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Abstract— This paper offers a characterization of fundamental
limits on the classification and reconstruction of high-dimensional
signals from low-dimensional features, in the presence of side
information. We consider a scenario where a decoder has access
both to linear features of the signal of interest and to linear
features of the side information signal; while the side information
may be in a compressed form, the objective is recovery or
classification of the primary signal, not the side information.
The signal of interest and the side information are each assumed
to have (distinct) latent discrete labels; conditioned on these
two labels, the signal of interest and side information are
drawn from a multivariate Gaussian distribution that corre-
lates the two. With joint probabilities on the latent labels, the
overall signal-(side information) representation is defined by
a Gaussian mixture model. By considering bounds to the mis-
classification probability associated with the recovery of the
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underlying signal label, and bounds to the reconstruction error
associated with the recovery of the signal of interest itself, we
then provide sharp sufficient and/or necessary conditions for
these quantities to approach zero when the covariance matrices
of the Gaussians are nearly low rank. These conditions, which
are reminiscent of the well-known Slepian–Wolf and Wyner–Ziv
conditions, are the function of the number of linear features
extracted from signal of interest, the number of linear features
extracted from the side information signal, and the geometry of
these signals and their interplay. Moreover, on assuming that
the signal of interest and the side information obey such an
approximately low-rank model, we derive the expansions of the
reconstruction error as a function of the deviation from an exactly
low-rank model; such expansions also allow the identification of
operational regimes, where the impact of side information on
signal reconstruction is most relevant. Our framework, which
offers a principled mechanism to integrate side information in
high-dimensional data problems, is also tested in the context
of imaging applications. In particular, we report state-of-the-
art results in compressive hyperspectral imaging applications,
where the accompanying side information is a conventional digital
photograph.

Index Terms— Classification, reconstruction, Gaussian mixture
models, diversity-order, MMSE, misclassification probability, side
information.

I. INTRODUCTION

ASIGNIFICANT focus of recent research concerns
approaches to represent and extract the salient infor-

mation of a high-dimensional signal from low-dimensional
signal features. Methods such as feature extraction, super-
vised dimensionality reduction and unsupervised dimen-
sionality reduction have thus been studied in various
disciplines [1]–[4].

Linear dimensionality reduction methods based on the
second-order statistics of the source have been developed,
such as linear discriminant analysis (LDA) [1] or prin-
cipal component analysis (PCA) [1]. Linear dimensional-
ity reduction methods based on higher-order statistics of
the data have also been developed [5]–[17]. In particular,
an information-theoretic supervised approach, which uses
the mutual information [5], [6] or approximations of the
mutual information, such as quadratic mutual information
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(with quadratic Rényi entropy) [8], [13], [14] as a criterion
to linearly reduce dimensionality, have been shown to lead
to state-of-the-art classification and reconstruction results.
A generalization of Bregman divergence has also been used
to express in a unified way the gradient of mutual infor-
mation for Gaussian and Poisson channels, thus enabling
efficient projection design for both signal classification and
reconstruction [18], [19]. In addition, nonlinear (supervised)
dimensionality reduction methods have also become popular
recently [20], [21].

Compressive sensing (CS) – a signal acquisition paradigm
that offers the means to simultaneously sense and com-
press a signal without any (or minimal) loss of informa-
tion [22]–[27]– also seeks to extract a set of low-dimensional
features from a high-dimensional signal. In particular, this
emerging paradigm shows that it is possible to perfectly
reconstruct an n-dimensional s-sparse signal (sparse in some
orthonormal dictionary or frame) with overwhelming proba-
bility with only O(s log(n/s)) linear random measurements
or projections [22], [24], [27] using tractable �1 minimiza-
tion methods [26] or iterative methods, like greedy matching
pursuit [28]–[30]. Generalizations of the compressive sensing
paradigm to settings where one wishes to perform other
signal processing operations in the compressive domain, such
as detection and classification, have also become popular
recently [31].

These dimensionality-reduction methods often attempt to
explore structure in the signal, to aid in the dimensionality
reduction process. Some prominent models that are used to
capture the structure of a high-dimensional signal include
union-of-subspaces [32]–[35], wavelet trees [32], [36] and
manifolds [37], [38]. A signal drawn from a union-of-
subspaces is assumed to lie in one out of a collection
of K linear subspaces with dimension less than or equal to s.
By leveraging such structure, reliable reconstruction can
be performed with a number of projections of the order
O(s + log(2K )) [32] by using mixed �2/�1-norm
approaches [34]. Tree models are usually adopted in
conjunction with wavelet dictionaries, as they leverage the
property that non-zero coefficients of wavelet transforms of
smooth signals or images are usually organized in a rooted,
connected tree [39]. In this case, the number of features
needed for reliable reconstruction can be reduced to O(s) [36].
Finally, manifold structures are shown to provide perfect
recovery with a number of projections that grows linearly
with the dimension of the manifold s, logarithmically with
the product of signal size n and parameters that characterize
the volume and the regularity of the manifold [37].

However, it is often the case that one is also presented
at the encoder, at the decoder, or at both with additional
information – known as side information – beyond signal
structure, in the form of another signal that exhibits some
correlation with the signal of interest. The key question
concerns how to leverage side information to enhance the
classification and reconstruction of high-dimensional signals
from low-dimensional features. This paper proposes to study
this aspect by using models that capture key attributes of
high-dimensional signals, namely the fact that such signals

often live on a union of low-dimensional subspaces or affine
spaces, or on a union of approximately low-dimensional
spaces. The high-dimensional signal to be measured and the
side information are assumed to have distinct low-dimensional
representations of this type, with shared or correlated latent
structure.

A. Related Work
Our problem connects to source coding with side infor-

mation and distributed source coding, as the number of fea-
tures extracted from high-dimensional signals can be related
to the compression rate, whereas performance metrics for
classification and reconstruction can be related to distortion.
The foundations of distributed source coding theory were laid
by Slepian and Wolf [40], whereas those of source coding
with side information by Ahlswede and Körner [41], and by
Wyner and Ziv [42]. Namely, [40] characterized the rates
at which two discrete input sources can be compressed
independently by guaranteeing lossless reconstruction at the
decoder side. Perhaps surprisingly, the rates associated with
independent compression at the two sources are shown to be
identical to those associated with joint compression at the
encoders. On the other hand, [41] determined the rate at which
a discrete source input can be compressed without losses in the
presence of coded side information. In the lossy compression
case, Wyner and Ziv [42] proposed an encoding scheme to
achieve the optimum tradeoff between compression rate and
distortion when side information is available at the decoder.
In contrast with the result in [40], they proved that lossy
compression without side information at the encoder suffers
in general a rate loss compared to lossy compression with
side information both at the encoder and the decoder [43].
However, such loss was shown to be vanishingly small for
the case of memoryless Gaussian sources and squared-error
distortion metrics [42].

Our problem also relates to the problems of compressive
sensing with side information/prior information [44]–[51],
distributed compressive sensing [52]–[58] and multi-task com-
pressive sensing [59]. The problem of compressive sens-
ing with side information or prior information entails the
reconstruction of a sparse signal in the presence of partial
information about the desired signal, using reconstruction
algorithms akin to those from CS. For example, [44], [45]
consider the reconstruction of a signal by leveraging partial
information about the support of the signal at the decoder
side; [46] considers the reconstruction of the signal by using
an additional noisy version of the signal at the decoder side.
Chen et al. [47] takes the side information to be associated
with the previous scans of a certain subject in dynamic
tomographic imaging. In this case, �1-norm based minimiza-
tion is used for recovery, by adding an additional term that
accounts for the distance between the recovered image and
the side information snapshot. A similar approach has been
adopted recently in [48], that is shown to require a smaller
number of measurements than traditional CS in recovering
magnetic resonance images. A theoretical analysis of the
number of measurements sufficient for reliable recovery with
high probability in the presence of side information for
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both �1/�1 and mixed �1/�2 reconstruction strategies is
provided in [49]. The application of such approaches
to compressive video foreground extraction is presented
in [50] and [51].

The problem of distributed compressive sensing, which has
been considered by [52]–[58], involves the joint reconstruc-
tion of multiple correlated sparse signals. In [52] and [53]
necessary and sufficient conditions on the minimum number
of measurements needed for perfect recovery (via �0-norm
minimization) are derived. Multiple signals are described there
via joint sparsity models that involve a common component
for all signals and innovation components specific to each
signal. Haghighatshoar [55] also provides conditions on the
number of measurements for approximately zero-distortion
recovery using an inversion procedure based on a gener-
alized, multi-terminal approximate message passing (AMP)
algorithm. Reconstruction via AMP methods for distributed
CS was also considered in [56], where the minimum number
of measurements needed for successful signal recovery was
derived assuming that measurements extracted from differ-
ent signals are spatially coupled. Reconstruction obtained
via �1-norm minimization methods is considered in [57],
where restricted isometry property (RIP) conditions for block-
diagonal, random linear projection matrices are discussed.
Namely, such matrices are shown to verify the RIP if the
total number of rows scales linearly with the signal sparsity s
and poly-logarithmically with the signal ambient dimension n.
Hormati [58] considers the problem of distributed recovery
of two signals that are related through a sparse time-domain
filtering operation, and it derives sufficient conditions on the
number of samples needed for reliable recovery as well as a
computationally-efficient reconstruction algorithm.

Multi-task compressive sensing [59] involves the description
of multiple signals through a hierarchical Bayesian framework,
where a prior is imposed on the wavelet coefficients for
the different signals. Such a prior is inferred statistically
from features extracted from the data and then used in the
recovery process, thus demonstrating reconstruction reliability
and robustness with various types of experimental data.

B. Contributions

This paper studies the impact of side information on the
classification and reconstruction of a high-dimensional signal
from low-dimensional, linear and random features, by assum-
ing that both the signal of interest and the side information are
drawn from a joint Gaussian mixture model (GMM). Unlike
distributed and multi-task CS, here we are generally only
interested in recovering or classifying the primary signal, and
not necessarily interested in recovering the underlying side
information that is represented compressively.

There are multiple reasons for adopting a GMM represen-
tation, which is often used in conjunction with the Bayesian
CS formalism [60]:

• A GMM model represents the Bayesian counterpart
of well-known high-dimensional signal models in the
literature [32]–[35], [38]. In particular, signals drawn
from a GMM can be seen to lie in a union of (linear or
affine) subspaces, where each subspace is associated with

the translation of the image of the (possibly low-rank)
covariance matrix of each Gaussian component within
the GMM. Moreover, low-rank GMM priors have been
shown to approximate signals in compact manifolds [38].
Also, a GMM can represent complex distributions subject
to mild regularity conditions [61].

• A GMM model has also been shown to provide
state-of-the-art results in practical problems in image
processing [62]–[64], dictionary learning [38], image
classification [6] and video compression [65].

• Optimal inversion of GMM sources from linear features
can be performed via a closed-form classifier or estimator,
which has computational complexity proportional to the
number of Gaussian classes within the GMM. Moreover,
moderate numbers of classes have been shown to model
reliably real-world data as, for example, patches extracted
from natural images or video frames [5], [65], [66].

Of particular relevance, the adoption of GMM priors also
offers an opportunity to analyze conditions for reliable clas-
sification or reconstruction: in particular, and in line with the
contributions in [66]–[69], it is possible to adopt wireless
communications-inspired metrics, akin to the diversity gain
or the measurement gain [70], [71], in order to characterize
performance more finely in certain asymptotic regimes.

Our main contributions, which generalize the analysis car-
ried out in [66] and [69] to the scenario where the decoder
has access to side information, include:

• The definition of a joint GMM model both for the signal
of interest and the side information, that generalizes the
joint sparsity models in [52] and [53].

• Sufficient conditions for perfect signal classification in
the asymptotic limit of low-rank that are a function of the
geometry of the signal of interest, the geometry of the side
information, their interaction, and the number of features.

• Sufficient and necessary conditions for perfect signal
reconstruction in the asymptotic limit of low-rank that
are also a function of the geometries of the signal of
interest, the side information, as well as the number of
features.

• Expansions of the classification error and reconstruc-
tion error for the case when signals are described via
approximately low-rank models, which are expressed
as a function of the deviation from exactly low-rank
models, that illuminate the impact of side information on
performance.

• A range of results that illustrate not only how theory
aligns with practice, but also how to use the ideas in real-
world applications, such as compressive hyperspectral
imaging in the presence of side information (here a
traditional photograph constitutes the side information).

These contributions differ from other contributions in the
literature in various aspects. Unlike previous works on the
characterization of the minimum number of measurements
needed for reliable reconstruction in distributed compressive
sensing [52], [53], our Bayesian framework allows consid-
eration of signals with different sizes that are sparse over
different bases; our model also allows characterization of
conditions for reliable classification and reconstruction. In
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addition, and unlike previous studies in the literature asso-
ciated with �1-norm minimization or AMP algorithms for
reconstruction, the analysis carried out in this work is also
valid in the finite signal length regime, providing a sharp
characterization of signal processing performance as a function
of the number of features extracted from both the input and
the side information. To the best of our knowledge, this work
represents the first contribution in the context of structured
or model-based CS to consider both classification and recon-
struction of signals in the presence of side information for
approximately low-rank models.

C. Organization

The remainder of the paper is organized as follows:
Section II defines the signal and the system model used
throughout the article. Section III provides results for clas-
sification with side information, containing an analysis of
an upper bound to the misclassification probability, that also
leads to a characterization of sufficient conditions for perfect
classification in the low-rank regime. Section IV provides
results for reconstruction with side information, most notably
sufficient and necessary conditions for perfect reconstruction
in the asymptotic limit of low-rank models; the sufficient
and necessary conditions differ within a single measurement.
Moreover, it contains expansions of the reconstruction error
for the case when signals are described via approximately low-
rank models. Numerical examples both with synthetic and real
data are presented in Section V. Finally, conclusions are drawn
in Section VI. The Appendices contain the proofs of the main
theorems.

D. Notation

In the remainder of the paper, we adopt the following
notation: boldface upper-case letters denote matrices (X) and
boldface lower-case letters denote column vectors (x); the
context defines whether the quantities are deterministic or
random. The symbols In and 0m×n represent the identity
matrix of dimension n × n and the all-zero-entries matrix
of dimension m × n, respectively (subscripts will be dropped
when the dimensions are clear from the context). (·)T, tr(·),
rank(·) represent the transpose, trace and the rank operators,
respectively. (·)† represents the Moore-Penrose pseudoinverse
of a matrix. Im(·) and Null(·) denote the (column) image and
null space of a matrix, respectively, and dim(·) denotes the
dimension of a linear subspace. E [·] represents the expectation
operator. The Gaussian distribution with mean μ and covari-
ance matrix � is denoted by N (μ,�). The symbol Cov(·)
denotes the covariance matrix of a given random vector.

II. MODEL

We consider both the classification and reconstruction of a
high-dimensional signal from linear features in the presence of
side information, as shown in Fig. 1. In particular, we assume
that the decoder has access to a set of linear features y1 ∈ R

m1

associated with the desired signal x1 ∈ R
n1 given by:

y1 = �1 x1, (1)

Fig. 1. Classification and reconstruction with side information. The user
attempts to generate an estimate Ĉ1 of the index of the component from
which the input signal x1 was drawn (classification) or it aims to generate
an estimate x̂1 of the input signal itself (reconstruction) on the basis of the
observation of both feature vectors y1 and y2.

where �1 ∈ R
m1×n1 is the projection kernel.1 We also

assume that the decoder has access to another set of features
y2 ∈ R

m2 – called side information – associated with another
signal x2 ∈ R

n2 given by:

y2 = �2 x2, (2)

where �2 ∈ R
m2×n2 is the projection kernel associated

with the side information. For the sake of compact notation,
we re-write the models in (1) and (2) as:

y = � x, (3)

where

x =
[

x1
x2

]
, y =

[
y1
y2

]
(4)

and

� =
[

�1 0
0 �2

]
. (5)

We focus on random projection kernels, where both matrices
�1 and �2 are assumed to be drawn from left rotation-
invariant distributions.2 We also assume that the rotation
kernels are modified so that their rows are orthonormal,
i.e., so that it holds �1�

T
1 = Im1 and �2�

T
2 = Im2 .

We consider underlying class labels C1 ∈
{1, . . . , K1} and C2 ∈ {1, . . . , K2}, where C1 is associated
with the signal of interest x1 and C2 is associated with
the side information signal x2. We assume that x1 and x2,
conditioned on the underlying class labels C1 = i and C2 = k,
are drawn from a joint distribution p(x1, x2|C1 = i, C2 = k),
with the class labels drawn from probability pC1,C2(i, k).
We assume that the decoder, for both classification and
reconstruction purposes, knows perfectly the joint probability
mass function (pmf) pC1,C2(i, k) of the discrete random
variables corresponding to the class labels of x1 and x2, and
the conditional distributions p(x1, x2|C1 = i, C2 = k). For the
problem of classification with side information, the objective

1In the remainder of the paper, we will use interchangeably the terms
projection/measurement/sensing kernel or matrix.

2A random matrix A ∈ R
m×n is said to be (left or right) rotation-invariant

if the joint probability density function (pdf) of its entries p(A) satisfies
p(�A) = p(A), or p(A�) = p(A), respectively, for any orthogonal matrix
� or �. A special case of (left and right) rotation-invariant random matrices
is represented by matrices with independent identically distributed (i.i.d.),
zero-mean Gaussian entries with fixed variance.



RENNA et al.: CLASSIFICATION AND RECONSTRUCTION OF HIGH-DIMENSIONAL SIGNALS 6463

is to estimate the value of the index C1 that identifies the
distribution/component from which x1 was drawn, on the
basis of the observation of both vectors y1 and y2. The
minimum average error probability in classifying C1 from
y1 and y2 is achieved by the maximum a posteriori (MAP)
classifier [1], given by

Ĉ1 = arg max
i∈{1,...,K1}

p(C1 = i |y1, y2) (6)

= arg max
i∈{1,...,K1}

K2∑
k=1

pC1,C2(i, k)

·p(y1, y2|C1 = i, C2 = k), (7)

where p(C1 = i |y1, y2) is the a posteriori probability of class
C1 = i conditioned on y1 and y2.

For the problem of reconstruction with side information,
the objective of the decoder is to estimate the signal x1
from the observation of y1 and y2. In particular, we consider
reconstruction obtained via the conditional mean estimator

x̂1(y1, y2) = E
[
x1|y1, y2

] =
∫

x1 p(x1|y1, y2)dx1, (8)

where p(x1|y1, y2) is the posterior pdf of x1 given the
observations y1 and y2, which minimizes the reconstruction
error.

We emphasize the key distinction between the previously
studied problems of distributed [52], [53] or multi-task com-
pressive sensing [59]: our goal is to recover x1 or its label C1,
based upon compressive y1 and y2, while previous work
considered joint recovery of x1 and x2 (or joint estimation
of C1 and C2). Note that our theory allows the special case
for which �2 is the identity matrix, in which case y2 = x2
and the side information is not measured compressively.

A. Signal, Side Information and Correlation Models

The key aspect now relates to the definition of the signal,
side information, and the respective correlation models.
In particular, we adopt a multivariate Gaussian model for the
distribution of x1 and x2, conditioned on (C1, C2) = (i, k),
i.e.

p(x1, x2|C1 = i, C2 = k) = N (μ(ik)
x ,�(ik)

x ), (9)

where

μ(ik)
x =

[
μ

(ik)
x1

μ
(ik)
x2

]
, �(ik)

x =
[

�
(ik)
x1 �

(ik)
x12

�
(ik)
x21 �

(ik)
x2

]
, (10)

so that p(x1|C1 = i, C2 = k) = N (μ
(ik)
x1 ,�

(ik)
x1 )

and p(x2|C1 = i, C2 = k) = N (μ
(ik)
x2 ,�

(ik)
x2 ), where

μ
(ik)
x1 and �

(ik)
x1 are the mean and covariance matrix of

x1 conditioned on the pair of classes (i, k), respectively,
μ

(ik)
x2 and �

(ik)
x2 are the mean and covariance matrix of x2

conditioned on the pair of classes (i, k), respectively, and �
(ik)
x12

is the cross-covariance matrix between x1 and x2 conditioned
on the pair of classes (i, k).

The motivation for this choice is associated by the fact
that this apparently simple model can accommodate a wide

range of signal distributions. In fact, note that the joint pdf of
x1 and x2 follows a GMM model:

p(x1, x2) =
K1∑

i=1

K2∑
k=1

pC1,C2(i, k)p(x1, x2|C1 = i, C2 = k),

(11)

so that we can in principle approximate very complex dis-
tributions by incorporating additional terms in the decom-
position [61]. Note also that the conditional marginal pdfs
of x1 and x2 also follow GMM models:

p(x1|C1 = i) =
K2∑

k=1

pC2|C1(k|i)

·
∫

dx2 p(x1, x2|C1 = i, C2 = k) (12)

=
K2∑

k=1

pC2|C1(k|i) N (μ(ik)
x1

,�(ik)
x1

) (13)

and

p(x2|C2 = k) =
K1∑

i=1

pC1|C2(i |k)

·
∫

dx1 p(x1, x2|C1 = i, C2 = k) (14)

=
K1∑

i=1

pC1|C2(i |k) N (μ(ik)
x2

,�(ik)
x2

), (15)

where pC2|C1(k|i) = pC1 ,C2 (i,k)

pC1 (i) and pC1|C2(i |k) = pC1 ,C2 (i,k)

pC2 (k)

are the conditional pmfs of C2 and C1. Therefore, our model
naturally subsumes the standard GMM models used in the
literature to deliver state-of-the-art results in reconstruction
and classification problems, hyperspectral imaging and digit
recognition applications [6].

In this work, we consider a framework in which the sig-
nal of interest and the side information are described via
approximately low-rank models. In particular, conditioned on
class labels (C1, C2) = (i, k), the signals x1 and x2 can be
expressed as

x1 = x̄1 + w1 (16)

x2 = x̄2 + w2, (17)

where

p(x̄1, x̄2|C1 = i, C2 = k) = N (μ(ik)
x , �̄

(ik)
x ), (18)

and

�̄
(ik)
x =

[
�̄

(ik)
x1

�̄
(ik)
x12

�̄
(ik)
x21

�̄
(ik)
x2

]
, (19)

and where w1 ∼ N (0, σ 2
1 In1), w2 ∼ N (0, σ 2

2 In2) are inde-

pendent. We assume that �̄
(ik)
x1

, �̄
(ik)
x2

, �̄
(ik)
x are low-rank, so

that the vectors x̄1, x̄2 represent the components of x1, x2 that
are contained in a low-dimensional affine subspace, whereas
the vectors w1, w2 accounts for small deviations of the signals
x1, x2 from an exactly low-rank model.
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We also adopt a framework that allows common and innova-
tive components in the representation of x1 and x2 conditioned
on (C1, C2) = (i, k), generalizing the one in [52] and [53].
In particular, note that

p(x̄1, x̄2|C1 = i, C2 = k) = N (μ(ik)
x , �̄

(ik)
x ) (20)

is equivalent to expressing x̄1 and x̄2 conditioned on the pair
of classes (i, k) as

x̄1 = xc1 + x′
1 + μ(ik)

x1
= P(ik)

c1
zc + P(ik)

1 z1 + μ(ik)
x1

(21)

x̄2 = xc2 + x′
2 + μ(ik)

x2
= P(ik)

c2
zc + P(ik)

2 z2 + μ(ik)
x2

, (22)

for an appropriate choice of the matrices P(ik)
c1 ∈

R
n1×s(ik)

c , P(ik)
c2 ∈ R

n2×s(ik)
c , P(ik)

1 ∈ R
n1×s(ik)

1 , P(ik)
2 ∈

R
n2×s(ik)

2 and where the vectors zc ∼ N (0, I
s(ik)

c
), z1 ∼

N (0, I
s(ik)

1
) and z2 ∼ N (0, I

s(ik)
2

) are independent. In our
scenario, the low-rank component of the covariance matrix
of x1 and x2 conditioned on the pair of classes (i, k) can be
also written as �̄

(ik)
x = P(ik)(P(ik))T, with

P(ik) =
[

P(ik)
c1 P(ik)

1 0
P(ik)

c2 0 P(ik)
2

]
, (23)

where P(ik)
c1 , P(ik)

c2 , P(ik)
1 and P(ik)

2 are such that3

�̄
(ik)
x1

= P(ik)
c1

(P(ik)
c1

)T + P(ik)
1 (P(ik)

1 )T (24)

�̄
(ik)
x2

= P(ik)
c2

(P(ik)
c2

)T + P(ik)
2 (P(ik)

2 )T (25)

�̄
(ik)
x12

= P(ik)
c1

(P(ik)
c2

)T. (26)

Note that (21) and (22) correspond to a factor or union-of-
subspace model; the vector zc characterizes a shared latent
process, and P(ik)

c1 and P(ik)
c2 are linear subspaces (dictio-

naries) that are a function of the properties of the signal
and side information, respectively. The vectors z1 and z2
are distinct latent processes, associated with respective linear
subspaces P(ik)

1 and P(ik)
2 . So the model may be viewed from

the perspective of generalizing previous union-of-subspaces
models [32]–[35].

We refer to the vectors xc1 ∼ N (0, P(ik)
c1 (P(ik)

c1 )T) and xc2 ∼
N (0, P(ik)

c2 (P(ik)
c2 )T) as the common components: these compo-

nents of x1 and x2 are correlated, as they are obtained as
linear combinations of atoms in two different dictionaries (the
columns of P(ik)

c1 and P(ik)
c2 , respectively) but with the same

weights, that are contained in the vector zc, and therefore can
be seen to model some underlying phenomena common to both
x1 and x2 (conditioned on the classes). On the other hand, we
refer to x′

1 ∼ N (0, P(ik)
1 (P(ik)

1 )T) and x′
2 ∼ N (0, P(ik)

2 (P(ik)
2 )T)

as innovation components: these components are statistically

3Note that the common and innovation component representation pro-
posed here is redundant, i.e., there are various choices of matrices
P(ik)

c1 , P(ik)
c2 , P(ik)

1 , P(ik)
2 that satisfy (24)-(26). We also emphasize that the

results obtained in the following analysis hold irrespective of the particular
choice of the matrices P(ik)

c1 , P(ik)
c2 , P(ik)

1 , P(ik)
2 that satisfy (24)-(26). Then,

although the adoption of the common and innovation component representa-
tion is not required to prove the results contained in this work, we leverage
such representation in order to give a clear interpretation of the interaction
between x1 and x2 and to underline the connection of our work with previous
results in the literature.

independent and thus can be seen to model phenomena specific
to x1 and x2 (conditioned on the classes).4

Therefore, we can now express the ranks of the matrices
appearing in (19) as a function of ranks of the matrices
appearing in the models in (21) and (22) as follows:

r (ik)
x1

= rank(�̄
(ik)
x1

) = rank[P(ik)
c1

P(ik)
1 ] (27)

which represents the dimension of the subspace spanned
by input signals x̄1 drawn from the Gaussian distribution
corresponding to the indices C1 = i, C2 = k;

r (ik)
x2

= rank(�̄
(ik)
x2

) = rank[P(ik)
c2

P(ik)
2 ] (28)

which represents the dimension of the subspace spanned by
side information signals x̄2 drawn from the Gaussian distrib-
ution corresponding to the indices C1 = i, C2 = k;

r (ik, j�)
x1 = rank(�̄

(ik)
x1

+ �̄
( j�)
x1

) = rank[P(ik)
c1

P( j�)
c1

P(ik)
1 P( j�)

1 ]
(29)

which represents the dimension of the sum of the subspaces
spanned by input signals drawn from the Gaussian distribution
corresponding to the indices C1 = i, C2 = k and those
from the Gaussian distribution corresponding to the indices
C1 = j, C2 = �;

r (ik, j�)
x2 = rank(�̄

(ik)
x2

+ �̄
( j�)
x2

) = rank[P(ik)
c2

P( j�)
c2

P(ik)
2 P( j�)

2 ]
(30)

which represents the dimension of the sum of the subspaces
spanned by side information signals drawn from the Gaussian
distribution corresponding to the indices C1 = i, C2 = k
and those from the Gaussian distribution corresponding to
the indices C1 = j, C2 = �; and finally, the corresponding
dimensions spanned collectively by input and side information
signals are given by

r (ik)
x = rank(�̄

(ik)
x ) (31)

= rank

[
P(ik)

c1 P(ik)
1 0

P(ik)
c2 0 P(ik)

2

]
(32)

r (ik, j�)
x = rank(�̄

(ik)
x + �̄

( j�)
x ) (33)

= rank

[
P(ik, j�)

c1 P(ik, j�)
1 0

P(ik, j�)
c2 0 P(ik, j�)

2

]
, (34)

where we have introduced the compact notation P(ik, j�)
c1 =

[P(ik)
c1 P( j�)

c1 ], P(ik, j�)
c2 = [P(ik)

c2 P( j�)
c2 ], P(ik, j�)

1 =
[P(ik)

1 P( j�)
1 ] and P(ik, j�)

2 = [P(ik)
2 P( j�)

2 ].
4The representation in (21) and (22) is reminiscent of the joint sparsity

models JSM-1 and JSM-3 in [52], where signals sensed by multiple sensors
were also described in terms of the sum of a common component plus
innovation components. However, fundamental differences characterize our
formulation with respect to such models: i) we consider a Bayesian framework
in which the input signal and side information signal are picked from a mixture
of components, where each component is described by a GMM distribution,
whereas in JSM-1 and JSM-3 all the components are deterministic; ii) in our
model, the common components are correlated, but they are not exactly the
same for x1 and x2, as it is instead for signals in JSM-1 and JSM-3; iii) in our
case, the common and innovation components can be sparse over four different
bases, corresponding to the ranges of the matrices P(ik)

c1 , P(ik)
c2 , P(ik)

1 and P(ik)
2 ;

on the other hand, all signals in JSM-1 and JSM-3 are assumed to be sparse
over the same basis.
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P̄err = √
pC1(1)pC1(2)

∫ √
p(y|C1 = 1)p(y|C1 = 2)dy (37)

= √
pC1(1)pC1(2)

∫ √√√√ K2∑
k.�=1

pC2|C1(k|1)pC2|C1(�|2)p(y|C1 = 1, C2 = k)p(y|C1 = 2, C2 = �)dy. (38)

P̄err =
K1∑

i=1

K1∑
j=1
j �=i

√
pC1(i)pC1( j)

∫ √√√√ K2∑
k.�=1

pC2|C1(k|i)pC2|C1(�| j)p(y|C1 = i, C2 = k)p(y|C1 = j, C2 = �)dy. (39)

We also define the rank:

r (ik) = rank
(
��̄

(ik)
x �T

)
, (35)

that represents the dimension of the subspace in R
m1+m2

spanned collectively by the projections of input signals and
the projections of side information signals drawn from the
Gaussian distribution identified by the component indices
C1 = i, C2 = k, and

r (ik, j�) = rank
(
�(�̄

(ik)
x + �̄

( j�)
x )�T

)
, (36)

that represents the dimension of the subspace obtained by
summing the subspace in R

m1+m2 spanned collectively by
the projections of input signals and the projections of side
information signals drawn from the Gaussian distribution
identified by the component indices C1 = i, C2 = k with
the subspace spanned by the projections of input signals
and the projections of side information signals drawn from
the Gaussian distribution identified by the component indices
C1 = j, C2 = �.

The quantities in (27)–(36), which provide a concise
description of the geometry of the input source, the side
information source, and the geometry of the interaction of such
sources with the projections kernels, will be fundamental to
determining the performance of the classification and recon-
struction of high-dimensional signals from low-dimensional
features in the presence of side information. In particular, they
will allow the expression of necessary/sufficient conditions for
reliable classification and reconstruction in the asymptotic low-
rank regime, i.e., when σ 2

1 , σ 2
2 → 0, and of expansions of the

reconstruction error as a function of σ 2
1 and σ 2

2 .

III. CLASSIFICATION WITH SIDE INFORMATION

We first consider signal classification in the presence of side
information, which will be instrumental in order to understand
reconstruction. The basis of the analysis is an asymptotic
characterization – in the limit of σ 2

1 , σ 2
2 → 0 – of the

behavior of an upper bound to the misclassification probability
associated with the optimal MAP classifier (rather than the
exact misclassification probability which is not tractable). In
particular, for a two class problem,5 i.e., when K1 = 2, via
the Bhattacharyya bound [1], the misclassification probability
can be upper bounded as in (38), at the top of this page.

5The number of classes corresponding to the side information signal, K2,
can be arbitrary.

For a multiple class problem, via the Bhattacharyya bound
in conjunction with the union bound, the misclassification
probability can be upper bounded as in (39), at the top of
this page.

We assume σ 2
1 = σ 2

2 = σ 2 and we provide an asymptotic
characterization – akin to that in [69] – that is based on two
key metrics. The first one identifies the presence or absence
of an error floor in the upper bound to the misclassification
probability as σ 2 → 0, leading to conditions on the number
of features that guarantee perfect classification in the low-rank
regime, i.e.,

lim
σ 2→0

P̄err(σ
2) = 0. (40)

Note that conditions on the number of features m1 and m2
required for limσ 2→0 P̄err(σ

2) = 0 represent also sufficient
conditions for the true error probability to approach zero when
σ 2 → 0.

The second metric offers a more refined description of
the behavior of the upper bound to the misclassification
probability by considering the slope at which log P̄err decays
(in a log σ 2 scale) in the low-rank regime. This value is named
the diversity-order and is given by

d = lim
σ 2→0

log P̄err(σ
2)

log σ 2 . (41)

Note also that the diversity-order associated with the upper
bound of the error probability represents a lower bound on
(the absolute value of) the slope of the true error probability
in the low-rank regime.

We next characterize these quantities as a function of
the number of features/measurements m1 and m2 and as a
function of the underlying geometry of the signal and the
side information, both for zero-mean classes (signal lives in
a union of linear subspaces) and nonzero-mean ones (signal
lives in a union of affine spaces). We also characterize the
quantities in (40) and (41) in terms of the diversity-order
associated with the classification of two Gaussian distributions
N (μ

(ik)
x ,�

(ik)
x ) and N (μ

( j�)
x ,�

( j�)
x ) from the observation of

the linear features y in (3),

d(ik, j�)

= lim
σ 2→0

1

log σ 2 log
(√

pC1,C2(i, k)pC1,C2( j, �)
∫ √

p(y|C1 = i, C2 = k)p(y|C1 = j, C2 = �)dy
)

.

(42)



6466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Moreover, all the pairs of indices (i, k) such that
pC1,C2(i, k) = 0 clearly do not affect the diversity-order
associated to classification with side information. Therefore,
we can define the set of index pairs of interest as

S = {
(i, k) ∈ {1, . . . , K1} × {1, . . . , K2} : pC1,C2(i, k) > 0

}
(43)

and we also define the sets of index quadruples

SSIC = {(i, k, j, �) : (i, k), ( j, �) ∈ S, i �= j}, (44)

and

SDC = {(i, k, j, �) : (i, k), ( j, �) ∈ S, (i, k) �= ( j, �)}. (45)

A. Zero-Mean Classes

We now provide a low-rank expansion of the upper bound
to the misclassification probability associated with the system
with side information in (1) and (2), when assuming that the
signals involved are all zero-mean, i.e., μ

(ik)
x = 0,∀(i, k).

Theorem 1: Consider the model in (1) and (2), where the
input signal x1 is drawn according to the class-conditioned
distribution (13), the side information x2 is drawn accord-
ing to the class-conditioned distribution (15), and the class-
conditioned joint distribution of x1 and x2 is given by (9)
with μ

(ik)
x = 0,∀(i, k). Then, with probability 1, in the

low-rank regime, i.e., when σ 2 → 0, the upper bound to the
misclassification probability (39) can be expanded as

P̄err(σ
2) = A · (σ 2)d + o

(
(σ 2)d

)
, (46)

for a fixed constant A > 0, where

d = min
(i,k, j,�)∈SSIC

d(ik, j�), (47)

with

d(ik, j�) = 1

2

(
r (ik, j�) − r (ik) + r ( j�)

2

)
, (48)

and

r (ik, j�) = rank
(
�(�̄

(ik)
x + �̄

( j�)
x )�T

)
(49)

= min{r (ik, j�)
x ,

min{m1, r (ik, j�)
x1 } + min{m2, r (ik, j�)

x2 }}, (50)

r (ik) = rank
(
��̄

(ik)
x �T

)
(51)

= min{r (ik)
x , min{m1, r (ik)

x1
} + min{m2, r (ik)

x2
}} (52)

and r ( j�) is obtained as r (ik) .
Proof: See Appendix A.

Theorem 1 provides a complete characterization of the slope
of the upper bound to the misclassification probability for the
case of zero-mean classes, in terms of the number of features
and the geometrical description of the sources. In particular,
observe that:

• The diversity-order d associated with the estimation of
the component index C1 from linear features with side

information is given by the worst-case diversity-order
term d(ik, j�) associated with pair-wise classification
problems for which the indices corresponding to C1 are
not the same (i �= j ).

• The diversity-order in (47), which depends on the pair-
wise diversity-order in (48), can also be seen to depend
on the difference between the dimension of the sum
of the linear spaces collectively spanned by signals
�1x̄1 and �2x̄2 drawn from the Gaussian distributions
with indices (i, k) and ( j, �) and the dimension of those
spaces taken individually. This dependence in the pres-
ence of side information is akin to that in the absence
of side information: the additional information, however,
provides subspaces with increased dimensions over which
it is possible to discriminate among signals belonging to
different classes.

• The effect of the correlation between x1 and x2 is
embodied in the rank expressions (50) and (52). In par-
ticular, we note that, in case x1 and x2 are conditionally
independent given any pairs of classes (C1, C2), i.e.,
p(x1, x2|C1 = i, C2 = k) = p(x1|C1 = i, C2 =
k)p(x2|C1 = i, C2 = k), then r (ik)

x = r (ik)
x1 +r (ik)

x2 , r ( j�)
x =

r ( j�)
x1 + r ( j�)

x2 and r (ik, j�)
x = r (ik, j�)

x1 + r (ik, j�)
x2 . Then, the

diversity-order is given by the sum of the diversity-order
values corresponding to the classification of x1 from y1
and that corresponding to the classification of x2 from y2.
From a geometrical point of view, when x1 and x2 are
conditionally independent, the linear spaces spanned by
the side information offer new dimensions over which
the decoder can discriminate among classes, which are
completely decoupled from the dimensions corresponding
to linear spaces spanned by the realizations of x1. Other-
wise, when x1 and x2 are not conditionally independent,
the diversity-order can be in general larger than, smaller
than, or equal to the sum of the diversity-order values
corresponding to the classification of x1 from y1 and that
corresponding to the classification of x2 from y2.

A direct consequence of the asymptotic characterization of
the upper bound to the misclassification probability in (39) is
access to conditions on the number of features m1 and m2 that
are both necessary and sufficient to drive the upper bound to
the misclassification probability to zero when σ 2 → 0, and
hence a condition on the number of features m1 and m2 that
is sufficient to drive the true misclassification probability to
zero when σ 2 → 0.

Corollary 1: Consider the model in (1) and (2), where the
input signal x1 is drawn according to the class-conditioned
distribution (13), the side information x2 is drawn accord-
ing to the class-conditioned distribution (15), and the class-
conditioned joint distribution of x1 and x2 is given by (9)
with μ

(ik)
x = 0,∀(i, k).

If there exists an index quadruple (i, k, j, �) ∈ SSIC such
that r (ik, j�)

x = r (ik)
x = r ( j�)

x , then, d = 0 and the upper bound
to the misclassification probability (39) exhibits an error floor
in the low-rank regime. Otherwise, if r (ik, j�)

x > r (ik)
x , r ( j�)

x ,
∀(i, k, j, �) ∈ SSIC, then, with probability 1, the upper
bound to the misclassification probability (39) approaches zero
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when σ 2 → 0 if and only if the following conditions hold
∀(i, k, j, �) ∈ SSIC:

1) if r (ik, j�)
x1 > r (ik)

x1 , r ( j�)
x1 and r (ik, j�)

x2 > r (ik)
x2 , r ( j�)

x2 :

m1 > min{r (ik)
x1

, r ( j�)
x1 }

or

m2 > min{r (ik)
x2

, r ( j�)
x2 }

or

m1 + m2 > min{r (ik)
x , r ( j�)

x }; (53)

2) if r (ik, j�)
x1 = r (ik)

x1 = r ( j�)
x1 and r (ik, j�)

x2 = r (ik)
x2 = r ( j�)

x2 :⎧⎪⎨
⎪⎩

m1 > min{r (ik)
x − r (ik)

x2 , r ( j�)
x − r ( j�)

x2 }
m2 > min{r (ik)

x − r (ik)
x1 , r ( j�)

x − r ( j�)
x1 }

m1 + m2 > min{r (ik)
x , r ( j�)

x };
(54)

3) if r (ik, j�)
x1 > r (ik)

x1 , r ( j�)
x1 and r (ik, j�)

x2 = r (ik)
x2 = r ( j�)

x2 :

m1 > min{r (ik)
x1

, r ( j�)
x1 }

or{
m1 > min{r (ik)

x − r (ik)
x2 , r ( j�)

x − r ( j�)
x2 }

m1 + m2 > min{r (ik)
x , r ( j�)

x }; (55)

4) if r (ik, j�)
x1 = r (ik)

x1 = r ( j�)
x1 and r (ik, j�)

x2 > r (ik)
x2 , r ( j�)

x2 :

m2 > min{r (ik)
x2

, r ( j�)
x2 }

or{
m2 > min{r (ik)

x − r (ik)
x1 , r ( j�)

x − r ( j�)
x1 }

m1 + m2 > min{r (ik)
x , r ( j�)

x }. (56)

Proof: See Appendix B.
The characterization of the numbers of features m1 and m2

that are both necessary and sufficient to drive the upper
bound to the misclassification probability to zero in the the
low-rank regime is divided in 4 cases, depending on whether
the range spaces Im(�̄

(ik)
x1

) and Im(�̄
( j�)
x1

), or the range spaces

Im(�̄
(ik)
x2

) and Im(�̄
( j�)
x2

), are distinct or not.6 Fig. 2 depicts
the tradeoff between the values of m1 and m2 associated with
these different cases. Note also that the values of m1 and m2
needed for the upper bound of the misclassification probability
to approach zero when σ 2 → 0 lie in the intersection of the
regions corresponding to index quadruples (i, k, j, �) ∈ SSIC.

In case 1), the range spaces associated to the input covari-
ance matrices are all distinct, and by observing (53) we
can clearly determine the beneficial effect of the correlation
between x1 and x2 in guaranteeing reliable classification.
Namely, we note that the upper bound to the misclassification
probability reaches zero in the low-rank regime either when
error-free classification is possible from the observation of

y1 alone (m1 > min{r (ik)
x1 , r ( j�)

x1 }) or from the observation

of y2 alone (m2 > min{r (ik)
x2 , r ( j�)

x2 }) cf. [69], but, more

importantly, the condition m1 + m2 > min{r (ik)
x , r ( j�)

x } shows
the benefit of side information in order to obtain the reliable
classification with a lower number of features. In fact, when

6We recall that, given two positive semidefinite matrices A and B with ranks
rA = rank(A), rB = rank(B), rAB = rank(A + B), Im(A) = Im(B) if and
only if rAB = rA+rB

2 [66, Lemma 2] and then, if and only if rAB = rA = rB .

Fig. 2. Representation of the conditions on m1 and m2 for
limσ2→0 P̄e(σ

2) = 0, for the 4 different cases encapsulated in Corollary 1.

In all cases a1 = min{r(ik)
x −r(ik)

x2 , r( j�)
x −r( j�)

x2 }+1, b1 = min{r(ik)
x1 , r( j�)

x1 }+
1, a2 = min{r(ik)

x −r(ik)
x1 , r( j�)

x −r( j�)
x1 }+1, b2 = min{r(ik)

x2 , r( j�)
x2 }+1 and c =

min{r(ik)
x , r( j�)

x }+ 1. The shaded regions represent values of m1 and m2 that
satisfy the conditions (53)–(56).

r (ik)
x < r (ik)

x1 + r (ik)
x2 , joint classification of y1 and y2 leads to

a clear advantage in the number of features needed to achieve
zero error probability in the low-rank regime with respect to
the case in which classification is carried independently from
y1 and y2, despite the fact that linear features are extracted
independently from x1 and x2.

In case 2), the range spaces associated to the input covari-
ance matrices are such that Im(�̄

(ik)
x1

) = Im(�̄
( j�)
x1

) and

Im(�̄
(ik)
x2

) = Im(�̄
( j�)
x2

) so that classification based on the
observation of y1 or y2 alone yields an error floor in the
upper bound of the misclassification probability [69]. In other
terms, input signals and side information signals from classes
(i, k) and ( j, �) are never perfectly distinguishable. In this
case, the impact of correlation between the input signal and
the side information signal is clear when observing (54). In
fact, when combining features extracted independently from
the vectors x1 and x2, it is possible to drive to zero the
misclassification probability, in the low-rank regime, provided
that the number of features extracted m1 and m2 verify the
conditions in (54).

Finally, cases 3) and 4) represent intermediate scenarios in
which range spaces associated to x1 are distinct, but those
related to x2 are completely overlapping, and vice versa.
We note then how the necessary and sufficient conditions
to drive to zero the upper bound of the misclassification
probability in (55) and (56) are given by combinations of the
conditions in (53) and (54).

We further note in passing that the conditions in (54) are
reminiscent of the conditions on compression rates for lossless
joint source coding in [40].
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B. Nonzero-Mean Classes
We now provide a low-rank expansion of the upper bound

to the misclassification probability associated with the feature
extraction system with side information in (1) and (2), for the
case of nonzero-mean classes, i.e., μ

(ik)
x �= 0. The presence of

non-zero mean classes – as already noted in [69, Th. 3], for
compressive classification without side information – offers a
unique characteristic, that is, the misclassification probability
can decay exponentially with 1/σ 2 (i.e., the diversity-order
tends to infinity) under certain conditions on the number of
linear features extracted and the geometrical description of the
source.

Theorem 2: Consider the model in (1) and (2), where the
input signal x1 is drawn according to the class-conditioned
distribution (13), the side information x2 is drawn accord-
ing to the class-conditioned distribution (15), and the class-
conditioned joint distribution of x1 and x2 is given by (9).

If, for all the index quadruples (i, k, j, �) ∈ SSIC it holds,

μ
(ik)
x − μ

( j�)
x /∈ Im(�̄

(ik)
x + �̄

( j�)
x ), then, with probability 1,

in the low-rank regime, i.e., when σ 2 → 0, the upper bound
to the misclassification probability for classification with side
information (39) can be expanded as

P̄err(σ
2) = B · e−C/σ 2 + o

(
e−C/σ 2

)
, (57)

for fixed constants B, C > 0, if and only if the following
conditions hold ∀(i, k, j, �) ∈ SSIC:

1) if μ
(ik)
x1 − μ

( j�)
x1 /∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 /∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

):

m1 > r (ik, j�)
x1 or m2 > r (ik, j�)

x2

or m1 + m2 > r (ik, j�)
x ; (58)

2) if μ
(ik)
x1 − μ

( j�)
x1 ∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 ∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

):⎧⎪⎨
⎪⎩

m1 > r (ik, j�)
x − r (ik, j�)

x2

m2 > r (ik, j�)
x − r (ik, j�)

x1

m1 + m2 > r (ik, j�)
x ;

(59)

3) if μ
(ik)
x1 − μ

( j�)
x1 /∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 ∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

):

m1 > r (ik, j�)
x1 or

{
m1 > r (ik, j�)

x − r (ik, j�)
x2

m1 + m2 > r (ik, j�)
x ; (60)

4) if μ
(ik)
x1 − μ

( j�)
x1 ∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 /∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

):

m2 > r (ik, j�)
x2 or

{
m2 > r (ik, j�)

x − r (ik, j�)
x1

m1 + m2 > r (ik, j�)
x .

(61)

Otherwise, denote by S ′ the set of quadruples (i, k, j, �) ∈
SSIC for which either μ

(ik)
x − μ

( j�)
x ∈ Im(�̄

(ik)
x + �̄

( j�)
x ) or

conditions (58)–(61) do not hold. Then, with probability 1,
in the low-rank regime, i.e., when σ 2 → 0, the upper bound
to the misclassification probability for classification with side
information (39) can be expanded as

P̄err(σ
2) = A · (σ 2)d + o

(
(σ 2)d

)
, (62)

for a fixed constant A > 0, and

d = min
(i,k, j,�)∈S ′ d(ik, j�), (63)

where d(ik, j�) is obtained as in Theorem 1.
Proof: See Appendix C.

Note that classification based on the joint observation of
y1 and y2 can guarantee infinite diversity-order even when
classification based on y1 or y2 alone cannot. In particular,
if there exists an index quadruple for which both
μ

(ik)
x1 −μ

( j�)
x1 ∈ Im(�̄

(ik)
x1

+�̄
( j�)
x1

) and μ
(ik)
x2 −μ

( j�)
x2 ∈ Im(�̄

(ik)
x2

+
�̄

( j�)
x2

), then, irrespective of the number of features m1 and m2
and of the specific values of the projection kernels �1 and �2,
we have

�1(μ
(ik)
x1

− μ
( j�)
x1 ) ∈ Im(�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 ) (64)

�2(μ
(ik)
x2

− μ
( j�)
x2 ) ∈ Im(�2(�̄

(ik)
x2

+ �̄
( j�)
x2

)�T
2 ) (65)

and, therefore, the conditions in [69, Th. 3] are not veri-
fied, thus implying that both the upper bounds to the error
probability associated to classification based on y1 or y2 do
not decay exponentially with 1/σ 2 when σ 2 → 0. On the
other hand, if μ

(ik)
x − μ

( j�)
x /∈ Im(�̄

(ik)
x + �̄

( j�)
x ) for all index

quadruples (i, k, j, �) ∈ SSIC, then classification based on
both y1 and y2 is characterized by an exponential decay of
the upper bound to the misclassification probability, provided
that conditions (58)–(61) on the numbers of features extracted
from x1 and x2 are verified.

Moreover, the conditions on the number of features needed
to achieve an exponential decay in 1/σ 2 of the upper bound to
the misclassification probability depend on whether the affine
spaces spanned by signal and side information realization in
the Gaussian classes (i, k) and ( j, �) do intersect or not, for all
index quadruples (i, k, j, �) ∈ SSIC. From a geometrical point
of view, if the affine spaces spanned by the overall signal x
obtained by the concatenation of input signal and side infor-
mation do not intersect, then equations (58)–(61) determine
conditions on the number of extracted features m1 and m2
such that the affine spaces spanned by the projected signals
�x do not intersect as well, thus guaranteeing enhanced
discrimination among classes.

IV. RECONSTRUCTION WITH SIDE INFORMATION

We now consider signal reconstruction in the presence of
side information. In particular, by leveraging the classification
results, we will address two scenarios: i) the case where the
signals obey asymptotically a low-rank model; and ii) the case
where the signals obey an approximately low-rank model that
is often used in practice [38], [66].

A. Low-Rank Model

We focus first on the analysis of the asymptotic regime
when σ 2

1 , σ 2
2 → 0. In this case, without loss of generality, we

assume σ 2
1 = σ 2

2 = σ 2. We are interested in the asymptotic
characterization of the minimum mean-squared error (MMSE)
incurred in reconstructing x1 from the observation of the signal
features y1 and the side information features y2, given by7

MMSE1|1,2(σ
2) = E

[
‖x1 − x̂1(y1, y2)‖2

]
, (66)

7We emphasize that MMSE1|1,2(σ 2) is a function of σ 2.
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MMSEG
1|1,2(σ

2) = tr

(
�̄x1 + σ 2I −

[
(�̄x1 + +σ 2I) �̄x12

]
�T

(
σ 2I + ��̄x�

T
)−1

�

[
(�̄x1 + σ 2I)T

�̄
T
x2

])
. (68)

where x̂1(y1, y2) is the conditional mean estimator in (8).
In particular, we are interested in determining conditions on
the number of linear features m1 and m2 that guarantee perfect
reconstruction in the low-rank regime, i.e., when σ 2 → 0,
that is

lim
σ 2→0

MMSE1|1,2(σ
2) = 0, (67)

thus generalizing the results in [66] to the case when side
information is available at the decoder; the misclassification
results will be key to address this problem.

1) Gaussian Sources: We first consider the simplified case
in which K1 = K2 = 1, i.e., when the signals x1 and x2 obey
the joint Gaussian distribution N (μx,�x), where

μx =
[

μx1

μx2

]
(69)

�x = �̄x + σ 2I =
[

�̄x1 �̄x12

�̄x21 �̄x2

]
+
[

σ 2I 0
0 σ 2I

]
(70)

and with ranks rx1 = rank(�̄x1), rx2 = rank(�̄x2) and
rx = rank(�̄x).

For this case, the conditional mean estimator is given
by [72]

x̂1(y) = μx1
+ Wx1 (y − �μx) , (71)

where

Wx1 =
[
(�̄x1 + σ 2I) �̄x12

]
�T

(
σ 2I + ��̄x�

T
)−1

. (72)

Moreover, the MMSE in this case can be expressed as in (68),
at the top of this page.

In the following, we provide necessary and sufficient condi-
tions on the number of features m1, m2 that guarantee that, in
the low-rank regime, the reconstruction MMSE for Gaussian
sources approaches zero. Sufficient conditions are based on
the analysis of two different upper bounds to MMSEG

1|1,2(σ
2).

The first upper bound is obtained by considering the MMSE
associated with the reconstruction of the signal x1 from the
observation of y1 alone, i.e., without side information, which
is denoted by

MMSEG
1|1(σ 2) = E

[
‖x1 − x̂1(y1)‖2

]
, (73)

where x̂1(y1) = E
[
x1|y1

]
and whose behavior in the low-rank

regime has been analyzed in [66].8

The second upper bound is obtained by considering the
MMSE associated with the distributed reconstruction problem,
i.e., the joint recovery of x1 and x2 from the observation of

8In fact, the analysis in [66] is based on a slightly different framework,
where signals x1 are described by exactly low-rank models, and the features
y1 are affected by additive Gaussian noise. Nevertheless, it will be shown in
the following that the results presented in [66] on necessary and sufficient
conditions for reliable reconstruction generalize to the framework considered
in this paper.

both y1 and y2 (i.e., the reconstruction of x from y), which is
denoted by

MMSEG
1,2|1,2(σ

2) = E
[
‖x − x̂(y)‖2

]
, (74)

where

x̂(y) = E
[
x|y] =

∫
x p(x|y)dx. (75)

Note that the analysis of the second upper bound cannot be
directly performed on the basis of the results in [66], due to
the particular block diagonal structure of �.

Based on the properties of the MMSE [72], it is straight-
forward to show that MMSEG

1|1,2(σ
2) ≤ MMSEG

1|1(σ 2) and
MMSEG

1|1,2(σ
2) ≤ MMSEG

1,2|1,2(σ
2).

On the other hand, necessary conditions are derived from the
analysis of the lower bound to the MMSE obtained by feeding
the decoder not only with the features y1 and y2, but also with
the values of the realizations of the vectors w1 and w2, that
represent the deviation from an exactly low-rank model (see
Section II-A for details). The following theorem stems from
the fact that the necessary and sufficient conditions for error
free reconstruction in the low-rank regime coincide.

Theorem 3: Consider the model in (1) and (2). Assume
that the vectors x1, x2 are jointly Gaussian, with distrib-
ution N (μx,�x), with mean and covariance matrix spec-
ified in (69), (70), and with rx1 = rank(�̄x1), rx2 =
rank(�̄x2) and rx = rank(�̄x). Then, with probability 1, we
have

lim
σ 2→0

MMSEG
1|1,2(σ

2) = 0

⇔
m1 ≥ rx1 or

{
m1 ≥ rx − rx2

m1 + m2 ≥ rx
. (76)

Proof: See Appendix D.
Without side information, it is known that m1 ≥ rx1

represents a necessary and sufficient condition on the number
of features needed to drive the MMSE to zero in the low-rank
regime [66]. With side information, it is possible to reliably
recover the input signal x1 with a lower number of features,
as described by the conditions in (76). In fact, whenever
rx < rx1 + rx2 , it is possible to perfectly reconstruct x1
when σ 2 → 0 even with less than rx1 features, provided
that m1 + m2 ≥ rx. This happens when the dimension of the
overall space spanned by the projected signals obtained by
concatenating the input signal and the side information signal,
i.e., �x, is greater than or equal to the dimension of the space
spanned by x in the signal domain. Moreover, the m1 features
extracted from x1 need to be enough to span a space with
dimension equal to the difference between the dimension of
the space spanned by x and that spanned by x2 alone. In this
sense, linear projections extracted from the input signal must
be enough to capture signal features that are characteristic
of x1 and are not “shared” with x2, meaning that they are not
correlated.
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Fig. 3. Representation of the conditions on m1 and m2 for reliable
reconstruction for Gaussian sources. The shaded region represents values of
m1 and m2 that satisfy the conditions (76).

The values of m1 and m2 that satisfy the necessary and
sufficient conditions (76) are reported in Fig. 3.

2) GMM Sources: We now consider the more general case
where the signals x1 and x2 follow the models in Section II-A.
It is possible to express the conditional mean estimator
in closed form, but not the MMSE, which we denote by
MMSEGM

1|1,2(σ
2). Therefore, we will determine necessary and

sufficient conditions on the numbers of features m1 and m2
that guarantee MMSEGM

1|1,2(σ
2) → 0 in the low-rank regime,

by leveraging the result in Theorem 3 together with steps akin
to those in [66, Sec. IV].

In order to provide sufficient conditions for the MMSE
to approach zero in the low-rank regime, we analyze the
upper bound to the MMSE corresponding to the mean squared
error (MSE) associated with a (sub-optimal) classify and
reconstruct decoder, which we denote by MSECR(σ 2). This
decoder operates in two steps as follows:

• First, the decoder estimates the pair of class indices
associated to the input signal and the side information
signal via the MAP classifier9

(Ĉ1, Ĉ2) = arg max
(i,k)

p(y|C1 = i, C2 = k)pC1,C2(i, k);
(77)

• Second, in view of the fact that, conditioned on
(C1, C2) = (i, k), the vectors x1 and x2 are jointly
Gaussian distributed with mean μ

(ik)
x and covari-

ance �̄
(ik)
x , the decoder reconstructs the input signal x1

by using the conditional mean estimator corresponding to
the estimated classes Ĉ1, Ĉ2

x̂1(y; C1 = Ĉ1, C2 = Ĉ2)

= μ(Ĉ1Ĉ2)
x1

+ W(Ĉ1Ĉ2)
x1

(
y − �μ(Ĉ1Ĉ2)

x

)
, (78)

where

W(Ĉ1Ĉ2)
x1

=
[
(�̄

(Ĉ1Ĉ2)
x1

+ σ 2I) �̄
(Ĉ1Ĉ2)
x12

]
�T

·
(

σ 2I + ��̄
(Ĉ1Ĉ2)
x �T

)−1

. (79)

9This MAP classifier is associated with the distributed classification prob-
lem, which consists in estimating the labels C1 and C2 from the observation
of the feature vectors y1 and y2.

The optimality of the MMSE estimator immediately implies
that MMSEGM

1|1,2(σ
2) ≤ MSECR(σ 2). Therefore, we can imme-

diately leverage the analysis of the misclassification proba-
bility carried out in Section III and the result in Theorem 3
in order to characterize the behavior of MSECR(σ 2) in the
low-rank regime, in order to determine sufficient condition
for limσ 2→0 MMSEGM

1|1,2(σ
2) = 0.

Theorem 4: Consider the model in (1) and (2). Assume
that the input signal x1 is drawn according to the class-
conditioned distribution (13), x2 is drawn according to the
class-conditioned distribution (15) and the class-conditioned
joint distribution of x1 and x2 is given by (9). Then, with
probability 1, we have

m1 > r (ik)
x1

or

{
m1 > r (ik)

x − r (ik)
x2

m1 + m2 > r (ik)
x ,

∀(i, k) ∈ S

⇒ lim
σ 2→0

MMSEGM
1|1,2(σ

2) = 0. (80)

Proof: See Appendix E.
The sufficient conditions in (80) show that – akin to the

Gaussian case – the numbers of features extracted from
x1 and x2 have to be collectively greater than the largest
among the dimensions of the spaces spanned by signals
x = [xT

1 xT
2 ]T in the Gaussian components corresponding to

indices (C1, C2) = (i, k), for i = 1, . . . , K1, k = 1, . . . , K2.
Moreover, the features extracted from x1 need to be enough
to capture signal components which are not correlated with
the side information, for all Gaussian components. Finally,
the condition m1 > r (ik)

x1 is obtained trivially by consider-
ing reconstruction of x1 from the features collected in the
vector y1, thus disregarding side information.

Note that the values of m1 and m2 that are sufficient to drive
the MMSE to zero are obtained by considering the intersection
of regions akin to that in Fig. 3 for all the pairs of classes
(i, k) ∈ S.

Appendix E shows that the conditions in (80) guarantee that
the decoder can reliably estimate the class indices (C1, C2)
and hence reliably reconstruct the signal x1 in the low-rank
regime.

We now derive necessary conditions for reliable reconstruc-
tion of GMM signals with side information. We obtain such
conditions from the analysis of a lower bound to the MMSE
that is obtained by observing that

MMSEGM
1|1,2(σ

2)

= E
[
‖x1 − x̂1(y1, y2)‖2

]
(81)

=
∑

(i,k)∈S
pC1,C2(i, k)

· E
[
‖x1 − x̂1(y1, y2)‖2|C1 = i, C2 = k

]
(82)

≥
∑

(i,k)∈S
pC1,C2(i, k)MMSEG(i,k)

1|1,2 (σ 2) (83)

= MSELB
1|1,2(σ

2), (84)

where MMSEG(i,k)
1|1,2 (σ 2) denotes the MMSE associated with

the reconstruction of the Gaussian signal x1 corresponding
to class indexes (i, k) from the observation of the vector y1
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and the side information y2. Note that the equality in (82) is
obtained via the total probability formula and the inequality
in (83) is a consequence of the optimality of the MMSE
estimator for joint Gaussian input and side information signals.

The analysis of MSELB
1|1,2(σ

2) leads to the derivation of
the following necessary conditions on the number of features
m1 and m2 needed to drive MMSEGM

1|1,2(σ
2) to zero when

σ 2 → 0.
Theorem 5: Consider the model in (1) and (2). Assume

that the input signal x1 is drawn according to the class-
conditioned distribution (13), x2 is drawn according to the
class-conditioned distribution (15) and the class-conditioned
joint distribution of x1 and x2 is given by (9). Then, with
probability 1, we have

lim
σ 2→0

MMSEGM
1|1,2(σ

2) = 0

⇒ m1 ≥ r (ik)
x1

or

{
m1 ≥ r (ik)

x − r (ik)
x2

m1 + m2 ≥ r (ik)
x ,

∀(i, k) ∈ S.

(85)
Proof: The proof is based on the result in Theorem 3,

which implies that, if MMSEG(i,k)
1|1,2 (σ 2) → 0 when σ 2 → 0,

∀(i, k) ∈ S, then, with probability 1, the conditions on the
numbers of features m1 and m2 in (85) must be satisfied for
all (i, k) ∈ S.

It is interesting to note that the necessary conditions for
reliable reconstruction of GMM inputs are one feature away
from the corresponding sufficient conditions, akin to our
previous results for the case without side information [66].
In this way, Theorems 4 and 5 provide a sharp characterization
of the region associated to vanishing MMSE of GMM inputs
with side information in the low-rank regime.

B. Approximately Low-Rank Model

We now consider the case when the signal of interest and the
side information obey an approximately low-rank model, that
is when both quantities σ 2

1 > 0 and σ 2
2 > 0. We are interested

in determining the merit of side information in this case,
therefore we consider expansions of the MMSE as a function
of σ 2

1 , σ 2
2 for both cases when side information features y2 are

available to the decoder or not.
We study first the behavior of the MMSE without side

information, i.e., MMSE1|1(σ 2
1 ). The following lemma offers a

characterization of the lower bound to MMSE1|1(σ 2
1 ) obtained

by noting that

MMSE1|1(σ 2
1 )

= E
[
‖x1 − x̂1(y1)‖2

]
(86)

=
∑

(i,k)∈S
pC1,C2(i, k)

· E
[
‖x1 − x̂1(y1)‖2|C1 = i, C2 = k

]
(87)

≥
∑

(i,k)∈S
pC1,C2(i, k)MMSEG(i,k)

1|1 (σ 2
1 ) (88)

= MSELB
1|1(σ 2

1 ) (89)

where MMSEG(i,k)
1|1 (σ 2

1 ) denotes the MMSE associated with

the reconstruction of the Gaussian signal x1 correspond-
ing to class indexes (i, k) from the observation of the
vector y1.

Lemma 1: Consider the model in (1). Assume that the
input signal x1 is drawn according to the class-conditioned
distribution (13). Then, when σ 2

1 → 0, the MMSE lower
bound MSELB

1|1(σ 2
1 ) can be expanded as

MSELB
1|1(σ 2

1 ) = M1|1 + D1|1 · σ 2
1 + o(σ 2

1 ) (90)

where

M1|1 =
∑

(i,k)∈S
pC1,C2(i, k)M(i,k)

1|1 (91)

D1|1 =
∑

(i,k)∈S
pC1,C2(i, k)D(i,k)

1|1 . (92)

The terms M(i,k)
1|1 and D(i,k)

1|1 are obtained by considering the
following eigenvalue decomposition:

�(ik) = (�̄
(ik)
x1

)
1
2 �T

1 �1(�̄
(ik)
x1

)
1
2 = U(ik)

� �
(ik)
� (U(ik)

� )T. (93)

In particular, on writing �
(ik)
� = diag(λ

(ik)
�,1, . . . , λ

(ik)

�,r(ik)
�

,

0, . . . , 0), where r (ik)
� = rank(�(ik)), and on denoting by u(ik)

�,t

the t-th column of U(ik)
� , we have

M(i,k)
1|1 =

r(ik)
x1∑

t=r(ik)
� +1

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t (94)

D(i,k)
1|1 = n1 − m1 − r (ik)

� +
r(ik)
�∑

t=1

1

λ
(ik)
�,t

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t . (95)

Proof: See Appendix F.
The expansion of the lower bound MSELB

1|1(σ 2
1 ), which

is based on the results in [66], allows one to quan-
tify the effect of small deviations from an exactly low-
rank model on the reconstruction MMSE of the signal
of interest when side information is not available at the
decoder.

We can note that M1|1 > 0 if there exist indexes (i, k) ∈ S
such that m1 < r (ik)

x1 . In this case, the zeroth-order term M1|1
represents the error floor of the lower bound of the MMSE,
which is achieved asymptotically when σ 2

1 → 0. On the other
hand, if m1 ≥ r (ik)

x1 for all (i, k) ∈ S, then M1|1 = 0, the
lower bound of the MMSE decays to zero as 1/σ 2

1 when
σ 2

1 → 0, and the value D1|1 determines the horizontal offset
of log MSELB

1|1(σ 2
1 ) (in a log σ 2

1 scale).
The following lemma provides conditions that guarantee

that the the expansion of the MMSE lower bound in Lemma 1
is tight, thus it captures the behavior of the true MMSE
with respect to the deviation from an exactly low-rank model,
expressed via the parameter σ 2

1 .
Lemma 2: Consider the model in (1). Assume

that the input signal x1 is drawn according to the
class-conditioned distribution (13). If m1 is such that
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dNOSI(ik, j�) > 1,∀(i, k, j, �) ∈ SDC, where

dNOSI(ik, j�) = 1

2

(
min{m1, r (ik, j�)

x1 }

−min{m1, r (ik)
x1 } + min{m1, r ( j�)

x1 }
2

)
,

(96)

then, when σ 2
1 → 0, the MMSE can be expanded as

MMSE1|1(σ 2
1 ) = M1|1 + D1|1 · σ 2

1 + o(σ 2
1 ), (97)

where M1|1 and D1|1 are given by (91)-(95).
Proof: See Appendix G.

Note that the conditions stem from the analysis of a classify
and reconstruct upper bound akin to to that described in
Section IV-A.2, which leverages the characterization of the
upper bound to the misclassification probability developed in
Section III. In particular, such conditions guarantee that the
error probability decays as o(σ 2

1 ) when σ 2
1 → 0. In fact, as will

be confirmed by the numerical results presented in Section V,
in certain regimes, the decay rate of the MMSE function is
dictated by the corresponding decay of the misclassification
probability as a function of σ 2

1 .
Consider now the case when side information is available

at the decoder. The following lemma provides an expansion
of the MMSE lower bound in (83)10 akin to the expan-
sion (90) obtained for the case of reconstruction without side
information.

Lemma 3: Consider the model in (1) and (2). Assume
that the input signal x1 is drawn according to the class-
conditioned distribution (13), x2 is drawn according to the
class-conditioned distribution (15) and the class-conditioned
joint distribution of x1 and x2 is given by (9). Then, when
σ 2

1 → 0, the lower bound MSELB
1|1,2(σ

2
1 ) can be expanded as

MSELB
1|1,2(σ

2
1 ) = M1|1,2 + D1|1,2 · σ 2

1 + o(σ 2
1 ) (98)

where

M1|1,2 =
∑

(i,k)∈S
pC1,C2(i, k)M(i,k)

1|1,2 (99)

D1|1,2 =
∑

(i,k)∈S
pC1,C2(i, k)D(i,k)

1|1,2. (100)

The terms M(i,k)
1|1,2 and D(i,k)

1|1,2 are obtained by defining

�̄
(i,k)
z = �̄

(ik)
x1

− �̄
(ik)
x12

�T
2 (�T

2 �̄
(ik)
x2

�T
2 + Iσ 2

2 )−1�2�̄
(ik)
x21

,

(101)

and by considering the following eigenvalue decomposition:

�(ik) = (�̄
(ik)
z )

1
2 �T

1 �1(�̄
(ik)
z )

1
2 = U(ik)

� �
(ik)
� (U(ik)

� )T. (102)

In particular, on introducing the symbols r (ik)
z =

rank(�̄
(ik)
z ) and r (ik)

� = rank(�(ik)), on writing

10In fact, the lower bound in (83) was expressed as a function of σ2,
whereas in this case we express the lower bound in terms of σ2

1 and σ 2
2 ,

which can be different in general.

�
(ik)
� = diag(λ

(ik)
�,1, . . . , λ

(ik)

�,r(ik)
�

, 0, . . . , 0), and on denoting

by u(ik)
�,t the t-th column of U(ik)

� , we have

M(i,k)
1|1,2 =

r(ik)
z∑

t=r(ik)
�

+1

(u(ik)
�,t )

T�̄
(ik)
z u(ik)

�,t (103)

D(i,k)
1|1,2 = n1 − m1 − r (ik)

� +
r(ik)
�∑

t=1

1

λ
(ik)
�,t

(u(ik)
�,t )

T�̄
(ik)
z u(ik)

�,t .

(104)
Proof: See Appendix H.

Note that we have also expressed the expansion of the
lower bound to the MMSE for the case with side information
as a function of the deviation of the signal of interest with
respect to an exactly low-rank model, σ 2

1 → 0. However, the
expansion terms M1|1,2 and D1|1,2 are functions of the number
of features extracted from the side information signal m2, the
corresponding projection kernel �2, the correlation between
x1 and x2, and the deviation from an exactly low-rank model
associated to the side information signal, since they are defined
via the matrices �̄

(ik)
z .

The following lemma now provides conditions that guaran-
tee that the lower bound expansion in (98) is tight. Also this
result is obtained by leveraging the analysis of an upper bound
to the MMSE based on a classify and reconstruct approach
akin to that described in Section IV-A2.

Lemma 4: Consider the model in (1) and (2). Assume
that the input signal x1 is drawn according to the class-
conditioned distribution (13), x2 is drawn according to the
class-conditioned distribution (15) and the class-conditioned
joint distribution of x1 and x2 is given by (9). If m1 is such that
dNOSI(ik, j�) > 1,∀(i, k, j, �) ∈ SDC, where dNOSI(ik, j�) is
as in (96), then, when σ 2

1 → 0, the MMSE can be expanded
as

MMSE1|1,2(σ
2
1 ) = M1|1,2 + D1|1,2 · σ 2

1 + o(σ 2
1 ), (105)

where M1|1,2 and D1|1,2 are given by (99)-(104).
Proof: See Appendix I.

It is interesting to note that the conditions guaranteeing the
tightness of the lower bound expansion in (98) for the case of
reconstruction with side information are exactly the same as
obtained for the case without side information.

Finally, the following theorem provides a characterization of
the impact of side information on the reconstruction of signals
drawn from approximately low-rank models, which is based
on the analysis of the expansions provided in Lemmas 1-4.

Theorem 6: Consider the model in (1) and (2). Assume
that the input signal x1 is drawn according to the class-
conditioned distribution (13), x2 is drawn according to the
class-conditioned distribution (15) and the class-conditioned
joint distribution of x1 and x2 is given by (9). Consider the
expansion for the MMSE without and with side information in
(90), (97) and (98), (105). If ∃(i, k) ∈ S such that m1 < r (ik)

x1 ,
then, M1|1 > 0,M1|1,2 > 0, and

M1|1,2 ≤ M1|1. (106)
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TABLE I

RANKS ASSOCIATED TO PAIRS OF CLASS-CONDITIONED INPUT
COVARIANCE MATRICES IN THE NUMERICAL EXAMPLE OF

CLASSIFICATION WITH SIDE INFORMATION

On the other hand, if m1 ≥ r (ik)
x1 ,∀(i, k) ∈ S, then

M1|1 = M1|1,2 = 0, and

D1|1,2 = D1|1. (107)
Proof: See Appendix J.

This theorem – which capitalizes on the analysis of the
MMSE expansions presented in Lemmas 1-4 – offers an
important insight about the impact of side information in
the reconstruction of signals described via the presence of
two different regimes (in terms of number of features m1 that
are extracted from the signal of interest) in which side infor-
mation has a substantially different impact to reconstruction,
when assuming that signals are described via approximately
low-rank models. In particular, when the number of features
m1 is less than the maximum dimension spanned by signals x̄1
in the different Gaussian components, the MMSE is dominated
by the zeroth-order expansion value when σ 2

1 → 0. In this
case, side information can lower the reconstruction error (as
will be confirmed by the numerical results in Section V). On
the other hand, if the number of features m1 exceeds the
maximum dimension spanned by signals x̄1 in the different
Gaussian components, then the MMSE decays to zero with
1/σ 2

1 . Moreover, the first order expansions of the MMSE with
and without side information coincide. In this case, collecting
features from the side information signal has no significant
value (with respect to a first order approximation).

V. NUMERICAL RESULTS

We now report a series of numerical results, both with
synthetic and real data, that cast further light on the role of
side information to aid signal classification or reconstruction.
Results with synthetic data aim to showcase how theory is able
to predict the number of features needed to achieve reliable
classification, and the diversity-order of the true misclassifi-
cation probability for classification problems. They also show
how theory approximates well the number of features needed
to guarantee reliable reconstruction and the behavior of the
true reconstruction error as a function of the deviation from
exactly low-rank models.

A. Synthetic Data: Classification

We first present numerical results that showcase how the
predictions on the diversity-order characterization based on
the upper bound (from Theorem 1) match well the behavior
of the experimental misclassification probability.

We consider x1 and x2 with dimensions respectively
n1 = 20 and n2 = 12, with K1 = K2 = 2, so that
the marginal pdfs for both signals are given by the mixture

Fig. 4. True misclassification probability (based on numerical experiments)
and upper bound vs. 1/σ 2 for classification without side information (i.e.,
m2 = 0). (a) True misclassification probability. (b) Misclassification proba-
bility upper bound in (114).

of two GMMs, each of them consisting of two Gaussian
classes. All Gaussian classes are assumed to be zero-mean,
i.e., μ

(ik)
x = 0, ∀i, k ∈ {1, 2}. The columns of the matrices

P(ik)
c1 , P(ik)

c2 , P(ik)
1 and P(ik)

2 are generated with i.i.d., zero-mean,
unit-variance Gaussian entries. The dimensions of the linear
spaces spanned by signals in the different classes are such that

r (ik)
x1 = 7, r (ik)

x2 = 6 and r (ik)
x = 9, ∀i, k ∈ {1, 2}. Moreover, the

matrices P(ik)
c1 , P(ik)

c2 , P(ik)
1 and P(ik)

2 associated with different
classes share some of their columns, so that the dimensions of
the sums of spaces spanned by signals in different classes are
such that the corresponding ranks associated to pairs of class-
conditioned input covariance matrices are given in Table I.
The projection kernels �1,�2 are generated with i.i.d., zero-
mean, Gaussian entries, with fixed variance. After that, the
projection kernel are modified in order to verify �1�

T
1 = I and

�2�
T
2 = I.

We consider the case σ 2
1 = σ 2

2 = σ 2 and we compare the
number of features required for error free classification and
the diversity-orders yielded by the Bhattacharyya-based upper
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Fig. 5. True misclassification probability (based on numerical experiments)
and upper bound vs. 1/σ 2 for classification with side information with
m2 = 4. (a) True misclassification probability. (b) Misclassification proba-
bility upper bound in (114).

bound (39) with the error probability obtained by numerical
simulation. We report in Fig. 4(a) the experimental error prob-
ability and in Fig. 4(b) the upper bound P̄U

err in (114) for the
case in which no side information is available to the decoder
(cf. [69]), i.e., m2 = 0. In this case, the misclassification
probability approaches zero as σ 2 → 0 when m1 > 7 [69], and
we note how the analysis based on the upper bound reflects
well the behavior of the true error probability both in terms
of number of features needed for reliable classification and
diversity-order.

We now evaluate the impact of the side information y2
in the classification of the input signal x1. We consider the
case in which the number of features representing the side
information is m2 = 4 and for different values of m1. In
Fig. 5(a) we show the experimental error probability and in
Fig. 5(b) the upper bound P̄U

err in (114). We observe how
the presence of side information can be leveraged in order to
obtain error free classification with only m1 > 5 features on
the input signal. In fact, when m1 + m2 > 9, the linear spaces

Fig. 6. Results of numerical experiments, depicting MMSE vs. 1/σ2 for
Gaussian signal reconstruction with side information. m1 = 1, 2, 3. m2 = 1
(solid lines), m2 = 2 (dashed lines) and m2 = 3 (dashed-dotted lines).

spanned collectively by the projections of signals x̄1 and x̄2
drawn from different Gaussian components are not completely
overlapping, since they are 9-dimensional spaces in R

m1+m2 .
Moreover, increasing the number of linear features extracted
above 4 leads to increased diversity-order values. Also in this
case, we note how the behavior analytically predicted from
the characterization of the Bhattacharyya-based upper bound
matches well the true behavior of the actual error probability
both in terms of number of features required for reliable
classification and diversity-order.

B. Synthetic Data: Reconstruction, Low-Rank Model

We now aim to show how numerical results for reconstruc-
tion of synthetic signals also align well with the analysis
reported in Section IV, in particular for what regards the
characterization of the number of features needed to drive
the MMSE to zero when σ 2

1 , σ 2
2 → 0. We start by considering

the case in which x1 and x2 are described by a single Gaussian
joint distribution. In particular, we set the signal sizes to
n1 = 5 and n2 = 4, and we build the joint input covariance
matrix using the common/innovation component representa-
tion in (21) and (22), where Pc1 ∈ R

5×2, Pc2 ∈ R
4×2,

P1 ∈ R
5×1 and P2 ∈ R

4×1 have i.i.d., zero-mean, unit-variance
Gaussian entries, thus obtaining rx1 = 3, rx2 = 3 and rx = 4.
We also assume that the projection kernels �1 and �2 have
i.i.d., zero-mean, Gaussian entries with fixed variance, and we
modify them so that �1�

T
1 = I and �2�

T
2 = I.

Fig. 6 shows the values of the reconstruction MMSE for
Gaussian inputs in (68), for different values of the number
of features m1 and m2. We observe that the necessary and
sufficient conditions in (76) are verified by the numerical
results: in particular, when m2 = 1, the MMSE approaches
zero in the low-rank regime only when m1 ≥ 3, when m2 = 2,
the MMSE approaches zero with m1 ≥ 2 and, finally, when
m2 = 3, a single feature extracted from the input signal is
sufficient to guarantee reliable reconstruction in the low-rank
regime.
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Fig. 7. Results of numerical experiments, depicting MMSE vs. 1/σ2

for GMM signal reconstruction without and with side information, i.e.,
m2 = 0 and m2 = 4, respectively. (a) Without side information. (b) With side
information.

We now consider signal reconstruction for GMM inputs.
In particular, we assume that the vectors x1 and x2 are
drawn from the joint GMM prior described in Section V-A
for the case of signal classification, and we assume again
to use projection kernels with i.i.d., zero-mean, Gaussian
entries, which are then modified in order to have orthonormal
rows. Reconstruction is performed via the conditional mean
estimator, that is now given by

x̂1(y) = E
[
x1|y

] =
∫

x1 p(x1|y)dx1 (108)

=
∫

x1

(∫
p(x1, x2)p(y|x1, x1)∫

p(x)p(y|x)dx
dx2

)
dx1 (109)

=
∫

x1

(∫ K1∑
i=1

K2∑
k=1

p̃C1,C2(i, k)

·N (x1, x2; μ̃(ik)
x , �̃

(ik)
x )dx2

)
dx1 (110)

Fig. 8. Results of numerical experiments, depicting MMSE vs. 1/σ2
1

for GMM signal reconstruction without and with side information, i.e.,
m2 = 0 and m2 = 4. We set σ 2

2 = 10−2. We report the numerical MMSE
(solid lines) and the asymptotic expansions (97) and (105) (dashed lines).
(a) Without side information. (b) With side information.

where [38]

p̃C1,C2(i, k)

= pC1,C2(i, k)N (y; �μ
(ik)
x ,��

(ik)
x �T)∑K1

i=1

∑K2
k=1 pC1,C2(i, k)N (y; �μ

(ik)
x ,��

(ik)
x �T)

μ̃(ik)
x = μ(ik)

x + �(ik)
x �T(��(ik)

x �T)−1(y − �μ(ik)
x )

�̃
(ik)
x = �(ik)

x − �(ik)
x �T(��(ik)

x �T)−1��(ik)
x ,

and we have used the notation N (x; μ,�) to express explicitly
the argument of the Gaussian distribution. Then, on marginal-
izing out x2, we obtain

x̂1(y) =
K1∑

i=1

K2∑
k=1

p̃C1,C2(i, k)
(
μ(ik)

x1
+ [�(ik)

x1
�(ik)

x12
]�T

·(��(ik)
x �T)−1(y − �μ(ik)

x )
)

(111)
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Fig. 9. Left: hyperspectral image (reference). Middle: RGB image. Right: CASSI measurement.

and, as expected from the properties of the MMSE esti-
mator [72], x̂1(y) can be also obtained by retaining the
first n1 entries of the joint conditional mean estimator
x̂(y) = E

[
x|y] [38].

Fig. 7 shows the MMSE values for reconstruction both with
side information (subfigure (a)), where we set m2 = 4, and
without side information (subfigure (b)), where we set m2 = 0.
When side information is not available at the decoder, reliable
reconstruction is obtained when m1 > max(i,k) r (ik)

x1 = 7 [66].
On the other hand, as predicted by the sufficient conditions
in (80), the presence of side information allows to guarantee
reliable reconstruction with only m1 > 5 features. Notice
also in this case how the theoretical analysis matches well
the behavior shown by the numerical results.

C. Synthetic Data: Reconstruction, Approximately
Low-Rank Model

We now consider the reconstruction MMSE obtained when
the signal and the side information are drawn from an approx-
imately low-rank model, i.e., when the values of σ 2

1 , σ 2
2

in Section II-A are not negligible. We set signal sizes
n1 = 12 and n2 = 8 and we set K1 = K2 = 2. For
each class pair (i, k), the corresponding joint input covariance
matrix is built by using the common innovation component
representation in (21) and (22) and by generating P(ik)

c1 ∈
R

12×2, P(ik)
c2 ∈ R

8×2, P(ik)
1 ∈ R

12×2 and P(ik)
2 ∈ R

8×2 with
i.i.d., zero-mean, unit-variance Gaussian entries, thus obtaining
r (ik)

x1 = 4, r (ik)
x2 = 4 and r (ik)

x = 6, ∀(i, k) ∈ S. We also assume
that the projection kernels �1 and �2 have i.i.d., zero-mean,
Gaussian entries with fixed variance, and we modify them so
that �1�

T
1 = I and �2�

T
2 = I. Reconstruction is performed

with the conditional mean estimator (111).
Fig. 8 reports the values of the reconstruction MMSE for

both cases without side information and with side information
(m2 = 2, σ 2

2 = 10−2) versus σ 2
1 . We also report the values of

the expansions (97) and (105).
We note that, for m1 ≤ 6, side information guarantees lower

MMSE values. In particular, when m1 = 3, both the numerical
MMSE and the lower bound expansions present error floors,
for both cases with and without side information. In this case,

as predicted by Theorem 6, the presence of side information
allows a lowering of the values of the error floor associated
to the MMSE lower bound, and the same behavior is also
observed for the numerically evaluated MMSE.

On the other hand, when the conditions in Lemmas 2 and 4
are verified, i.e., when m1 > 6, the expansions (97) and (105)
predict accurately the behavior of the actual MMSE. Moreover,
in this case, the impact of side information on reconstruction
performance is negligible, as predicted by the analysis carried
out in Section IV-B.

D. Experimental Results: Compressive
Hyperspectral Imaging

Finally, we present an example to showcase how the pro-
posed framework also offers a principled approach to design
systems able to leverage effectively side information in recon-
struction tasks. In this case, we do not reveal conditions on the
number of features to drive exactly to zero the reconstruction
error. However, we can notice how side information can be
used in order to improve reconstruction performance.

We consider a compressive hyperspectral imaging example,
in which hyperspectral images of a subject are recovered from
compressive measurements in the presence of side informa-
tion. In particular, we consider measurements collected by the
coded aperture snapshot spectral imager (CASSI) apparatus
described in [73]. Side information is represented in this case
by an RGB snapshot of the same scene, which can be easily
obtained without requiring expensive hyperspectral imaging
devices. The information contained in the RGB image is
expected to improve the reconstruction quality of the input
signal, also due to the fact that, in contrast to the measurements
taken by the CASSI camera, the RGB image is not affected
by coded aperture modulation.

In this case the vector x1 represents patches extracted
from the hyperspectral image, whereas x2 represents patches
extracted from the corresponding RGB image (see [73] for
details on how data from this system are analyzed). The
vectors x1 and x2 are assumed to be modeled by the joint
GMM described in Section II-A with K1 = K2 = 20.
The parameters of the joint GMM are learned from the
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Fig. 10. Left: reconstruction without side information. Right: reconstruction with side information.

Fig. 11. Zoom-in of reconstructed images for six different channels. The corresponding PSNRs for reconstruction with and without side information are
reported in Table II.

hyperspectral image dataset used in [74],11 again via
the expectation-maximization (EM) algorithm. Note that the
images in the training dataset are associated to wavelength
values that do not match perfectly those characterizing the
CASSI camera. Therefore, the training algorithm is run by
selecting each time wavelengths that are closest to the nominal
values of the CASSI camera.

We consider real data captured by the CASSI camera, so
that the entries of the projection kernel �1 reflect the physi-
cal implementation of the compressive imaging system [75],
and they are constrained to belong to the interval [0, 1].
On the other hand, the side information RGB image is not

11http://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral
_images_of_natural_scenes_04.html

compressed, so that we have �2 = I. The bird dataset is
used and a single measurement is used, thus meaning that
24 images of size 1021 × 703 corresponding to 24 different
wavelengths from 398.6 nm to 699.5 nm are compressed into
a single snapshot of the same size. In order to evaluate the
reconstruction accuracy, reference images are acquired using
a different (and non-compressive) hyperspectral imaging setup.
Therefore, the reference images and the side information
image are not perfectly aligned with the CASSI measurement
shown in the right part of Fig. 9. The reconstructed hyper-
spectral images without and with side information are shown
in Fig. 10. It can be seen clearly that the reconstruction with
side information has better quality. Furthermore, though the
reference is not aligned well with the CASSI measurement,
we can still compare the reconstruction peak signal-to-noise
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TABLE II

RECONSTRUCTION PSNR (IN dB) FOR THE SIX SELECTED REGIONS IN FIG. 11, WITH AND WITHOUT SIDE INFORMATION

ratio (PSNR) in correspondence of some selected blocks in the
image. Fig. 11 shows the reconstruction of six channels and
the corresponding PSNR values are reported in Table II. It can
be noticed that the PSNR improvement due to side information
is significant.

VI. CONCLUSIONS

We have developed a principled framework that can be
used not only to study fundamental limits in the classification
and reconstruction of high-dimensional signals from low-
dimensional signal features in the presence of side information,
but also to obtain state-of-the-art results in imaging problems.

In particular, we have considered a linear feature-extraction
model, where a decoder has access to linear features of both
the signal of interest and the side information signal, in order
to carry out either classification or reconstruction. We have
also considered a model where the joint distribution of the
signal of interest and the side information, conditioned on
some underlying class labels is a multivariate Gaussian, which
embodies the correlation between these signals. The marginal
distribution of the signal conditioned on a class label is a
Gaussian mixture, and likewise the marginal distribution of
the side information conditioned on the class label is also a
Gaussian mixture.

This modeling approach, which can be used to encapsulate
a wide range of distributions, has then offered the opportunity
to capitalize on tractable bounds to the misclassification prob-
ability and the reconstruction error, to construct an asymptotic
characterization of the behavior of these quantities in the low-
rank regime. In addition, this modeling approach has also
led to a characterization of sharp sufficient conditions for
reliable classification in the low-rank regime and necessary
and sufficient conditions for reliable reconstruction in the low-
rank regime, as a function of the geometry of the sources,
the geometry of the linear feature extraction process and their
interplay, reminiscent of the Slepian-Wolf and the Wyner-Ziv
conditions. Moreover, we have provided expansions that char-
acterize the effect of deviations from exactly low-rank models
on the reconstruction error. By capitalizing on the analysis of
such expansions, we have also defined the operational regime
when side information has a more significant impact on the
reconstruction performance.

It has been shown that our theory is well aligned with
practice via a range of numerical results associated with low-
rank and approximately low-rank data models. Of particular
relevance, it has also been shown that our framework offers
a principled mechanism to integrate side information in data
classification and reconstruction problems in the context of
compressive hyperspectral imaging in the presence of side
information.

This work also points to various possible future directions:
• It is of interest to extend the results from consideration

of only one side information source to settings where
there are multiple sources of side information. It is
possible to generalize the models immediately, but the
analysis is considerably more complex (as pointed out in
Appendix A).

• There is interest in generalization of the results from the
scenario where the linear features are extracted randomly
to scenarios where the linear features are designed [5],
[6], [66] (or indeed nonlinear features are designed [21])
is relevant. This could lead to additional gains in the
number of features required for reliable classification or
reconstruction.

• The generalization of the results from scenarios where
only the decoder has access to the side information to
scenarios where both the encoder and the decoder have
access to the side information is also relevant. This may
also lead to additional gains both in the presence of
random linear features or designed ones.

• Finally, it is believed that the framework, which applies
to settings where both the signal of interest and the side
information signal follow correlated Gaussian mixture
models, can also be generalized to other data models –
this can then translate into applications of the frame-
work to scenarios where signals conform to different
modalities.

APPENDIX A
PROOF OF THEOREM 1

We start by considering the case, K1 = 2. We recall that
the Batthacharyya upper bound P̄err for the misclassification
probability of C1 is given by (38).

An upper and a lower bound to the expression in (38) are
simply obtained by considering the following fact. Given n
non-negative numbers a1, . . . , an ≥ 0, it holds

1√
n

n∑
i=1

√
ai ≤

√√√√ n∑
i=1

ai ≤
n∑

i=1

√
ai , (112)

where the first inequality derives from the concavity of the
function f (x) = √

x and the second inequality can be simply
proved by induction starting from n = 2.

Then, an upper bound to P̄err is obtained as

P̄U
err = √

pC1(1)pC1(2)

K2∑
k.�=1

√
pC2|C1(k|1)pC2|C1(�|2)

·
∫ √

p(y|C1 = 1, C2 = k)p(y|C1 = 2, C2 = �)dy,

(113)
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and, similarly, a lower bound is given by P̄L
err = P̄U

err/K2. The
generalization of this result to the case K1 > 2, is based on
the evaluation of the union bound (39), which, together with
(112), yields the upper bound

P̄U
err =

K1∑
i=1

K1∑
j=1
j �=i

√
pC1(i)pC1( j)

K2∑
k.�=1

√
pC2|C1(k|i)pC2|C1(�| j)

·
∫ √

p(y|C1 = i, C2 = k)p(y|C1 = j, C2 = �)dy,

(114)

and the corresponding lower bound P̄L
err = P̄U

err/K2.
Note that the lower and the upper bounds differ only by the

multiplicative constant K2. Therefore, they are tight bounds
in terms of the diversity-order, and it is possible to derive the
diversity-order associated to P̄err from the analysis of such
bounds.

We now observe that the integral in (114) also appears in
the analysis of the upper bound to the misclassification prob-
ability associated to the classification between two Gaussian
distributions without side information as described in [69].
In particular, on assuming σ 2

1 = σ 2
2 = σ 2, such integral can

be expressed as∫ √
p(y|C1 = i, C2 = k)p(y|C1 = j, C2 = �)dy

= e−K (ik, j�), (115)

where

K (ik, j�)

= 1

8
(μ(ik)

x − μ
( j�)
x )T�T

[
�(�̄

(ik)
x + �̄

( j�)
x )�T + 2σ 2I
2

]−1

·�(μ(ik)
x − μ

( j�)
x )

+1

4
log

(
det

(
�(�̄

(ik)
x +�̄

( j�)
x )�T+2σ 2I
2

))2

det(��̄
(ik)
x �T + σ 2I)det(��̄

( j�)
x �T + σ 2I)

.

(116)

For the case of zero-mean classes, i.e., assuming μ
(ik)
x =

μ
( j�)
x = 0, a low-rank expansion for the integral in (114) is

given by [69, Th. 1]

e−K (ik, j�) = A(ik, j�) · (σ 2)d(ik, j�) + o
(
(σ 2)d(ik, j�)

)
, (117)

for a fixed constant A(ik, j�) > 0, and with d(ik, j�) given by

d(ik, j�) = 1

2

(
r (ik, j�) − r (ik) + r ( j�)

2

)
, (118)

where

r (ik) = rank
(
��̄

(ik)
x �T

)
(119)

r ( j�) = rank
(
��̄

( j�)
x �T

)
(120)

r (ik, j�) = rank
(
�(�̄

(ik)
x + �̄

( j�)
x )�T

)
. (121)

Therefore, we can conclude that a low-rank expansion for the
upper bound of the misclassification probability (39) is given
by

P̄err(σ
2) = A · (σ 2)d + o

(
(σ 2)d

)
, (122)

where A > 0 is a fixed constant and

d = min
i �= j∈{1,...,K1}

min
k,�∈{1,...,K2}

d(ik, j�) = min
i,k, j,�,i �= j

d(ik, j�)

(123)

is the worst-case diversity-order associated to the misclassifi-
cation of pairs of Gaussian distributions identified by the index
pairs (i, k) and ( j, �), such that i �= j .

It is then clear that the computation of the expansion
of P̄err for classification with side information requires the
computation of the diversity-order terms (118), and, therefore,
the computation of the ranks r (ik) = rank(�(ik)) and r (ik, j�) =
rank(�(ik, j�)), with �(ik) = �P(ik) and �(ik, j�) = �P(ik, j�),
where

P(ik) =
[

P(ik)
c1 P(ik)

1 0
P(ik)

c2 0 P(ik)
2

]
(124)

P(ik, j�) =
[

P(ik, j�)
c1 P(ik, j�)

1 0
P(ik, j�)

c2 0 P(ik, j�)
2

]
(125)

and

� =
[

�1 0
0 �2

]
. (126)

Therefore, in the following we will provide a charac-
terization of such ranks as a function of the numbers of
features m1 and m2. For ease of a compact notation, we drop
superscripts when results hold for all possible choices of index
pairs (i, k) or quadruples (i, k, j, �). For the ease of notation,
we will assume in the following n1 ≥ m1 and n2 ≥ m2.
However, the extension to the case where n1 < m1 or n2 < m2
is straightforward.

Lemma 5: Let Pc1 ∈ R
n1×sc , Pc2 ∈ R

n2×sc, P1 ∈
R

n1×s1, P2 ∈ R
n2×s2 . Let � ∈ R

(m1+m2)×(n1+n2) as in
(126), such that the row spaces associated to �1 and �2 are
m1− and m2−dimensional spaces, isotropically distributed at
random in R

n1 and R
n2 , respectively, and let P as

P =
[

Pc1 P1 0
Pc2 0 P2

]
. (127)

Then, with probability 1, the rank of the matrix � = �P is
given by

r = rank(�) = min
{
rx, min{m1, rx1} + min{m2, rx2}

}
, (128)

where rx1 = rank[Pc1 P1], rx2 = rank[Pc2 P2] and rx =
rank(P).

Proof: It is easy to observe that the expression in (128)
represents an upper bound to the rank r = rank(�P) as
rank(�P) ≤ rank(P) and rank(�) is always less than or
equal to the sum of the ranks of the matrices obtained by
considering separately its first m1 and the remaining m2 rows,
i.e., rank(�1[Pc1 P1 0]) and rank(�2[Pc2 0 P2]). Therefore, in
the rest of the proof, we will aim at showing that such upper
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bound is actually tight, by proving that we can find at least r
linear independent columns in �.

We start by considering the special case in which we impose
�2 = In2 , and we show that in this case it holds

rI2 = rank

([
�1 0
0 I

] [
Pc1 P1 0
Pc2 0 P2

])
(129)

= min{rx, min{m1, rx1} + rx2}. (130)

On recalling Sylvester’s rank theorem [76], which states

rank(AB) = rank(B) − dim(Im(B) ∩ Null(A)), (131)

we can write

rI2 = rank(P) − dim

(
Im(P) ∩ Null

[
�1 0
0 I

])
. (132)

Then, we consider the matrix �1 ∈ R
n1×(n1−m1), whose

columns form a basis for the null space Null(�1), which
is isotropically distributed among the (n1 − m1)-dimensional
spaces in R

n1 . It is then straightforward to show that the
columns of the matrix [�T

1 0T
n2×(n1−m1)

]T span the null space

Null

[
�1 0
0 I

]
(133)

and we can write

rI2 = rx − dim

(
Im(P) ∩ Im

[
�1
0

])
(134)

= rank

[
Pc1 P1 0 �1
Pc2 0 P2 0

]
− (n1 − m1), (135)

in which we have leveraged the rank equality for block
matrices [77],

rank [A B] = rank(A) + rank(B) − dim(Im(A) ∩ Im(B)),

(136)

and the fact that rank(�1) = n1 − m1 and rank(P) = rx.
Consider now the computation of the rank

r�1 = rank

[
Pc1 P1 0 �1
Pc2 0 P2 0

]
. (137)

In order to compute such rank, we will leverage the gen-
eralized singular value decomposition (GSVD) as described
in [78]. In particular, consider two matrices A ∈ R

n×p and
B ∈ R

m×p , with the same number of columns, and with
rA = rank(A), rB = rank(B), rAB = rank[ATBT]T and
sAB = rA+rB−rAB. Then, there exist two orthogonal matrices
U ∈ R

n×n, V ∈ R
m×m and a non-singular matrix X ∈ R

p×p

such that

UTAX = [�A 0n×(p−rAB)], VTBX = [�B 0m×(p−rAB)],
(138)

where

�A =
⎡
⎣

rAB−rB sAB rAB−rA

rAB−rB I
sAB DA

n−rA 0

⎤
⎦ (139)

�B =
⎡
⎣

rAB−rB sAB rAB−rA

m−rB 0
sAB DB

rAB−rA I

⎤
⎦. (140)

and DA = diag(α1, . . . , αsAB), DB = diag(β1, . . . , βsAB), such
that 1 < α1 ≤ · · · ≤ αsAB < 0 and 0 < β1 ≤ · · · ≤ βsAB < 1,
and α2

i + β2
i = 1, for i = 1, . . . , sAB.

Therefore, on applying the GSVD to the two matrices
[Pc1 P1 0] and [Pc2 0 P2], we can write

r�1 = rank

([
UT 0
0 VT

] [
Pc1 P1 0 �1
Pc2 0 P2 0

]

·
[

X 0
0 In1−m1

])
(141)

= rank

[
�1 0 � ′

1
�2 0 0

]
(142)

where

�1 =
⎡
⎣

rx−rx2 rx1 +rx2 −rx rx−rx1

rx−rx2 I
rx1 +rx2 −rx D1

n1−rx1 0

⎤
⎦ (143)

�2 =
⎡
⎣

rx−rx2 rx1 +rx2 −rx rx−rx1

n2−rx2 0
rx1 +rx2 −rx D2

rx−rx1 I

⎤
⎦ (144)

and where � ′
1 = UT�1 is a matrix whose column

space is still isotropically distributed at random among the
(n1−m1)−dimensional subspaces of R

n1 . Now, by considering
the first rx−rx2 columns of the matrix in (142) together with its
last n1 −m1 columns, given the fact the columns in � ′

1 form a
random space in R

n1 , we can conclude that, with probability 1,
we can pick from such columns min{rx − rx2 + n1 − m1, n1}
independent columns, which are also independent from the
remaining (rx1 +rx2 −rx)+ (rx −rx1) = rx2 non-zero columns
of the same matrix. Therefore, we have

r�1 = min{rx − rx2 + n1 − m1, n1} + rx2 (145)

and then

rI2 = min{rx − rx2 + n1 − m1, n1} + rx2 − (n1 − m1)

= min{rx, m1 + rx2}
= min{rx, min{m1, rx1} + rx2}, (146)

where the last equality is obtained by observing that
rx ≤ rx1 + rx2 .

Consider now the general case, in which �2 is not forced
to be equal to the identity matrix. In this case, by leverag-
ing (146), we can write

r = rank

([
�1 0
0 �2

] [
Pc1 P1 0
Pc2 0 P2

])
(147)

= rank

([
�1 0
0 I

] [
Pc1 P1 0

�2Pc2 0 �2P2

])
(148)

= min{rI1 , min{m1, rx1} + min{m2, rx2}}, (149)

in which we have introduced the symbol

rI1 = rank

[
Pc1 P1 0

�2Pc2 0 �2P2

]
(150)

= rank

([
I 0
0 �2

] [
Pc1 P1 0
Pc2 0 P2

])
, (151)
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and where we have used the fact that rank[�2Pc2 0 �2P2] =
min{m2, rx2}. Then, with a procedure similar to that used to
compute rI2 , it is possible to show that rI1 = min{rx, rx1 +
min{m2, rx2}}, thus leading to

r = min
{
min{rx, rx1 + min{m2, rx2}},

min{m1, rx1} + min{m2, rx2}
}

(152)

= min{rx, min{m1, rx1} + min{m2, rx2}}. (153)

Finally, note that Lemma 5 can be immediately applied to
compute r (ik), r ( j�) and r (ik, j�), thus concluding the proof of
Theorem 1.

We also note in passing that the generalization of
Lemma 5 to the case of multiple side information sources,
x2, x3, . . . , xL , seems to be considerably more complex, due
to the absence of a transform akin to the GSVD in (138)–(140)
that jointly diagonalizes more than two matrices.

APPENDIX B
PROOF OF COROLLARY 1

On the basis of the low-rank regime expansion for the upper
bound to the misclassification probability (39) contained in
Theorem 1, we can state that condition (40) is verified if
and only if d > 0, which is equivalent to d(ik, j�) > 0,
∀(i, k, j, �) ∈ SSIC. Moreover, on observing that the matrices
��̄

(ik)
x �T and ��̄

( j�)
x �T are positive semidefinite, we can

immediately state that d(ik, j�) = 0 if and only if r (ik, j�) =
r (ik) = r ( j�), which is verified if only if [66, Lemma 2]

Im(��̄
(ik)
x �T) = Im(��̄

( j�)
x �T). (154)

Then, r (ik, j�)
x = r (ik)

x = r j�)
x implies that Im(�̄

(ik)
x ) =

Im(�̄
( j�)
x ) and, therefore, (154) holds regardless of the expres-

sion of the projection kernel �, thus leading to d(ik, j�) = 0.

Assume now r (ik, j�)
x > r (ik)

x , r j�)
x . We can then use the

rank expression (128) and consider separately the following
cases:

1) r (ik, j�)
x1 > r (ik)

x1 , r ( j�)
x1 and r (ik, j�)

x2 > r (ik)
x2 , r ( j�)

x2 :
in this case, if m1 > min{r (ik)

x1 , r ( j�)
x1 } or m2 >

min{r (ik)
x2 , r ( j�)

x2 }, we can immediately conclude that
d(ik, j�) > 0, by simply considering the classification
from the observation of y1 or y2 alone, respectively,
and by leveraging the results in [69, Th. 2]. On the
other hand, if we assume m1 ≤ min{r (ik)

x1 , r ( j�)
x1 }, m2 ≤

min{r (ik)
x2 , r ( j�)

x2 } and m1 + m2 > min{r (ik)
x , r ( j�)

x },
then we have r (ik) = min{r (ik)

x , m1 + m2}, r ( j�) =
min{r ( j�)

x , m1 + m2} and r (ik, j�) = min{r (ik, j�)
x , m1 +

m2}. Then, since m1 + m2 > min{r (ik)
x , r ( j�)

x }, we

have immediately that r (ik, j�) > min{r (ik), r ( j�)}, and
thus d(ik, j�) > 0. Such sufficient conditions on the
minimum number of measurements m1, m2 needed to
guarantee d(ik, j�) > 0 are also necessary. In fact, if

m1 ≤ min{r (ik)
x1 , r ( j�)

x1 }, m2 ≤ min{r (ik)
x2 , r ( j�)

x2 } and m1 +
m2 ≤ min{r (ik)

x , r ( j�)
x }, then r (ik, j�) = r (ik) = r ( j�) =

m1 + m2.

2) r (ik, j�)
x1 = r (ik)

x1 = r ( j�)
x1 and r (ik, j�)

x2 = r (ik)
x2 = r ( j�)

x2 : in

this case, we note that min{m1, r (ik)
x1 }+min{m2, r (ik)

x2 } =
min{m1, r ( j�)

x1 } + min{m2, r ( j�)
x2 } = min{m1, r (ik, j�)

x1 } +
min{m2, r (ik, j�)

x2 } = D, and then d(ik, j�) > 0 if and
only if D > min{r (ik)

x , r ( j�)
x }. Then, we can split the

analysis in further subcases as follows:
• if m1 ≤ r (ik)

x1 and m2 ≤ r (ik)
x2 , then d(ik, j�) > 0 if

and only if m1 + m2 > min{r (ik)
x , r ( j�)

x };
• if m1 > r (ik)

x1 and m2 ≤ r (ik)
x2 , then d(ik, j�) > 0 if

and only if m2 > min{r (ik)
x − r (ik)

x1 , r ( j�)
x − r ( j�)

x1 };
• if m1 ≤ r (ik)

x1 and m2 > r (ik)
x2 , then d(ik, j�) > 0 if

and only if m1 > min{r (ik)
x − r (ik)

x2 , r ( j�)
x − r ( j�)

x2 };
• if m1 > r (ik)

x1 and m2 > r (ik)
x2 , then r (ik)

x1 +
r (ik)

x2 = r ( j�)
x1 +r ( j�)

x2 > min{r (ik)
x , r ( j�)

x } and therefore
d(ik, j�) > 0.

Finally, we can combine the previous expressions to
obtain necessary and sufficient conditions to guarantee
d(ik, j�) > 0 as⎧⎪⎨

⎪⎩
m1 > min{r (ik)

x − r (ik)
x2 , r ( j�)

x − r ( j�)
x2 }

m2 > min{r (ik)
x − r (ik)

x1 , r ( j�)
x − r ( j�)

x1 }
m1 + m2 > min{r (ik)

x , r ( j�)
x }.

(155)

3) r (ik, j�)
x1 > r (ik)

x1 , r ( j�)
x1 and r (ik, j�)

x2 = r (ik)
x2 = r ( j�)

x2 :
we can prove immediately that, in this case, if
m1 > min{r (ik)

x1 , r ( j�)
x1 }, then d(ik, j�) > 0, simply

by considering classification based on the observation
of only y1. Assume now m1 ≤ min{r (ik)

x1 , r ( j�)
x1 }.

Then, it holds r (ik) = min{r (ik)
x , m1 + min{m2, r (ik)

x2 }},
r ( j�) = min{r ( j�)

x , m1 + min{m2, r ( j�)
x2 }} and r (ik, j�) =

min{r (ikj�)
x , m1 + min{m2, r (ik, j�)

x2 }}, and, on
observing that min{m2, r (ik)

x2 } = min{m2, r ( j�)
x2 } =

min{m2, r (ik, j�)
x2 }, we have immediately that

d(ik, j�) > 0 if and only if min{r (ik)
x , r ( j�)

x } <

m1 + min{m2, r (ik)
x2 }. In particular, if m2 ≤ r (ik)

x2
, then,

d(ik, j�) > 0 if and only if m1 +m2 > min{r (ik)
x , r ( j�)

x },
whereas if m2 > r (ik)

x2 , then d(ik, j�) > 0 if and only
if m1 > min{r (ik)

x − r (ik)
x2 , r ( j�)

x − r ( j�)
x2 }. Finally, on

combining these expressions, we can write necessary
and sufficient conditions for d(ik, j�) > 0 as

m1 > min{r (ik)
x1

, r ( j�)
x1 }

or{
m1 > min{r (ik)

x − r (ik)
x2 , r ( j�)

x − r ( j�)
x2 }

m1 + m2 > min{r (ik)
x , r ( j�)

x }. (156)

4) r (ik, j�)
x1 = r (ik)

x1 = r ( j�)
x1 and r (ik, j�)

x2 > r (ik)
x2 , r ( j�)

x2 : the
proof for this case follows steps similar to the case
r (ik, j�)

x1 > r (ik)
x1 , r ( j�)

x1 and r (ik, j�)
x2 = r (ik)

x2 = r ( j�)
x2 .

APPENDIX C
PROOF OF THEOREM 2

The characterization of the low-rank expansion of the upper
bound to the misclassification probability in (39) for the case
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of nonzero-mean classes starts from the analysis of its lower
and upper bounds presented in Appendix A. We focus on
the expressions in (114), (115) and (116), and we leverage
the low-rank expansion of the integral in (115) presented
in [69, Th. 3] for the case of two nonzero-mean Gaussian
classes. Namely, we recall that

e−K (ik, j�) = B(ik, j�) · e−C (ik, j�)/σ 2 + o
(

e−C (ik, j�)/σ 2
)

,

(157)

for fixed constants B(ik, j�), C(ik, j�) > 0 if and only if

�(μ(ik)
x − μ

( j�)
x ) /∈ Im

(
�(�̄

(ik)
x + �̄

( j�)
x )�T

)
. (158)

Otherwise, the integral in (115) can be expanded as in (117).
Therefore, if condition (158) is verified for all the index
quadruples (i, k, j, �) ∈ SSIC, then we can expand the upper
bound to the misclassification probability in (39) as

P̄err(σ
2) = B · e−C/σ 2 + o

(
e−C/σ 2

)
, (159)

for fixed constants B, C > 0. Otherwise, the upper bound of
the misclassification probability is expanded as

P̄err(σ
2) = A · (σ 2)d + o

(
(σ 2)d

)
, (160)

for a fixed A > 0 and where

d = min
(i,k, j,�)∈S ′ d(ik, j�), (161)

where S ′ is the set of the index quadruples (i, k, j, �) ∈ SSIC
for which (158) is not verified and d(ik, j�) is as in (118).

We can now provide necessary and sufficient conditions on
m1 and m2 such that (158) is verified. We observe that (158)
holds if and only if r (ik, j�)

μ > r (ik, j�), where we have defined

r (ik, j�)
μ = rank

([
�1 0
0 �2

]

·
[

μ
(ik)
x1 − μ

( j�)
x1 P(ik, j�)

c1 P(ik, j�)
1 0

μ
(ik)
x2 − μ

( j�)
x2 P(ik, j�)

c2 0 P(ik, j�)
2

])
.

Assume first that μ
(ik)
x − μ

( j�)
x ∈ Im

(
�̄

(ik)
x + �̄

( j�)
x

)
. Then

r (ik, j�)
μ = r (ik, j�), and, therefore (158) does not hold, irre-

spectively of the exact matrix �.
Assume now μ

(ik)
x − μ

( j�)
x /∈ Im(�̄

(ik)
x + �̄

( j�)
x ). We can

use the rank expression (128) and similar steps to those in
the proof of Corollary 1 in order to consider separately the
following cases:

1) μ
(ik)
x1 − μ

( j�)
x1 /∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 /∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

): on leveraging [66, Lemma 3], we

can observe that if m1 > r (ik, j�)
x1 or m2 > r (ik, j�)

x2 , then
(158) holds, as the upper bound to the error probability
obtained by classification based on the observation of
y1 or y2 alone, respectively, decreases exponentially
with 1/σ 2. On the other hand, if m1 ≤ r (ik, j�)

x1 , m2 ≤
r (ik, j�)

x2 and m1 + m2 > r (ik, j�)
x , then it holds r (ik, j�)

μ =
min{r (ik, j�)

x + 1, m1 + m2} > r (ik, j�) and thus (158)
is verified. The previous conditions are also shown
to be necessary by noting that, if m1 ≤ r (ik, j�)

x1 ,

m2 ≤ r (ik, j�)
x2 and m1 + m2 ≤ r (ik, j�)

x , then r (ik, j�)
μ =

r (ik, j�) = m1 + m2.

2) μ
(ik)
x1 − μ

( j�)
x1 ∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 −

μ
( j�)
x2 ∈ Im(�̄

(ik)
x2

+ �̄
( j�)
x2

): in this case, r (ik, j�)
μ =

min{r (ik, j�)
x1,x2 + 1, min{m1, r (ik, j�)

x1 } + min{m2, r (ik, j�)
x2 }},

so that (158) holds if and only if min{m1, r (ik, j�)
x1 } +

min{m2, r (ik, j�)
x2 } > r (ik, j�)

x . Then, we can split the
analysis in the following subcases:

• if m1 ≤ r (ik, j�)
x1 and m2 ≤ r (ik, j�)

x , then (158) is
verified if and only if m1 + m2 > r (ik, j�)

x ;
• if m1 > r (ik, j�)

x1 and m2 ≤ r (ik, j�)
x , then (158) is

verified if and only if m2 > r (ik, j�)
x − r (ik, j�)

x1 ;
• if m1 ≤ r (ik, j�)

x1 and m2 > r (ik, j�)
x , then (158) is

verified if and only if m1 > r (ik, j�)
x − r (ik, j�)

x2 ;
• if m1 > r (ik, j�)

x1 and m2 > r (ik, j�)
x then (158) is

verified, since

r (ik, j�)
x1 + r (ik, j�)

x2

= rank[μ(ik)
x1

− μ
( j�)
x1 P(ik, j�)

c1
P(ik, j�)

1 ]
+rank[μ(ik)

x2
− μ

( j�)
x2 P(ik, j�)

c2
P(ik, j�)

2 ] (162)

≥ r (ik, j�)
x + 1. (163)

Finally, we can combine the previous expressions and
write necessary and sufficient conditions to guaran-
tee (158) as⎧⎪⎨

⎪⎩
m1 > r (ik, j�)

x − r (ik, j�)
x2

m2 > r (ik, j�)
x − r (ik, j�)

x1

m1 + m2 > r (ik, j�)
x .

(164)

3) μ
(ik)
x1 − μ

( j�)
x1 /∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 ∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

): in this case, if m1 > r (ik, j�)
x , then

we can state that (158) is true by considering simply
classification on the basis of the observation of y1

alone. Therefore, assume now that m1 ≤ r (ik, j�)
x . In this

case r (ik, j�)
μ = min{r (ik, j�)

x + 1, m1 + min{m2, r (ik, j�)
x2 }}.

Therefore, if m2 ≤ r (ik, j�)
x2 , then (158) holds if and only

if m1+m2 > r (ik, j�)
x . On the other hand, if m2 > r (ik, j�)

x2 ,

then (158) holds if and only if m1 > r (ik, j�)
x − r (ik, j�)

x2 .
We can combine the previous expressions and write
necessary and sufficient conditions to guarantee (158)
in this case as

m1 > r (ik, j�)
x1 or

{
m1 > r (ik, j�)

x − r (ik, j�)
x2

m1 + m2 > r (ik, j�)
x .

(165)

4) μ
(ik)
x1 − μ

( j�)
x1 ∈ Im(�̄

(ik)
x1

+ �̄
( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 /∈

Im(�̄
(ik)
x2

+ �̄
( j�)
x2

): the proof for this case follows

steps similar to the case μ
(ik)
x1 − μ

( j�)
x1 /∈ Im(�̄

(ik)
x1

+
�̄

( j�)
x1

) and μ
(ik)
x2 − μ

( j�)
x2 ∈ Im(�̄

(ik)
x2

+ �̄
( j�)
x2

).

APPENDIX D
PROOF OF THEOREM 3

We start by proving that conditions (76) are sufficient in
order to drive the MMSE to zero in the low-rank regime.
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The first condition in (76) reflects the fact that it is possible to
drive the reconstruction MMSE to zero in the low-rank regime
from the observation of y1 alone, provided that m1 ≥ rx1 .
This is obtained by considering a slight modification of the
result in [66, Th. 1]. The modification is required since the
framework adopted in [66] assumes that the signal x1 is drawn
from an exactly low-rank model, and the linear features y1 are
noisy. On the other hand, in this work we consider noiseless
linear features, but we assume that x1 is described via the
approximately low-rank model presented in Section II-A.

Consider the MMSE associated to the recovery of x1 from
y1 and assume that σ 2

1 = σ 2
2 = σ 2. We can write

MMSEG
1|1,2(σ

2)

≤ MMSEG
1|1(σ 2) (166)

= tr

(
�x1 − �x1�

T
1

(
�1�x1�

T
1

)−1
�1�x1

)
(167)

= tr
(
(�̄x1 + σ 2I) − (�̄x1 + σ 2I)�T

1

·
(
σ 2I + �1�̄x1�

T
1

)−1
�1(�̄x1 + σ 2I)

)
(168)

= tr

(
�̄x1 − �̄x1�

T
1

(
σ 2I + �1�̄x1�

T
1

)−1
�1�̄x1

)

+n1σ
2 − 2σ 2tr

(
�1�̄x1�

T
1

(
σ 2I + �1�̄x1�

T
1

)−1
)

−σ 4tr

((
σ 2I + �1�̄x1�

T
1

)−1
)

. (169)

The first term in (169) represents the MMSE studied
in [66, Appendix B] and it converges to zero when σ 2 → 0
if and only if

rank
(
�1�̄x1�

T
1

)
= rank

(
�̄x1

)
, (170)

which is verified if and only if m1 ≥ rx1 . In fact, we can
introduce the eigenvalue decomposition

� = �̄
1
2
x1

�T
1 �1�̄

1
2
x1

= U���UT
�, (171)

where �� = diag(λ�,1, . . . , λ�,r� , 0, . . . , 0) and r� =
rank(�) = min{rx1, m1}, and by using the inversion
Lemma [79, §0.7.4] we can write

tr

(
�̄x1 − �̄x1�

T
1

(
σ 2I + �1�̄x1�

T
1

)−1
�1�̄x1

)

= tr

(
�̄x1

(
I + 1/σ 2�̄

1
2
x1

�T
1 �1�̄

1
2
x1

)−1
)

(172)

= tr

(
�̄x1U�

(
I + 1/σ 2��

)−1
UT

�

)
(173)

= tr
(
�̄x1U��̃�UT

�

)
, (174)

where �̃� = diag
(

1
1+λ�,1/σ 2 , . . . , 1

1+λ�,r� /σ 2 , 1, . . . , 1
)

. It is

then clear that the first term in (169) approaches zero, when
σ 2 → 0, if and only if

Null (�) ⊆ Null
(
�̄x1

)
. (175)

Moreover, on noting that Null
(
�̄x1

) ⊆ Null (�), we immedi-
ately conclude that (175) is equivalent to (170).

We also need to show that, for any value of m1, the
remaining terms in (169) approach zero, when σ 2 → 0.
This is done by considering the eigenvalue decomposition of
�1�̄x1�

T
1 . In fact, we can note that the positive eigenvalues

of �1�̄x1�
T
1 are the same of �, and therefore, we can write,

σ 2tr

(
�1�̄x1�

T
1

(
σ 2I + �1�̄x1�

T
1

)−1
)

= σ 2
r�∑

t=1

λ�,t

λ�,t + σ 2 = r� · σ 2 + o(σ 2) (176)

σ 4tr

((
σ 2I + �1�̄x1�

T
1

)−1
)

= σ 4
r�∑
t=1

1

λ�,t + σ 2 + (m1 − r�)σ 2, (177)

thus noting immediately that such terms converge to zero when
σ 2 → 0.

Consider now the upper bound associated to the distributed
reconstruction problem, i.e., the MMSE incurred in recovering
both x1 and x2 from y1 and y2 (or, equivalently, x from y).
Then, we can write

MMSEG
1|1,2(σ

2)

≤ MMSEG
1,2|1,2(σ

2) (178)

= tr

(
�x − �x�

T
(
��x�

T
)−1

��x

)
(179)

= tr
(
(�̄x + σ 2I) − (�̄x + σ 2I)�T

·
(
σ 2I + ��̄x�

T
)−1

�(�̄x + σ 2I)
)

(180)

= tr

(
�̄x − �̄x�

T
(
σ 2I + ��̄x�

T
)−1

��̄x

)

+(n1 + n2)σ
2 − 2σ 2tr

(
��̄x�

T
(
σ 2I + ��̄x�

T
)−1

)

−σ 4tr

((
σ 2I + ��̄x�

T
)−1

)
. (181)

By using similar steps to those considered for MMSEG
1|1(σ 2)

we can show that MMSEG
1,2|1,2(σ

2) approaches zero when
σ 2 → 0 if and only if

rank
(
��̄x�

T
)

= rank
(
�̄x
)
. (182)

We can now determine conditions on the number of features
m1 and m2 needed in order to verify (182) by leveraging the
rank expression (128). In particular, note that (182) holds if
and only if

min{m1, rx1} + min{m2, rx2} ≥ rx. (183)

We can consider separately four different cases, and observe
that, if m1 ≤ rx1 and m2 ≤ rx2 , then (182) is verified if and
only if m1 + m2 ≥ rx. If m1 ≤ rx1 and m2 > rx2 , then
(182) holds if and only if m1 ≥ rx − rx2 and symmetrically,
m1 > rx1 and m2 ≤ rx2 , then (182) holds if and only if
m2 ≥ rx − rx1 . Finally, m1 > rx1 and m2 > rx2 , then (182)
always holds since rx1 + rx2 ≥ rx. Then, the four previous
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cases can be summarized by stating that (182) is true if and
only if m1 and m2 verify the conditions⎧⎨

⎩
m1 ≥ rx − rx2

m2 ≥ rx − rx1

m1 + m2 ≥ rx.
(184)

Then, the proof of sufficiency is concluded by simply consider-
ing the union of the set of values (m1, m2) which verify (184)
with the set m1 ≥ rx1 .

We now prove that conditions (76) are also necessary to
guarantee that the MMSE approaches zero when σ 2 → 0.
In the following, we will denote the MMSE associated to
the estimation of the random vector u from the observation
vector v by

MMSE(u|v) = E
[
‖u − E [u|v] ‖2

]
, (185)

where the expectation is taken with respect to the joint
distribution of (u, v). Then, we obtain a lower bound to
MMSEG

1|1,2(σ
2) by observing that, for all σ 2 > 0, we have

MMSEG
1|1,2(σ

2) = MMSE(x1|y1, y2) (186)

≥ MMSE(x1|y1, y2, w1, w2) (187)

= MMSE(x̄1|�1x̄1,�2x̄2). (188)

On the other hand, by observing that the MMSE does not
depend on the value of the mean of the input signal to estimate,
and by taking the expectation of (188) with respect to the
random variables x̄1|�2x̄2 and �2x̄2, separately, it is possible
to show that

MMSE(x̄1|�1x̄1,�2x̄2) = MMSE(z̄|�1z̄), (189)

where z̄ ∈ R
n1 is a Gaussian vector with covariance matrix

equal to the conditional covariance of x̄1 given �2x̄2, i.e.,
z̄ ∼ N (0, �̄z), where

�̄z = Cov(x̄1|�2x̄2) = �̄x1 − �̄x12�
T
2 (�2�̄x2�

T
2 )†�2�̄x21 .

(190)

Then, by leveraging the result in [66, Th. 1], or by sim-
ply considering the set of linear equations corresponding to
the rows of the matrix �1�̄

1/2
z , a necessary condition for

MMSE(z̄|�1z̄) = 0, and therefore, a necessary condition for
limσ 2→0 MMSEG

1|1,2(σ
2) = 0, is given by

m1 ≥ rz = rank(�̄z). (191)

We complete the proof by computing the rank rz using a
result on the generalized Schur complement of a positive
semidefinite matrix [80]. Namely, �̄z can be viewed as the
generalized Schur complement of the block �2�̄x2�

T
2 of the

positive semidefinite matrix

�̄x1�2x2 = E

[[
x̄1

�2x̄2

]
[x̄T

1 (�2x̄2)
T]
]

(192)

=
[

�̄x1 �̄x12�
T
2

�2�̄x21 �2�̄x2�
T
2

]
, (193)

and, with probability 1, we have [80]

rank(�̄x1�2x2) = rz + rank(�2�̄x2�
T
2 ) (194)

= rz + min{m2, rx2}. (195)

In addition, on considering the matrix

�̄�2x2x1 = E

[[
�2x̄2

x̄1

]
[(�2x̄2)

T x̄T
1 ]
]

(196)

=
[

�2�̄x2�
T
2 �2�̄x21

�̄x12�
T
2 �̄x1

]
, (197)

and on applying the same rank computation, we also have

rank(�̄�2x2x1)

= rank(�̄x1�2x2) (198)

= rx1 + rank(Cov(�2x̄2|x̄1)) (199)

= rx1 + rank
(
�2(�̄x2 − �̄x21�̄

†
x1

�̄x12)�
T
2

)
. (200)

Then, on recalling that the projection kernel �2 is rotation-
invariant, and by using again the generalized Schur comple-
ment rank computation, with probability 1, we have

rank(Cov(�2x̄2|x̄1)) = min{m2, rx − rx1}. (201)

Finally, by substituting (200) and (201) in (195), we can
rewrite (191) as

m1 ≥ rx1 − min{m2, rx2} + min{m2, rx − rx1}, (202)

which can be immediately shown to be equivalent to condi-
tions (76), thus concluding the necessity part of the proof.

APPENDIX E
PROOF OF THEOREM 4

This proof in based on steps similar to those
in [66, Appendix C]. Nevertheless, we report here the
key ideas used in the proof for completeness. On defining

W(ik)
x1

= μ(ik)
x1

+ W(ik)
x1

(
y − �μ(ik)

x

)
, (203)

where W(ik)
x1 is as in (79), and by using the law of total

probability, we can write

MSECR(σ 2)

≤
∑
i,k

pC1,C2(i, k) E
[
‖x1 − W(ik)

x1
(y)‖2|C1 = i, C2 = k

]

+
∑
i,k

pC1,C2(i, k)

·
∑

( j,�) �=(i,k)

p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k)

· E
[
‖x1 − W( j�)

x1 (y)‖2|Ĉ1 = j, Ĉ2 = �, C1 = i, C2 = k
]
.

(204)

We can observe immediately that, assuming the condi-
tions in (80) are verified, Theorem 3 guarantees that
the terms E

[‖x1 − W(ik)
x1 (y)‖2|C1 = i, C2 = k

]
approach zero

when σ 2 → 0. Then, we are left with proving

lim
σ 2→0

p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k)

· E
[
‖x1 − W( j�)

x1 (y)‖2|Ĉ1 = j, Ĉ2 = �, C1 = i, C2 = k
]
=0

(205)
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whenever ( j, �) �= (i, k). Given the conditions (80) hold, if
m1 > r (ik)

x1 and m1 > r ( j�)
x1 , then we can leverage a result

akin to that in [66, Appendix C] on the reconstruction of
x1 from y1 alone to show that (205) holds. In particular,
we consider two different cases: i) r (ik, j�)

x1 > r (ik)
x1 , r ( j�)

x1 and
ii) r (ik, j�)

x1 = r (ik)
x1 = r ( j�)

x1 . In the first case, the range spaces

Im(�̄
(ik)
x1

) and Im(�̄
( j�)
x1

) are distinct, and we can leverage the
characterization of the misclassification probability in order to
prove (205). In particular, by following steps similar to those
in the proof of Corollary 1, we can show that

lim
σ 2→0

p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k) = 0. (206)

Therefore, observe that the misclassification probability
p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k) is the measure of the
set representing the decision region of the MAP classifier
associated to the classes ( j, �) with respect to the Gaussian
measure induced by the Gaussian distribution of classes (i, k).
Then, it is also possible to show that, in the limit σ 2 → 0,
the product in (205) is upper bounded by the integral of a
measurable function over a set with measure zero, and then it
converges to zero.

In the second case, instead, we have Im(�̄
(ik)
x1

) = Im(�̄
( j�)
x1

),
and we can consider separately further two cases. If

μ(ik)
x1

− μ(ik)
x1

/∈ Im(�̄
(ik)
x1

+ �̄
( j�)
x1

) = Im(�̄
(ik)
x1

), (207)

then Theorem 2 states that p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k)
approaches zero in the low-rank regime, and we can prove
that (205) holds by following a similar procedure to that used
for case i). On the other hand, if

μ(ik)
x1

− μ(ik)
x1

∈ Im(�̄
(ik)
x1

+ �̄
( j�)
x1

) = Im(�̄
(ik)
x1

), (208)

then the misclassification probability associated to the estima-
tion of (C1, C2) from y1 is not guaranteed to approach zero
in the low-rank regime. However, on using the law of total
probability and the definition of MSE, we can notice that the
argument of the limit in (205) for the case of reconstruction
of x1 from y1 alone is upper bounded by

E
[
‖x1 − W( j�)

x1 (y1)‖2|C1 = i, C2 = k
]
, (209)

where the Wiener filter associated to the reconstruction of x1
from y1 alone is given by

W( j�)
x1 (y1) = μ

( j�)
x1 + W( j�)

x1

(
y1 − �1μ

( j�)
x1

)
(210)

where

W( j�)
x1 = (�̄

( j�)
x1

+ σ 2I)�T
1

(
σ 2I + �1�̄

( j�)
x1

�T
1

)−1
. (211)

Then, we can show that (209) approaches zero when σ 2 → 0
by using steps similar to those in [66, Appendix C-B]. This
reflects the fact that the mismatched MSE for Gaussian
sources reaches zero in the low-rank regime, provided that
the estimated input covariance has the same range space
than the true input covariance. In particular, on denoting
by �

(ik)
y1 = σ 2I + �1�̄

(ik)
x1

�T
1 the covariance matrix of y1

conditioned on (C1, C2) = (i, k), and on introducing the

symbol M(ik, j�)
1 = (μ

(ik)
x1 − μ

( j�)
x1 )(μ

(ik)
x1 − μ

( j�)
x1 )T, we can

write

MSE(ik, j�)
1|1 (σ 2)

= E
[
‖x1 − W( j�)

x1 (y1)‖2|C1 = i, C2 = k
]

(212)

= tr
(
�̄

(ik)
x1

)
+ n1σ

2 − 2tr
(

W(ik)
x1

�(ik)
y1

(W( j�)
x1 )T

)

+tr
(

W( j�)
x1 �(ik)

y1
(W( j�)

x1 )T
)

+tr
(

M(ik, j�)
1

)
− 2tr

(
M(ik, j�)

1 �T
1 (W j�

x1 )
T
)

+tr
(
�1W( j�)

x1 M(ik, j�)
1 (W( j�)

x1 )T
)
, (213)

and we can prove that

lim
σ 2→0

tr
(

W(ik)
x1

�(ik)
y1

(W( j�)
x1 )T

)
= tr(�̄

(ik)
x1

); (214)

lim
σ 2→0

tr
(

W( j�)
x1 �(ik)

y1
(W( j�)

x1 )T
)

= tr(�̄
(ik)
x1

); (215)

lim
σ 2→0

tr
(

M(ik, j�)
1 (W( j�)

x1 )T
)

= tr
(

M(ik, j�)
1

)
;

(216)

lim
σ 2→0

tr
(

W( j�)
x1 �1M(ik, j�)

1 �T
1 (W( j�)

x1 )T
)

= tr
(

M(ik, j�)
1

)
.

(217)

The proof is based on the use of the inversion Lemma [79]

A(Ic−1 + BA)−1B = I − (I + cAB)−1, (218)

in which we choose A = �T
1 and B = �1�̄

( j�)
x1

and we write

tr
(

W(ik)
x1

�(ik)
y1

(W( j�)
x1 )T

)

= tr
(
(�̄

(ik)
x1

+ σ 2I)�T
1 (Iσ 2 + �1�̄

( j�)
x1

�T
1 )−1

·�1(�̄
( j�)
x1

+ σ 2I)
)

(219)

= tr
(
�̄

(ik)
x1

)
− tr

(
�̄

(ik)
x1

(I + 1

σ 2 �T
1 �1�̄

( j�)
x1

)−1
)

+σ 2tr
(
�1�̄

(ik)
x1

�T
1 (Iσ 2 + �1�̄

( j�)
x1

�T
1 )−1

)

+σ 2tr
(
�1�̄

( j�)
x1

�T
1 (Iσ 2 + �1�̄

( j�)
x1

�T
1 )−1

)

+σ 4tr
(
(Iσ 2 + �1�̄

( j�)
x1

�T
1 )−1

)
. (220)

Then, on noting that the matrix �T
1 �1�̄

( j�)
x1

is diagonaliz-
able with probability 1, and by following steps similar to
those adopted in the proof of Theorem 3, we are able to
prove that the second term in (220) converges to zero when
σ 2 → 0. Moreover, on noting that Null(�1�̄

(ik)
x1

�T
1 ) =

Null(�1�̄
( j�)
x1

�T
1 ), and by following steps similar to those

adopted in the proof of Theorem 3, we are able to prove that
also the third, fourth and fifth terms in (220) converge to zero
when σ 2 → 0. Finally, also (215), (216) and (217) are proved
by following a similar approach.

Consider now the case when m1 ≤ r (ik)
x1 or m1 ≤ r ( j�)

x1 , so
that (80) implies that m2 > r (ik)

x − r (ik)
x1 or m2 > r ( j�)

x − r ( j�)
x1

respectively. We can now use a similar approach to that used
for the case when m1 > r (ik)

x1 and m1 > r ( j�)
x1 in order to show

that (205) holds. We can consider separately the two following
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cases: i) r (ik, j�)
x > r (ik)

x , r ( j�)
x and ii) r (ik, j�)

x = r (ik)
x = r ( j�)

x .

In the first case, the range spaces Im(�̄
(ik)
x ) and Im(�̄

( j�)
x )

are distinct, and we can leverage the characterization of the
misclassification probability of the distributed classification
problem in order to prove (205). In particular, by following
steps similar to those in the proof of Corollary 1, we can show
that

lim
σ 2→0

p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k) = 0. (221)

Therefore, observe that the misclassification probability
p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k) is the measure of the
set representing the decision region of the MAP classifier
for the distributed classification problem associated to the
classes ( j, �) with respect to the Gaussian measure induced
by the Gaussian distribution of classes (i, k). Then, it is also
possible to show that, in the limit σ 2 → 0, the product
in (205) is upper bounded by the integral of a measurable
function over a set with measure zero, and then it converges
to zero.

In the second case, instead, we have Im(�̄
(ik)
x ) = Im(�̄

( j�)
x ),

and we can consider separately further two cases. If

μ(ik)
x − μ(ik)

x /∈ Im(�̄
(ik)
x + �̄

( j�)
x ) = Im(�̄

(ik)
x ), (222)

then Theorem 2 states that p(Ĉ1 = j, Ĉ2 = �|C1 = i, C2 = k)
approaches zero in the low-rank regime, and we can prove
that (205) holds by following a similar procedure to that used
for case i). On the other hand, if

μ(ik)
x − μ(ik)

x ∈ Im(�̄
(ik)
x + �̄

( j�)
x ) = Im(�̄

(ik)
x ), (223)

then the misclassification probability is not guaranteed to
approach zero in the low-rank regime. However, on using the
law of total probability and the definition of MSE, we can
notice that the argument of the limit in (205) is upper bounded
by E

[
‖x1 − W( j�)

x1 (y)‖2|C1 = i, C2 = k
]

and that

E
[
‖x1 − W( j�)

x1 (y)‖2|C1 = i, C2 = k
]

≤ E
[
‖x − W( j�)

x (y)‖2|C1 = i, C2 = k
]
, (224)

where

W( j�)
x (y) = μ

( j�)
x + W( j�)

x

(
y − �μ

( j�)
x

)
(225)

and

W( j�)
x = (�̄

( j�)
x + σ 2I)�T

(
σ 2I + ��̄

( j�)
x �T

)−1
. (226)

Also in this case, we can show that the right hand side of (224)
approaches zero when σ 2 → 0, since the mismatched MSE
for Gaussian sources reaches zero in the low-rank regime,
provided that the estimated input covariance has the same
range space than the true input covariance. In particular, on
denoting by �

(ik)
y = σ 2I + ��̄

(ik)
x �T the covariance matrix

of y conditioned on (C1, C2) = (i, k), and on introducing the

symbol M(ik, j�) = (μ
(ik)
x − μ

( j�)
x )(μ

(ik)
x − μ

( j�)
x )T, we can

write

MSE(ik, j�)
1,2|1,2(σ

2)

= E
[
‖x − W( j�)

x (y)‖2|C1 = i, C2 = k
]

(227)

= tr
(
�̄

(ik)
x

)
+ (n1 + n2)σ

2 − 2tr
(

W(ik)
x �̄

(ik)
y (W( j�)

x )T
)

+tr
(

W( j�)
x �̄

(ik)
y (W( j�)

x )T
)

+tr
(

M(ik, j�)
)

− 2tr
(

M(ik, j�)�T(W j�
x )T

)

+tr
(
�W( j�)

x M(ik, j�)(W( j�)
x )T

)
, (228)

and we can prove that

lim
σ 2→0

tr
(

W(ik)
x �̄

(ik)
y (W( j�)

x )T
)

= tr(�̄
(ik)
x ); (229)

lim
σ 2→0

tr
(

W( j�)
x �̄

(ik)
y (W( j�)

x )T
)

= tr(�̄
(ik)
x ); (230)

lim
σ 2→0

tr
(

M(ik, j�)(W( j�)
x )T

)
= tr

(
M(ik, j�)

)
;

(231)

lim
σ 2→0

tr
(

W( j�)
x �M(ik, j�)�T(W( j�)

x )T
)

= tr
(

M(ik, j�)
)
,

(232)

by following steps similar to those adopted to
prove (214)-(217).

APPENDIX F
PROOF OF LEMMA 1

The expansion of the lower bound MSELB
1|1(σ 2

1 ) is based on
an expression of the MMSE associated to the reconstruction
of Gaussian vectors in class (i, k) from the linear features y1
akin to that reported in Appendix D. In particular, we can
write

MMSEG(i,k)
1|1 (σ 2

1 )

= tr

(
�(ik)

x1
− �(ik)

x1
�T

1

(
�1�

(ik)
x1

�T
1

)−1
�1�

(ik)
x1

)
(233)

= tr
(
(�̄

(ik)
x1

+ σ 2
1 I) − (�̄

(ik)
x1

+ σ 2
1 I)�T

1

(
σ 2

1 I + �1�̄
(ik)
x1

�T
1

)−1
�1(�̄

(ik)
x1

+ σ 2
1 I)
)

(234)

= tr

(
�̄

(ik)
x1

− �̄
(ik)
x1

�T
1

(
σ 2

1 I + �1�̄
(ik)
x1

�T
1

)−1
�1�̄

(ik)
x1

)

+n1σ
2
1 − 2σ 2

1 tr

(
�1�̄

(ik)
x1

�T
1

(
σ 2

1 I + �1�̄
(ik)
x1

�T
1

)−1
)

−σ 4
1 tr

((
σ 2

1 I + �1�̄
(ik)
x1

�T
1

)−1
)

. (235)

Recall the definition of �(ik) in (93) and its eigenvalue
decomposition. Then, on following steps similar to those
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used in [66, Appendix B] and in Appendix D, we can
write

MMSEG(i,k)
1|1 (σ 2

1 )

=
r(ik)
�∑

t=1

1

1 + λ
(ik)
�,t /σ

2
1

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t

+
r(ik)

x1∑
t=r(ik)

� +1

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t

+n1σ
2
1 − 2σ 2

1

r(ik)
�∑

t=1

λ
(ik)
�,t

λ
(ik)
�,t + σ 2

1

− σ 4
1

r(ik)
�∑

t=1

1

λ
(ik)
�,t + σ 2

1

−(m1 − r (ik)
� )σ 2

1 (236)

=
r(ik)

x1∑
t=r(ik)

� +1

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t

+
(

n1 − m1 − min{m1, r (ik)
x1

}

+
min{m1,r(ik)

x1 }∑
t=1

1

1 + λ
(ik)
�,t /σ

2
1

(u(ik)
�,t )

T�̄
(ik)
x1

u(ik)
�,t

⎞
⎟⎠ · σ 2

1

+o(σ 2
1 ). (237)

APPENDIX G
PROOF OF LEMMA 2

The expansion of MMSE1|1(σ 2
1 ) is obtained by combining

the result in Lemma 1 with the upper bound represented by the
MSE corresponding to a suboptimal classify and reconstruct
approach akin to the described in Section IV-A.2, which
we denote by MSECR

1|1(σ 2
1 ). Note that MSECR

1|1(σ 2
1 ) can be

written as

MSECR
1|1(σ 2

1 )

=
∑

(i,k)∈S
pC1,C2(i, k)

∑
( j,�)∈S

(238)

·
∫

dx1dy1 p(x1, y1|C1 = i, C2 = k) (239)

·
∏

(s,t)∈S
(s,t) �=( j,�)

u

(
log

pC1,C2( j, �)p(y1|C1 = j, C2 = �)

pC1,C2(s, t)p(y1|C1 = s, C2 = t)

)

·
∥∥∥x1 − W( j�)

x1 (y1)
∥∥∥2

, (240)

where u(·) is the unit step function and where

W( j�)
x1 (y1) = μ

( j�)
x1 + W( j�)

x1

(
y1 − �1μ

( j�)
x1

)
(241)

and

W( j�)
x1 = (�̄

( j�)
x1

+ σ 2
1 I)�T

1

(
σ 2I + �1�̄

( j�)
x1

�T
1

)−1
. (242)

Then, on using the fact that u(x) ≤ 1,∀x ∈ R, we can write
the upper bound

MSECR
1|1(σ 2

1 )

≤
∑

(i,k)∈S
pC1,C2(i, k)

∫
dx1dy1 p(x1, y1|C1 = i, C2 = k)

·
∥∥∥x1 − W(ik)

x1
(y1)

∥∥∥2

+
∑

(i,k)∈S
pC1,C2(i, k)

·
∑

( j,�)∈S
( j,�) �=(i,k)

∫
dx1dy1 p(x1, y1|C1 = i, C2 = k)

·u
(

log
pC1,C2( j, �)p(y1|C1 = j, C2 = �)

pC1,C2(i, k)p(y1|C1 = i, C2 = k)

)

·
∥∥∥x1 − W( j�)

x1 (y1)
∥∥∥2

(243)

= MSELB
1|1(σ 2

1 ) (244)

+
∑

(i,k)∈S
pC1,C2(i, k)

·
∑

( j,�)∈S
( j,�) �=(i,k)

∫
dx1dy1 p(x1, y1|C1 = i, C2 = k)

·u
(

log
pC1,C2( j, �)p(y1|C1 = j, C2 = �)

pC1,C2(i, k)p(y1|C1 = i, C2 = k)

)

·
∥∥∥x1 − W( j�)

x1 (y1)
∥∥∥2

. (245)

Moreover, on using the upper bound u(x) ≤ e
1
2 x ,∀x ∈ R, we

can further upper bound MSECR
1|1(σ 2

1 ) by

MSECR
1|1(σ 2

1 )

≤ MSELB
1|1(σ 2

1 )

+
∑

(i,k)∈S

∑
( j,�)∈S

( j,�) �=(i,k)

√
pC1,C2(i, k)pC1,C2( j, �)

·
∫

dy1
√

p(y1|C1 = i, C2 = k)p(y1|C1 = j, C2 = �)

·
∫

dx1 p(x1|y1, C1 = i, C2 = k)
∥∥∥x1 − W( j�)

x1 (y1)
∥∥∥2

.

(246)

Then, in order to complete the proof of Lemma 2, we show
that the integrals in (246) are o(σ 2

1 ) when m1 is such that
dNOSI(ik, j�) > 1,∀(i, k, j, �) ∈ SDC, where dNOSI(ik, j�) is
defined as in (96).

We first note that p(x1|y1, C1 = i, C2 = k) =
N (μ̃(ik)

x1
, �̃

(ik)
x1

), where

μ̃(ik)
x1

= �(ik)
x1

�T
1 (�1�

(ik)
x1

�T
1 )−1(y1 − �1μ

(ik)
x1

) + μ(ik)
x1

�̃
(ik)
x1

= �(ik)
x1

− �(ik)
x1

�T
1 (�1�

(ik)
x1

�T
1 )−1�1�

(ik)
x1

.
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Then, on using the triangular inequality, we can write the
following upper bound:∫

dx1 p(x1|y1, C1 = i, C2 = k)
∥∥∥x1 − W( j�)

x1 (y1)
∥∥∥2

=
∫

dx1 p(x1|y1, C1 = i, C2 = k)

·
∥∥∥x1 − W(ik)

x1
(y1) + W(ik)

x1
(y1) − W( j�)

x1 (y1)
∥∥∥2

(247)

≤ tr(�̃
(ik)
x1

) + ‖W(ik)
x1

(y1) − W( j�)
x1 (y1)‖2 (248)

≤ tr(�(ik)
x1

) + ‖W(ik)
x1

(y1) − W( j�)
x1 (y1)‖2, (249)

where we have leveraged the fact that the matrix
�

(ik)
x1 �T

1 (�1�
(ik)
x1 �T

1 )−1�1�
(ik)
x1 is positive semidefinite to

establish the last inequality.
Consider now the integral∫

dy1
√

p(y1|C1 = i, C2 = k)p(y1|C1 = j, C2 = �)

·‖W(ik)
x1

(y1) − W( j�)
x1 (y1)‖2. (250)

By leveraging the expression of the product of two Gaussian
distributions in [81, §8.1.8] and on using the notation
N (x; μ,�) in order to denote explicitly the argument of the
Gaussian distribution, we can write√

p(y1|C1 = i, C2 = k)p(y1|C1 = j, C2 = �)

= e−K1(ik, j�) · N (y1; μ
(ik, j�)
1 ,�

(ik, j�)
1 ), (251)

where

K1(ik, j�)

= (μ(ik)
x1

− μ
( j�)
x1 )T�T

1

[
�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 + 2σ 2

1 I

2

]−1

·1

8
�1(μ

(ik)
x1

− μ
( j�)
x1 )

+1

4
log

(
det

(
�1(�̄

(ik)
x1

+�̄
( j�)
x1

)�T
1 +2σ 2

1 I
2

))2

det(�1�̄
(ik)
x1

�T
1 + σ 2

1 I)det(�1�̄
( j�)
x1

�T
1 + σ 2

1 I)
,

(252)

and where

μ
(ik, j�)
1 =

(
(�(ik)

y1
)−1 + (�

( j�)
y1 )−1

)−1

·
(
(�(ik)

y1
)−1�1μ

(ik)
x1

+ (�
( j�)
y1 )−1�1μ

( j�)
x1

)
(253)

�
(ik, j�)
1 = 2

(
(�(ik)

y1
)−1 + (�

( j�)
y1 )−1

)−1
, (254)

where we have used the notation �
(ik)
y1 = �1�̄

(ik)
x1

�T
1 + Iσ 2

1 .
Based on the analysis carried out in [69], we can formulate

the following upper bound:

eK1(ik, j�) ≤ A1(σ
2
1 )dNOSI(ik, j�)+o

(
(σ 2

1 )dNOSI(ik, j�)
)

, (255)

where A1 is a positive constant and dNOSI(ik, j�) is given by
(96). Therefore, our objective is to prove that the integral∫

dy1N (y1; μ
(ik, j�)
1 ,�

(ik, j�)
1 ) · ‖W(ik)

x1
(y1) − W( j�)

x1 (y1)‖2

(256)

is upper bounded by a constant when σ 2
1 → 0. In particular,

on using the triangular inequality, we can upper bound the
integral in (256) as follows:∫

dy1N (y1; μ
(ik, j�)
1 ,�

(ik, j�)
1 ) · ‖μ(ik)

x1
− μ

( j�)
x1

+W(ik)
x1

y1 − W( j�)
x1 y1 + W( j�)

x1 �1μ
( j�)
x1 − W(ik)

x1
�1μ

(ik)
x1

‖2

≤ ‖μ(ik)
x1

− μ
( j�)
x1 ‖2 + ‖W( j�)

x1 �1μ
( j�)
x1 ‖2

+‖W(ik)
x1

�1μ
(ik)
x1

‖2

+
∫

dy1N (y1; μ
(ik, j�)
1 ,�

(ik, j�)
1 ) · ‖W(ik)

x1
y1‖2

+
∫

dy1N (y1; μ
(ik, j�)
1 ,�

(ik, j�)
1 ) · ‖W( j�)

x1 y1‖2 (257)

= ‖μ(ik)
x1

− μ
( j�)
x1 ‖2 + ‖W( j�)

x1 �1μ
( j�)
x1 ‖2

+‖W(ik)
x1

�1μ
(ik)
x1

‖2

+tr(W(ik)
x1

�
(ik, j�)
1 (W(ik)

x1
)T)

+tr(W(ik)
x1

μ
(ik, j�)
1 (μ

(ik, j�)
1 )T(W(ik)

x1
)T)

+tr(W( j�)
x1 �

(ik, j�)
1 (W( j�)

x1 )T)

+tr(W( j�)
x1 μ

(ik, j�)
1 (μ

(ik, j�)
1 )T(W( j�)

x1 )T). (258)

Then, it is possible to show that all the terms in (258)
are bounded. In particular, on leveraging the the fact that,
given two positive semidefinite matrices of the same size
A, B, it holds tr(AB) ≤ tr(A)tr(B), we can observe that
‖W(ik)

x1 �1μ
(ik)
x1 ‖2 ≤ tr(W(ik)

x1 (W(ik)
x1 )T)tr(�1μ

(ik)
x1 (μ

(ik)
x1 )T�T

1 )
and all the terms in

tr(W(ik)
x1

(W(ik)
x1

)T)

= tr

(
�̄

(ik)
x1

�T
1

(
�1�̄

(ik)
x1

�T
1 + σ 2

1 I
)−2

�1�̄
(ik)
x1

)

+2σ 2
1 tr

(
�1�̄

(ik)
x1

�T
1

(
�1�̄

(ik)
x1

�T
1 + σ 2

1 I
)−2

)

+σ 4
1 tr

((
�1�̄

(ik)
x1

�T
1 + σ 2

1 I
)−2

)
(259)

are shown to be bounded by noting that Null(�1�̄
(ik)
x1

�T
1 ) =

Null(�̄
(ik)
x1

�T
1 ) and by using steps similar to those

used in Appendix D. Similarly, we can write
tr(W(ik)

x1 �
(ik, j�)
1 (W(ik)

x1 )T) ≤ tr(W(ik)
x1 (W(ik)

x1 )T)tr(�(ik, j�)
1 )

and we can note that

tr(�(ik, j�)
1 )

= 2tr

(
�(ik)

y1

(
�(ik)

y1
+ �

j�)
y1

)−1
�

( j�)
y1

)
(260)

= 2tr

(
�1�̄

(ik)
x1

�T
1

(
�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 + 2σ 2

1 I
)−1

·�1�̄
( j�)
x1

�T
1

)

+2σ 2
1 tr

((
�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 + 2σ 2

1 I
)−1

·�1�̄
( j�)
x1

�T
1

)

+2σ 2
1 tr
(
�1�̄

(ik)
x1

�T
1

·
(
�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 + 2σ 2

1 I
)−1

)

+2σ 4
1 tr

((
�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 + 2σ 2

1 I
)−1

)
(261)
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is also bounded, since Null(�1(�̄
(ik)
x1

+ �̄
( j�)
x1

)�T
1 ) ⊆

Null(�1�̄
(ik)
x1

�T
1 ) and Null(�1(�̄

(ik)
x1

+ �̄
( j�)
x1

)�T
1 ) ⊆

Null(�1�̄
( j�)
x1

�T
1 ). Finally, we can write tr(W(ik)

x1 μ
(ik, j�)
1

(μ
(ik, j�)
1 )T(W(ik)

x1 )T) ≤ tr(W(ik)
x1 (W(ik)

x1
)T)tr(μ(ik, j�)

1 (μ
(ik, j�)
1 )T)

and we can show that tr(μ(ik, j�)
1 (μ

(ik, j�)
1 )T) is bounded when

σ 2
1 → 0 by noting that

tr(μ(ik, j�)
1 (μ

(ik, j�)
1 )T)

=
∥∥∥�(ik, j�)

1

(
(�(ik)

y1
)−1�1μ

(ik)
x1

+ (�
( j�)
y1 )−1�1μ

( j�)
x1

)∥∥∥2
/4

≤
∥∥∥�(ik, j�)

1 (�(ik)
y1

)−1�1μ
(ik)
x1

∥∥∥2
/4

+
∥∥∥�( j ik, j�)

1 (�
( j�)
y1 )−1�1μ

( j�)
x1

∥∥∥2
/4 (262)

= ‖�( j�)
y1 (�(ik)

y1
+ �

( j�)
y1 )−1�1μ

(ik)
x1

‖2

+‖�(ik)
y1

(�(ik)
y1

+ �
( j�)
y1 )−1�1μ

( j�)
x1 ‖2 (263)

and by following steps similar to those used to prove that (261)
is bounded when σ 2

1 → 0.

APPENDIX H
PROOF OF LEMMA 3

The lower bound MSELB
1|1,2(σ

2
1 ) is defined as

MSELB
1|1,2(σ

2
1 ) =

∑
(i,k)∈S

pC1,C2(i, k)MMSEG(i,k)
1|1,2 (σ 2

1 ), (264)

where MMSEG(i,k)
1|1,2 (σ 2

1 ) is the Gaussian MMSE associated to
signals in class (i, k). By following similar steps to those
in Appendix D, we recall that the Gaussian MMSE does
not depend on the mean, and by taking the expectation
independently with respect to x1|y2 and y2 we can write

MMSEG(i,k)
1|1,2 (σ 2

1 ) = MMSEG(i,k)(z|�1z), (265)

where z ∼ p(x1|y2, C1 = i, C2 = k) = N (μ
(ik)
z ,�

(ik)
z ), and

μ(ik)
z = μ(ik)

x1
+ �̄

(ik)
x12

�T
2 (�2�̄

(ik)
x2

�T
2 + Iσ 2

2 )−1

·(y2 − �2μ
(ik)
x2

) (266)

�(ik)
z = �̄

(ik)
z + σ 2

1 I (267)

= �̄
(ik)
x1

− �̄
(ik)
x12

�T
2 (�2�̄

(ik)
x2

�T
2 + Iσ 2

2 )−1�2�̄
(ik)
x21

+σ 2
1 I. (268)

Then, the proof is completed by following steps similar to
those in the proof of Lemma 1.

APPENDIX I
PROOF OF LEMMA 4

By taking independently the expectation with respect to
x1|y2 and y2 in the definition of the MMSE we can write

MMSE1|12(σ
2
1 ) = E [MMSE(z|�1z)] , (269)

where z ∼ p(x1|y2) and where the expectation in (269) is
taken with respect to y2. Then, we can note that

p(x1|y2) =
∑

(i,k)∈S
p(C1 = i, C2 = k|y2) · N (μ(ik)

z ,�(ik)
z ),

(270)

where μ
(ik)
z and �

(ik)
z are as in (266) and (268), and, for any

value of y2 we can repeat the steps followed in Appendx G in
order to derive an upper bound to MMSE(z|�1z) which admit
the same first order expansion as MSELB

1|1,2(σ
2
1 ). In particular,

note that terms in the upper bound of MMSE1|12(σ
2
1 ) which

are functions of μ
(ik)
z are also bounded since

E
[
‖μ(ik)

z ‖2
]

= ‖μ(ik)
x1

‖2

+tr
(
�̄

(ik)
x12

�T
2 (�2�̄

(ik)
x2

�T
2 + Iσ 2

2 )−1�2�̄
(ik)
x21

)
(271)

is bounded when σ 2
1 → 0.

APPENDIX J
PROOF OF THEOREM 6

Note that the matrix

�̄
(ik)
z = �̄

(ik)
x1

− �̄
(ik)
x12

�T
2 (�T

2 �̄
(ik)
x2

�T
2 + Iσ 2

2 )−1�2�̄
(ik)
x21

(272)

is obtained as the Schur complement of the block
�T

2 �̄
(ik)
x2

�T
2 + Iσ 2

2 of the matrix[
�̄

(ik)
x1

�2�̄
(ik)
x12

�̄
(ik)
x21

�T
2 �T

2 �̄
(ik)
x2

�T
2 + Iσ 2

2

]
. (273)

Then, on leveraging [82, Lemma 4.1] in conjunction
with [83, Th. 4.3], we have that

Im(�̄
(ik)
z ) ⊆ Im(�̄

(ik)
x1

). (274)

Moreover, on leveraging a rank computation akin to that in
Appendix D, it is possible to show that, for any σ 2

2 > 0, it
holds r (ik)

z = r (ik)
x1 , and, therefore,

Im(�̄
(ik)
z ) = Im(�̄

(ik)
x1

). (275)

Then, when m1 < r (ik)
x1 = r (ik)

z , we have
M(i,k)

1|1 > 0 and M(i,k)
1|1,2 > 0, since Null(�̄

(ik)
x1

) ⊂
Null(�(ik)) and Null(�̄

(ik)
z ) ⊂ Null(�(ik)). Moreover,

M(i,k)
1|1,2 ≤ M(i,k)

1|1 follows directly from the fact

MMSEG(i,k)
1|1,2 (σ 2

1 ) ≤ MMSEG(i,k)
1|1 (σ 2

1 ) for all σ 2
1 > 0.

Consider now the case m1 > r (ik)
x1 . In this case

rank(�(ik)) = rank(�(ik)) = r (ik)
x1 = r (ik)

z , therefore
Null(�̄

(ik)
x1

) = Null(�(ik)) and Null(�̄
(ik)
z ) = Null(�(ik)),

which imply M(i,k)
1|1 = M(i,k)

1|1,2 = 0.

On the other hand, we can write D(i,k)
1|1,2 as

D(i,k)
1|1,2 = n1 − m1 − r (ik)

x1
+

r(ik)
x1∑

t=1

1

λ
(ik)
�,t

(u(ik)
�,t )

T�̄
(ik)
z u(ik)

�,t

= n1 − m1 − r (ik)
x1

+tr

⎛
⎜⎝

r(ik)
x1∑

t=1

1

λ
(ik)
�,t

u(ik)
�,t (u

(ik)
�,t )

T�̄
(ik)
z

⎞
⎟⎠ . (276)

Then, since rank(�
(ik)
z ) = r (ik)

z we can leverage the expression
of the Moore-Penrose inverse of a matrix in terms of its
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singular value decomposition (SVD) in order to observe that

r(ik)
x1∑

t=1

1

λ
(ik)
�,t

u(ik)
�,t (u

(ik)
�,t )

T

=
(
�(ik)

)† =
(
(�̄

(ik)
z )

1
2 �T

1 �1(�̄
(ik)
z )

1
2

)†
, (277)

which allows us to write

D(i,k)
1|1,2 = n1 − m1 − r (ik)

x1

+tr

((
(�̄

(ik)
z )

1
2 �T

1 �1(�̄
(ik)
z )

1
2

)†
�̄

(ik)
z

)
(278)

= n1 − m1 − r (ik)
x1

+tr

(
(�̄

(ik)
z )

1
2

(
(�̄

(ik)
z )

1
2 �T

1 �1(�̄
(ik)
z )

1
2

)†

·(�̄(ik)
z )

1
2

)
. (279)

Then, let us write the compact eigenvalue decomposition of
the matrix (�̄

(ik)
z )

1
2 as

(�̄
(ik)
z )

1
2 = U(ik)

z (�(ik)
z )

1
2 (U(ik)

z )T, (280)

where U(ik)
z ∈ R

n1×r(ik)
z has orthonormal columns and

�
(ik)
z ∈ R

r(ik)
z ×r(ik)

z has positive entries. Note also that

(AAT)† = (AT)†A†, (281)

and

(AB)† = B†A†, (282)

if A is full column rank and B is full row rank [84]. Then,
we can write (279) as

D(i,k)
1|1,2

= n1 − m1 − r (ik)
x1

+tr
(
(�̄

(ik)
z )

1
2 (�1(�̄

(ik)
z )

1
2 )†((�̄

(ik)
z )

1
2 �T

1 )†(�̄
(ik)
z )

1
2

)
= n1 − m1 − r (ik)

x1

+tr
(
(�(ik)

z )
1
2 (U(ik)

z )T((�(ik)
z )

1
2 (U(ik)

z )T)†(�1U(ik)
z )†

·((U(ik)
z )T�T

1 )†(U(ik)
z (�(ik)

z )
1
2 )†U(ik)

z (�(ik)
z )

1
2

)
(283)

= n1 − m1 − r (ik)
x1

+ tr

((
(U(ik)

z )T�T
1 �1U(ik)

z

)†
)

, (284)

where we have used the assumption m1 > r (ik)
z in order to use

the property in (282). Consider now the compact eigenvalue
decomposition of the matrix (�̄

(ik)
x1

)
1
2 ,

(�̄
(ik)
x1

)
1
2 = U(ik)

x1
(�(ik)

x1
)

1
2 (U(ik)

x1
)T, (285)

where U(ik)
x1 ∈ R

n1×r(ik)
x1 has orthonormal columns and

�
(ik)
x1 ∈ R

r(ik)
x1 ×r(ik)

x1 has positive entries. Then, on following
steps similar to those used to express D(i,k)

1|1,2, we can also write

D(i,k)
1|1 = n1 − m1 − r (ik)

x1
+ tr

((
(U(ik)

x1
)T�T

1 �1U(ik)
x1

)†
)

.

(286)

Finally on recalling that Im(�̄
(ik)
x1

) = Im(�̄
(ik)
z ), we observe

that

U(i,k)
x1

= U(i,k)
z R, (287)

where R is an r (ik)
x1 × r (ik)

x1 orthogonal matrix, from which we
can immediately conclude D(i,k)

1|1,2 = D(i,k)
1|1 .
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