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A B S T R A C T

Nitrogen-doped titania (N��TiO2) thin films were synthesized using atmospheric-pressure chemical
vapor deposition (APCVD) using ammonia, tert-butylamine or benzylamine as the nitrogen source. The
influence of these precursors on the structural, morphological and optical absorption properties of the
films was studied using X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy
(SEM) and UV/Vis spectroscopy. The chemical state and location of the nitrogen species in the films was
investigated using X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of films with
similar structural properties was evaluated during degradation of stearic acid under UVA and visible light
illumination. A previous study established a potential photosensitization mechanism involving surface N
groups with binding energy of �400 eV, which would result in extrinsic enhanced UV activity of the
N��TiO2 films. Here, an empirical approach was adopted in order to establish correlation between
structural features, nitrogen content and photocatalytic properties of these films. Within the thickness
range considered, the photocatalytic activities of the undoped TiO2 films were consistent with their
diffraction features (peak intensities and sharpness). Nevertheless, the activities of the N��TiO2 films did
not follow the same trend but it was consistent with their nitrogen content. Further evidence is provided
on the participation of nitrogen species on the enhanced UV activity of N��TiO2 films and the impact of
surface N��O groups such as N��O��Ti��O (or O��N��Ti��O) and bulk substitutional nitrogen groups is
discussed. Discussion is also provided on the apparent visible light activity of the N��TiO2 films.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nitrogen-doped titania (N��TiO2) materials have become
archetypical of visible-light active photocatalysts [1–6], although
the origin of their photocatalytic activity is still a matter of debate.
This is largely due to the ambiguous assignment of N species based
on X-ray photoelectron spectroscopy (XPS) studies [1,2,7].
Nevertheless, general consensus has assigned two main positions
for nitrogen in the TiO2 lattice, namely as substitutional (N3–,
replacing oxygen) and interstitial (N0, N . . . O groups with lattice
oxygen) species with binding energies of ca. 396 and 400 eV,
respectively [8,9]. These groups will be henceforth referred to as N
(s) and N(i), respectively, in this work. Unfortunately, a wide range
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of N-containing species such as NOx–, NHx, etc. are also expected at
binding energies around 400 eV [8,10,11] and these may influence
on optical absorption and photocatalytic activity of the films.

The incorporation of nitrogen in TiO2 typically results in the red
shift of the absorption onset and, often, additional features in the
absorption spectrum of N��TiO2 films. This has been widely
explained on the basis of localized N 2p midgap energy states
above the upper O 2p valence band in anatase TiO2 [3,12]. It has
been calculated that N(s) and N(i) species would introduce
localized states respectively at 0.14 eV and 0.73 eV above the
valence band of TiO2 [10]. Unfortunately, the corresponding shift in
optical absorption has not been unambiguously correlated with
the N content in these materials.

Further complications arise when considering the potential role
of oxygen vacancies in the visible light activity of N��TiO2

materials [2]. The incorporation of N3– groups in the TiO2 lattice
is expected to result in the formation of oxygen vacancies [10].
Some authors have associated the activity of N��TiO2 materials
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with an optimum load of defect sites in the form of TiRN triple
bonds [13]. It has also been shown that oxygen vacancies may
induce optical absorption above 500 nm [14]. Nevertheless, recent
electron paramagnetic resonance (EPR) studies have shown an
increase in the rate of formation of photogenerated charges in
N��TiO2 upon the synergistic effect of visible (around 400 nm) and
near-infrared light [15]. The authors proposed a mechanism
involving intra band gap NOx– states located just above the valence
band of TiO2. In this double excitation process, the visible light
component would promote electrons from the NOx– states into the
conduction band whilst NIR frequencies would excite electrons
from the valence band to the NOx– centers. This mechanism thus
requires the presence of N species with binding energies at 400 eV
(N(i)).

It is interesting to note that visible light activity has also been
observed in N � modified, rather than doped, TiO2materials. Nosaka
et al. [16] reported the deactivation of N��TiO2 materials during
photo-induced oxidation of 2-propanol in the visible range. These
authors attributed the decrease in activity as due to either the
presence of surface sensitizing by-products or the release of
nitrogen from the TiO2 lattice, as confirmed by a concomitant
decrease of surface N(s) groups (396.5 eV). In a previous work [17],
we demonstrated the sensitization of N��TiO2 films by N(i) species
under UVA illumination. It was shown that the initially enhanced
UV light activity dropped abruptly alongside an important
weakening of the binding energy peak at 400 eV. The apparent
enhanced activity was attributed to a sensitization mechanism,
involving surface NHx species. Similar sensitization reactions have
been described, for instance, during NO reduction with participa-
tion of NH2 donor levels in adsorbed NH3 on TiO2 [18]. The direct
electron transfer from the adsorbed molecule to the conduction/
valence band of the semiconductor results in a red shift of the
effective wavelength of the photocatalyst.

This work further investigated the influence of N species in the
photocatalytic properties of N��TiO2 thin films deposited using
different N precursors, namely tert-butylamine, benzylamine and
ammonia. The use of these precursors was intended to create
different synthesis environments. As a rule of thumb, oxygen-rich
conditions, such as those used in wet processes (sol-gel, etc.)
induced the formation of interstitial N(i) and NOx species, whilst
oxygen-deficient (reducing) conditions would favor the
Table 1
Synthesis conditions and properties of N��TiO2 films. Titanium tetrachloride, TiCl4 (6.7 �
oxygen precursors, respectively. Tert-butylamine (TBA), benzylamine (BA) or ammonia w
were as indicated. The corresponding photocatalytic activities are given as formal quan
degraded per incident photon. The N concentrations in the films were estimated from

Sample # N Precursor N Mass Flow/10�4

(g min�1)
Bulk N species (at%) 

N(i) N(s)

Ti1 – – – – 

Ti2 – – – – 

NTi1 NH3 4040 1.69 7.75
NTi2 TBA 59.40 0.94 4.43
NTi3 TBA 12.70 0.37 1.51
NTi4 BA 0.03 0.41 0.27
NTi5 TBA 13.50 0.23 0.65
NTi6 NH3 760 0.21 0.41
NTi7 BA 0.08 0.15 0.18
NTi8 BA 0.02 0.11 0.13
NTi9 BA 0.11 0.10 0.14
NTi10 BA 0.02 0.08 0.13
NTi11 BA 0.02 0.01 0.11
NTi12 BA 0.02 0.08 0.15
NTi13 TBA 13.50 0.11 0.26
NTi14 TBA 13.50 0.06 0.14
incorporation of N(s) in O lattice sites. An empirical approach is
used to establish correlation between parameters such as
crystallinity, film thickness, nitrogen chemical state and nitrogen
concentrations with the photocatalytic behavior of N��TiO2 films
under UV and visible light illumination.

2. Materials and methods

2.1. Chemical vapor deposition apparatus and film synthesis

All chemicals were purchased from Sigma-Aldrich unless stated
otherwise. The deposition of TiO2 films was carried out using
titanium tetrachloride (TiCl4, 99.9%) and ethyl acetate (C4H8O2,
99%) as titanium and oxygen sources, respectively. In the case of
nitrogen-doped films, tert-butylamine (C4H11N 99.5%), benzyl-
amine (C7H9N 99%) or ammonia (NH3, oxygen free, from BOC) were
used as the nitrogen source. All precursors were contained in
stainless steel bubblers at appropriate temperatures in order to
generate sufficient vapor pressure to be carried through the CVD
rig. All components of the CVD apparatus were at high temperature
(150 �C). The gases were mixed in stainless steel mixing chambers
at 250 �C and carried into the CVD reactor through a double baffle
manifold using pre-heated N2 gas (from BOC). The CVD reactor
consisted of a 320 mm-long graphite block with three inserted
Whatman heater cartridges. Pt-Rh thermocouples were used to
control the temperature of the individual components of the rig.

In a typical deposition, the bubbler temperatures of titanium,
oxygen and nitrogen precursors were set at 68, 38 and 5 �C,
respectively. The latter temperature was achieved using an ice bath
and it applies to both tert-butylamine and benzylamine; ammonia
flowed under its own vapor pressure from a gas cylinder. The
corresponding mass flow rates of titanium and oxygen sources
were 6.7 � 10�3 and 3.1 �10�3 g min�1. The mass flow rate
conditions of the N precursors are indicated in Table 1. The films
were deposited at 500 �C on float glass substrates (90 � 225 � 4
mm3, Pilkington NSG Group). The glass substrates included a silica
(SiO2) barrier layer to prevent ion diffusion into the deposited film.
The substrates were thoroughly cleaned using acetone (C3H6O
99%), isopropanol (C3H8O 99.9%) and distilled water and dried in
air prior to use. Once coated, the large substrates were cut into
small samples (25 � 25 mm2) and selected from different regions
 10�3 g min�1), ethyl acetate, C4H8O2 (3.1 �10�3 g min�1) were used as titanium and
ere used as nitrogen precursors as indicated. The corresponding deposition times (t)
tum efficiency (j, units: molec photon�1) and expressed as stearic acid molecules

 XPS data (error, �10 at%).

Surface N(i)
(at%)

t (s) Film
thickness
(nm)

j/10�4

(molec photon�1)

– 60 253 � 35 0.63
– 120 744 � 72 0.92

 3.70 60 370 � 80 0.10
 2.08 60 290 � 25 0.35

 4.13 60 237 � 63 1.06
 3.04 60 461 � 57 1.01
 3.06 60 334 � 45 1.23

 3.79 60 370 � 36 0.04
 1.82 60 555 � 35 0.07
 3.19 60 468 � 40 2.30
 2.46 60 584 � 49 0.05
 1.80 60 357 � 20 0.07

 0.64 60 416 � 40 1.24
 0.66 60 483 � 67 1.11

 1.56 120 665 � 32 2.57
 0.93 120 703 � 60 1.30



Fig. 1. UV/Vis spectra of pristine (black line) and selected N��TiO2 films: Ti1 (black
line), NTi8 (blue line), NTi6 (red line) and NTi13 (green line) deposited using
benzylamine, ammonia or tert-butylamine as the nitrogen precursor, respectively.
Inset: Tauc plots assuming all films are indirect bandgap semiconductors. (b) Shift
in optical transmission at 50% (full blue circles) and corresponding nitrogen content
in the films, given as interstitial (N(i), full green diamonds) and substitutional (N(s),
full green triangles) nitrogen species in the bulk, as well as N(i) groups (empty red
diamonds) at the surface. The samples are arranged on the basis of increasing
optical shift for clarity. The dashed horizontal lines indicate the optical shift (50%)
for a range of undoped TiO2 films of corresponding thicknesses (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.).
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of the CVD reactor. The nitrogen precursors were introduced into
the reactor in a combinatorial fashion through a different mixing
chamber. This means that the resulting film contained a gradient of
N concentrations across the large substrates. These concentrations
were intrinsically linked not only to the experimental conditions
(flow rates and temperatures) but also to their relative position in
the reactor. The experiments described here were carried out using
selected samples (named here as NTi1-NTi14) which contained
constant nitrogen concentrations.

2.2. Analytical methods

X-ray diffraction (XRD) studies were performed using a Bruker-
Axs D8 (GADDS) diffractometer, equipped with a monochromated
Cu X-ray source (Ka1, 1.5406 Å) and a 1D area X-ray detector with a
resolution of 0.01�. The films were analyzed with a glancing
incident angle (u) of 1�. The diffraction patterns obtained were
compared with database standards from International Centre for
Diffraction Data (ICDD). Raman spectroscopy was carried out using
a Renishaw 1000 spectrometer equipped with a 514-nm laser. The
Raman system was calibrated using a silicon reference. Absorption
spectroscopy was performed using a double beam, double
monochromated Perkin Elmer Lambda 950 UV/Vis/NIR Spectro-
photometer. Reflectance spectra was recorded for different
positions in the range 300–2500 nm on a Helios double beam
instrument standardized relative to a silicon mirror, which allowed
to determine the thickness of the films via Swanepoel method [19].
These measurements were confirmed using side-view scanning
electron microscopy (SEM). SEM analysis was carried out using
secondary electron image on a JEOL 6301 field-emission instru-
ment (5 kV). X-Ray photoelectron spectroscopy (XPS) was per-
formed using a Thermo K-alpha spectrometer with
monochromated Al K alpha radiation, a dual beam charge
compensation system and constant pass energy of 50 eV. Survey
scans were collected in the energy range of 0–1200 eV.
High-resolution peaks were used for the principal peaks Ti(2p),
O(1s), N(1s), C(1s) and Si(2p). The peaks were modelled using
sensitivity factors to calculate the film composition. The area
underneath these bands is an indication of the concentration of
element within the region of analysis (spot size 400 mm).

2.3. Photocatalytic tests

The photocatalytic activity of the films was evaluated during
degradation of octadecanoic (stearic) acid, a model organic
pollutant [20,21]. A thin layer of stearic acid was deposited by
dip-coating into a 0.05 M of the acid in chloroform solution. A
Perkin Elmer RX-I infrared spectrometer was used to monitor the
acid C��H bands in the range of 2700–3000 cm�1. The photo-
catalytic rates were estimated from linear regression of the
corresponding degradation curves (integrated areas vs irradiation
time), using the conversion factor 1 cm�1�9.7 � 10+15 molecules
from the literature [20]. The as-deposited films were treated under
UVA light in humid air conditions over 24 h and kept in the dark for
at least 24 h previous to any photocatalytic experiment. The
photocatalytic tests were carried out under UVA (l = 365 nm) or
visible light irradiation. Blacklight-bulb lamps (Vilber-Lourmat,
2 � 8 W, 1.2 mW cm�2) were used in the UV tests and their
irradiance was measured using a UVX meter (UVP). The visible light
tests were carried out using a 75 W Xe lamp with AM 1.5G and cut-
off filters (l > 420 nm). A commercial (Evonik) P25 TiO2 film was
used as a standard reference in order to test any potential UV
component leaking through the filter. The film was dip-coated onto
a glass substrate from a 5 wt% TiO2 dispersion and pre-irradiated
(UVC treatment) before use.
3. Results and discussion

The TiO2 thin films were deposited from titanium chloride
(TiCl4) and ethyl acetate (C4H8O2) on float glass at 500 �C using
APCVD as described in the experimental section. A nitrogen source,
either tert-butylamine (C4H11N), ammonia (NH3) or benzylamine
(C7H9N), was incorporated in the case of the N��TiO2 films. These
samples will be henceforth referred to as Ti and NTi for undoped
and N–doped TiO2 films, respectively (Table 1). Under typical
synthesis conditions, the decomposition of tert-butylamine is
expected to occur readily by a dual molecular-split type mecha-
nism resulting in the formation of C3NH7, NH3 and CH4, among
other products [22]. On the other hand, ammonia has a very low
decomposition rate and benzylamine will largely remain un-
changed [23,24]. However, their respective decomposition rates
would be influenced by contact with the substrate surface.

The incorporation of nitrogen was first evidenced by a color
change of the as-deposited films. The undoped TiO2 films were
colorless with an absorption onset at l�380 nm (Fig. 1a). In
contrast, the N��TiO2 films were yellow and their corresponding
optical spectra was red-shifted with respect to that of the pure TiO2

films. This redshift has been widely observed in the literature
[1,2,12,25–27], however no correlation with nitrogen content has
been established. This is not surprising since many N species have
been assigned to similar binding energies around 400 eV and
establishing the impact of these species over the optical properties
of the films would be arduous. This is clearly shown in Fig. 1b,
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which compares the trend of the shift at 50% transmission with the
nitrogen content in the films, as detected by XPS studies (Table 1).
A close inspection of Fig. 1b shows, for instance, a substantial shift
for sample NTi6, despite the relatively low nitrogen levels detected
in this film. It is tempting to establish correlation between the
optical features of N��TiO2 materials and potential changes in
bandgap energy (Ebg). This is typically carried out by Tauc analysis
(Fig. 1a, inset) from the corresponding Kubelka-Munk functions,
assuming that the doped films are indirect bandgap semi-
conductors like pristine TiO2. It is however important to take into
account that the redshift observed could also be due to changes in
the morphology and microstructure of the films, since they were
deposited under different chemical environments [28]. In the case
of the pristine TiO2 films, a small shift of up to 15 nm was observed
in the range of thicknesses studied here (dashed horizontal lines in
Fig. 1b). This redshift was likely due to changes in particle size and
film thickness. The typical surface morphologies of the films
deposited at t = 60 and 120 s are shown in Fig. 2. In the case of the
undoped films, sample Ti1 (t = 60 s) showed small round particles
with average size of �20 nm (Fig. 2a) whilst sample Ti2 (t = 120 s)
contained large star-like aggregated particles with average size of
�200 nm (Fig. 2c). In general, the incorporation of low concen-
trations of nitrogen did not affect the surface morphology of the
TiO2 films (Fig. 2d). However, substantial surface deterioration was
apparent when using ammonia (Fig. 2b), likely due to the reducing
environment during the deposition of the films. This is in
agreement with literature reports [12,29,30] and it was certainly
observed in the case of sample NTi6, for instance.

Further structural analysis was carried out using X-ray
diffraction and Raman spectroscopy. Raman analysis confirmed
the presence of anatase TiO2 and no additional phases were
detected in the films. The main diffraction peak (101) of the anatase
phase at 25.4� (2u) is shown in Fig. 3a for selected films (the inset
figure shows the full pattern of a highly crystalline N��TiO2 film).
The incorporation of relatively high concentrations of nitrogen (>1
at%) is known to affect the crystallinity of N��TiO2 materials
Fig. 2. Scanning electron microscopy (SEM) images of TiO2 (left column, A,C) and
N–TiO2 (right column, B,D) films. Top row: films deposited for t = 1 min; bottom
row: films deposited for t = 2 min. The specific samples are: (A) Ti1; (B) NTi6 (C) Ti2;
(D) NTi8, as described in Table 1.

Fig. 3. (a) (101) diffraction peak of the anatase structure in undoped TiO2 (black
line) and selected N��TiO2 films. Inset: typical XRD pattern of a highly crystalline
N��TiO2 film (l=1.5406 Å). The vertical lines in the inset figure correspond to
theoretical diffraction peaks of the anatase phase. (b) Corresponding peak centers
(full orange symbols) and full width at half maxima (empty blue symbols) of the
(101) peak from XRD data. The dashed horizontal lines indicate the region expected
for undoped TiO2 samples of different physical characteristics (crystallinity,
thickness, etc.). (c) Peak areas of the (101) peak of TiO2 (empty symbols) and
N��TiO2 (full symbols) anatase structures and corresponding photocatalytic
activities, given as formal quantum efficiency (j, units: molec photon�1), illustrated
as purple (TiO2) and beige (N��TiO2) bars (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.).
[12,29–31], which may come at the expense of photocatalytic
activity. This was the case of samples NTi1 and NTi2, for instance,
which showed very poor crystallinity and the anatase phase was
hardly recognizable from the XRD data. In order to minimize this
effect, the N levels were controlled below 1 at%. The (101) peak
shifted upon relatively high concentrations of nitrogen, as a result
of changes in unit cell parameters (Fig. 3b). However, most
undoped and doped films showed similar peak features. It is worth
noting that, despite the similarities, the photocatalytic activities of
N��TiO2 films did not follow a linear trend with crystallinity, as
expected from pristine TiO2 samples within the range of
thicknesses studied here (Fig. 3c). Instead, many N��TiO2 films
showed significantly enhanced activities under UVA illumination.



Fig. 5. Photocatalytic activities of N��TiO2 films under UVA light, given as formal
quantum efficiencies (j) and quantum yields (f;), and corresponding nitrogen
levels given as bulk substitutional (full triangles), bulk interstitial (full diamonds)
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Inspection of the N 1s environment revealed the presence of
both N(s) (396–397 eV) and N(i) (�400 eV) species during XPS
depth profile analysis (Table 1). This could be due to oxidation/
reduction processes of the bulk N groups during the ion etching.
However, we tested a range of N-containing samples (nitrides,
amines, etc.) and the only changes observed indicated an
increasing formation of nitrite (NO2) and nitrate (NO3) groups
and thus, oxidation of the N groups. Hence, it was confidently
assumed that the N(s), formally N3� species in the bulk, were
introduced during the deposition of the films. Surface analysis of
the films showed N(i) groups with binding energies at �400 eV,
independently of the nitrogen precursor used. Very weak features
(shoulders) were also identified at 398.5–399 eV, which have been
assigned to substitutional N��O and O��N��O species [8]. In the
case of tert-butylamine, these were the only species detected on
the surface of the films (Fig. 4a) whilst the use of benzylamine
often introduced additional groups with binding energies at 401–
402 eV (Fig. 4b). The latter has been assigned to adsorbed N��O
groups (N��O��Ti��O or O��N��Ti��O) [32,33]. On the other hand,
Fig. 4. Surface X-ray photoelectron spectra (XPS) in the N 1s environment of
N��TiO2 films as deposited using (a) tert-butylamine (NTi13), (b) benzylamine
(NTi9) or (c) ammonia (NTi1) as nitrogen precursor. N(s) and N(i) correspond to N3�

(substitutional) and N0 (interstitial) species, respectively.

and surface interstitial (empty diamonds) species. Peak areas of the (101) peak of
the anatase structure (full black symbols) are given for reference.
the reducing conditions when using ammonia favored the
introduction of N(s) species, as evidenced for sample NTi1 (Fig. 4c).

In Fig. 5, the photocatalytic activities of N��TiO2 films are
compared with levels of bulk N(s) and N(i) as well as surface N(i)
species. In this case, the activities are given as formal quantum
efficiencies, j (units: molecules photon�1) �defined as molecules
degraded per incident photon, and quantum yields, f; (units:
molecules photon�1), which accounts for molecules degraded per
absorbed photon. Considering the issues raised in the discussion of
the optical properties of the films, the f; values should only be
considered as for comparison purposes. These values were roughly
estimated from the fraction of light absorbed by the films at
365 nm. It is worth noting that both j and f; values followed a
similar trend. It was first evident (Fig. 5) that the trend of activities
did not follow the bulk N content in the films. It may also be
inferred that relatively high bulk N(s) concentrations compro-
mised the crystallinity of samples [31], which likely affected the
photocatalytic efficiencies of all samples up to NTi5. Close
inspection of the highly crystalline samples (NT11–NT14 group)
shows similar activities except that for NTi13, which was
significantly high. In this case, the photocatalytic activities
followed the trend of surface N(i) species with binding energies
at �400 eV, in agreement with our previous results [17]. On the
other hand, samples NTi5 and NTi8 had similar surface N(i) content
and comparable crystallinity, however the photocatalytic activity
of sample NTi8 was remarkably higher than that of NTi5. This was
attributed to a potential impact of bulk N(s) species in the latter
case. These species can act as charge recombination centers,
affecting the photocatalytic activity of N-doped materials under
UVA irradiation [34]. Further evidence of the impact of bulk N(s)
species may be responsible for the unexpectedly low activity of
sample NTi3 compared to that of NTi4. Both samples showed
similar diffraction features but different surface N(i) content,
favoring sample NTi3. Nonetheless, the latter also contained high
bulk N(s) levels, which allegedly affected its photocatalytic
efficiency.

It is important to note that we excluded from this empirical
analysis all the samples containing additional surface N species
other than those with binding energies at �400 eV. In our previous
work [17], the presence of amine groups (NHx) with binding
energies at �400 eV was suggested to photosensitize the
degradation of stearic acid under UVA illumination. It was
observed that the apparent or extrinsic photocatalytic activity
decreased drastically once these species were consumed in the



Fig. 7. (a) Apparent visible light activity, given as rate of degradation of stearic acid
(RSA), of selected N��TiO2 films and (b) comparison between the corresponding
activities of the best N��TiO2 sample (NTi3) and a dip-coated P25 TiO2 film.
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reaction. The presence of additional surface species was found
highly detrimental to the photocatalytic performance of N��TiO2

films. Accordingly, some films such as NTi7, NTi9 and NTi10, which
had otherwise similar structural features and bulk N levels than
those of samples NTi8 or NTi11, were unexpectedly inactive
(Table 1). The impact of nitrogen species is summarized in Fig. 6.
Only N��TiO2 films containing N surface species with binding
energy at �400 eV alone were highly active compared to similar
undoped films under UVA illumination and their activity
correlated with the concentration of these surface species.
However, films showing N��O groups at 401 �402, �403 (NO2)
or 408 (NO3) eV were inactive.

Further photocatalytic testing of the N��TiO2 films was carried
out under visible light using a 75 W Xe lamp (AM 1.5 G, l > 420 nm)
over 70 h. The apparent rates of degradation of stearic acid
molecules (RSA, units: molec cm�2 s�1) on selected N��TiO2 films
are shown in Fig. 7(a). Similar plots are often reported in the
literature and it was tempting to correlate these activities with the
N content in the films. Nonetheless, the validity of the test was
compromised by the apparent activity of the undoped film (Ti2),
which points to potential UV leaking through the cut-off filter, as
well as the poor fitting of the degradation curves (r2< 0.90),
indicating that no visible light activity could be determined beyond
instrumental error. Indeed, as shown in Fig. 7(b), the apparent
activity of NTi3 was negligible compared with that of a standard
Evonik P25 dip-coated film [35] under identical conditions. Thus, a
potential visible light sensitization mechanism with participation
of NHx groups, as described by Tanaka et al. [18], could not be
confirmed.

It is important to note that our observations regarding the
impact of surface N��O species during photocatalytic experiments
are in contrast to those reported by some authors. For instance,
Kisch et al. [36] reported visible light activity of N–TiO2 materials
containing surface N(i) groups at binding energies of �400 eV,
during mineralization of various model organic pollutants. These
authors have also reported on a visible light active N–TiO2material
containing a single surface peak at 404 eV, which was assigned as
hyponitrite groups (NO�) [37]. However, these materials were
synthesized from titanium hydroxide and urea and their studies
revealed the presence of surface carbonaceous species. It is not
Fig. 6. Schematic figure summarizing the influence of surface N species on the
photocatalytic activity of N��TiO2 films under UVA illumination, as observed here
and in our previous work [17]. Films containing adsorbed N species at �400 eV (N(i)
or NHx) showed an apparent enhancement in activity (sensitized films). However,
the presence of N��O groups at binding energies of 401–402, 403 and 408 eV were
highly detrimental to their efficiency under UV illumination.
clear whether such species could have a role in a potential
sensitization process to encourage visible light absorption in these
compounds [20,38].

4. Conclusions

A range of N–TiO2 thin films were deposited on glass by
atmospheric-pressure CVD from titanium chloride, ethyl acetate
and different N precursors, namely ammonia, benzylamine and
tert-butylamine. Both interstitial and substitutional N species were
identified in the films independently of the precursor used. The use
of tert-butylamine was found convenient for the control of N levels
in the films and it often resulted in species with binding energies at
�400 eV, which favored the apparent photocatalytic activity of the
films in the UV range. This is in agreement with previous results
and the enhanced activity observed was attributed to a sensitiza-
tion mechanism. As an alternative N precursor, benzylamine often
resulted in additional surface species (N��O��Ti��O or
O��N��Ti��O) at 401–402 eV that deactivated the films. On the
other hand, the reducing conditions when using ammonia favored
the incorporation of substitutional N groups (in oxygen sites),
which were identified at binding energies of �396 eV. Unfortu-
nately, in our case, the chemical environment under ammonia
affected the crystallinity and surface integrity of the films.

Following an empirical approach based on their structural
properties, as studied by X-ray diffraction, it was possible to
establish correlation between the photocatalytic activities ob-
served under UV irradiation and the nitrogen content in the
N��TiO2 films. In particular, the activities of highly crystalline
samples and negligible bulk nitrogen content clearly followed the
trend of surface nitrogen groups, N(i), at �400 eV, which confirmed
our previous results. It was difficult to establish this correlation
among poorly crystalline samples, but we also pointed out that the
presence of relatively high levels of bulk N groups may be
detrimental for the activity of the films, as they may act as
recombination centers.

Despite the different synthesis conditions used, no visible light
activity was observed beyond instrumental error. The implemen-
tation of visible light activity of N��TiO2 compounds will involve a
number of crucial elements, including a selective type of surface
species and a restricted number of lattice defects for the promotion
of charge diffusion. From these results, it was not clear whether the
visible light activity would come from the effect of an optimum
concentration of N(s) species (396–397 eV), as long as these do not
compromise the structural properties of the film. Certainly, the
potential presence of these species in the bulk of the N��TiO2 films,
as analyzed by XPS, did not encourage visible light activity in this
work. It is also unclear whether the presence of certain N(i) species
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at 400 eV may be detrimental for their photocatalytic performance
in the visible range.
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