacements remain small, as they assume mechanisms that require relatively 

large displacements (Tjok et al., 2005). 

 It does not consider the transitional period between the static and ultimate cyclic 

curve and thus does not provide a method of considering the pile rotations or 

accumulated displacements during cycling.  
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6.2.2.2 Degradation law 

In order to incorporate the effect of long-term cyclic loading of a pile, the concept of 

degradation is adopted by means of different methods. Little and Briaud (1988a), followed 

by Long and Vanneste (1994), proposed modifying the static p-y curves by applying a 

“degradation” factor to the static soil modulus. Levy et al. (2009) point out that two types 

of degradation of the soil-pile system are postulated to occur during cyclic loading, named 

‘material’ and ‘mechanical’ degradation. Material degradation occurs due to a change in 

soil properties, such as increased changes in the soil density. Several experimental studies 

are available that investigate reductions in soil strength and stiffness under cyclic loading 

conditions. Numerical studies were undertaken into material degradation using both elastic 

continuum and subgrade reaction methods, with degradation factors applied to soil strength 

and stiffness. 

The mechanical degradation is caused by soil yield occurring along the pile (which induces 

plastic displacements) or by gaps developing between the pile and the soil. An experimental 

study completed by Rao and Rao (1993) on rigid piles in soft clay observed that cyclic 

lateral loading can weaken piles and cause an increase in deflection, particularly at load 

levels beyond 50% of the static capacity. 

The degradation factor has become a generally adopted concept in determining cyclic load 

effects, leading to explicit methods for determining the stress-strain relations for cyclic 

loading. A degradation index was presented by Idriss et al. (1978) which described the 

change in stiffness and shape of the hysteresis loop as a function of the number of cycles. 

The concept was continued by Little and Briaud (1988b) who proposed a power function 

for degrading the soil resistance as a function of the number of load cycles. With origin in 

this formulation and the static p-y curves analysed results from 34 full-scale laterally loaded 

pile tests to investigate which model parameters influenced the behaviour of the pile when 

repetitively loaded (Long and Vanneste, 1994). The 34 tests varied in many aspects from 

each other: pile type and installation method, length and diameter of the pile, soil density, 

number of cycles, and load characteristic. The slenderness ratio spanned from 3 to 84 
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covering both very rigid and flexible piles placed in different cohesionless soils varying 

from loose to dense compaction. The piles were loaded differently: one and two-way 

loaded, subjected from 5 to 500 load cycles (Rasmussen et al., 2013).  

Long and Vanneste (1994) adopted a method, originally introduced by Little and Briaud 

(1988a), to account for cyclic loading. The method is based on the deterioration of the static 

p-y curve, which is taken into account by reducing the static soil reaction modulus 

according to 

𝐸𝑁

𝐸0
= 𝑁𝑐𝑦𝑐𝑙𝑒

−𝑎 

  6.2.6 

in which 𝐸0  and 𝐸𝑁  denote the soil reaction modulus on the first and Nth load cycle 

respectively, and 𝑎 is an empirically determined degradation parameter that depends on the 

installation method, soil density and load characteristics. 

By investigating a subset of the full-scale tests, Lin and Liao (1999) proposed that the 

accumulated displacement of piles can be predicted by 

𝑢𝑁 − 𝑢0

𝑢0
= 𝛽 ln(𝑁𝑐𝑦𝑐𝑙𝑒)    

6.2.7 

in which 𝑢0  and 𝑢𝑁  denote the pile-head deflection in the first and Nth load cycle 

respectively, and 𝛽 is an empirical degradation parameter, similar to 𝑎, depending on the 

installation method, soil density and load characteristics. 

Lin and Liao (1999) and Long and Vanneste (1994) found that the degradation factor can 

be determined based on installation method, soil density and load ratio. They suggested a 

power and a logarithmic expression, respectively. Both expressions give a simple estimate 

of the accumulated rotation for the number of cycles applied. Lin and Liao (1999) also 
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included a depth degradation parameter t (eq. 6.2.8), to account for different model 

properties with the purpose of calculating the accumulation of pile displacements. However, 

the methods are not clear on whether the rotation should be found as the maximum or the 

minimum rotation for a load cycles. It is the author’s opinion that the minimum rotation in 

a load cycle represents the permanent rotation best as the elastic deformation is at its 

minimum as well. 

  R𝑠 =  
𝜀𝑁

ε1
 =  1 +  𝑡 𝑙𝑛(𝑁𝑐𝑦𝑐𝑙𝑒)       

6.2.8 

R𝑠 is cyclic strain ratio, ε𝑁 is strain accumulation after 𝑁𝑐𝑦𝑐𝑙𝑒 cycles. A development in the 

concept of degradation was made by Achmus et al. (2009) who researched the degradation 

of stiffness in cohesionless soils as a consequence of cyclic loading (see Figure 6.2.3 and 

Figure 6.2.4). Based on triaxial tests and FEM, design charts for determining deflection 

along a pile as a function of the number of cycles were developed. The degradation was 

expressed by means of the ratio of the secant elastic modulus. Figure 6.2.3 and Figure 6.2.4 

can help to explain the method 1 in Table 6.2.1.  

 

Figure 6.2.3. Degradation of secant modulus under cyclic loading in the pile-soil model 

(Achmus et al., 2009). 
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Achmus et al. (2010) presented a FEM model based on strain degradation to verify the 

results obtained by Leblanc et al. (2010b) and found good agreement between the 

simulations and the test results. Based on the method by Leblanc (2009) and a super 

positioning concept similar to Miner’s rule, Leblanc et al. (2010a) created design charts for 

determining the accumulated pile rotation due to random two-way loading. The procedure 

is based on a limited amount of empirical data from small-scale tests and further research 

should be carried out to investigate the complicated behaviour of change in parameters.  

 

Figure 6.2.4 Schematic sketch of the determination of degradation stiffness in the pile–

soil system (Achmus et al., 2009) 

 

Table 6.2.1 Degradation summary 

No Author Definition 

1 Achmus et al. (2009), 

Achmus et al. (2007) 
𝑁𝑐𝑦𝑐𝑙𝑒

−𝑎 =
E𝑠𝑁

E𝑠1
≅

𝜀𝑐𝑝,1

𝜀𝑐𝑝,𝑁
 

𝑎 = −b1(𝑋)−b2 

𝑋 =
σ1,𝑐𝑦𝑐𝑙𝑖𝑐

σ1,𝑓
 

𝑋𝑐 =
𝑋(1) − 𝑋(0)

1 − 𝑋(0)
 

𝑋(1) =
σ1

(1)

σ1,𝑓
(1)  , 𝑋

(0) =
σ1

(0)

σ1,𝑓
(0) 
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2 Leblanc et al. (2010b)  
△Ѳ(𝑁)

𝜃𝑠
=

𝜃𝑁−𝜃1

𝜃𝑠
= 𝑇𝑏(𝜁𝑏 , 𝑅𝑑)𝑇𝑐(𝜁𝑐)𝑁𝑐𝑦𝑐𝑙𝑒

0.31 

3 Lin and Liao (1999) R𝑠 =  
𝜀𝑁

ε1
 =  1 +  𝑡 𝑙𝑛(𝑁𝑐𝑦𝑐𝑙𝑒) 

𝑡 =η 
𝐿

𝑇
ϕξβ    

 𝑇 =√
E I𝑝

nℎ

5
 

4 Long and Vanneste 

(1994) 

k𝑠(𝑧) = 𝑁𝑐𝑦𝑐𝑙𝑒
−𝑚

nℎ,1z 

y
𝑁

= y
1

𝑁𝑐𝑦𝑐𝑙𝑒
𝛼𝑚 

p
𝑁

= p
1

𝑁𝑐𝑦𝑐𝑙𝑒
(𝛼−1)𝑚 

𝑚 = 0.17F𝐿F𝐼F𝐷 

 

Different load scenarios with varying load characteristics and amplitude is tested with the 

outcome that Peng et al. (2006), Peralta (2010) and Leblanc et al. (2010b) agree that the 

pile will keep deforming and the exponential expression by Long and Vanneste (1994) fits 

rigid piles behaviour. 

Peralta and Achmus (2010) indicated that the results from flexible piles fitted the 

logarithmic function best while the power function (Method 2, 3) fitted the results from the 

rigid piles best. However, method 1 lacks the support of full or small scale tests, what is 

more, there is a problem in the application of the stiffness degradation model because the 

pile-soil system is the reasonable definition of the initial stress state and the cyclic load 

level for each element of the discretized system. On the one hand, the initial stress state is 

not isotropic, and on the other hand the principal stress orientation changes during loading 

and the minor principal stress does not in general remain constant. Method 3 and 4 use an 

empirical foundation: their methods are based on experiments conducted on slender piles 

cyclically loaded to a maximum of 500 cycles. When using these explicit methods for 

larger numbers of cycles, variation in characteristic and model dimensions should be 

investigated.  
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Rasmussen et al. (2013) showed that the study on the change in stiffness of the soil-pile 

system did not provide such clear results as the rotation accumulation. It cannot be 

concluded how the stiffness is affected by the relative density. However, similar for all 

tests is an increase in stiffness with an increase in the number of load cycles. This increase 

is contradictory to current methodology which uses degradation of static p-y curves to 

account for cyclic loading.  

 

6.2.3 Phenomena during the lateral cyclic loading 

The phenomena and mechanics of lateral cyclic loading might shed some light on the 

complex circumstances related to the pile-soil interaction in the upper layers of the bedding, 

which are normally the main contributor for the lateral load-bearing capacity of piles. The 

references to subsidence or soil densification near the pile head are scarce in such literature, 

in part due to the inability of the most commonly used constitutive models to take into 

account the changes in density of the soil under cyclic condition (Cuéllar et al., 2009). 

Doherty and Gavin (2012) summarised the main results of cyclic loading:  

 Both deflection and moment increase with the increasing number of cycles and 

load magnitude,  

 The ultimate lateral load capacity decreases with the increasing number of 

cycles and load magnitude, 

 The main features of pile response to cyclic loading are practically unaffected 

by soil inhomogeneity,  

 The loading rate has a significant effect on the pile response, with the 

deflections at a given load decreasing as the loading rate increases,   

 The location of the plastic hinge moves deeper when the pile is subjected to 

fully cyclic loading than to monotonic loading, due to soil stiffness degradation 

(Tuladhar, Maki, & Mutsuyoshi, 2008), 
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 One-way cyclic lateral loads induce more permanent strains and greater 

cumulative deformations of the piles than the two-way cyclic lateral loads 

(Long & Vanneste, 1994). 

Doherty and Gavin (2012) indicated that soil stiffness decay and strength degradation had 

appeared during the cyclic lateral loading. Change in the stiffness of the pile-soil system 

changes the frequency of this system which then can interfere with the excitation 

frequencies (Rasmussen et al., 2013, Cui and Bhattacharya, 2015). Leblanc et al. (2010b) 

also indicated that the long-term cyclic loading of the foundation is likely to change the 

stiffness of the surrounding soil and therefore the interaction of the foundation and the soil, 

owing to the accumulation of irreversible deformations. Thus it is important to assess the 

concepts of stiffness and/or strength changes during long-term cyclic loading.   

Achmus et al. (2009) reported for the shorter monopile, the soil along the whole length of 

the pile is subject to stiffness decrease as well. As for the longer pile, only the soil stiffness 

in the upper half of the pile degrades significantly. However, this stiffness variation in the 

opposite direction of loading is negligible for a monopile subjected to one-way cyclic 

loading and will not affect the accumulated displacement of the pile. Achmus et al. (2009) 

also pointed out that the numerical model is capable of accounting for that, whereas the 

results of existing empirical models are independent of the magnitude of loading and the 

system boundary conditions. Thus, the pile performance under cyclic horizontal loading is 

dependent on the embedded pile length. Then, to improve monopile performance the 

increase of the pile length is much more effective than the increase of pile diameter. 

However, the model still needs to be verified by further experimental evidence (large-scale 

tests, field measurements and observations), and there is no micro mechanical 

interpretation of the results. There is a need for experimental work that can validate and 

improve the theoretical basis so it fits today’s problem of cyclic long-term loading of 

monopiles (Rasmussen et al., 2013).  
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6.2.3.1 Pile head displacement and rotation 

A long-term lateral loading may create rotation (tilt) of the pile by change in the soil-pile 

system which is critical in the serviceability limit state. The accumulated rotation due to 

long-term lateral loading is therefore a current issue as today’s design guidances have little 

knowledge in this area.  

The maximum permanent rotation of a monopile at mudline is 0.5 o in German (Achmus et 

al., 2009), 0.25 o in the UK and 0.17 o in China. ∆𝜃(𝑁) stands for the accumulated turning 

angle as shown in Figure 6.2.5, and 𝑘0 and 𝑘N indicating the dynamic stiffness of the pile. 

The published Det Norske Veritas regulations (DNV, 2009) proposed analysing the 

dependence of pile head displacement on the embedded pile length and choosing the pile 

length. However, all these criteria are based only on intuition, so their suitability needs to 

be proved (Kuo et al., 2012). 

 

Figure 6.2.5 Method for determination of stiffness and accumulated rotation: (a) cyclic 

test; (b) static test (Leblanc et al., 2010b) 

 

As the rotation is an important factor in the design criteria it is important to investigate the 

effect of long-term cyclic loading on the pile-soil system. In the present standards, i.e. DNV 

(2010) and API (2007) cyclic loading is not given much attention (Rasmussen et al., 2013). 

Although many useful methods have been proposed to predict the response of piles to 
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lateral cyclic loading, methods predicting the accumulated rotation and resulting stiffness 

due to long-term cyclic loading are limited. 

 

6.2.3.2 Grain migration 

Cuéllar et al. (2009) observed that the grain migration towards the pile never ceased nor 

seemed to slow down significantly during the procedure of cyclic loading. Then, once the 

soil depression reaches a rather constant depth, a second phase starts, namely the 

convection-dominated phase. During such a phase, rather than producing further 

densification of the soil, the cyclic lateral movements of the pile would mainly cause a 

convective ratcheting displacement of the sand particles. When lateral loading is applied 

one must also consider whether gapping may develop along the upper part of the pile. 

Along their way through the soil mass, the migrated grains would be pushed forward by 

the following grains, and also move towards areas of lower confining stresses, i.e. upwards, 

setting in motion a whole ratcheting convective cell within the pile-head vicinities. 

Although this phenomenon has already been described by the painted sands method in 

experiment (Cuéllar et al., 2009), the procedure and mechanism was not recorded, so 

further research still needs to be validated.  

 

6.2.3.3 Soil subsidence 

It has been observed that there is local subsidence on the surface of the surrounding soil 

and a continuous grain migration towards the pile. A series of experiments were carried 

out by using coloured bands (Cuéllar et al., 2009, Cuéllar et al., 2012). Part of the local 

subsidence might be also caused by a mere plastic deformation of the soil without reduction 

in volume, meaning that the subsided volume emerges somewhere else. This might have 

happened to some extent in the presented test, where the sand was already quite dense and 
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some slight local heave was observed right outside the subsided area. In any case, it did not 

appear that the heaved volume of soil could account for the whole subsidence, so it seems 

that some densification happened indeed (Cuéllar et al., 2009). However, these studies did 

not show the clear evidence for the relationship between the local heave and subsidence, 

because there still has not a clear routine for the mechanism of soil subsidence.  

 

6.2.3.4 Densification 

Cyclic lateral loads can cause densification of the soil around the pile and a reduction of 

the radial stress, axial pile capacity can potentially be affected by lateral cycling. This effect 

has not yet been assessed thoroughly through field or scale model tests. Cyclic lateral 

loading of piles can reduce the axial and lateral stiffness of the surrounding soil over a 

certain depth below the ground surface (Cuéllar et al., 2012).  

 

Figure 6.2.6 (a) Vertical cut of the soil, along the loading direction. (b) Sketch of soil 

domains (Cuéllar et al., 2009) 

 

Cuéllar et al. (2012) presented that the soil behaviour around the pile under cyclic loading 

can be defined as two distinct phases: First phase: Densification-dominated phase and 

Second phase: Convection-dominated phase according to the plot in Figure 6.2.7. The 

progressive sand densification leads to subsidence of the soil surface and a significant 

stiffening of the pile behaviour. Conversely, the ratcheting convective motion of two closed 

cells of soil beneath the pile-head is responsible for an endless grain migration at the soil 
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surface, the inverse grading of the convected material and a direct shear of the sand at the 

distinct boundary of the revolving soil domain (see Figure 6.2.6). In this respect, and from 

a macro-mechanical perspective considering the soil as a continuum, it appears that the 

convecting material tends to follow gradient lines of shear stress during its ratcheting 

motion (Cuéllar et al., 2012). The densification phase starts immediately characterised by 

progressive reduction of the amplitude of cyclic pile displacement and progressive 

subsidence. Cyclic pile displacement leads to grain rearrangement and reduction of inter-

granular voids until it reaches the maximum density influenced by the magnitude of the 

pile displacement and the relative density of the soil. The convection-dominated phase 

starts when the soil depression reaches a constant depth. A fairly constant amplitude of 

cyclic pile displacements is maintained in this phase and also no more significant plastic 

volumetric strains would take place around the pile. The convective ratcheting 

displacement is caused by cyclic lateral movements which are endless. In addition, these 

two phenomena are not completely decoupled. Giannakos et al. (2012) pointed out soil 

densification due to voids reduction, and “system” densification due to the gradual 

enlargement of the resisting soil mass to greater depths with cyclic loading. In experiment, 

it is hard to measure the void ratio, but PFC can help to record that. 

 

Figure 6.2.7 Measured lateral displacements and cyclic amplitude in logarithmic scale 

(Cuéllar et al., 2009) 
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6.2.4 DEM research on lateral cyclic loading 

Cui and Bhattacharya (2015) reported that the DEM simulations and small scale tests 

provide good understanding on soil-structure interaction of offshore wind turbines (see 

Figure 6.2.8). Various features observed in model tests could also be replicated in DEM 

studies and thus provides confidence in the small scale physical model tests. They also 

point out the stiffness of granular soils increases under cyclic load. Therefore, the stiffness 

of monopiles founded on granular material is expected to increase with cycles of loading 

and this increase may cause a change in natural frequency of the wind turbine system. 

Following their research, it may be concluded that a “soft-stiff” will move towards the 3Ω 

frequency (see Figure 1.1.5). It is necessary for designers to predict the change in frequency 

which is essential to predict the fatigue life. It is observed from DEM simulations that the 

stiffness of the soil increased irrespective of the strain levels i.e. 0.1% and 0.01%. The rate 

of increase diminishes with cycles of loading. These observations match quite well with 

the small scale model tests. The circulation of soils observed in soils next to the pile could 

also be observed in the DEM simulations. 

 

Figure 6.2.8. Configuration of soil tank and pile (Cui and Bhattacharya, 2015). 
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6.2.5 Summary 

Offshore wind turbines are relatively new structures and are designed to provide an 

increasing proportion of wind energy generation capacity. This is because of the fact that 

offshore sites are characterised by stronger and more stable wind conditions than the 

corresponding land sites and thus have a higher capacity factor when compared to 

equivalent onshore turbines. There is also a deficiency of knowledge concerning the 

influence of the monopile-soil foundation system and its structural stability under long-

term cyclic lateral loading. Existing literature includes Kuo et al. (2012), Cuéllar (2011), 

Achmus et al. (2010), Wichtmann (2005), Matlock (1970), Reese et al. (1974), Little and 

Briaud (1988b), Ismael (1990) and Long and Vanneste (1994). In the empirical field, 

experiments of model pile in sand exposed to large numbers of cycles typically ranging 

from 104 to 105, have been undertaken under 1g purely drained conditions at both Oxford  

(Leblanc et al., 2010) and Leipnitz University (Peralta, 2009). Though many authors have 

studied the area it is clear that no general approach has been accomplished yet and further 

studies are needed (Rasmussen et al., 2013).  

There is only a limited amount of load cycles address the effects of cyclic loading on pile 

response. Different methods with varying degrees of accuracy have been used, 

incorporating simplified (Dawson, 1980, Lin and Liao, 1999, Long and Vanneste, 1994) 

or advanced numerical models (Achmus et al., 2009, Bourgeois et al., 2010, Grashuis et 

al., 1990, Hutchinson et al., 2005).  Centrifuge experiments (Verdure et al., 2003, 

Kirkwood and Haigh, 2013a, Klinkvort, 2013) and full-scale tests have also been 

performed on the cyclic behaviour of piles embedded in sand (Brown et al., 1987, Tuladhar 

et al., 2008, Rollins et al., 2006, Klinkvort et al., 2012, Lau et al., 2014, Li et al., 2010). 

Niemunis et al. (2004) suggested a model to predict accumulated deformations based on 

laboratory tests on sand. Small-scale experiments were conducted by Peng et al. (2006), 

Leblanc et al. (2010b) and Peralta (2010) using theories on degradation and the concept of 

superposition to evaluate the cyclic loading effect on displacement and change in soil 
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stiffness. The accumulated rotation was found to be dependent on relative density, and was 

strongly affected by the characteristics of the applied cyclic load. 

An overview of the numerous models available in the literature is briefly presented, which 

provides the basis for the choice of a model suitable for the simulation of a pile under cyclic 

lateral loading. The DEM study can be used to analyse the cyclic behaviour of a laterally 

loaded pile, provided that a suitable constitutive model is used. The main interest of the 

approach is to solve the effect of ζb and ζc and the soil micro mechanics of the soil-pile 

interaction.  

 

 DEM modelling of centrifuge model under cyclic loading 

6.3.1 Sample characteristics and model setup 

This research is based on the scaling laws similar to centrifuge modelling. Centrifuge 

testing experiments allow small models to be used to accurately represent the behaviour of 

the prototype (full-scale) geotechnical problems. In this paper all DEM-centrifuge 

simulations were conducted at 100 g. 

In the PFC-2D model, the dimension of boundary walls was first set to be the same as 

Kirkwood and Haigh (2013b). This dimension was also similar to Klinkvort (2013). The 

width of model was 0.6 m and depth was both 0.6 m. Rigid walls were used to model the 

boundary. All DEM analyses in this investigation were performed using the GM DEM-

centrifuge method under 100 g. Table 3.3.2 shows input parameters used in the DEM 

simulations. 
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Figure 6.3.1. Schematic view of the PFC model and a typical particle assembly at 

equilibrium before pile installation. 

 

Generally, at the first stage of generation, when the initial average porosity was reached, 

the model was cycled to equilibrium. At the second stage, the special gravity (100 g) was 

added, and the PFC model was cycled to equilibrium again. This moment, the porosity was 

the final average porosity. At the third stage, before the pile was formed, the particles inside 

the same area were deleted. In this research, “clump” was used to model the rigid pile. The 

system was then cycled to equilibrium again with the pile in place. For each grid, when 

particles inside each grid were created, the particles were given properties as shown in 

Error! Reference source not found. and the number of particles in every grid is 280. In 

every grid, the sample followed the size distribution and initial porosity of 0.25. All 

particles within each grid were added the designated gravity when the initial average 

porosity was reached, then the model was cycled to equilibrium. The detailed sample 

preparation process was described as the “GM” method (Duan and Cheng, 2016a).  
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6.3.2 Loading characteristics 

A set of load characteristic constants were used to describe the cyclic loading. The load 

characteristics are denoted by ζb and ζc (Leblanc et al., 2010b, Long and Vanneste, 1994, 

Rosquoet et al., 2007, Klinkvort, 2013). They are determined as shown in Equation 5.6.1 

and 5.6.2. 

 

Figure 6.3.2. Characteristics of cyclic loading forces defined in terms of ζb and ζc. 

 

Here, PR is 1850 N in this research. ζb is a normalised force parameter that describes how 

close the cyclic magnitudes are carried out to the static bearing capacity. For instance, when 

ζb = 1, the cycles are carried out at a magnitude reaching the static bearing capacity. On the 

other hand, ζc describes the direction of the cyclic loading with ζc ≥ 0 for a one-way loading 

and ζc < 0 for a two-way loading. When using dimensional analysis to transform results 

from a model to a prototype scale, some knowledge of the relevant phenomena is normally 

required to determine the governing parameters (Randolph, 1981). Quasi-static lateral 

loading of the monopile is assumed here with no pore pressure build up during loading. 

For example, Equations 6.3.1 to 6.3.4 show the relationship between cyclic loading 

magnitude and direction, as proposed by (Klinkvort, 2013), using normalised forces and 

deflections: 
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�̃�𝑚𝑎𝑥,𝑁/�̃�𝑚𝑎𝑥,1 = 𝑁𝛼 

6.3.1 

𝛼(𝜁𝑐 , 𝜁𝑏) = 𝑇𝑐(𝜁𝑐) · 𝑇𝑏(𝜁𝑏) 

6.3.2 

𝑇𝑏(𝜁𝑏) = 0.61𝜁𝑏 − 0.013 

6.3.3 

𝑇𝑐(𝜁𝑐) = (𝜁𝑐 + 0.63)(𝜁𝑐 − 1)(𝜁𝑐 − 0.64) 

6.3.4 

Where 𝑇𝑐(𝜁𝑐) ,  𝑇𝑏(𝜁𝑏)  are the non-dimensional functions. The function 𝑇𝑏  cannot be 

negative, hence cyclic loading with a small magnitude 𝜁𝑏 ≤ 0.02, will lead to a value 𝑇𝑏 =

0, implying that the pile-soil interaction is reversible and no accumulation of displacements 

will occur. The function 6.3.4 ensures that α = 0 for monotonic loading, 𝜁𝑐 = 1. The 

maximum value of the function is found at 𝜁𝑐 = −0.01 , which means that the most 

damaging load situation is when the monopile is subjected to a more or less pure one-way 

loading. When 𝜁𝑐  ≤ −0.63, the function Tc becomes negative, which means that the 

accumulation of displacement is reversed and the pile moves towards its initial position. 

In order to incorporate the effect of long-term cyclic loading of a pile, the concept of 

degradation is adopted by means of different methods. Lin and Liao (1999) and Long and 

Vanneste (1994) found that the degradation factor can be determined based on installation 

method, soil density and load ratio. They suggested a power and a logarithmic expression, 

respectively. Achmus et al. (2010) indicated that the results from flexible piles fitted the 

logarithmic function best while the power function (such as Klinkvort (2013)) fitted the 

results from the rigid piles best. 
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 Comparison with centrifuge experiment 

6.4.1 Selection of loading frequency 

Long-term cyclic loading of wind turbine foundations may change the soil’s stiffness, and 

hence resonant frequencies, which can lead to the accumulation of irreversible 

deformations. Site-specific spectral densities for wind and waves can be derived from 

available measured data, met-ocean databases or numerical models. The excitation ranges 

of 1Ω and 3Ω, the realistic normalised power spectra representing aerodynamic and 

hydrodynamic excitation are illustrated in Figure 1.1.5. So far, offshore wind turbines are 

designed with the 1st natural frequency, f1, which is between 1Ω to 3Ω. In the wind industry 

sector, this is referred to as a “soft-stiff” structure. However, it is possible to design a “soft-

soft” structure with f1 below 1Ω, or a “stiff-stiff” structure with f1 above 3Ω. The choice of 

frequency range for f1 depends on the stiffness of the foundation. In general, less steel is 

required for a soft structure (Leblanc, 2009, Cui and Bhattacharya, 2015, Cuéllar, 2011, 

Arshad and O’Kelly, 2013).  

Table 6.4.1 Model frequency used in published centrifuge experiment tests.  

No Loading frequency (Hz) g (N/m2) Authors 

1 0.106 1 Leblanc et al. (2010b) 

2 0.1 1 Roesen et al. (2013) 

3 0.02-0.7 100 Li et al. (2010) 

4 Not clear 25~125 Klinkvort (2013) 

5 Not clear 100 Kirkwood and Haigh (2013b) 

 

In previous centrifuge experiment tests, as shown in Table 6.4.1, the loading frequency was 

simply chosen to lie between 0.02 and 0.7 Hz. If the realistic frequency is 0.1 Hz, the 

frequency in 100g centrifuge test should then be 10 Hz according to the scale law. For the 
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DEM model, when the frequency was set too low, such as 0.1 Hz, computation would take 

a very long time. For example, a test of 10 cycles of 0.1 Hz requires one week to run and 

it is inefficient. Therefore, it is essential to find an appropriate loading frequency for the 

DEM model which is efficient and reasonable.  

Table 6.4.2 Loading cases of centrifuge experimental tests (Klinkvort, 2013).  

Experiment ζb ζc Diameter of pile (mm) 

E1-2 0.18 -0.46~-0.32 28 

E1-3 0.36 -0.46~-0.32 28 

E1-4 0.08 -0.46~-0.32 28 

E2-3 0.25~0.29 0.54 40 

E3-1 0.33~0.34 -0.5 40 

E4-3 0.15~0.36 0.05 40 

 

Figure 6.4.1 shows the comparison between DEM model and centrifuge experiment results 

at different loading frequencies with the same loading magnitude ζb = 0.36. With ζb fixed 

but the loading direction ζc changing, the DEM results with 40 Hz loading frequency 

compare the best with the centrifuge experiment data in all three experiments (Klinkvort, 

2013). For high loading frequency of 50 Hz, the maximum displacements of the pile are 

larger than that of lower frequencies. Since the simulation result of 40 Hz frequency 

compares better with experimental data, this loading frequency was chosen in all the 

following DEM simulations in this research. Table 6.4.3 summarised all the simulations of 

40Hz frequency under various loading cases. There was a total of 15 cyclic simulation tests 

performed in this investigation, the simulation cases comparable with that published by 

Klinkvort (2013) are listed in Table 6.4.2. Additional simulation cases with a range of other 

cyclic loading magnitudes and loading directions were also simulated.  
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           (a) ζc = 0, ζb = 0.36                                           (b) ζc = 0.5, ζb = 0.36 

    

                      (c) ζc = -0.5, ζb = 0.36 

Figure 6.4.1. Comparison of GM-DEM model and centrifuge experiment results at 

different loading frequencies with same ζb. 

 

Table 6.4.3 Loading cases of the GM DEM-Centrifuge simulations.  

DEM ζb ζc Y1(mm) Y500(mm) 

T1-2 0.18 -0.5 0.4393 0.6970 

T1-3 0.36 -0.37 0.9326 1.4648 

T1-4 0.08 -0.5 0.2095 0.2887 

T2-1 0.3 -0.8 0.7213 1.1719 

T2-2 0.3 -0.9 0.7166 1.1358 

T2-3 0.36 0.5 1.0215 1.4194 
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T3-1 0.36 -0.5 0.9061 1.4448 

T4-3 0.36 0 0.9711 1.4802 

T5-1 0.3 0 0.8300 1.1800 

T5-2 0.4 0 1.0500 1.6700 

T5-3 0.5 0 1.3300 2.2600 

T5-4 0.6 0 1.5900 2.7400 

T6-2 0.5 -0.5 1.2400 2.1900 

T6-3 0.5 -0.37 1.2500 2.1700 

T6-4 0.5 0.5 1.4000 2.2000 

 

6.4.2 The effect of pile diameter 

For the experiment tests shown in Table 6.4.2, following Klinkvort (2013), some of the 

cyclic tests were performed with a different pile diameter dpile = 28 mm instead of dpile = 

40 mm. Figure 6.4.2 compares the evolution of lateral displacement GM-DEM model to 

centrifuge experimental data with different pile diameters, including both the centrifuge 

experiments E3-1 and E1-3 (by Klinkvort (2013)) and the DEM simulation tests T3-1 and 

T1-3. For the data of E3-1 and E1-3, although their ζc were slightly different, their 

maximum lateral displacements were nearly same. This confirms that some variations in 

the loading direction ζc do not affect the ultimate lateral displacement of cyclic tests too 

much for a constant ζb, which is particularly obvious when ζb is relatively big. Figure 6.4.2 

also shows that even the diameters of the pile were different, the maximum lateral 

displacement results were nearly the same when the cycle number was bigger than 200.  
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Figure 6.4.2. Comparing GM-DEM model and centrifuge experiment data with different 

pile diameters and the same frequency of 40 Hz. 

 

6.4.3 Evolution of lateral displacement 

In Figure 6.4.3 (a), (b) and (c), all tests used the same ζc = -0.5 which meant their loading 

direction were the same. The DEM result (T1-4) shown in Figure 6.4.3 (a) is more different 

from the centrifuge experiment (E1-4). Under this very small ζb value of 0.08, this low 

magnitude in the DEM numerical test still results in obvious displacement, whereas the 

centrifuge experiments do not generate significant displacement. However, when ζb ranges 

from 0.18 to 0.36, the increase in displacement was relatively small. The accumulated 

displacement obtained from both the DEM tests and the centrifuge experiments compares 

well, as shown in Figure 6.4.3 (b) & (c). Hence, a larger ζb value results in a better 

comparison between the 2D simulation and the 3D centrifuge cyclic tests. 
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(a) ζc = -0.5, ζb = 0.08                                       (b) ζc = -0.5, ζb = 0.18 

   

                   (c) ζc = -0.5, ζb = 0.36                                                                  

Figure 6.4.3. Comparison of GM-DEM model and centrifuge experiment results at 

different ζb and the same ζc. 

 

 Results and discussions 

6.5.1 Effect of loading characteristics 
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boundary effect, as when ζb reaches 0.6, which is a very large loading amplitude within the 

normal service time.  

 

                                 (a)   ζc = -0.5                                               (b) ζc = 0 

Figure 6.5.1. Comparison of model and experiment results at different ζb and same ζc. 

 

Figure 6.5.2 (a) and (b) show all simulation tests under the same ζb = 0.36 and ζb = 0.5, 

respectively. Both figures show very similar phenomenon. The results showed that when 
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published data from centrifuge modelling. For the effect of ζc, on the other hand, it is more 

complex. Interestingly, both the DEM modelling results and centrifuge modelling data 

show very similar influencing trend, though with different transition points. In general, the 

obtained DEM modelling data is comparable with that from centrifuge modelling results.    

   

                                 (a)   ζb = 0.36                                               (b) ζb = 0.5 

Figure 6.5.2. Comparison of model and experiment results at different ζc and same ζb. 

 

   

                                         (a)                                                                      (b) 

Figure 6.5.3. Relationship between ζc and ζb (cycle number at 500) (Klinkvort, 2013). 
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6.5.2 Accumulated lateral displacements related to cyclic loads ratio 

Figure 6.5.4 presents 3 lateral force-displacement curves of the monopile under different 

directions of cyclic lateral loads of the same amplitudes. The lateral displacements of the 

pile were measured at the head of pile. In Figure 6.5.4 (a) when ζc is negative implying a 

two-way test, the form of two-way test will lead to larger displacements compared to one-

way tests (see Figure 6.5.4 (b) & (c)). It is clear from Figure 6.5.4 that kN is smaller than k1 

in any of the three figures. The stiffness reduces with cyclic loading. Clearly, the soil-pile 

reactions of all the three cases are showing the less voids in the soil when soil densifies 

with increasing number of cyclic loading, hence the incremental accumulation of 

permanent displacement reduces. 

In general, the loading and unloading in the first cycle exhibits evident soil nonlinearity, 

so the loading secant stiffness reduces with increasing lateral displacement in the first 

cycle, when ζc decreases. In addition, the unloading stiffness gradient k1 also decreases 

with a more negative ζc when the loading direction becomes more two-way.  As the number 

of loading cycle increases, there is a gradual accumulation of both the maximum loading 

displacement (cyclic maxima) and the minimum unloading displacement (cyclic minima). 

And, the unloading stiffness kN continues to reduce slightly from its respective first cycle, 

these accumulations of displacement and changes in stiffness, however, are not as dominant 

as that induced by the direction of loading, i.e. what happened in the first cycle. For 

example in test T3-1, the first unloading from 666 to -333 N created a recoil of 0.79 mm 

and the final unloading created a recoil of 1.12 mm at the 10th cycle. It may be seen in 

Figure 6.5.4 (b) that the first reloading induced 0.4 mm lateral displacement at 666 to 0 N 

and the final unloading created a recoil of 0.606 mm at the 10th cycle. In Figure 6.5.4 (c), 

the first reloading induced only 0.146 mm lateral displacement at 666 to 0 N and the final 

unloading created a recoil of 0.2716 mm at the 10th cycle. From the Table 6.5.1, when ζc, 

increases, both k1 and kN increase. Nonetheless, the value of kN/k1 decrease dramatically. 

Which means the change of stiffness is more obviously as long as ζc increases.  
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Table 6.5.1 k1, k2 and k10 of selected model tests. 

DEM ζb ζc k1 k2 k10 k2 /k1 k10 /k2 k10 /k1 

T3-1 0.36 -0.5 1.814 1.693 1.516 93.32% 89.55% 83.57% 

T4-3 0.36 0 3.201 2.561 1.750 80.00% 68.33% 54.67% 

T2-3 0.36 0.5 10.476 4.888 2.667 46.66% 54.56% 25.46% 

 

  

  (a) T3-1, cycle number 0-10. Max 0.001404   (b) T4-3, cycle number 0-10. Max 0.001384 
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      (c) T2-3, cycle number 0-10. Max 0.001366      

Figure 6.5.4. Pile shaft lateral load-displacement response during cyclic lateral load 

tests (Cycle number 0-10.) 

 

 

Figure 6.5.5. Difference of maximum and minimum displacement of PFC. 
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Figure 6.5.5 describes a plot of the difference in pile-head displacements in a logarithmic 

scale, and suggests the existence of two distinct phases during the cyclic loading. It shows 

two rather linear consecutive domains. The first phase is from the first cycle until the first 

hundred thousand cycles experimentally, and until the first 10 cycles in 2D DEM 

simulation tests. Incidentally, this is the moment when the soil densification appears to 

stabilise. Furthermore, the second phase extends from the end of the first phase to the end 

of the cyclic tests when the difference in cyclic amplitudes becomes a constant.  

 

6.5.3 Evolution of secant stiffness 

From Figure 6.5.6 (a), the trends of different ζc show that the change of stiffness ratio 

(KN/K1) will be affected by the magnitude of applied loading (ζb). When ζc is positive, the 

increase of ζb will cause the enhancement of stiffness ratio. However, there is clear that the 

stiffness reduces with cyclic loading (after 500 cycles). In Figure 6.5.6 (a), when ζc = 0, the 

loading characteristic is one way, and the stiffness ratio decreases a little with the increase 

of ζb. When ζc > 0, the loading characteristic is one way as well, the change of stiffness 

ratio becomes fluctuation during the decrease. However, in Figure 6.5.6 (b), when ζc < 0, 

the stiffness ratio drop with the increase of ζc. When ζc > 0, the change is relative flat. 
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                                        (a)                                                                 (b) 

Figure 6.5.6. Relationship between ζc and ζb (cycle number at 500) (Klinkvort, 2013). 

 

6.5.4 Particle-scale observations  

Particle-scale information is extracted from the whole DEM sample, to explore the 

fundamental mechanism of the different behaviour of mono-pile under various loading 

characteristics. 
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Figure 6.5.7 performs a comparison of the accumulated particle displacement fields, with 
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ζb =0.08 and case B: ζb =0.18) is 10 times smaller than that of the last two cases (case C: ζb 

=0.36 and case D: ζb =0.50).   

For all the 4 cases presented here, the influencing zones are almost of the same conical 

shape, with relatively larger area on the passive side than that of the active side. The 

influence of ζb on the particle displacement field is evident from these figures. At the 1st 

cycle, the minimum left particle displacements at the pile head of case A (see Figure 6.5.7 

(a)) and B (see Figure 6.5.7 (b)) are 0.07895 mm and 0.123 mm, respectively. Taking the 

cut-off particle displacement as 0.002mm in these two cases, their influencing zones are 

about 1.35dpile and 3.35dpile. Meanwhile, the maximum right particle displacements at the 

toe of pile are 0.0216 mm and 0.0535 mm, respectively. Very similar phenomena can also 

be observed in the other two cases, case C and case D, where the minimum left particle 

displacements at the pile head are 0.246 mm and 0.337mm, respectively.  

As the number of cycle increases, the cyclic loading effect is gradually accumulated. At 

the 500th cycle, the area of the influencing zones is almost doubled, comparing to that of 

the 1st cycle, as highlighted in Figure 6.5.7 (e)~(h). The minimum left particle 

displacements at the pile head are 0.089 mm, 0.215 mm, 0.399 mm, and 0.584 mm, for 

case A, B, C and D, respectively.  

This is further elaborated in Figure 6.5.7 (i)~(l), where the normalised particle 

displacements are plotted. The location of “zero” value boundary at the first cycle is 

horizontal, and change to slope away to the passive side after 500 cycles. However the 

“zero” boundary of particles displacement contour which was contact to the pile nearly 

keep same location. This change can help to find the affected soil area expansion during 

the cyclic loading. This expansion is also due to the transfer of contact force from the pile 

movement. This procedure is similar as the spread of fan (SOF). 
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                              (a) ζb = 0.08 (N = 1)                                             (b) ζb = 0.18 (N = 1) 

 

                                 (c) ζb = 0.36 (N = 1)                                            (d) ζb = 0.50 (N = 1) 
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                          (e) ζb = 0.08 (N = 500)                                            (f) ζb = 0.18 (N = 500)          

 

                            (g) ζb = 0.36 (N = 500)                                      (h) ζb = 0.50 (N = 500) 
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                            (i) ζb = 0.08 (Norm)                                                (j) ζb = 0.18 (Norm)            

 

                             (k) ζb = 0.36 (Norm)                                             (l) ζb = 0.50 (Norm) 

Figure 6.5.7. Effect of ζb on the accumulated particle displacement field (ζc=-0.50). 

 

For all the 4 cases presented here, the influencing zones are almost of the same conical 

shape, with relatively larger area on the passive side than that of the active side. The 

influence of ζb on the particle displacement field is evident from these figures. At the 1st 

cycle, the minimum particle displacements at the pile head of case A (see Figure 6.5.7 (a)) 

and B (see Figure 6.5.7 (b)) are -0.07895mm and -0.123mm, respectively. Taking the cut-

off particle displacement as -0.002mm in these two cases, their influencing zones are about 
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1.35dpile and 3.35dpile. Meanwhile, the maximum particle displacements at the toe of pile 

are 0.0216mm and 0.0535mm, respectively. Very similar phenomena can also be observed 

in the other two cases, case C and case D, where the minimum particle displacements at 

the pile head are -0.246mm and -0.337mm, respectively. As the number of cycle increases, 

the cyclic loading effect is gradually accumulated. At the 500th cycle, the area of the 

influencing zones is almost doubled, comparing to that of the 1st cycle, as highlighted in 

Figure 6.5.7 (e)~(h). The minimum particle displacements at the pile head are -0.089mm, 

-0.215mm, -0.399mm, and -0.584mm, for case A, B, C and D, respectively. This is further 

elaborated in Figure 6.5.7 (i)~(l), where the normalised particle displacements are plotted.  

It should be noted that the larger. And then link with Figure 6.5.6 (a).   

Rotational point: The location of “0” value boundary at the first cycle is horizontal, and 

change to slope away to the passive side after 500 cycles. However the “0” boundary of 

particles displacement contour which was contact to the pile nearly keep same location. 

This change can help to find the affected soil area expansion during the cyclic loading. This 

expansion is also due to the transfer of contact force from the pile movement. This 

procedure is similar as the spread of fan (SOF). 

Further explain the mechanism using the void ratio and coordination data, as shown below. 
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                                         (c)                                                                       (d) 

Figure 6.5.8. How the effect of ζb for the various parameter of passive side from 1st cycle 

to 500th cycle. 

 

From Figure 6.5.8, these figures show the two parameter changes when comparing the 1st 

cycle and 500th cycle, such as porosity and coordination number. 

Figure 6.5.8 (a) and (c) compare the change of passive side porosity. When ζb is increased, 

at the 1st cycle, porosity nearly did not change. However, at the 500th cycle, porosity in 

most areas decreases. But when y/dpile > 3, porosity is nearly unchanged even at the 500th 

cycle.  

Figure 6.5.8 (b) and (d) compare the change of passive side coordination number. The trend 

of these two figures is opposite to that of (a) and (c). Noticeably, in Figure 6.5.8 (d), when 

ζb is increased, the change in coordination is rather obvious.  

 

6.5.4.2 Effect of ζc 

From Figure 6.5.9, there shows 4 cases with the same ζb, but ζc increased from case T1-4 

to T6-2. Because of the same ζb, the distribution of Figure 6.5.9 (a), (b), (c) and (d) are 

same. The smaller ζc cause the larger displacement. The trend is similar as the Figure 6.5.7. 
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As mentioned before, the ζc is negative, which means the cyclic loading is two way, and 

positive means the one way cyclic loading. Regarding the displacement of these figures, 

the two way is obvious larger than one way. 

After 500 cycle (see Figure 6.5.9 (e), (f), (g) and (h)), the distensible area of displacement 

range -0.00005~ -0.0001 m is smaller than the displacement range -0.0006~ -0.0012 m, 

which means the particles near the pile move increase. From the area near pile tip of Figure 

6.5.9 (e), (f), (g) and (h), it can be found that the phenomenon of SOF is shrinking during 

the cyclic test, however this trend is opposite for the upper area near the pile. At the same 

time, when the value of ζc is small (negative), the “zero” value line incline a lot. From the 

Figure 6.5.9 (i), (j), (k) and (l), the change is obvious than Figure 6.5.7 (i), (j), (k) and (l).  

 

                             (a) ζc = 0.50 (N = 1)                                            (b) ζc = 0.00 (N = 1)   
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                          (c) ζc = -0.37 (N = 1)                                       (d) ζc = -0.50 (N = 1) 

 

                          (e) ζc = 0.50 (N = 500)                                           (f) ζc = 0.00 (N = 500)           



174 

 

 

                     (g) ζc = -0.37 (N = 500)                                      (h) ζc = -0.50 (N = 500) 

 

                            (i) ζc = 0.50 (Norm)                                                (j) ζc = 0.00 (Norm)            
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                      (k) ζc = -0.37 (Norm)                                           (l) ζc = -0.50 (Norm) 

Figure 6.5.9. How the effect of ζb for the various parameter of passive side from 1st cycle 

to 500th cycle. 

 

Again, provide the further discussion with the void ratio and coordination number data, as 

shown below. 
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                                         (c)                                                                        (d) 

Figure 6.5.10. How the effect of ζc for the various parameter of passive side from 1st cycle 

to 500th cycle. 

 

From Figure 6.5.10, these Figures show the various parameter changes when comparing 

the 1st cycle and 500th cycle. 

Figure 6.5.10 (a) and (c) has a similar trend as (a) and (c) of Figure 6.5.8, same applied to 

(b) and (d). Comapre to Figure 6.5.10 (b), Figure 6.5.10 (d) has a more obvious change in 

coordination number when ζc changes from large to small. 
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currents. For the numerical simulation, the frequency also was the very important factor, 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.185 0.19 0.195 0.2
y
/d

p
il

e

500 cycle passive side porosity

T2-3: ζb=0.36, ζc=0.5

T4-3: ζb=0.36, ζc=0.0

T1-3: ζb=0.36, ζc=-0.37

T3-1: ζb=0.36, ζc=-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3.55 3.6 3.65 3.7 3.75

y
/d

p
il

e

500 cycle passive side 

coordination number

T2-3: ζb=0.36, ζc=0.5

T4-3: ζb=0.36, ζc=0.0

T1-3: ζb=0.36, ζc=-0.37

T3-1: ζb=0.36, ζc=-0.5



177 

 

and the 40 Hz was choose due to the good comparison. 

The main contributions of this paper included:  

 The evidence of the first ten cycles has a strong influence on the cyclic responses 

of a rigid monopile under cyclic loading;  

 There are a close relationship between the accumulated displacement and the cyclic 

load ratio and amplitude. The effect of load amplitude and cyclic load ratio was 

summarised and analysed. It was indicated that the load amplitude is obvious and 

cyclic load ratio also can control the change of displacement.  

 The normalised lateral displacement decreases when the cyclic load ratio increase. 

However, the trend of load amplitude is opposite. 

 Regarding the first 10 cycles of different cases with same load amplitude, both first 

cyclic secant stiffness k1 and 10th cyclic secant stiffness k10 will increase when cyclic 

load ratio increases. Nonetheless, the value of k10 / k1 decrease dramatically. The 

change of stiffness is more obviously as long as cyclic load ratio increases. 

 The rotational centre of the rigid model pile was at approximately 0.853 times the 

pile buried length during cyclic loading.  

The parts of main content of this chapter was published by International Journal of 

Environmental, Chemical, Ecological, Geological and Geophysical Engineering as a 

journal paper with title “A Discrete Element Method Centrifuge Model of Monopile under 

Cyclic Lateral Loads” (Duan and Cheng, 2016b). 

The main content of this chapter was accepted by ICE Geotechnical Engineering as a 

journal paper with title “DEM Investigation on Behaviour of Monopile under Cyclic 

Lateral Loading”. 
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Chapter 7  

Conclusion 

 Summary 

In this PhD research, a numerical method Discrete Element Method (DEM) was employed 

to provide the unique particle-scale insight into the granular geomechanical behaviours of 

monopile foundation for offshore wind turbines. Accordingly, this DEM research mainly 

contributes five major advances which are summarised below. 

 

7.1.1 Reliable sample preparation method and numerical DEM model  

A sample preparation method was researched and created for the big scale DEM modelling. 

It should be noted that the sample initial state before the testing plays an essential role, and 

the initial state totally depends on the sample preparation. In order to make a 

comprehensive study of big scale geotechnical problems and generate homogeneous DEM 

specimens, a reasonable sample preparation method was modified.  

This sample preparation method was tried to follow the experimental process. Particles are 

divided evenly to form grids. Then the parameters static earth soil pressure coefficient K0, 

soil porosity, lateral and vertical stress were calculated to check the accuracy. And the 

method is quick to generate the sample, also the number of corresponding particle can be 

control very accuracy. 

At the same time, a reliable numerical DEM soil model was build which can be used for 

the cyclic loading test, and this model and sample can be compared to existing experiment 

results. The pile was used “clump” which can be applied force directly. This mechanism is 

more closed to the realistic situation. 
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7.1.2 Understanding of the results when the monopole was applied the combined 

loads (see Appendix I) 

The phenomenon of a rigid pile under the combined loadings conditions was studied from 

the microscopic and the macroscopic points of view. The vertical load has a profitable 

influence on the lateral response of piles embedded in sand. However, this influence 

depends on the sequence of loading, hence this result is only valid for the condition 

discussed in this research. The test results imply that it is conservative to design piles 

assuming that there is no interaction between axial and lateral loads. The test results also 

show that the larger the axial load, the bigger the ultimate lateral load capacity of the model 

pile subjected to combined loads. Therefore, the consideration of the effect of axial loads 

in the design of laterally loaded piles driven in sand is not necessary. The traces of particles 

movements have showed that there were obvious settlements of the soil particles near the 

bottom of the pile when there is vertical load. This should lead to soil densification and 

hence an increase in the lateral pile capacity under the combined loading condition. 

 

7.1.3 Understanding of the physical phenomena during the pile installation. 

A DEM modelling of pile installation tests was proposed. The tests were conducted with 

two different processes: bored pile and driven pile. Both conditions were performed with 

similar magnitude of pile embedded depth. Shaft resistance, base capacity and lateral stress 

were tested. Bored piles were observed to develop large settlements immediately during 

the test, while driven piles initially withstood settlements owing to an increase in available 

base capacity at the start of the penetration. 
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7.1.4 Understanding of the physical phenomena surrounding a pile when it is 

subjected to the lateral loads. 

The model was generated for lateral loads and lateral cyclic loads and the analysis of lateral 

load on pile can be used to better understand the cyclic loads. p-y curve of lateral load test 

can prove that DEM also is an effective method to research the big scale problems. Before 

the failure state, the lateral stress of passive side did not change obviously. During the 

lateral loads, the soil state of different depth is different, and the boundaries can be 

considered as the pile rotation centre and pile tip. 

 

7.1.5 Understanding of the physical phenomena surrounding a pile when it is 

subjected to the lateral cyclic loads. 

A series of model tests was carried out on a GM DEM-centrifuge test which was modelled 

by a rigid monopile subjected to lateral cyclic loading and the cyclic displacement 

accumulation was measured up to 500 load cycles.  These cyclic load tests included a range 

of load amplitudes that increased gradually throughout the test. The low-level cyclic loads 

were chosen to represent the normal working condition on a monopile, while the larger 

amplitudes considered extreme working conditions, such as storms and strong ocean 

currents. The DEM model also was proved that a strong influence of the first ten cycles on 

the cyclic responses of a rigid monopile was the main phenomena during the cyclic loading. 

 

7.1.5.1 The general trend of pile displacement due to cyclic lateral loading in the long 

term 

The accumulation of displacements was investigated for the design of a monopile support 

for an offshore wind turbine. It was clearly seen that the accumulation of displacement 

compared well with the experimental data. This can prove that DEM also is an effective 



181 

 

method to research large scale problems. Also monotonic loading tests can help with the 

analysis of cyclic loading tests. It was clearly seen that the accumulation of displacement 

is affected by the characteristic of the cyclic loading, and by the load amplitude.  

 

7.1.5.2 The main factors that influence the generation of accumulated displacement 

The close relationship was between the accumulated displacement and the cyclic load ratio 

and amplitude. Generally, the pile head load-displacement became stiffer as the number of 

load cycles (and the accumulated displacement) increased. In contrast, the unloading 

stiffness was independent of the cyclic ratio.  

The effect of ζb and ζc also was summarised and analysed. It was indicated that the ζb is 

obvious and ζc also can control the change of displacement. The rotational centre of the 

rigid model pile was at approximately 0.853 times the pile buried length during cyclic 

loading (y/dpile =3). For the numerical simulation, the frequency also was a very important 

factor, and the 40 Hz could be chosen due to the good comparison. 

 

7.1.5.3 The mechanical explanations of the main physical phenomena occurring in the 

surrounding sand in the long term 

The accumulation of displacement is the main reason for change of system stiffness. And 

the particles movement also effects the results. 

 

 Recommendations for further research 

In the future, DEM will certainly not replace the continuum modelling as a means to predict 

sand foundation deformations, nor will it replace the in-situ and laboratory studies as a 
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means to advance the fundamental understanding of the sediment responses. However, it 

is definitely a useful tool to provide a unique insight into the geomechanical investigations 

of large scale problems. Although the DEM simulation results in this study are compared 

well to the published experimental data, there still presents the limitations of this DEM 

work. Regarding the sample preparation, there is no fluid or gas included in this DEM 

model, so that the comparison cannot be made properly. The DEM sand shape is sphere 

particle rather than the hybrid forms. For the particle size, the simulations carried out in 

this study used samples comprising big size sand. This was done to reduce the 

computational time of the simulations. It is possible to investigate the effect of the sand 

size.   

Due to the limitations of the DEM modelling of spherical particles, this study is qualitative 

rather than quantitative. Examples of some specific recommendations are given below: 

1. To perform 3D simulation for all the tests. 

2. To generate other particle systems with more realistic size distributions. With the 

potential offered by parallel computing, and therefore the total number of particles 

used in a simulation, it will be possible in the near future to examine the mechanical 

behaviour of well-graded systems and, in particular, gap-graded systems.  

3. To examine the use of contact mechanics for real particles such as Hertzian contact 

mechanics, which provides a more accurate response for a real soil contact model.  

4. To examine the influence of using more realistic particle shape models for better 

results since particle shape has been shown to be an important factor for tip 

resistance and granular material response. Particle shape was found to significantly 

affect granular material response. The simulations carried out in this research 

focused on the use of simple shaped particles to reduce computational time.  

5. To present energy interpretations based on the energy tracking of the system 

requires more refining before a more confident comparison with the theoretical 

micromechanical based models can be made. 
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6. To develop an alternative method to model the real flexible boundary conditions. 

The flexible membrane for the DEM tests was simulated in this research using a 

rigid wall. In the future study, it is possible to simulate a flexible membrane using 

a large number of bonded balls, albeit increasing computational time. A periodic 

boundary which could be used to simulate a large system by modelling a small part 

could be developed in the future to reduce boundary effects in the simulations. 

7. To consider the breakage which will happen during the tests. This may give many 

insights into the deformation of granular media. 

8. To investigate the drained and undrained behaviour of granular material 

9. To use a coupled numerical method to solve computational time inefficiency. Two 

codes, Fast Lagrangian Analysis of Continua (FLAC), a finite difference code and 

Particle Flow Code (PFC), the discrete element code. Applying the FLAC/PFC 

coupled approach takes advantage of each modelling scheme and would at the same 

time reduce the demand for longer computational time. A large number of small 

particle sizes could be modelled near to the research area using PFC and the 

particles further away could be modelled with FLAC. 
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Appendix I: (Conference paper: A 2D DEM monopile model 

under combined loading condition) 

 

 



1 INTRODUCTION  

  Pile foundations are widely used to support vari-
ous types of structures for situations when shallow 
foundations undergo excessive settlements or have 
insufficient bearing capacity. These piles are not on-
ly used to support vertical loads, but also lateral 
loads and a combination of both vertical and lateral 
loads. According to the current practice, piles are in-
dependently analysed first for the vertical load to de-
termine their bearing capacity and settlement and 
then for the lateral load to determine the flexural be-
haviour (Anagnostopoulos & Georgiadis 1993). This 
approach, assuming the unrelated vertical and lateral 
pile response, is not comprehensive. Studying the in-
teraction effects due to combined vertical and lateral 
loads for a systematic analysis, therefore it is essen-
tial. 
  The amount of literature on the effects of com-
bined loads is scare. There is hardly any concerted 
effort to study the influence of vertical loads on the 
lateral response of piles, which is more appropriate 

to the situation of mono-pile. And it is very difficult 
to make clear the soil behaviour from the site exper-
iments. The limited research based on analytical ap-
proaches (Goryunov 1973) revealed that for a given 
lateral load, the presence of vertical load increases 
the lateral deflection of the pile head. But laboratory 
testing Anagnostopoulos and Georgiadis (1993) 
suggested a decrease in the lateral deflection under 
the presence of vertical loads. Lee et al (2011) sum-
marised all the results and proposed lateral deflec-
tion of the model pile head increased with increasing 
axial load.  
  The methods of analysis commonly used in pre-
dicting the behaviour of piles under pure axial loads 
could be categorized into: (a) subgrade reaction 
method (b) elastic continuum approaches, and (d) 
FEM (Karthigeyan et al. 2006, Karthigeyan et al. 
2007). However, experimental and field investiga-
tions suggest a decrease in lateral deflection with the 
combination of vertical loads. Anagnostopoulos & 
Georgiadis (1993) attempted to explain this phe-
nomenon through an experimental model supported 
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ABSTRACT: This paper presents a 2D-Discrete Element Method (DEM) model that is used to study situa-
tions when vertical, lateral and combined loads are applied to a rigid mono-pile. At present, mono-pile foun-
dations are widely used to support tall and heavy wind turbines, which are subjected to significant wind and 
wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these 
loading conditions. Design guidance on the issue is limited, as well as the availability of laboratory and field 
test data. The interpretation of these results in sand, such as the relation between loading and displacement, 
relies mainly on empirical correlations to pile properties. Regarding numerical models, only data from Finite 
Element Method (FEM) can be found. They are not comprehensive enough, and most of the FEM results are 
sensitive to input parameters. Micro scale behaviour, such as movement and densification of discrete particles 
near a pile could change the mechanism of the soil-structure interaction. A DEM model was used in this paper 
to study the combined loading behaviour. By explicitly considering the particulate nature of the granular sand 
around a model pile, the micro-mechanism governing the complex soil structure was investigated. Verifica-
tion of the DEM model was carried out by comparing simulation data against a model pile. Analyses of the 
model pile under pure vertical, pure lateral and combined loads are presented. A discussion about the perma-
nent accumulated pile displacements caused by the combined loads is presented, together with analyses on the 
sand micromechanics. They should offer insights on further research to optimise the design of mono-pile 
foundations to resist live loads in service. 
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by 2D FEM analysis. They reported that the modi-
fied state of the soil stresses and the local plastic 
volume changes in the soil mass under the combined 
vertical and lateral loads cannot be taken into ac-
count by the conventional subgrade reaction analy-
sis, nor the elastic half space methods.  
  However there are limitations on FEM, as soil is 
not always a continuum. The particles of soil may 
slide, rotate, deform or crush; some of them may al-
so move across the space through the voids, or they 
lock in certain locations forming soil arch. There are 
example features that cannot be modelled easily by 
FEM. In view of the above issues, the 2D DEM was 
used in this research to analyse the combined load-
ing effect, and the present paper focuses on the in-
fluence of axial load on the lateral response of a pile. 
The details of model setup, the parameters used and 
the verification of the model against laboratory test-
ing cases are presented. Combined loading tests 
were performed for axial loads equal to 0%, 33%, 
66%, and 83% of the ultimate axial capacity (de-
fined as the load corresponding to a settlement equal 
to 10% of the pile diameter) of the model pile. 
 
2 NUMERICAL MODEL 

  The DEM is referred to, by Cundall & Strack 
(1979), as the particular discrete element scheme 
that uses deformable (soft) contacts and an explicit 
time-domain solution of the original equations of 
motion. The Particle Flow Code in 2-Dimensions 
(PFC2D) is a programming code which is developed 
by Itasca. This software uses the DEM to simulate 
the movement and interaction of circular particles 
and observe their strain and fracturing behaviour, 
and all DEM programs allow finite displacements 
and rotations of discrete bodies, including complete 
detachment (Cheng 2004). PFC2D can model either 
bonded (cemented) or unbounded (granular) group 
of particles (Itasca 2008), and also particles of any 
shape using the clump logic. Therefore it is a power-
ful tool to simulate complex problems in solid me-
chanics, rock mechanics, and granular flow. At the 
same time, it allows for a detailed study of the mi-
cro-mechanics, such as the force networks formed 
by a granular media. 
 
 
 
 
 
 
 
 
 
 
 

  All DEM analyses in this investigation were per-
formed using the 2D PFC program. Figure 1 shows a 
sketch for analysis of pile-soil interaction and Figure 
2 gives the particles size distribution. The pile was 
treated as a rigid material in view of high rigidity of 
a typical monopile, hence the consideration of bend-
ing moment was ignored. The vertical load and lat-
eral load was applied to the ground surface on the 
top of pile.  
 
 
 
 
 
 
 
 
 

2.1 Validation of the numerical model employed in 
the program 

2.1.1 Procedure of model generation 
  The validity of the numerical model was verified 

by checking the pile load test data against a compre-

hensive published case. The laboratory tests per-

formed by Anagnostopoulos & Georgiadis (1993) 

were a single pile under both vertical and lateral 

loads applied to the pile head at ground elevation. 
  In the 2D PFC model, the boundary was first set 
in such a way that the size of the model was the 
same as that of Anagnostopoulos & Georgiadis 
(1993). Rigid walls were used to model the bounda-
ry. The second step was the generation of particles. 
The particles were given properties as showed in 
Table 1. At the first stage, when the initial average 
porosity was nearly reached, the model was cycled 
to equilibrium. At the second stage, the gravity was 
added, and the PFC model was cycled to equilibrium 
again. This moment, the porosity was the final aver-
age porosity. At the third stage, before the pile was 
formed, the particles inside the same area were de-
leted. In this research, “clump” was used to model 
the rigid pile with a finite surface roughness. The 
system was then cycled to equilibrium again with 
the pile in place. Vertical and lateral forces were 
then applied to the top of pile directly. 

2.1.2 Input parameters 
  Table 1 shows the model parameters. From the 2D 
PFC manual, the particle normal stiffness is equal to 
twice the particle Young’ modulus. 
 

Figure 1 Particles size distribution in DEM simulation 

Figure 2 Schematic view of the PFC model 



0

50

100

150

200

250

300

350

0.00 0.05 0.10 0.15 0.20

V
er

ti
ca

l 
lo

ad
 (

N
) 

Vertical displacement (mm) 

Experiment

DEM model

0

20

40

60

80

100

0.00 0.06 0.12 0.18 0.24 0.30 0.36

H
o
ri

zo
n

ta
l 
lo

ad
 (

N
) 

Horizontal displacement (mm) 

Experiment

DEM model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000 12000

D
ep

th
 (

m
) 

Lateral stress (Pa) 

pile

wall

Linear (pile)

Table 1 Input parameters for DEM simulations 

Density of sand particles (kg/m
3
) 2650 

Particle diameters, d (mm)   Fig. 2 

Sand grain size, d50 (mm)   2.925 

Friction coefficient of the particles µ(-) 0.5 

Sand Young’s Modulus, Ep(Pa) 1e7 

Contact normal stiffness of particles, kn (N/m) 2e7 

Particle stiffness ratio (ks/kn) 1 

Contact normal stiffness of walls, kn (N/m) 2e7 

Initial average porosity 0.28 

Final average porosity  0.19 

Bulk unit weight ɣbulk (kN/m
3
) 18 

2.1.3 Lateral stress distribution 
  Figure 3 shows that the lateral stress distributions 
acting on the pile and on the far wall are similar. It 
means this model is reasonable. Using the trendline 
shown in Figure 3 and the bulk unit weight calculat-
ed from the average porosity of the particles, the co-
efficient of earth pressure is approximated to be 0.8. 
The fluctuation around the pile tip at 0.5m depth was 
an error induced by deleting particles in an area that 
was slightly smaller than the pile size.  
 
 
 
 
 
 
 
 
 
 
 

2.1.4 Displacement VS Force 
  The sequence of the load application used in the 

current DEM analysis is the same as that used in the 

laboratory tests (Anagnostopoulos & Georgiadis 

1993). The comparison between the test data and the 

predicted results of piles under pure vertical load 

and combined vertical and lateral loads are shown in 

Figure 4. Figure 4(a) shows that the comparison is 

very good both at small and larger load levels for 

vertical response of pile. For the lateral responses of 

the pile, shown in Figure 4(b), the comparison is 

good at a smaller horizontal load, but the percentage 

difference increases at the larger load levels. Up to a 

lateral displacement equal to 0.33% of the pile di-

ameter, the difference between the measured and 

predicted pile loads is less than 6.25%. At a larger 

displacement equal to 0.84% of the pile diameter, 

the difference increases to approximately 54.28%. 

This deviation is acceptable in view of the many un-

certainties in choosing the sand properties in the 

analysis, and also due to the rigid assumption of the 

monopile model. And the other main reason is that 

the actual experiment was performed in three-

dimensions. Due to the good match at the relation-

ship between vertical load and axial displacement, it 

is concluded that the numerical scheme adopted in 

the present investigation should be capable of mod-

elling the pile-soil interaction under pure vertical 

load, lateral load, and a combination of vertical and 

lateral loads. 
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3 COMBINED LOADS RESULT AND 
DISCUSSION 

  The analyses were performed to study the influ-
ence of the vertical load on the lateral response of 
pile. A series of analyses have been carried out to 
study the behaviour of piles under pure lateral loads 
and the influence of different levels of vertical load 
on the lateral responses of piles. The details of the 
PFC2D model and the results are discussed in this 
section.  

Figure 3 Lateral soil stress distribution in front of the pile at static 
state Figure 4 Comparison of DEM predicted vertical and lateral re-

sponse of pile with experimental test data of Anagnostopoulos & 

Georgiadis (1993): (a) vertical response of pile; (b) lateral response of 
pile 
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3.1 Macroscopic load displacement data 

  In this study, a particular vertical load was applied 
first, and then, lateral loads were applied incremen-
tally to the pile head and then the model was careful-
ly cycled to equilibrium at each step while the verti-
cal load was kept constant. 
  The ultimate vertical load (Vult) capacity of a sin-
gle pile was evaluated a priori by separate numerical 
analyses. Then the response of piles under combined 
loading was analysed separately with the vertical 
load equal to zero (pure lateral load case), 0.33Vult 
and 0.66Vult. The ultimate vertical load capacity was 
estimated as 1200 N, and the ultimate horizontal 
load (Hult) capacity of a single pile was 400 N. 
  Figure 5 plotted the different curves of model pile 
head lateral deflection versus lateral load for the 
combined loading simulations under axial load V 
equal to 0%, 33% and 66% of the ultimate axial load 
Vult, where the value of Vult was obtained from the 
pure axial loading test. 0Vult means that there was no 
axial loading applied to the pile head. It is seen from 
this figure that the vertical load has only a marginal 
influence on the lateral response of pile. 
 
 
 
 
 
 
 
 
 
 
 
 

   
  The results shown in Figure 5 is very similar to the 
FEM reults of Karthigeyan et al. (2006). Compare 
with the FEM’s outcome, the trend of DEM model is 
similar and resonable. In gernal, the larger is the 
vertical load (up to 0.66Vult), the smaller is the 
horizontal displacement induced by the horizontal 
load. The interesting phenomenon in Figure 5 is the 
line of 0.83Vult. This line is not behind 0.66Vult, but 
is between 0Vult and 0.6Vult. This is the same as 
Karthigeyan et al. (2006); the line of 0.83Vult is in 
front of 0.66Vult.  
  Since the lateral deflection of the model pile head 
decreases with increasing axial load, this means that 
the presence of an axial load is good to the lateral 
capacity of driven pile in sand. Therefore, it is usual-
ly not necessary to consider the effect of axial loads 
in the design of laterally loaded pile in sand. 
  Following Karthigeyan et al. (2006), the Percent-
age Improvement in lateral Capacity (PIC) is defined 
here in terms of displacement to measure the influ-
ence of vertical loads on the lateral response of piles 
in sands: 

 

    
         

    
     

where ‘LDNV’ is the Lateral load Displacement un-
der pure lateral load (with No Vertical load), 
‘LDWV’ is the Lateral load Displacement With Ver-
tical load. The PIC analyses have been summarized 
in Table 2.  
  It shows clearly that the lateral capacity of pile in 
sand improves in general under the presence of ver-
tical loads. The PIC increases (e.g. from 6.1% to 
14.3% at a lateral load of 0.75Hult) when the axial 
load increases from 0.33Vult to 0.66Vult. When com-
paring the same level of lateral load, the improve-
ment in lateral capacity becomes bigger under a 
larger vertical load. It proves that the improvement 
of pile lateral capacity is generally in proportion to 
the vertical load. And the increase of horizontal ca-
pacity of pile has been obvious even when the verti-
cal and horizontal load are both small. 
 

Table 2 Percentage Improvement in the lateral Capacity (PIC) 
with respect to different vertical load levels 

Vertical 
load in 
terms of 
Vult  

Lateral 
deflection  
(mm) at 
lateral 
load of 
0.5 Hult 

PIC at 
lateral 
load of 
0.5 Hult  

Lateral 
deflection 
(mm) at 
lateral 
load of 
0.75 Hult 

PIC at 
lateral 
load of 
0.75 
Hult  

0 0.48 - 0.98 - 
0.33 0.44 8.3% 0.92 6.1% 
0.66 0.42 12.5% 0.82 14.3% 
 
  This impact of vertical load may be attributed to 
the higher vertical soil stress develop in the soil 
along the pile surface, which in turn leads to higher 
lateral stresses acting on the pile. This phenomenon 
will be explored further in the following sections. 

3.2 Lateral soil stress 

 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 6 A sketch showing the locations of lateral 
stress records and trace particles 

Figure 5 Lateral load-deflection behaviour of a pile in sands 
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  Figure 6 shows the locations of the four traced 
particles (S1, S2, B1, B2), and also the locations in 
front of the pile, at which the lateral soil stress was 
measured. The distributions of the lateral soil stress-
es in front of the pile at a specific lateral deflection 
of 0.75Hult are shown in Figure 7. The X-direction 
and Y-direction movements of the traced particles 
were recorded and are shown in Figure 8 & 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  It is clearly found in Figure 7 that the lateral soil 
stresses are affected by the existence of vertical 
loads. The static state was a reference, showing the 
stress distribution when the pile was not under any 
load. Above 0.2m depth, the lateral stress did not in-
crease with existence of vertical load, in fact the lat-
eral stress decreases a little. Below 0.2m depth, the 
horizontal stress increases. This increase happens 
only between 0.2m and 0.45m depth along the pile. 
Below 0.7m depth under the pile, the lateral stress 
remains more or less the same with the existence of 
larger vertical load. Above 0.4m depth, where also 
was the centre of pile rotation, the lateral stress in-
creased with the vertical loads. The interesting phe-
nomenon took place around the pile tip at 0.5m 
depth. When the pile was under smaller vertical 
loads (≤ 0.33Vult), the lateral stress at this depth re-
mained approximately the same. However, when it 
was under larger vertical loads, a smaller lateral 
stress was recorded at this depth. In general a larger 
lateral stress was induced along the pile with the ex-
istence of axial load. This implies that a larger force 
was needed in order to move the pile head to the 
same level of deflection of e.g. 0.75Hult, which 
means a higher lateral capacity. Figure 7 is related to 
Figure 5, it can be used to explain the macro 
phenomenon from the micro mechanics. This is also 
similar as Karthigeyan et al. (2006). 

3.3 Microscopic movement of traced particles 

  Further analysis is performed by tracing the X-
plane and Y-plane displacements of four representa-
tive particles in this pile model, the results are 
shown in Figure 8 & Figure 9. According to the pile 
model in Figure 6, Particle B1 is located immediate-
ly under the pile in the pile’s vertical central axis, 
and the particle B2 is chosen at the same Y-level of 
B1. Particle S2 is located slightly above B2 but 

along the pile shaft. Particle S1 is also along the pile 
shaft but closer to the soil surface.  
  Figure 8 shows the variations on the displacements 
of the four particles in both directions under pure 
lateral load. In Figure 8, X-plane means the horizon-
tal direction and Y-plane means the vertical direc-
tion. Figure 8(a) is the X-direction summary of all of 
the four particles traces. It can be seen that only par-
ticle S1 moved to left, although the pile was moved 
to left, all other particles moved to the right. This is 
because S2, B1 and B2 are all near or below the cen-
tre of rotation of the pile. Form the record data, the 
centre of rotation of the pile was not a constant but 
varied within a small range at around 4:1, the length 
above the centre is four times bigger than the length 
under. It can be seen that the particle S2 along the 
pile moved more than B1 and B2 under the pile. And 
particle B2 moved more than B1 due the distance 
away from the centre of the pile.  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

   
In Figure 8(b) showing the vertical displacements, 
particles B1 and B2 remain nearly unmoved. S2 
moved upwards. S1 moved downwards first and 
then moved upwards as well. The depth of B1 and 
B2 were same and under the pile, perhaps these two 
particles were too deep, so the two particles B1 and 
B2 were not affected too much. In contrast, S1 was 
situated near the soil surface, it shows that the soils 
settled and then followed by dilation. And the 
movement of particle S2, above B1 and B2, was 
mainly dominated by dilation.  
  However, a different the lateral pile response was 
observed with a vertical load of 0.33Vult. The results 

Figure 7 Distributions of lateral soil stress in front of the pile at a 
lateral deflection of 0.75Hult in sand 

Figure 8 Displacement of traced particle under pure lateral load 
(a) X-displacement of four particles, (b) Y-displacement of four parti-
cles  
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are shown in Figure 9. The X-direction displace-
ments of three particles (S1, B1, B2) are now simi-
lar. In the vertical direction from Figure 9(b), all par-
ticles S2, B1 and B2 moved downwards. S2 settled 
with vertical load instead of dilated. B1 was imme-
diately under the pile so settled more than B2. S1 
near the surface moved slightly downwards and then 
slightly upwards. In general, the movement of parti-
cle S1 followed a similar trend regardless of vertical 
load. However, all other particles were affected 
much by vertical load. These settlements of the par-
ticles near the pile end should increase the density of 
the soil around the pile, leading to a higher capacity. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 
  Tracing representative particle displacements 
demonstrates well that pile penetration is a dynamic 
process and shows how the sand has been influenced 
during pile penetration. 
 
 
4 CONCLUSION 

  In this research, DEM simulations have been 
adopted in analysing the phenomenon of a rigid pile 
under the combined loadings conditions from the 
microscopic and the macroscopic points of view. 
The main conclusions can be drawn as follows: 
 

1. The vertical load has a profitable influence 
on the lateral response of piles embedded in 
sand. However, this influence depends on the 

sequence of loading, hence this result is only 
valid for the condition discussed in this paper. 
 

2. The maximum percentage improvement in 
lateral capacity is up to 14.3% in this model. 
Even at the bigger vertical load condition, 
the lateral capacity improvement remains at 
14.3%. This is attributed to the decline of 
additional lateral soil stresses around the pile 
tip in front of the pile.   

 
3. The test results imply that it is conservative 

to design piles assuming that there is no in-
teraction between axial and lateral loads. The 
test results also show that the larger the axial 
load, the bigger the ultimate lateral load ca-
pacity of the model pile subjected to com-
bined loads. Therefore, the consideration of 
the effect of axial loads in the design of lat-
erally loaded piles driven in sand is not nec-
essary. 
 

4. This DEM method may provide a foundation 
for the further study of the micro mecha-
nisms of soil variation around a pile in the 
course of combined loads. The traces of par-
ticles movements have showed that there 
were obvious settlements of the soil particles 
near the bottom of the pile when there is ver-
tical load. This should lead to soil densifica-
tion and hence an increase in the lateral pile 
capacity under the combined loading condi-
tion. 
 

  Further data regarding the impact of boundary 
condition, pile stiffness, aspect ratio of pile and the 
density of soils, etc., will be shown in the long ver-
sion of this paper. 
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Figure 9 Displacements of traced particle under 0.33Vult (a) X-
displacement of three particles (b) Y-displacement of four particles 


