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Abstract—This paper studies the classification of high-
dimensional Gaussian signals from low-dimensional noisy, linear
measurements. In particular, it provides upper bounds (sufficient
conditions) on the number of measurements required to drive the
probability of misclassification to zero in the low-noise regime,
both for random measurements and designed ones. Such bounds
reveal two important operational regimes that are a function of
the characteristics of the source: 1) when the number of classes is
less than or equal to the dimension of the space spanned by signals
in each class, reliable classification is possible in the low-noise
regime by using a one-vs-all measurement design; 2) when the
dimension of the spaces spanned by signals in each class is lower
than the number of classes, reliable classification is guaranteed
in the low-noise regime by using a simple random measurement
design. Simulation results both with synthetic and real data show
that our analysis is sharp, in the sense that it is able to gauge the
number of measurements required to drive the misclassification
probability to zero in the low-noise regime.

Index Terms—Compressed sensing, compressive classification,
classification, dimensionality reduction, Gaussian mixture models,
measurement design, phase transitions, random measurements.

I. INTRODUCTION

COMPRESSIVE SENSING (CS) is an emerging paradigm
that offers the means to simultaneously sense and com-

press a signal without significant loss of information [3]–[5]
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(under appropriate conditions on the signal model and mea-
surement process). The sensing process is based on computing
the inner product of the signal of interest with a set of vec-
tors, which are typically constituted randomly [3]–[5], and the
recovery process is based on the resolution of an inverse prob-
lem. The result that has captured the imagination of the signal
and information processing community is that it is possible to
perfectly reconstruct an n-dimensional s-sparse signal (sparse
in some orthonormal dictionary or frame) with overwhelming
probability with only O (s log (n/s)) linear random measure-
ments [3], [5], [6] using tractable �1 minimization methods [4]
or iterative methods, like greedy matching pursuit [7].

The focus of compressive sensing has been primarily on
exact or near-exact signal reconstruction from a set of linear
signal measurements. However, it is also natural to leverage
the paradigm to perform other relevant information processing
tasks, such as detection, classification and estimation of certain
parameters, from the set of compressive measurements. One
could in fact argue that the paradigm is a better fit to decision
support tasks such as signal detection, signal classification or
pattern recognition rather than signal reconstruction, since it
may be easier to discriminate between signal classes than re-
construct an entire signal using only partial information about
the source signal.

This paper concentrates on the classification of signals from
a set of compressive linear and noisy measurements. In par-
ticular, we consider the case where signals associated to dif-
ferent classes lie on low-dimensional linear subspaces. This
problem is fundamental to the broad fields of signal and image
processing [8]–[10], computer vision [11], [12] and machine
learning [13], [14], as pre-processing often relies on dimension
reduction to increase the speed and reliability of classification
as well as reduce the complexity and cost of data processing and
computation.

Compressive classification appears in the machine learning
literature as feature extraction or supervised dimensionality re-
duction. For example, linear dimensionality reduction methods
based on geometrical characterizations of the source have been
developed, with linear discriminant analysis (LDA) [15] and
principal component analysis (PCA) [15] just depending on sec-
ond order statistics. In particular, LDA, which is one of the most
well-known supervised dimensionality reduction methods [16],
addresses simultaneously the between-class scattering and the
within-class scattering of the measured data. Linear dimension-
ality reduction methods based on higher-order statistics of the
data have therefore also been developed [14], [17]–[23]. In par-
ticular, an information-theoretic supervised dimensionality re-
duction inspired approach, which uses the mutual information
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between the data class labels and the data measurements [14]
or approximations of the mutual information via the quadratic
Rényi entropy [18], [23], [24] as a criterion to linearly reduce
dimensionality, have been shown to lead to state-of-the-art clas-
sification results. More recently, learning methods for linear
dimensionality reduction based on nuclear norm optimization
have also been proposed [25], which have been shown to lead
to state-of-the-art results for face clustering, face recognition
and motion segmentation applications. Low-dimensional ran-
dom linear measurements have also been used in conjunction
with linear classifiers in scenarios where the number of training
samples is smaller than the data dimension [26]. In particu-
lar, [26] derives bounds on the generalization error of a binary
Fisher linear discriminant (FLD) classifier with linear random
measurements.

Compressive classification also appears in the compressive
information processing literature in view of recent advances in
compressive sensing [13], [27]–[33]. Reference [27] presents
algorithms for signal detection, classification, estimation and
filtering from random compressive measurements. Refer-
ences [28]–[30] and [31] study the performance of compressive
detection and compressive classification for the case of random
measurements. References [32] and [33] consider the problem
of detection of spectral targets based on noisy incoherent pro-
jections. Reference [13] notes that a small number of random
measurements captures sufficient information to allow robust
face recognition. The common thread in this line of research
relates to the demonstration that the detection and classification
problems can be solved directly in the measurement domain,
without requiring the transformation of the data from the
compressive to the original data domain, i.e. without requiring
the reconstruction of the data.

Other works associated with compressive classification that
have arisen in the computational imaging literature, and devel-
oped under the rubric of task-specific sensing, include [8]–[10],
[34]–[36]. In particular, task-specific sensing, which advocates
that the sensing procedure has to be matched to the task-specific
nature of the sensing application, has been shown to lead to
substantial gains in performance over compressive sensing in
applications such as localization [34], target detection [8], (face)
recognition [9], [10], and reconstruction [35].

The majority of the contributions in the literature to date has
focused on the proposal of linear measurement design algo-
rithms for two- and multiple-class classification problems (e.g.
[14], [15], [17]–[23], [37], [38]). Such algorithms – with the
exception of two-class problems [37], [38] – do not typically
lead to closed-form measurement designs thereby not provid-
ing a clear insight about the geometry of the measurements and
preventing us to understand how classification performance be-
haves as a function of the number of measurements. This paper
attempts to fill in this gap by asking the question:

What is the number of measurements that guarantees reliable
classification in compressive classification applications?

We answer this question both for the scenario where the mea-
surements are random and the more challenging scenario where
the measurements are designed, when the distribution of the
signal conditioned on the class is multivariate Gaussian with

zero mean and a certain (rank-deficient) covariance matrix. In
addition, our answer to this question also leads to simple and
insightful closed-form measurements designs both for two-class
and multi-class classification problems.1 Analytical bounds on
the number of measurements required for reliable classifica-
tion are derived in this work for the asymptotic regime of low
noise. On the other hand, the validity of such predictions also
for positive noise levels is showcased by numerical results.

We adopt this data model for three main reasons: first, our
classification problem corresponds to the Bayesian counterpart
of low-dimensional subspace classification problems that are
ubiquitous in practice; then, this model often leads to state-of-
the-art results in the compressive classification applications such
as character and digit recognition as well as image classification
[14], [23], [24]; in addition, this model – which entails that the
source distribution is a Gaussian mixture model (GMM) – also
relates to various well-known models in the literature including
union of sub-spaces [39], [40], wavelet trees [39], [41] or man-
ifolds [42], [43], that aim to capture additional signal structure
beyond primitive sparsity in order to yield further gains. The
framework based on GMM priors has also been used for the
problem of signal recovery. In such case, the objective is not to
determine from which Gaussian distribution the observed sig-
nal was drawn, but to reconstruct its value from compressive,
noisy, linear measurements. Analytical bounds on the number
of measurements needed for reliable signal reconstruction in the
low-noise regime have been derived in [44], [45].

The remainder of this paper is organized as follows: Section II
defines the problem, including the measurement model, source
model, and performance metrics. Section III presents an upper
bound to the misclassification probability and its expansion at
low noise that is the basis of our analysis. Sections IV and V
derive upper bounds on the number of measurements sufficient
for reliable classification. In Section VI we report numerical
results that validate the theoretical analysis with both synthetic
data and real data from video segmentation and face recognition
applications. Section VII contains a discussion on the impact of
model mismatch in real data scenarios and, finally, we draw
conclusions in Section VIII. The proofs of some of the results
are relegated to the Appendices.

The article adopts the following notation: boldface upper-
case letters denote matrices (X), boldface lower-case letters
denote column vectors (x) and italics denote scalars (x); the
context defines whether the quantities are deterministic or ran-
dom. IN represents the N × N identity matrix, 0M ×N repre-
sents the M × N zero matrix (the subscripts that refer to the
dimensions of such matrices will be dropped when evident from
the context) and diag (a1 , a2 , . . . , aN ) represents an N × N di-
agonal matrix with diagonal elements a1 , a2 , . . . , aN . The op-
erators (·)T , rank (·), det (·), pdet (·) and tr (·) represent the
transpose operator, the rank operator, the determinant operator,

1Note that the problem of compressive classification of signals drawn from
Gaussian distributions has been also considered in the preliminary papers [1],
[2], where the behavior of the misclassification probability in the low-noise
regime was studied for the case of random measurements [1] and for the case
of designed measurements [2], but offering a closed-form characterization only
for binary classifiers.
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the pseudo-determinant operator and the trace operator, respec-
tively. Null (·) and Im (·) denote the null space and the (column)
image of a matrix, respectively, and dim (·) denotes the dimen-
sion of a linear subspace. We also use the symbol (·)⊥ to denote
the orthogonal complement of a linear space. The multivariate
Gaussian distribution with mean μ and covariance matrix Σ is
denoted by N (μ,Σ) and the symbol P [E] is used to denote the
probability of the event E. log (·) denotes the natural logarithm.
For the sake of a compact notation, we also use the symbols
Ni = Null(Σi) and Ri = Im(Σi), as well as Nij = Null(Σi +
Σj ) = Ni ∩Nj and Rij = Im(Σi + Σj ) = Ri + Rj , where
+ denotes the sum of linear subspaces. The article also uses the
symbol [x]+ = max{x, 0}, the floor operator �x�, which repre-
sents the larger integer less than or equal to x, and the little o
notation where g (x) = o (f (x)) if limx→∞g (x)/f (x) = 0.

II. PROBLEM STATEMENT

We consider the standard measurement model given by:

y = Φx + n, (1)

where y ∈ RM represents the measurement vector, x ∈ RN

represents the source vector, Φ ∈ RM ×N represents the mea-
surement matrix or kernel2 and n ∼ N

(
0, σ2I

)
∈ RM repre-

sents white Gaussian noise.3

We also consider that the source model is such that:
A.1 The source class C ∈ {1, . . . , L} is drawn with proba-

bility pi, i = 1, . . . , L.
A.2 The source signal conditioned on the class C = i is

drawn from a multivariate Gaussian distribution with
zero mean and (rank deficient) covariance matrix Σi ∈
RN ×N .

We should point out that we use a low-rank modeling ap-
proach even though many natural signals (e.g. patches extracted
from natural images, face images, motion segmentation fea-
tures, handwritten digits images, etc.) are not always low-rank
but rather “approximately” low-rank [43]. The justification for
the use of such low-rank modeling approach is two-fold: first,
a low-rank representation is often a very good approximation
to real scenarios, particularly as the eigenvalues of the class
conditioned covariances often decay rapidly; second, it is then
standard practice to account for the mismatch between the low-
rank and the “approximately” low-rank model by adding extra
noise in the measurement model in (1) (see [45]).4

It is assumed that the classifier – which infers the true signal
class from the signal measurements using a maximum a pos-
teriori (MAP) classifier – is provided with the knowledge of
the true model parameters, i.e., the prior probabilities pi, i =
1, . . . , L, the source covariance matrices Σi , i = 1, . . . , L, the

2We refer to Φ as the measurement or sensing matrix/kernel interchangeably
throughout the paper.

3The results presented in the remainder of the paper can be easily generalized
to the case when the noise covariance matrix is a positive definite matrix Σn .

4We also note that our analysis focuses on zero-mean models, since various
datasets (e.g., face images and motion segmentation features) can be well rep-
resented via zero-mean classes [43], [46]. However, some of the results in the
paper can also be generalized to the case of nonzero-mean classes.

measurement matrix Φ and the noise variance σ2 .5 In particular,
the signal class estimate produced by the classifier is given by:

Ĉ = arg max
i∈{1,··· ,L}

p(C = i|y) = arg max
i∈{1,··· ,L}

p(y|C = i)pi,

(2)
where p(C = i|y) is the a posteriori probability of class C = i
given the measurement vector y and p(y|C = i) represents the
probability density function (pdf) of the measurement vector
y given the class C = i, which is zero-mean Gaussian, with
covariance matrix ΦΣiΦT + Iσ2 .

Our objective is to characterize the number of measurements
sufficient for reliable classification in the asymptotic limit of
low noise, i.e. such that

lim
σ 2 →0

Pe = 0, (3)

where Pe is the misclassification probability of the MAP clas-
sifier. Note also that the asymptotic regime of low-noise plays a
fundamental role in various signal and image processing scenar-
ios, e.g., digit recognition and satellite data classification [14].
In particular, by using the law of total probability, we can write

Pe = P [Ĉ 
= C] =
L∑

i=1

pi P [Ĉ 
= i|C = i] (4)

=
L∑

i=1

pi

∫

RM \Di

p(y|C = i)dy, (5)

where Di is the decision region associated to class i, that is, the
set of values y corresponding to the output Ĉ = i. Moreover, we
can express the set RM \ Di in terms of the unit step function
u(·) and, by leveraging the definition of the MAP classifier in
(2), we can write the misclassification probability as

Pe =
L∑

i=1

pi

∫ +∞

−∞
p(y|C = i)u

⎛

⎝max
j

j 
=i

log
pjp(y|C = j)
pip(y|C = i)

⎞

⎠ dy.

(6)
The low-noise characterization of the misclassification proba-
bility will be carried out both for random measurements and
designed measurements.

Our characterization will also be based on the following ad-
ditional assumptions:

A.3 The linear spaces Ri = Im(Σi), i = 1, . . . , L are
of equal dimension, i.e. dim(Ri) = rΣ < N, i =
1, . . . , L;6

A.4 The linear spaces Ri are independently drawn from
a continuous pdf over the Grassmann manifold of
subspaces of dimension rΣ in RN , so that the null
spaces Ni = Null(Σi) are also of equal dimension, i.e.
dim(Ni) = N − rΣ , and are also drawn independently

5Although our analysis assumes that the classifier is given the true distribu-
tions, in Section VI, we also conduct experiments with real datasets to assess
scenarios where the classifier does not know the true distributions but rather
approximate ones, that are learnt from training data.

6Many of the results presented in this work naturally generalize to the case
when the linear spaces spanned by signals in different classes have different
dimensions.
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from a continuous pdf over the Grassmann manifold of
subspaces of dimension N − rΣ in RN .7

The assumptions A.3 and A.4 impliy that with probability 1

dim(Rij ) = dim(Ri + Rj ) = min{N, 2rΣ}, (7)

and

dim(Nij ) = dim(Ni ∩Nj ) = [N − 2rΣ ]+ . (8)

Our characterization will also use the quantities:

R = dim(Ri) + dim(Rj ) − 2 dim(Ri ∩Rj ) (9)

= 2 dim(Rij ) − dim(Ri) − dim(Rj ) (10)

= 2 min{N − rΣ , rΣ}, (11)

that relates to the difference between the dimension of the sub-
spaces spanned by source signals in classes i or j and the di-
mension of the intersection of such sub-spaces;

ri = rank(ΦΣiΦT ) (12)

vi = pdet(ΦΣiΦT ), (13)

which measure the dimension of the sub-space spanned by the
linear transformation of the signals in class i and the volume
occupied by those signals in RM , respectively, and

rij = rank(Φ(Σi + Σj )ΦT ) (14)

vij = pdet(Φ(Σi + Σj )ΦT ), (15)

which measure the dimension of the direct sum of sub-spaces
spanned by the linear transformation of the signals in classes
i or j and the volume occupied by the measured signals from
classes i and j in RM , respectively.

III. MISCLASSIFICATION PROBABILITY,
BOUNDS AND EXPANSIONS

The basis of our characterization of an upper bound to the
number of random or designed measurements sufficient for reli-
able classification is an asymptotic expansion of an upper bound
to the misclassification probability of the MAP classifier in (6).
We work with an upper bound to the misclassification proba-
bility in lieu of the true misclassification probability, in view
of the lack of closed-form expressions for the misclassification
probability of the MAP classifier.

In particular, the Bhattacharyya bound [31] represents an
upper bound to the misclassification probability associated to
the binary MAP classifier which is based on the inequality
min {a, b} ≤

√
ab, for a, b > 0. Then, it is possible to estab-

lish, by using the union-bound in conjunction with the Bhat-
tacharyya bound, that the misclassification probability of the
MAP classifier can be upper bounded as follows:

P̄e =
L∑

i=1

L∑

j=1
j 
=i

√
pipj e−Ki j , (16)

7Note that this assumption on the linear spaces occupied by signals in differ-
ent classes reflects well the behavior of many real data ensembles for various
applications as face recognition, video motion segmentation, or digits classifi-
cation [14], [46].

where

Kij =
1
4

log

(
det

(
Φ(Σ i +Σ j )ΦT +2σ 2 I

2

))2

det (ΦΣiΦT + σ2I) det (ΦΣjΦT + σ2I)
.

(17)
Note that the exponent Kij is a function of the ratio between the
volume collectively occupied by measured signals belonging
to classes i and j and the product of the volumes occupied
distinctly by measured signals in class i and measured signals
in class j.

The following lemma now provides the low-noise expansion
of the upper bound to the probability of error. It defines the prob-
ability of error using two quantities: one quantity characterizes
the slope of the decay of the upper bound to the misclassification
probability (in a log σ2 scale) and the other quantity defines the
power offset of the upper bound to the misclassification proba-
bility at low-noise levels.

Lemma 1: Consider the measurement model in (1) and the
assumptions A.1, A.2 in Section II. Then, in the regime of
low noise where σ2 → 0, the upper bound to the probability of
misclassification can be expanded as:

P̄e = g
(
σ2)d + o

((
σ2)d

)
, (18)

where

d = min
i,j
j 
=i

d(i, j) , d(i, j) = (2rij − ri − rj ) /4 (19)

and

g =
∑

(i,j )∈Sd

√
pipj 2ri j /2

[√
vivj

vij

]1/2

(20)

where Sd = {(i, j) : i 
= j, d(i, j) = d}.
Proof: See Appendix A. �
This lemma leads immediately to the following corollary that

provides conditions for limσ 2 →0 P̄e = 0 and hence conditions
for limσ 2 →0Pe = 0.

Corollary 1: Consider the measurement model in (1) and the
assumptions A.1, A.2 in Section II. We have that

∃(i, j), i 
= j : ri + rj = 2rij ⇒ lim
σ 2 →0

P̄e = g > 0 (21)

and

ri + rj < 2rij , ∀(i, j), i 
= j ⇒ lim
σ 2 →0

P̄e = 0. (22)

The conditions that guarantee that limσ 2 →0 P̄e = 0 stem di-
rectly from conditions that guarantee d > 0. The ensuing analy-
sis then concentrates on how to define the effect of the number of
random measurements or designed measurements on the value
of the exponent d as a proxy to characterize the phase transition
in (3).

IV. RANDOM MEASUREMENTS

We first consider the simpler problem where the measure-
ment matrix Φ is random. In particular, we consider that the
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measurement matrix is randomly drawn from a left rotation-
invariant distribution.8

We consider the following problem:
Determine the minimum number of random measurements

needed to guarantee that

lim
σ 2 →0

− log Pe

log(1/σ2)
> d0 . (23)

The following proposition provides a solution for the case
d0 = 0 that leads precisely to the minimum number of mea-
surements for limσ 2 →0 P̄e = 0 hence an upper bound on the
minimum number of measurements for limσ 2 →0Pe = 0.

Proposition 1: Consider the measurement model in (1) and
the assumptions A.1–A.4 in Section II. Then, an upper bound
on the minimum number of measurements for

lim
σ 2 →0

Pe = 0 (24)

is

M = rΣ + 1. (25)

Proof: The proof of this proposition follows immediately
from the characterization in Corollary 1 and from the ob-
servation that, with probability 1 over the distribution of Φ,
ri = min {M, rΣ} and rij = min {M,N, 2rΣ}. �

The following proposition provides a generalization of this
result from the case d0 = 0 to d0 > 0.

Proposition 2: Consider the measurement model in (1) and
the assumptions A.1–A.4 in Section II. Then, if d0 < R/4, an
upper bound on the minimum number of measurements for

lim
σ 2 →0

− log Pe

log(1/σ2)
> d0 (26)

is

M = �2d0 + rΣ� + 1. (27)

Proof: The proof of this proposition follows immediately
from the characterization of the exponent d in Lemma 1 and
from the observation that, with probability 1 over the distribution
of Φ, ri = min {M, rΣ} and rij = min {M,N, 2rΣ}. �

We note that the result in Proposition 1 implies that reliable
classification with random measurements is obtained when the
signals are embedded into a linear space with dimension strictly
greater than the dimension of the spaces spanned by the class
conditioned input signals, i.e., rΣ ; in fact, when this is not
the case, the measured signals occupy the entire space RM

and, therefore, they are not distinguishable with arbitrarily low
misclassification probability when σ2 → 0.

On the other hand, the results in Proposition 2 unveil the
interplay between the decay rate of the upper bound to the mis-
classification probability, the measurements and the geometry
of the source. In particular, the results imply that the decay rate

8A random matrix A ∈ Rm ×n is said to be (left or right) rotation-invariant if
the joint pdf of its entries p(A) satisfies p(ΘA) = p(A), or p(AΨ) = p(A),
respectively, for any orthogonal matrix Θ or Ψ. A special case of (left and right)
rotation-invariant random matrices is represented by matrices with independent
identically distributed (i.i.d.), zero-mean Gaussian entries with fixed variance,
which is common in the CS literature [3], [5].

scales linearly with the number of measurements up to the max-
imum decay rate associated with the upper bound in (16), i.e.,
R/4, which is achieved when signals are embedded into a lin-
ear space with dimension equal to dim(Rij ) = min{N, 2rΣ},
i.e., the dimension of the sum of any pair of spaces spanned by
signals in a given class.

V. DESIGNED MEASUREMENTS

We now consider the more challenging problem where the
measurement matrix Φ is designed. In particular, we also want
to consider the following problem:

Determine the minimum number of designed measurements
needed to guarantee that

lim
σ 2 →0

− log Pe

log(1/σ2)
> d0 . (28)

Note once again that by setting d0 = 0 one obtains an
upper bound to the minimum number of measurements for
limσ 2 →0Pe = 0, thereby guaranteeing a phase transition in the
misclassification probability; and by setting d0 > 0 one obtains
an upper bound to the minimum number of measurements for
limσ 2 →0 − logPe

log(1/σ 2 ) > d0 , thereby guaranteeing a certain decay
in the misclassification probability.

We will consider separately the case of two classes and the
multiple classes scenario.

A. Two Classes

The following propositions provide an upper bound to the
minimum number of measurements required to drive the mis-
classification probability to zero at a rate higher than a given
value d0 .

Proposition 3: Consider the measurement model in (1)
where the assumptions A.1–A.4 in Section II are verified and
L = 2. Then, an upper bound on the minimum number of mea-
surements for

lim
σ 2 →0

Pe = 0 (29)

is

M = 1, (30)

and a possible measurement matrix that achieves (29) is obtained
by choosing Φ = φT , where φ ∈ RN ×1 is a vector in N1 or N2
that is not contained in the intersection N1 ∩N2 .

Proof: The proof of this proposition follows immediately
from the evaluation of the expansion exponent d of the upper
bound (16). Namely, when Φ = φT , where φ ∈ RN ×1 is a vec-
tor inN1 orN2 that is not contained in the intersectionN1 ∩N2 ,
we obtain d = (2r12 − r1 − r2)/4 = 1/4 > 0, which immedi-
ately implies (29). Note also that the existence of the vector φ
is guaranteed by the fact that, if rΣ < N , then R1 
= R2 and,
therefore, N1 
= N2 . �

Proposition 4: Consider the measurement model in (1)
where the assumptions A.1–A.4 in Section II are verified and
L = 2. Then, if d0 < R/4, an upper bound on the minimum
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number of measurements for

lim
σ 2 →0

− log Pe

log(1/σ2)
> d0 (31)

is

M = �4d0� + 1, (32)

and a measurement matrix Φ that achieves (31) is obtained by
choosing arbitrarily �4d0� + 1 out of the R rows of matrix

Φ0 = [v1 ,v2 , . . . ,vnΣ ,w1 ,w2 , . . . ,wnΣ ]T , (33)

where the sets [u1 , . . . ,un1 2 ] , [u1 , . . . ,un1 2 ,v1 , . . . ,vnΣ ],
[u1 , . . . ,un1 2 ,w1 , . . . ,wnΣ ], ui ,vi ,wi ∈ RN , constitute an
orthonormal basis of the linear spaces N12 , N1 and N2 , respec-
tively, and n12 = [N − 2rΣ ]+ , nΣ = min{N − rΣ , rΣ} =
R/2.

Proof: See Appendix B. �
We can observe that a designed kernel can offer marked im-

provements over a random one in the low-noise regime. Namely,
perfect separation of the measured signals can be achieved with
a single measurement – with a random measurement kernel
we require M ≥ rΣ + 1 – and the maximum decay exponent
d associated with the upper bound (16), i.e., R/4, is achieved
with M = R – with a random measurement kernel we require
M = min{N, 2rΣ} ≥ R.

We also observe that the kernel design embedded in Proposi-
tion 4 relates to previous results in the literature about mea-
surement kernel optimization for the 2-classes classification
problem. In particular, for the case of zero-mean classes, it
was shown in [37] that the measurement kernel minimizing the
Bhattacharyya bound of the misclassification probability for two
zero-mean classes is obtained via the eigenvalue decomposition
of the matrix Σ−1

1 Σ2 , where the covariance matrices Σ1 and
Σ2 are assumed to be full rank.

A generalization of this construction for the case when Σ1
and Σ2 are not invertible is presented in [38]. Such kernel design
leverages the generalized singular value decomposition (GSVD)
[47] of the pair of matrices (Σ1 ,Σ2) in order to minimize the
corresponding Bhattacharyya upper bound. In particular, it is
shown that the most discriminant measurements are those cor-
responding to generalized eigenvectors which lie in the intersec-
tions R1 ∩N2 or R2 ∩N1 . Then, on recalling that Ri = N⊥

i ,
we can note that the most discriminant measurements are picked
from a subspace contained in N1(N2) that is also orthogonal
to (and therefore, not contained in) N2(N1). In this sense, the
construction described by Proposition 4 is similar to this result.
However, there are significant differences between our results
and the results in [38]. First, our analysis applies to a sensing
scenario in lieu of feature extraction; so the measurements in
(1) are contaminated by noise whereas the measurements in
[38] are not. More importantly, the analysis in [38] does not
offer an explicit characterization of the number of measure-
ments needed to guarantee a given misclassification probability
performance. On the other hand, our analysis offers sufficient
conditions for reliable classification in the low-noise regime
and a direct connection between the number of measurements
taken on the source signal and the low-noise behavior of the

corresponding upper bound to the misclassification probability
via the exponent d.

B. Multiple Classes

The following propositions offer an upper bound to the min-
imum number of measurements required to drive the misclas-
sification probability to zero, and a procedure to determine an
upper bound to the minimum number of measurements required
to guarantee that the misclassification probability decays to zero
with an exponent higher than a given value d0 .

Proposition 5: Consider the measurement model in (1) and
the assumptions A.1–A.4 in Section II. Then, an upper bound
on the minimum number of measurements for

lim
σ 2 →0

Pe = 0 (34)

is

M = min{L − 1, rΣ + 1}. (35)

Moreover, a measurement matrix Φ that achieves (34) is ob-
tained as follows: let Ni be a matrix that contains a basis for
the null space Ni . Then, the M = min{L − 1, rΣ + 1} rows of
the matrix Φ are obtained by randomly picking one row from
each of the matrices NT

π (1) , . . . ,N
T
π (min{L−1,rΣ +1}) , where π(·)

is any permutation function of the integers 1, . . . , L.
Proof: See Appendix C. �
Note that the characterization embodied in Proposition 5 is

obtained by taking the measurement matrix to belong to a certain
restricted subset of RM ×N rather than the entire RM ×N .

The choice of such subset of RM ×N is inspired by our
characterization pertaining to the two-class problem embod-
ied in Propositions 3 and 4. Namely, let Ni ∈ RN ×(N −rΣ ) be
a matrix that contains a basis for the null space Ni and let
N = [N1 , . . . ,NL ] be a matrix that contains the concatenation
of the bases for all the null spaces N1 , . . . ,NL . Then, we take
the measurement matrix to consist of M rows of NT rather than
M arbitrary vectors from RN .

Note also that the result embodied in Proposition 5 – which
is shown to be very sharp both with synthetic data and real
data simulations – provides a fundamental insight in the role of
measurement design in comparison with random measurement
kernels in the discrimination of subspaces. In particular, we
can clearly identify two operational regimes that depend on the
relationship between two fundamental geometrical parameters
describing the source: the number of classes and the dimension
of the linear subspaces associated to the different classes.

� When, the number of classes in the source is lower than or
equal to the dimension of the spaces spanned by signals in
each class, the designed measurement matrix is such that
we take one measurement from L − 1 out of the L null
spaces Ni , i = 1, . . . , L. In this sense, the construction
that achieves the upper bound implements a one-vs-all
approach, where each measurement is able to perfectly
detect the presence of signals coming from a specific
class against signals from all the remaining classes. Note
that in this regime, proper design of the measurement
kernel can provide a dramatic performance advantage
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with respect to random measurements, as it can guarantee
that the misclassification probability approaches zero, in
the low-noise regime, even when random measurements
yield an error floor.

� On the other hand, when the number of classes is larger than
the dimension spanned by signals in a given class, (more
precisely, when L > rΣ + 1), then rΣ + 1 measurements
are sufficient to drive to zero the misclassification proba-
bility in the low-noise regime. In this case, the designed
measurement kernel obtains the same performance of ran-
dom measurements in terms of phase transition of upper
bounds to the misclassification probability. However, prop-
erly designing the measurement kernel can have an impact
on the value of the error floor or the speed of the decay of
the misclassification probability with 1/σ2 .

Proposition 6: Consider the measurement model in (1) and
the assumptions A.1–A.4 in Section II. Then, if d0 < R/4, an
upper bound on the minimum number of measurements for

lim
σ 2 →0

− log Pe

log(1/σ2)
> d0 (36)

is given by the solution to the integer programming problem

minimize
(M 1 ,...,ML )∈NL

M =
L∑

i=1

Mi

subject to: Mi ≤ N − rΣ ,∀i

f(M,Mi,Mj ) − 2(M − 2rΣ ) > d0 ,∀i 
= j

f(M,Mi,Mj ) − 2(Mi − rΣ ) > d0 ,∀i 
= j

f(M,Mi,Mj ) − 2(Mj − rΣ ) > d0 ,∀i 
= j

f(M,Mi,Mj ) > d0 , ∀i 
= j,
(37)

where f(M,Mi,Mj ) = max{M − rΣ ,Mi} + max{M −
rΣ ,Mj}.

Proof: Note that R/4 is the maximum decay exponent d
associated with the upper bound in (16), and note also that, if
d0 < R/4, a sufficient condition for (36) is given by d(i, j) >
d0 , for all (i, j), i 
= j. Then, the proposed upper bound follows
from taking the measurement matrix to belong to the same
restricted subset considered in Proposition 5. In this case, on
denoting by Mi the number of measurements in Φ that are also
columns of Ni , so that M =

∑L
i=1 Mi , we can write9

d(i, j) = f(M,Mi,Mj )

− 2 max{M − 2rΣ ,Mi − rΣ ,Mj − rΣ , 0}, (38)

which leads to the formulation of the problem (37). �
Note that, although a general closed-form solution to

the optimization problem in (37) is difficult to provide, our
formulation allows to drastically reduce the number of (integer)
optimization variables, which is now equal to the number of
classes L. Moreover, the integer programming problem in (37)
involves a linear objective function and constraints that are

9The details are provided in Appendix C.

expressed via linear functions combined via the max function,
thus allowing the use of efficient numerical methods for its
solution.

It is also important to emphasize the differences between the
result in Proposition 5 and other results in the literature. The
result in (35) is reminiscent of a result associated to multiclass
LDA, that involves the extraction of L − 1 linear features
from the data using the LDA rule [15]. However, such LDA
construction does not provide conditions on the number of
measurements needed for reliable classification. Moreover, in
contrast with the analysis here proposed, LDA approaches are
usually applied to the nonzero-mean classes scenario rather
than the zero-mean case considered here. In fact, LDA methods
are shown to be ineffective in the case of zero-mean classes, due
to the measurement kernel construction approach that is based
on the computation of the GSVD of inter-class and intra-class
scatter matrices, where the first one is a function of the
class means.

A modified version of LDA which can cope also with zero-
mean classes has been presented in [38]. Such method is based
on recasting a multiclass classification problem into a binary
pattern classification problem. However, in this case the mea-
surement kernel Φ is not determined on the basis of the sta-
tistical description of the classes, but rather it is derived via a
non-parametric approach, which involves the computation of
scatter matrices from labeled training samples. In particular, on
denoting by Σb the between-class scatter matrix and by Σw the
within-class scatter matrix, measurements are designed in order
to maximize the objective function

J(Φ) = tr
(
(ΦΣwΦT )−1(ΦΣbΦT )

)
, (39)

leading to measurement designs that are associated with the gen-
eralized eigenvectors corresponding to the largest generalized
eigenvalues of (Σb ,Σw ). In addition, in this case, conditions on
number of measurements needed for reliable classification are
not available in general.

VI. NUMERICAL RESULTS

We now show how our theory aligns with practice, both for
synthetic data and real data associated with a video segmenta-
tion application and with a face recognition application. We also
show how our upper bound on the minimum number of mea-
surements required for the phase transition compares to those
associated with state-of-the-art measurement designs such as in-
formation discriminant analysis (IDA) methods [21] and meth-
ods based on the maximization of Shannon mutual information
and quadratic Rényi entropy [14].

A. Synthetic Data

We first consider experiments with synthetic data by concen-
trating on two examples that reflect the two regimes embodied
in Proposition 5. In the first example, the data is generated
by a mixture of L = 11 Gaussian distributions with dimension
N = 64, with probability pi = 1/11, for i = 1, . . . , 11. The in-
put covariance matrices have all rank rΣ = 14, and their images
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Fig. 1. Upper bound and true misclassification probability vs. 1/σ2 . N = 64,
L = 11, rΣ = 14. True misclassification probability with random measure-
ment kernels (dashed lines) and designed kernels (solid lines). Upper bound
to the misclassification probability with random measurement kernels (dashed
lines with circles) and designed kernels (solid lines with triangles).

are drawn uniformly at random from the Grassmann manifold
of 14-dimensional spaces in R64 .

Fig. 1 reports the upper bound to the misclassification prob-
ability and the true misclassification probability, respectively,
vs 1/σ2 both for random kernel designs and measurement
designs that obey the construction embodied in Proposition
5.10 The measurement kernels are also normalized such that
tr(ΦT Φ) ≤ M .

Note that theoretical results are aligned with experimental
results in the sense that both theory and practice suggest that the
low-noise phase transition occurs with M ≥ L − 1 = 10 for
designed kernels and M ≥ rΣ + 1 = 15 for random kernels.
This is observed from Fig. 1, suggesting that our analysis is
sharp.

In the second example, the data is drawn from a mixture
of L = 12 Gaussian distributions with dimension N = 64,
with probability pi = 1/12 for i = 1, . . . , 12. The input co-
variance matrices have all rank rΣ = 9, and their images are
drawn uniformly at random from the Grassmann manifold of
9-dimensional spaces in R64 .

Fig. 2 showcases the upper bound to the misclassification
probability and the true misclassification probability, respec-
tively, vs 1/σ2 both for random kernel designs and mea-
surement designs that obey the construction embodied in
Proposition 5. It is evident – as predicted by Proposition 5 – that
both random and designed kernels achieve a low-noise phase
transition in the upper bound to the misclassification probabil-
ity with M ≥ rΣ + 1 = 10. However, designed kernels offer
a lower misclassification probability than random kernels for
finite noise levels. It is also evident by comparing the true mis-

10Note that the construction embodied in Proposition 5 is shown to achieve
the low-noise phase transition with a number of measurements equal to (35).

Fig. 2. Upper bound and true misclassification probability vs. 1/σ2 . N = 64,
L = 12, rΣ = 9. True misclassification probability with random measurement
kernels (dashed lines) and designed kernels (solid lines). Upper bound to the
misclassification probability with random measurement kernels (dashed lines
with circles) and designed kernels (solid lines with triangles).

TABLE I
MINIMUM NUMBER OF MEASUREMENTS M REQUIRED TO ACHIEVE THE

LOW-NOISE PHASE TRANSITION OF THE MISCLASSIFICATION PROBABILITY

classification probability values and the upper bounds in Fig. 2
that our analysis is sharp.

Our upper bound to the minimum number of measurements
required for the phase transition of the misclassification prob-
ability relied on a specific construction. It is therefore rele-
vant to examine how such a bound compares to the number of
measurements required for the phase transition associated with
state-of-the-art kernel designs. To that end, we consider three
state-of-the-art measurement kernel designs applied to the two
previous examples: these are the IDA method in [21] and meth-
ods based on the maximization of Shannon mutual information
(MI) and Rényi quadratic entropy [14], respectively.

Table I reports the minimum number of measurements needed
by such methods in order to drive to zero the numerically sim-
ulated misclassification probability, as well as the theoretical
predictions derived in the previous sections for both random and
designed kernel. It is interesting to see that the bound embodied
in Proposition 5 predicts very well the behavior of state-of-the-
art kernel design methods. This means that our bound can be
used to gauge a suitable number of measurements to be used in
state-of-the-art kernel design approaches.

B. Real Data: Motion Segmentation

We now consider experiments with real data by concentrating
on a motion segmentation application, where the goal is to
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TABLE II
EIGENVALUES OF THE INPUT COVARIANCE MATRICES OBTAINED FROM

TRAINING SAMPLES FROM THE VIDEO “1RT2RCR” VIA THE ML ESTIMATOR.
LARGEST FIVE EIGENVALUES FOR EACH CLASS

segment a video in multiple rigidly moving objects. Such
application involves the extraction of feature points from the
video whose position is tracked over different frames. Then,
motion segmentation aims at partitioning pixels extracted from
different frames into spatiotemporal regions. In particular,
feature point are clustered into different groups, each corre-
sponding to a given motion [46]. The data to be processed by
the clustering algorithm is obtained by stacking the coordinate
values associated to a given feature point corresponding to
different frames. For a detailed description of how clustering
data are obtained from feature points coordinates, please refer
to [46].

We use the Hopkins 155 motion segmentation dataset [48],
which consists of video sequences with two or three motions in
each video. Each video of two motions consists of 30 frames,
whereas each video of three motions consists of 29 frames. In
particular the results reported in this section are obtained by
considering the video with three motions in the dataset having
the largest number of samples for each motion/class,11 namely,
142 samples for class 1, 114 samples for class 2 and 236 samples
for class 3.

We consider in particular a supervised learning approach,
in which 50% or 30% of the vectors corresponding to features
points are manually labeled, whereas the remaining points
are classified automatically, starting from the observation
of noisy measurements, where the noise variance is set to
σ2 = −60 dB. The manually labeled points represent labeled
training samples from which the input signal parameters pi,Σi ,
i = 1, . . . , L are inferred using maximum likelihood (ML)
estimators.

As described in [46], [49], [50], features points trajectories
belonging to a given motion can be shown to lie on approx-
imately three dimensional affine spaces or four dimensional
linear spaces. In fact, the covariance matrices obtained from the
training samples present only two dominant principal compo-
nents, as demonstrated by the magnitudes of eigenvalues of the
input covariance matrices reported in Table II. Then, based on
the results presented in Propositions 1 and 5, we can expect that
at least 3 random measurements and 2 designed measurements
are needed for reliable classification, respectively.

Fig. 3(a) and (b) report the misclassification probability vs the
number of measurements for random kernels, kernels designed
via the construction embodied in Proposition 5, and the designs
in [14], [21]. In particular, in view of the fact that the analysis is
conducted for the scenario where the MAP classifier is provided
with the true model parameters, our results consider both the

11Denoted as “1RT2RCR” in the dataset.

Fig. 3. Misclassification probability vs. M . Hopkins 155, 1RT2RCR dataset.
50% or 30% of the samples are manually labeled and used for training. (a) 50%
training samples. (b) 30% training samples.

scenario where a significant number of training samples (50%) is
used to learn the underlying models and a scenario where a lower
number of training samples (30%) is used to derive the models
in order to assess the robustness of the theoretical insights agains
model mismatch. Note that now the misclassification probability
does not exhibit a perfect phase transition in view of the fact
that the data covariance matrices are not low-rank anymore
but rather approximately low-rank, and due to the mismatch
between the model inferred from training data and the actual test
data. However, one can still conclude that our theoretical results
align with practical ones, since they can unveil the number of
measurements required for the misclassification probability to
be below a certain low value.

In particular, Table III reports the minimum number of
measurements required by the random and designed kernels
to achieve a misclassification probability below 15%, 10%
and 5%, for both cases when 50% and 30% of the vectors in
the dataset are used as training samples. It can be observed
that our characterization of the upper bound to the number
of measurements required for the phase transition matches
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TABLE III
MINIMUM NUMBER OF MEASUREMENTS M REQUIRED TO ACHIEVE A GIVEN

VALUE OF THE MISCLASSIFICATION PROBABILITY. HOPKINS 155 DATASET

well the number of measurements required to achieve a low
misclassification probability in IDA and methods based on
the maximization of Shannon mutual information and Rényi
quadratic entropy, in both scenarios where 50% and 30% of the
vectors in the dataset are used as training samples.

C. Real Data: Face Recognition

We now consider a different real-word, compressive classifi-
cation application. In particular, we consider a face recognition
problem where the orientation of faces associated to different
individuals relative to the camera remains fixed, but the illu-
mination conditions vary. On assuming that faces are approx-
imately convex and that reflect light according to Lambert’s
law, it is possible to show that the set of images of a same in-
dividual under different illuminations lies approximately on a
9-dimensional linear subspace [51]. Therefore, face recognition
from linear measurements extracted from such images can be
performed via subspace classification.

In this section, we show classification results using cropped
images from the Extended Yale Face Database B [52]. In partic-
ular, we consider 16 × 16 images of L = 5 different individuals
from the 38 available in the dataset. For each individual, 63 im-
ages corresponding to 63 different illumination conditions are
considered.

As for the video motion segmentation application described
in Section VI-B, classification is performed via the MAP clas-
sifier (2), where we assume Gaussian distribution for each class
and the parameters pi,Σi are obtained via ML estimators by
using 50% or 30% of the available images as training samples.
Moreover, we set the noise variance to σ2 = −60 dB.

In contrast with the case of the Hopkins 155 dataset, samples
in the Extended Yale Face Database B are described via an ap-
proximately low-rank model which is characterized by a slower
decay of the eigenvalues of the corresponding covariance ma-
trices, as reported in Fig. 4. In this sense, experimental results
for this dataset represent a way to test the predictions provided
by our analysis also for a scenario which departs further from
the assumption of signals lying on a union of low-dimensional
subspaces.

Fig. 5(a) and (b) report the misclassification probability vs
the number of measurements for random kernels, kernels de-
signed via the construction embodied in Proposition 5, and the

Fig. 4. Largest 20 eigenvalues of the covariance matrices associated to the first
L = 5 classes in the Extended Yale Face Database B. The covariance matrices
are obtained from training samples via the ML estimator.

Fig. 5. Misclassification probability vs. M . Extended Yale Face Database B.
50% or 30% of the samples are manually labeled and used for training. (a) 50%
training samples. (b) 30% training samples.

designs in [14], [21]. Also in this case, motivated by the fact
that the analysis is conducted for the scenario where the MAP
classifier is provided with the true model parameters, our results
consider both the scenario where a significant number of train-
ing samples (50%) is used to learn the underlying models and
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TABLE IV
MINIMUM NUMBER OF MEASUREMENTS M REQUIRED TO ACHIEVE

Pe < 25%. EXTENDED YALE FACE DATABASE B, L = 5

a scenario where a lower number of training samples (30%) is
used to derive the models in order to assess the robustness of the
theoretical insights agains model mismatch. We note that in this
case, due to the slow eigenvalue decay reported in Fig. 4, the
measurement design described in Section V-B does not provide
state-of-the-art classification results, as classification based on
measurements extracted via the methods in [14], [21] guarantee
lower misclassification probabilities.

On the other hand, it is possible to observe that the theo-
retical results in Proposition 1 and Proposition 5 indeed cap-
ture the actual behavior of classification with state-of-the-art
measurement design. In fact, the upper bounds (25) (35) ap-
plied to the face recognition scenario under exam predicts that
M = rΣ + 1 = 10 random measurements or M = L − 1 = 4
designed measurements are required for reliable classification.
Then, based on numerical simulations of classification with non-
compressive measurements, we set the baseline misclassifica-
tion probability for reliable classification at 25%. We observe
that the predictions offered by Proposition 1 and Proposition 5
are in line with the trends shown in Table IV, which reports the
minimum number of measurements required by random and de-
signed kernels to achieve a misclassification probability below
25% for both cases when 50% and 30% of the vectors in the
dataset are used as training samples.

VII. DISCUSSION: IMPACT OF MODEL MISMATCH

It is also instructive to discuss the impact of model mismatch
on the classification performance of the MAP classifier (2) in
practical application scenarios.

In fact, the analysis carried out in the previous sections as-
sumed that the MAP classifier is given the true model parame-
ters. On the other hand, in practical applications, the conditional
pdfs p(y|C = i) and the prior probabilities pi are usually learnt
from training data, thus implying the introduction of mismatch
between the model adopted by the classifier and the actual sta-
tistical description of test data.

A proper derivation of the number of measurements re-
quired for reliable classification in practical application sce-
narios would therefore require a more in-depth analysis that
takes into account the model mismatch induced by the learning
process. In particular, it would require: i) expressions that articu-
late about the behaviour of the misclassification probability as a
function of the true underlying model and the learnt model; ii) a
further analysis that determines how compressive random or de-
signed measurements influence the phase transition associated
with the misclassification probability.

A preliminary analysis of the impact of model mismatch in
classification problems has been conducted in [53], [54]. These

works consider the classification of signals drawn from Gaus-
sian distributions with mismatched classifiers. In particular, they
provide sufficient conditions on the relationship between the true
model parameters and the learnt model parameters that guaran-
tee reliable classification in the low-noise regime. However, the
results in [53], [54] are derived for a non-compressive classifi-
cation scenario, therefore they cannot explain how compressive
random or designed measurements influence the misclassifica-
tion probability.

A generalization of our analysis on the minimum number of
measurements sufficient for reliable classification to capture the
impact of model mismatch does not seem immediate. However,
our simulation results associated with real-data subspace clas-
sification problems in Sections VI-B and VI-C suggest that our
theory can still provide meaningful insights both in the situa-
tion where we use a significant number of training samples (as
expected because we can learn an accurate data model) and in
the situation where we use a lower number of training samples.
This is despite the fact that the learning process produces dis-
tributions that do not correspond exactly to the true ones and
also the modelling process assumes a Gaussian distribution that
does not necessarily correspond to the true ones pertaining to
the motion segmentation or face classification examples.

We conjecture that the reasons for this phenomenon are re-
lated to the fact that reliable classification is achieved when
compressive measurements are able to discriminate among lin-
ear subspaces spanned by signals in the different classes, irre-
spectively to the particular shape of the marginal distributions
that are supported on such subspaces.

In this sense, motion segmentation is more immune to model
mismatch than face recognition because, as it is implied by the
quick decay of the eigenvalues of the covariance matrices, the
majority of the energy of the samples in the motion segmenta-
tion dataset is concentrated in linear subspaces of dimension 2
or 3. Then, even a reduced number of training samples is suffi-
cient to identify the dominating principal components for each
class. On the other hand, when considering face recognition, the
energy associated to samples drawn from a given class is only
approximately concentrated on a low-dimensional subspace. In
this case, training sets with increased cardinality can guarantee
a refined estimation of the principal components associated to
each class.

VIII. CONCLUSION

In this paper we have offered a characterization of the number
of measurements required to reliably classify linear subspaces
modeled via low-rank, zero-mean Gaussian distributions. In par-
ticular, we have provided upper bounds to the number of mea-
surements required to drive the misclassification probability to
zero both for random measurements as well as designed mea-
surements for two-class classification problems and more chal-
lenging multi-class problems. Our characterization suggests that
the minimum number of measurements required for phase tran-
sition may be achieved by either a one-vs-all approach, or by
randomly spreading measurements over the Grassmann man-
ifold, depending on the relationship between the number of
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classes and the dimension of the spaces spanned by signals in
each class.

One of the hallmarks of our characterizations relates to
its ability to predict the minimum number of measurements
required to achieve a low-misclassification probability in
state-of-the-art measurement design methods. Therefore, it
offers engineers a concrete tool to gauge the number of
measurements for reliable classification, thereby bypassing the
need for time-consuming simulations.

APPENDIX A
PROOF OF LEMMA 1

Consider the eigenvalue decomposition of the fol-
lowing matrices Si = ΦΣiΦT , Sj = ΦΣjΦT and Sij =
Φ (Σi + Σj )ΦT , which yields

Si = UiΛiUT
i (40)

Sj = UjΛjUT
j (41)

Sij = UijΛijUT
ij . (42)

where Ui ,Uj ,Uij ∈ RM ×M are orthogonal matrices;
the diagonal matrices Λi = diag(λi1 , · · · , λir i

, 0, · · · , 0),
Λj = diag(λj1 , · · · , λjr j

, 0, · · · , 0) and Λij =
diag(λij 1

, · · · , λij r i j
, 0, · · · , 0) contain the eigenvalues

of Si ,Sj and Sij , respectively. Note that the number of
strictly positive eigenvalues of Si ,Sj and Sij , i.e., the number
of strictly positive diagonal entries in Λi ,Λj and Λij , is
equal to ri = rank(Si) = rank(ΦΣiΦT ), rj = rank(Sj ) =
rank(ΦΣjΦT ) and rij = rank(Sij ) = rank(Φ(Σi + Σj )ΦT ),
respectively.

Then, we recall the expression of the upper bound to the
misclassification probability

P̄e =
L∑

i=1

L∑

j=1
j 
=i

√
pipj e

−Ki j , (43)

and we can re-express Kij as

Kij =
1
4

log

(
det

(
Φ(Σ i +Σ j )ΦT +2σ 2 I

2

))2

det (ΦΣiΦT + σ2I) det (ΦΣjΦT + σ2I)

=
1
4

log

(
det

(
S i j +2σ 2 I

2

))2

det (Si + σ2I) det (Sj + σ2I)

=
1
4

log

[
2−2ri j

(
σ2)ri +rj −2ri j

·
∏ri j

k=1

(
λij k

+ 2σ2
)2

∏ri

k=1 (λik
+ σ2)

∏rj

k=1 (λjk
+ σ2)

]
, (44)

thus leading to

P̄e =
L∑

i=1

L∑

j=1
j 
=i

√
pipj 2ri j /2(σ2)(2ri j −ri −rj )/4

·

⎡

⎣

√∏ri

k=1 (λik
+ σ2)

∏rj

k=1 (λjk
+ σ2)

∏ri j

k=1

(
λij k

+ 2σ2
)2

⎤

⎦

1/2

. (45)

Then, on letting σ2 → 0, we note that the term in square brackets
converges to the positive constant [

√
vi vj

vi j
]1/2 , moreover, the de-

cay of P̄e as a function of σ2 is dominated by the terms in the sum
corresponding to the minimum value of the exponent d(i, j) =
(2rij − ri − rj )/4, thus leading to the result in (18)–(20).

APPENDIX B PROOF OF PROPOSITION 4

The derivation of the upper bound on the number of measure-
ments needed to verify (31) is based on the analysis of the upper
bound P̄e in (16).

Recall that the low-noise expansion exponent d of the up-
per bound to the misclassification probability for the classi-
fication problem of two, zero-mean classes is given by d =
(2r12 − r1 − r2) /4.

We first show that, for all possible choices of Φ, it holds
d ≤ R/4 so that there is not any M such that

lim
σ 2 →0

− logP̄e

log(1/σ2)
> d0 (46)

for d0 ≥ R/4.
Then, we consider the case d0 < R/4 and we derive the

minimum number of measurements M needed to verify (46),
which represents an upper bound on the minimum number of
measurements needed to verify (31).

A. Case Where d0 ≥ R/4

Let rΣ1 2 = rank(Σ1 + Σ2). In the following, we show that,
for all possible choices of Φ, it holds

d = (2r12 − r1 − r2)/4 ≤ (2rΣ1 2 − 2rΣ )/4 = R/4, (47)

or, instead,

rΣ1 2 − r12 ≥ rΣ − r1 ∧ rΣ1 2 − r12 ≥ rΣ − r2 , (48)

since (48) implies (47). Consider the generalized eigenvalue
decomposition of the positive semidefinite matrices Σ1 and Σ2
given by [47, Theorem 8.7.1], namely,

Σ1 = X−T D1X−1 = X−T diag (d11 , . . . , d1N
)X−1 , (49)

with d1i
≥ 0, i = 1, . . . , N and

Σ2 = X−T D2X−1 = X−T diag (d21 , . . . , d2N
)X−1 , (50)

with d2i
≥ 0, i = 1, . . . , N , where X is a non-singular matrix.

Note that we have

r12 = rank
(
ΦX−T (D1 + D2)X−1Φ−T

)
(51)

= rank
(
Φ̃ (D1 + D2)

1
2

)
(52)
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and likewise,

r1 = rank
(
ΦX−T D1X−1Φ−T

)
= rank

(
Φ̃D

1
2
1

)
(53)

and

r2 = rank
(
ΦX−T D2X−1Φ−T

)
= rank

(
Φ̃D

1
2
2

)
, (54)

where Φ̃ = ΦX−T .
On the other hand, the ranks of the input covariance matrices

can be expressed as

rΣ1 2 = rank
(
X−T (D1 + D2)X−1) (55)

= rank
(
X−T (D1 + D2)

1
2

)
(56)

= rank
(
(D1 + D2)

1
2

)
(57)

and

rΣ = rank
(
(D1)

1
2

)
= rank

(
(D2)

1
2

)
. (58)

Let us now define the cardinalities of the following sets:

kc = |{i : d1i
> 0 ∧ d2i

> 0}| (59)

k1 = |{i : d1i
> 0}| (60)

k2 = |{i : d2i
> 0}| . (61)

Then, it becomes evident that, rΣ1 2 − rΣ = k1 + k2 − kc −
k1 = k2 − kc = k1 − kc , and, in view of the possible de-
pendence between columns of Φ̃, r12 − r1 ≤ k2 − kc and
r12 − r2 ≤ k1 − kc , thus concluding the proof of (47).

B. Case Where d0 < R/4

We start by describing an explicit measurement matrix con-
struction that achieves an expansion exponent of the upper
bound to the misclassification probability strictly greater than
d0 with M = �4d0� + 1 measurements. After that, we prove
that M ≤ �4d0� implies d ≤ d0 for all possible choices of Φ.

1) Achievability: Consider the matrix

Φ0 = [v1 ,v2 , . . . ,vnΣ ,w1 ,w2 , . . . ,wnΣ ]T , (62)

where the sets [u1 , . . . ,un1 2 ], [u1 , . . . ,un1 2 ,v1 , . . . ,vnΣ ],
[u1 , . . . ,un1 2 ,w1 , . . . ,wnΣ ], ui ,vi ,wi ∈ RN , con-
stitute an orthonormal basis of the linear spaces
N12 = Null (Σ1)

⋂
Null (Σ2), N1 = Null (Σ1) and

N2 = Null (Σ2), respectively, and n12 = [N − 2rΣ ]+ ,
nΣ = min{N − rΣ , rΣ} = R/2.

Then, we can write

Φ0Σ1ΦT
0 =

[
0 0
0 Q

]
(63)

where

Q = [w1 , . . . ,wnΣ ]T Σ1 [w1 , . . . ,wnΣ ], (64)

so that we also have r1 = rank
(
Φ0Σ1ΦT

0
)

= rank (Q). Now,
note that the matrix Q is the Gram matrix of the set of vectors

qi = Σ
1
2
1 wi , i = 1, . . . , nΣ , and, therefore, r1 = rank (Q) =

nΣ if and only if the vectors qi , i = 1, . . . , nΣ , are linearly
independent.

Assume by contradiction that the vectors qi are linearly de-
pendent. Then, there exists a set of nΣ scalars αi (with αi 
= 0
for at least one index i) such that Σ

1
2
1

∑
i αiwi = 0. It is known

that
∑

i αiwi 
= 0 because wi are linearly independent by con-
struction. Therefore, the linearly dependence among the vectors
qi implies that

∑
i αiwi ∈ N1 , which is false since, by construc-

tion,
∑

i αiwi ∈ N2 and
∑

i αiwi /∈ N12 . Therefore, we can
establish that r1 = rank

(
Φ0Σ1ΦT

0
)

= rank (Q) = nΣ , and,
we can similarly establish that r2 = rank

(
Φ0Σ2ΦT

0
)

= nΣ

and r12 = rank
(
Φ0(Σi + Σj )ΦT

0
)

= 2nΣ = R.
Finally, we generate Φ by picking arbitrarily only M =

�4d0� + 1 among the R row vectors of the matrix Φ0 in (62). In
particular, we take M1 rows from the set [v1 , . . . ,vnΣ ] and M2
rows from the set [w1 , . . . ,wnΣ ], where M1 + M2 = �4d0� +
1, which is always possible as �4d0� + 1 ≤ R. Then, by fol-
lowing steps similar to the previous ones, it is possible to show
that r1 = rank

(
ΦΣ1ΦT

)
= M2 , r2 = rank

(
ΦΣ2ΦT

)
= M1

and r12 = rank
(
Φ(Σ1 + Σ2)ΦT

)
= M1 + M2 , thus implying

d = (�4d0� + 1)/4 > d0 .
2) Converse: Assume now M ≤ �4d0�. In this case, we can

show that, for all possible choices of Φ, it holds

d ≤ M/4 ≤ d0 . (65)

This upper bound follows from the solution to the following
integer-valued optimization problem12:

max
r1 ,r2 ,r1 2

(2r12 − r1 − r2) /4 (66)

subject to: r1 + r2 ≥ r12 , r1 ≤ M , r2 ≤ M , r12 ≤ M and
r1 , r2 , r12 ∈ Z+

0 .
The solution, which can be obtained by considering a lin-

ear programming relaxation along with a Branch and Bound
approach [55], is given by13:

r1 + r2 = r12 , r12 = M, (67)

d = (2r12 − r1 − r2) /4 = M/4. (68)

APPENDIX C
PROOF OF PROPOSITION 5

Let Ni ∈ RN ×(N −rΣ ) be a matrix that contains a basis for
the null space Ni and let N = [N1 , . . . ,NL ] be a matrix that
contains the concatenation of the bases for all the null spaces
N1 , . . . ,NL . Then, consider the measurement matrices Φ ∈
RM ×N that consist of M rows of NT . More precisely, such
matrices Φ are obtained by picking Mi rows from NT

i , so that∑L
i=1 Mi = M .14

A sufficient condition for (34) is represented by d > 0, where
d is the decay exponent associated to the misclassification

12Note that this problem represents a relaxation of the problem which aims
at maximizing d, as it incorporates only some of the constraints dictated by
the geometrical description of the scenario. For example, it does not take into
account the actual value of some parameters of the input description as rΣ and
rΣ 1 2 .

13The solution of the optimization problem is not unique. Nevertheless, the
maximum value achieved by the objective function is indeed unique.

14Throughout the proof, we assume M ≤ N , since the decay exponent d
associated to any matrix Φ is always smaller than or equal to the decay exponent
associated to the identity matrix IN , as it was shown in Appendix B-A.
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probability upper bound (16). Moreover, d > 0 if and only if
d(i, j) > 0 for all the pairs (i, j) with i 
= j.

We can now express the conditions d(i, j) > 0 in terms of
the values Mi as follows. On recalling Sylvester’s rank theorem
[56], which states

rank (AB) = rank (B) − dim(Im(B) ∩ Null(A)), (69)

we can write each term d(i, j) as

d(i, j) = (2rij − ri − rj ) /4 (70)

=
[
dim(Im(ΦT ) ∩Ni) + dim(Im(ΦT ) ∩Nj )

−2 dim(Im(ΦT ) ∩Nij )
]
/4. (71)

We first show that

dim(Im(ΦT ) ∩Ni) = max{M − rΣ ,Mi}. (72)

Notice that, since the images Ri are independently drawn
from a continuous pdf over the Grassmann manifold, any
min{N,L(N − rΣ )} columns of N are linearly independent
with probability 1. Then, by leveraging the expression of the
dimension of the intersection of two linear spaces, we can write

dim(Im(ΦT ) ∩Ni)= rank (Φ)+rank (Ni)−rank
[
ΦT Ni

]

=M+(N − rΣ )−rank
[
ΦT Ni

]
. (73)

Moreover,

rank
[
ΦT Ni

]
= rank

[
Φ̄T Ni

]
, (74)

where Φ̄T is obtained from ΦT by deleting the Mi columns
corresponding to vectors taken from the basis of the null space
Ni . Then, given that the columns of Φ̄T are picked from spaces
drawn at random from the Grassmann manifold, we can con-
clude that

rank
[
Φ̄T Ni

]
= min{N,M − Mi + N − rΣ}, (75)

and on replacing (75) into (73) we immediately obtain (72).
Consider now the last term in (71) and recall that, since the

linear spaces Ni are drawn independently at random from a
continuous pdf, then

dim(Nij ) = dim(Ni ∩Nj ) = max{N − 2rΣ , 0}, (76)

thus implying immediately that dim(Im(ΦT ) ∩Nij ) = 0 if
N ≤ 2rΣ . Therefore, we assume N > 2rΣ and we show that

dim
(
Im(ΦT ) ∩Nij

)
=max{M−2rΣ ,Mi−rΣ ,Mj −rΣ , 0}.

(77)

In order to do that, we first note that we can leverage the expres-
sion of the dimension of the intersection of two linear subspaces
to write

dim(Im
(
ΦT

)
∩Nij ) = M + (N − 2rΣ ) − rank

[
ΦT Nij

]
,

(78)
where the columns of Nij form a basis of the linear space Nij .
Let us also write Φ as

Φ =
[
Φ̃T ΦT

i ΦT
j

]T

, (79)

where the Mi columns of ΦT
i are vectors picked from a basis of

Ni , the Mj columns of ΦT
j are vectors picked from a basis ofNj

and the M − Mi − Mj columns of Φ̃T are vectors picked from
the bases of the remaining null spaces. Then, on leveraging again
the assumption that the linear spaces associated to the different
classes are picked independently at random from a continuous
distribution, we can write

rank
[
ΦT Nij

]
= min {N,M − Mi − Mj

+rank[ΦT
i ΦT

j Nij ]
}

. (80)

On the other hand, on introducing the notation rΦ i j N i j
=

rank[ΦT
i ΦT

j Nij ] we also have

rΦ i j N i j
= rank

[
ΦT

i Nij ΦT
j Nij

]

= dim
(
Im

[
ΦT

i Nij

])
+ dim

(
Im

[
ΦT

j Nij

])

− dim
(
Im

[
ΦT

i Nij

]
∩ Im

[
ΦT

j Nij

])

= min{N − rΣ ,Mi + N − 2rΣ}
+ min{N − rΣ ,Mj + N − 2rΣ} − (N − 2rΣ ).

In fact, dim(Im[ΦT
i Nij ]) = min{N − rΣ ,Mi + N − 2rΣ}

derives from the fact that the columns of ΦT
i and Nij are all

picked at random from the space Ni – which has dimension
N − rΣ . Moreover, we have used the fact

dim
(
Im

[
ΦT

i Nij

]
∩ Im

[
ΦT

j Nij

])
= N − 2rΣ , (81)

which follows from

Im(Nij ) ⊆ Im[ΦT
i Nij ] ∩ Im[ΦT

j Nij ] ⊆ Ni ∩Nj . (82)

Then, on using the symbol rΦN i j
= rank[ΦT Nij ], we have

rΦN i j
= min{N,M − Mi − Mj

+ min{N − rΣ ,Mi + N − 2rΣ}
+ min{N − rΣ ,Mj + N − 2rΣ} − (N − 2rΣ )}

and, therefore,

dim(Im(ΦT ) ∩Nij ) = max{M − 2rΣ ,Mi + Mj

+ min{N − rΣ ,Mi + N − 2rΣ}
+ min{N − rΣ ,Mj + N − 2rΣ}
− (N − 2rΣ )}. (83)

Finally, it is possible to show that (83) is equivalent to (77)
by considering separately the cases for which Mi � rΣ and
Mj � rΣ .

Therefore, by using (71), (72) and (77), we can write the
condition d(i, j) > 0 as the set of equivalent conditions

f(M,Mi,Mj ) − 2(M − 2rΣ ) > 0 (84)

f(M,Mi,Mj ) − 2(Mi − rΣ ) > 0 (85)

f(M,Mi,Mj ) − 2(Mj − rΣ ) > 0 (86)

f(M,Mi,Mj ) > 0, (87)
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where f(M,Mi,Mj ) = max{M − rΣ ,Mi} + max{M −
rΣ ,Mj}. Then, the upper bound in (35) is obtained as the
solution of the integer optimization problem that aims at
minimizing M =

∑L
i=1 Mi subject to the constraints (84)-(87)

and 0 ≤ Mi ≤ N − rΣ .
In the remainder of this appendix, we will show that the

solution of such minimization problem is given by M =
min{L − 1, rΣ + 1}, by considering separately two cases. In
particular, when L − 1 ≤ rΣ , we can show that the optimal so-
lution is given by M =

∑L
i=1 Mi = L − 1. We first observe

that such value represents a feasible solution: in fact, by picking
only 1 measurement from L − 1 out of L null spaces, e.g., by
choosing M1 = · · · = ML−1 = 1 and ML = 0, we can imme-
diately prove that all the constraints are verified. Then, we also
observe that any solutions for which M < L − 1 is not feasi-
ble: in fact, if M < L − 1 there exist at least two indexes k
and � such that Mk = M� = 0, and therefore at least one of the
constraints (87) is not verified.

Consider now the case L − 1 > rΣ . In this case the optimal
solution of the minimization problem yields M = rΣ + 1. In a
similar way to the previous case, we start by observing that M =
rΣ + 1 is a feasible solution, which can be achieved by picking 1
measurement from rΣ + 1 different null space, e.g., by picking
M1 = · · · = MrΣ +1 = 1 and MrΣ +2 = · · · = ML = 0. Also
in this case it is straightforward to prove that all the constraints
are verified. Moreover, it is possible to observe that there is not
any feasible solution such that M < rΣ + 1, as rΣ < L − 1
implies that there exist at least two indexes k and � such that
Mk = M� = 0, and, therefore, at least one of the constraints
(87) is not verified.
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