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Abstract

We show the finite metacyclic groups G(p,q) admit a class of projective resolutions
which are periodic of period 2¢g and which in addition possess the properties that a) the
differentials are 2 x 2 diagonal matrices; b) the Swan-Wall finiteness obstruction (cf [21],
[22]) vanishes. We obtain thereby a purely algebraic proof of Petrie’s Theorem ([16])
that G(p, q) has free period 2g.
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80 : Introduction:

The metacyclic group G(p,q) = Cp, x Cy is the semi-direct product of cyclic groups
where p is an odd prime, ¢ is a divisor of p-1 and where C, acts on C, via the natural
imbedding C; — Aut(C)). It is known that G(p, ¢) has cohomological period 2¢ and hence
(cf [21], [22]) the trivial module Z has a finitely generated projective resolution of period
2q over the integral group ring A = Z[G(p,q)]. In this paper we show that each G(p,q)
admits a projective resolution

A, = (-"—>A2n+1821>+1 Agn%Agn_la%—;l..."-%A13A0—>Z—>0)

of diagonal type described by the following conditions (i) - (iii):
(1) AO = A 3

(ii) foreach k>1 Agy1 = A®A and Ay, = P(k)® A where P(k) is a
projective module of rank 1 over A;
+

(iii) for each k > 2 the differential Oy has the diagonal form 0 = ( 86“ 807 )

k
Such a resolution is periodic of period 2q when P(k+ mgq) = P(k) and 8,;t+2mq = 8,::
for all k,m > 1; in addition it is said to be almost free when
-1

P(r) = AD and P(q) = A.

1
Theorem A: For any odd prime p and any divisor q of p-1, the trivial module Z admits
an almost free resolution of diagonal type and period 2g over A = Z[G(p,q)].
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In general, if the finite group G has cohomological period 2¢ then its free period is
20q where 0 is a positive integer which divides the order of the projective class group
Ko(Z[G]). Moreover, there are cases known in which § > 1; for example, certain generalised
quaternionic groups Q(8;p,q) (cf [1], [13], [14] ). However, Theorem A implies that in the
present case § = 1; that is:

Theorem B : The group G(p, q) has free period 2q.



The conclusion of Theorem B follows implicitly from the main theorem of Petrie’s paper
[16], where it is proved in a topological context by showing that a certain surgery obstruction
vanishes. By contrast, our proof is purely module theoretic.

In the proof of Theorem A the lower strand of the resolution is easily constructed, being
induced up from the standard resolution of C; thus:

_ » — p) — by — )
DA AIAS ATIAS AT A AT
By contrast, far more work is required to construct the upper strand
AT P(n) A P(n—1) WA
To do this we first describe A as a fibre product
A = TyA )

\ i

Z|Cq) — TpCy).
Here A is a ring of cyclotomic integers which ramifies completely over p ; m € A is the
unique prime over p ; T4(A, ) is the following quasi-triangular subring of M,(A)

To(A, ) = {X = (Trs)1<rs<n € Mg(A) | zps € (m) if > s}

We denote by R(i) the it" row of T,(A, ) considered as a right A-module so that
Tq(A,m) =2 R(1) @ R(2) @ --- @ R(q).

The obvious projections A — T4(A,7) and T4(A,7) = R(i) compose to give a surjection
pi : A — R(i). In particular, each R(i) is monogenic; that is, generated by a single element
over A. Defining K (i) = Ker(p; : A — R(7)) we first show:

Theorem C : There exists an exact sequence of the following form

K(q)

6(q) = (0— R(1) %AQ’AHR(Q)AO)

We refer to &(q) as a basic sequence; it demonstrates the non-obvious fact that K(q) is also
monogenic. From the existence of &(gq) we proceed to deduce:

Theorem D : For 1 <i<q—1 there are exact sequences over A of the form
K(i)

S(G) = (0 —R(i+1) HP(i)/—\»A —— R(i) — 0)

where P(2),...,P(q) are projective modules of rank 1 such that @?_, P(i) = AL

1 The referee points out that monogenic modules are frequently called cyclic modules.



Splicing the segments &(i) together with &(g) gives the exact sequence which constitutes
the upper strand in Theorem A, namely:
K(q) K(g—1) K(2) K(1)

/N - SN

0— R(1) — A—>A —=P(¢1

P(1)—= A — R(1) — 0.

A .
NS

R(2)
The possibility of constructing such diagonal resolutions originates from the fact that the
augmentation ideal I of G = G(p,q) decomposes as a direct sum

Ig = Io & [y—1).

Here y is a generator of C, and [y — 1) is the right ideal of A generated by y — 1 whilst I¢ is
the Galois module obtained from the action of Cj; on the augmentation ideal I of C); as we
shall see, I is isomorphic to R(1). The existence of such a direct sum decomposition has
been known for many years (cf. the paper of Gruenberg and Roggenkamp [7]). However,
in the interests of clarity and completeness we give a direct proof (see §5 below).

Beyond Theorem A it is tempting to conjecture that each G(p,q) admits a diagonal
resolution with the additional property that each P(i) = A. Such a resolution is called
strongly diagonal ; in fact our proof of Theorem D shows that the p-adic completion A
admits such a strongly diagonal resolution. In [10] the first named author showed the
existence of strongly diagonal resolutions in all the cases G(p,2); that is, for the dihedral
groups of order 2p. For q > 3, the task of constructing resolutions of this stronger type is
less straightforward. If the sequences &(1),...,6(¢-1) could be modified to the form

K (i)
S(i) = (0 —R(i+1) —»A/—\:A—»R(i) — 0)

we could splice them together with G(q) to give an exact sequence of period 2¢

K(q) K(g—1) K(2) K(1)

/N /N /N /N
A A A - A A ~ A

- A A — R(1) — 0
NS NS
R(q) R(2)
to form the upper strand in a strongly diagonal resolution. This in turn would imply that
each K (i) is monogenic, a fact which is yet to be established in general.

Apart from the dihedral groups, strongly diagonal resolutions were previously known to
exist only for the groups G(5,4) and G(7,3), ([15], [19]), both cases being established by
direct calculation. Elsewhere [11] we shall establish the existence of &(1),...,&(q — 1)
for certain small values of p and ¢. In particular, we are able to show the existence of
strongly diagonal resolutions in the cases;

G(5,4); G(7,3), G(7,6); G(11,5), G(11,10); G(13,3), G(13,4), G(13,6);
G(17,4);  G(19,3), G(19,6), G(19,9).

0— R(1) —~

The authors wish to thank the referee whose careful attention to detail revealed a number
of notational inconsistencies.



§1 : Some standard modules over Z[G(p, q)]

For each integer n > 2 we denote by C,, the cyclic group C,, = (x| z™ =1). For
the remainder of this paper we fix an odd prime p, an integral divisor q of p — 1 and write
d = (p—1)/q. Recalling that Aut(C,) = Cp—_1 then there exists an element § € Aut(C))
such that ord(#) = g¢. Taking y to be a generator of C; and making a once and for all
choice of # with order g, we construct the semi-direct product G(p,q) = C, %}, C; where
h:Cy — Aut(Cp) is the homomorphism h(y) = 6. There is then a unique integer a in
the range 1 < a < p — 1 such that (z) = 2% and G(p, ¢) then has the presentation

Gpq) = (z,y 2P = y? = 1;yzy ' = 2%).
The integer a will have a fixed meaning in what follows. We denote by A the integral
group ring A = Z[G(p,q)] and by i :Z[Cp] — A and j: Z[Cs] — A the respective
inclusions. Indecomposable lattices over A have been classified up to genus, though not
up to isomorphism, by Pu [17]. Here we shall need only a small selection from Pu’s list.
Depending on context, Z may denote the trivial module over any of the group rings A,
Z[|Cy] or Z[Cy4). Moreover Ic will denote the augmentation ideal of Z[C},] and Ig the
augmentation ideal of Z[C,]. Clearly I¢ is defined by the exact sequence of Z[Cp]-modules

0— Io <= Z[C)] < Z — 0.

On dualising we get an exact sequence 0 — Z LN Z[Cp] 5 I, — 0 where €'(1) = X, =
14+ x+2?+---+2P7 L It is a standard and easily verified fact that

(1.1) I} and I¢ are isomorphic as Z[Cp|-modules.
If i+ (—) denotes ‘extension of scalars’ from Z[C}]-modules to A-modules then:
(1.2) i.(Ic) and i.(1}) are isomorphic as A-modules.

As I} and I¢ are not actually identical we find it convenient to distinguish between them.
We identify the dual I, with the quotient Z[C)]/(Xz). As (3z) is a two-sided ideal in Z[C))
then I is naturally a ring; indeed, putting ¢ = exp(2mi/p) then:

(1.3) There is a ring isomorphism I} = Z[(].

If M is a module over Z[C}] then by a Galois structure on M we mean an additive auto-
morphism © : M — M such that ©¢ = Idy; and O(m-x) = O(m) - 0(z) for all m € M
where 6 is our chosen automorphism of C,. By a Galois lattice we shall mean a pair (M, ©)
where M is a lattice over Z[C}] and © is a Galois structure on M. The Galois lattice (M, ©)
becomes a (right) lattice over A via the action

m-z"y’h = © % (m-a").

Significant examples of Galois lattices arise from ideals of Z[C)p] which satisfy 6(J) = J.
For such an ideal J we put J = (J,0;) where Oy is the restriction of 6 to J. Thus
we obtain Galois lattices Z[Cp], Ic and (z — 1)*Ic (k > 1). Similarly we denote by I},
the Galois lattice obtained from the dual of the augmentation ideal. Evidently I is a

quotient I}, = Z[Cp]/(EX;). This last module is fundamental in what follows and we note
the following properties which characterise it amongst A-modules.



Proposition 1.4: Let M be a A-lattice satisfying the following three conditions:

(i) there exists p € M such that p-y = p and M = spang{p-2" |0 <r<p-—1}

(ii) rkz(M) = p—1.

(ili)) m-X, = 0 for each m € M;

Then M =\ If, and {u-2" |0 <r <p—2} is a Z-basis for M.

Proof: We note that conditions (ii) and (iii) above are satisfied for I};,. Let § : Z[C)] — I},
be the natural mapping and put n = f(1). Thenn-y = nand {n-2" |0 <r <p—2}
is a Z-basis for I},. Now suppose that M is a A-lattice satisfying conditions (i), (ii) and
(iii) and consider the homomorphism of abelian groups ¥ : I, — M defined on the basis
{n-a"|0<r<p-—1} by ¥(n-2") = p-2". As M = spang{p-2" |0 <r <p-1}
then V¥ is necessarily surjective and as rkz (/) = rkz(M) = p—1 then VU is bijective
and {p-2"|0<r <p-—2} isa Z-basis for M. Evidently ¥ is now an isomorphism of
Z]Cpl-modules. Moreover from the identities n-y = n and p-y = p it follows easily
that ¥ is also an isomorphism over A. a

For any Galois lattice (M, ©) there is an isomorphism of abelian groups
UiZC) @ (M,0) = (M) (= M ey, A)

defined by taking ¥(y* ®@m) = ©O7°(m)®y’. It is straightforward to check that ¥ is
also a homomorphism of (right) A-modules. We obtain:

Proposition 1.5: Z[C,| ® (M,0) = i,(M) for any Galois lattice (M, O).
Taking J = Z[C}] and noting that i.(Z[C,]) = A we now see from (1.5) that :
(1.6) Z]Cql ® Z|Cy] = A.

In contrast to (1.1), I}, is not isomorphic to Ic and (xz—1)¥Ic is not, in general,
isomorphic to either If, or Ic.

Let Z be a set with |Z| = ¢ on which 6’; = {1,0,...,0971} acts transitively on the
left; for each z € Z let F'(z) be the free Z[Cp]-module of rank 1 with basis element [z] and
put F(Z) = @,c, F(z). Then F(Z) is a Galois module with Galois structure © where

O[] - 2") = [0«(2)] - 0(=")

and it is straightforward to see that, as A-modules, F'(Z) = A. More generally, suppose that
Z is a finite set on which 6’; acts freely on the left and denote by Z = Z1[]...-- ][ Zm
the partition of Z into disjoint orbits where each |Z;| = ¢. By the above, F(Z;) = A for
each i so that F'(Z) = @2, F(Z;) = A™; that is:

(1.7) If Z is a finite set on which 6’; acts freely with m orbits then F\(Z) = A™.
We first prove:
Proposition 1.8 :  Ic®[%,) = A

Proof : Note that *(Ip®[%,)) = Ic®Z[Cy) = @F] F(e) where F(e) is the free mod-
ule of rank 1 over Z[C,] on the basis element (z¢ -1)®%,. Now C, = {1d,6,6%...,0971}
acts freelyon Z = {(2*-1)® %, | 1<e<p—1}. via the action

0.((z°—1)® %)) = (0(z°)-1)®%,



under which Z decomposes as a disjoint union Zj [] .......... [1Z; ofd = (p ;1) cyclic

d
orbits. In the above notation, Ic ® [Z,) = @F(Zr) ~ A4, O
r=1

Corollary 1.9 : Tc®[y—1) = AdeD),
Proof : The exact sequence 0 = [y —1) = A — [¥,) — 0 gives an exact sequence
0= Ie®y-1) — IcoA — Ic®[Z,) —0.

As Ic ® [2,) = A? this latter sequence splits. Hence I ®[y—1) @ A? = AP~! so that
Ic ® [y — 1) is stably free of rank p —d — 1. As A satisfies the Eichler condition then, by
the Swan-Jacobinski Theorem Ic ® [y —1) = AP~9"! However p—d —1 = d(q—1)

andso Ic®[y—1) = A% as claimed O

For any A-lattices A, B, (A® B)* = A*® B*. As A and [y — 1) are self-dual then:
Corollary 1.10: @@ [y—1) = Adla—1)

It is a standard consequence of Frobenius reciprocity that M ® A = A™ whenever M is a
A-lattice with rkyz(M) = m. In particular:

(1.11) TieA=AP-D.

§2 : A fibre product decomposition for Z[G(p, q)]:

As is well known, Z[Cp] has a canonical fibre product decomposition

ZiCy] — I
(2.1) €l !
Z — F,

where € : Z[Cp] — Z is the augmentation map and F, is the field with p elements. To
proceed, we briefly recall the cyclic algebra construction. Thus let S denote a commutative
ring and 0 : S — S a ring automorphism of finite order dividing ¢; in particular, 8 satisfies
the identity 89 = Id. The cyclic ring Cq(S,0) is then the (two-sided) free S-module

C,(5,0) = S1 + Sy ... + Sym!
of rank ¢ with basis {1,y,... y?~'} and with multiplication determined by the relations

yi=1 ; y{=0(y (£e€89).

So defined, C4(S,0) is an extension ring of S. In the fibre product (2.1) ¢ induces a ring
automorphism of order ¢ on Z[C)]. As 6 fixes ¥, then 6 induces a ring automorphism on
the quotient I}, = Z[C)]/(X;). Likewise the augmentation ideal I is stable under 6 and
6 induces the identity automorphism both on the quotient Z = Z[C,|/Ic and F,. As the
homomorphisms in (2.1) are equivariant with respect to these ring automorphisms we may
apply the cyclic algebra construction Cy(—, ) to (2.1). Identifying C,(Z[Cp] = Z(G(p,q),



Cy(Z) = Z[Cy), Cy(Fp) = F,[C,] we obtain a fibre product
Z[G(pa Q)] - Cq(Ié’ae)
(2.2) 1 !

Z[Cy = Fp[Cyl.

To proceed to a more tractable description of C,(I*,6) we first make the identification
Cy(I*,0) ® Q = C,(Q(C), ) where, as above, ( is a primitive p root of unity. We note ([2],
Lemma 3) that p = (¢ — 1)»"lu for some unit u € Z(¢)*. In particular:

(2.3) p ramifies completely in Z(().

Applying —®Q to (2.2) we see that Q[G(p,q)] = Q[Cy] x C4(Q((),0) as Fp[Cyl@Q = 0.
Thus C4(Q(C),0) is a semisimple Q-algebra. Moreover the centre Z(C,(Q((),0)) is a field,
namely the subfield Q(¢)? of Q(¢) fixed by 6; hence:

(2.4) C4(Q(¢),0) is a simple Q-algebra.

§3 : A quasi-triangular representation of G(p,q) :
If B is commutative ring and I <1 B is an ideal we denote by

To(B,I) = {X = (2rs)i<rs<n € My(B) | zps € I if r > s}

the ring of upper quasi-triangular matrices over B relative to I; when I = {0} then
T,(B,{0}) = T7T,(B) is simply the ring of upper triangular matrices over B. We denote
by Uy(B,I), Uy(B) the corresponding unit groups. Under the induced homomorphism
h: My(B) — My(B/I) we have

(3.1) To(B. 1) = 17 1(T,((B/1))
Likewise from the induced map on unit groups § : GLy(B) — GL4(B/I) we see
(3.2) Uy(B,I) = b1 {Uy(B/T)).

Note that 6 acts on Z(C) via the isomorphism Gal(Q(¢)/Q) = Cp—1. Let A = Z[(]°
denote the subring fixed by 6. Putting 7 = ({ — 1)9, it follows from (2.3) that:

(3.3) p ramifies completely in A and 7 is the unique prime in A over p.

We shall show that C,(I*,6) = 74(A,n). This may be regarded as a concrete form of
Rosen’s Theorem [20]. Whilst this isomorphism is known in principle (cf p.358 of [18]), for
the purpose of calculation it is necessary to give an explicit description. To this end observe
that {1,¢,...,¢97 1} is an A-basis for Z(¢). On writing successively

¢ = (-1 + 1
¢ o= (12 + 2(¢ — 1) + 1
G (R VD S (CS D (A N e

we may make a sequence of elementary basis transformations to show that:

(3.4) {(¢—1)971 (¢—1)72,...,(C—1),1} isan A-basis for Z(().



G(p,q) acts on the right of Z({) by Z- (2"y®) = 6 °%(Z-¢™"). Via the basis of (3.4),
this action gives a representation A : G(p, q) — GL4(A) where A(z™!) is given by

-1t +  (¢-1)r 1<r<q-2
Az H(¢-1)1 =
v + (¢—1)7t r=q-—1

Hence the matrix of A(z~!) takes the quasi-triangular form

110 0 0 0
0 1 1 0 00
Mzl =
000 0 ... 11
= 0 0 0 ... 0 1
As z7! generates C)p, the restriction of A to C), is also quasi-triangular; that is:

(3.5)  A(C,) C Uy(A, ).

It follows that the full representation X : G(p, q) = GLg(A) is also quasi-triangular. To see
this, let X € M,(A) be an upper triangular matrix; we say that X is unitriangular when in
addition X;; = 1 for all 4. A unitriangular matrix X will be called a generalized Jordan
block when in addition X;; # 0 <= j =1 or j =i+ 1. The following is straightforward.

Proposition 3.6 : Let A be a commutative integral domain, let X, Z € M,(A) be unitri-
angular matrices and suppose that Y € M,(A) satisfies XY = Y Z; if X is a generalized
Jordan block then Y is upper triangular.

Let § : GLy(A) — GL4(A/7) denote the canonical homomorphism. The above expression
for A(x~1) shows that f o A(z~!) is a generalized Jordan block. Hence for all r, § o A(2") is
unitriangular. Writing 6(x) = ! then x-y~! = y~'2? so that

oA(@) oAy = hoA(y™) boA(a!).
Taking X = hoA(z), Y =foA(y~!) and Z = hoA(z?) in (3.6) shows that fo A(y~?!) is upper
triangular. As y~! generates C, then Im(jo ) C U,(A/7) = 5~ U,(A/7)); thus:
Theorem 3.7 :  A(G(p,q) C Uy(A, 7).

Consequently A induces a ring homomorphism A, : Z[G(p, q)] — T4(A, w). Noting that
A«(2z) = 0 then A, induces ring homomorphisms

e Co(I%,0) — To(A7) 5 A@Id:C(Q),0) — M(A2Q).

As Cy(Q(¢),0) is a simple Q-algebra then A ®Id: Cq(Q(€),0) — My(A® Q) is injective
and hence also:

(3.8) P :Ce(I*,0) — T4(A,m) is injective.



In fact A, is also surjective. To see this, suppose that C, 7 are both orders in the same finite
dimensional semisimple Q-algebra and that A : C — 7T is an injective ring homomorphism.
As C, T both have the same Z-rank it follows that A(C) has finite index ¢ in 7. Furthermore
§ is determined by the relation Disc(7) = §%Disc(C) between discriminants. In our
case, taking C = C4([*,0) and T = T,(A, ), one may calculate (cf [18] Chapter 2) that:

(3.9)  Disc(Cy(I*,0)) = =+ Disc(Ty(A,7)) = +x1la-Dge,
In consequence, § = 1. Thus as previously claimed A is surjective; hence:
Theorem 3.10 : X, :Ce(I*,0) — T4(A,m) is aring isomorphism.

We may now re-interpret (2.2) as a fibre square of the form

ZIG(p,q)] — T4(A,m)

(3.11) ' L
ZICy ]  —  FylC]
We note that C,(I5,0) is simply another description of the induced module 4, (1f). As
Tq(A, ) =2 Cy(1f,0) it follows from (1.2) that:
(312) i(lo) = iu(I5) = Ty(A,7)

Whilst the quasi-triangularity of A, (z~!) is evident by construction, that of A, (y~!) is known
only implicitly from (3.7). To complete our account we elicit some explicit information on
the form of A\,(y~!). For 0 < k < ¢ — 2 define

U(k) = spany{(C=1)" [k+1<r<q—1}
and put U(k) = 0 for ¢—1 <k . Recalling that (( —1)¢ € (m) it is straightforward
to check that :
(3.13) Uk)UI) ¢ Uk+1+1) + (m).
We now consider the Galois action given by O(¢) = ¢°.

Proposition 3.14 : For each k , 1 < k < g — 1 there are elements v(k) € U(k) and
n(k) € (m) such that ©[(¢( — 1)*] = a*(¢ —1)* + v(k) + (k).

Proof : Observe that ©(¢ — 1) = ©O(() — 1 = (* — 1 and that
¢“-1 = ((C-H+n* - 1

a a .
S (S VI ;(s)@—” .
Let P(k) be the statement for ©[(¢ — 1)¥]. Then P(1) is verified on putting
v(1) = Z(Z) (C—1)° and 7(1) = 0.

s=2
Suppose P(r) is true for 1 < r < k where k < ¢ — 1. As © is a ring homomorphism then



O[(¢ -] = O(¢—1)-0[(¢ —1)"]
= [a(¢ = 1) +v(D)] - [a*(¢ = 1)* + v(k) + 7 (k)]

— ak+1(C—1)k+1 LT+ 0
T = a*v(1)(¢ — 1D)F 4+ a(¢ — Dov(k) +v(1)v(k)

where

vo= [a(¢ = 1) + v(1)] 7 (k).

Clearly ¥ € (m) whilst Y € U(k +1) + () by (3.13). Thus for some v(k +1) € U(k + 1)
and w(k + 1) € (m) we have

YT+ = vk+1) + w(k+1).

Hence O[(¢ — 1)*1] = a**1(¢ — D! +v(k +1) + 7(k + 1) verifying P(k + 1). O
Any Y € My(A, ) can be written uniquely as a sum
(3.15) Y = AY) + U®Y) + L(Y)

where A(Y) is diagonal, U(Y") is strictly upper triangular and L(Y) is strictly lower trian-
gular. Moreover, as Y € T;(A,n) then L(Y) = nL/(Y) for some strictly lower triangular
matrix L'(Y). If o, p1, - - - ig—1 € A we denote by A(pg—1, ..., po) the diagonal ¢ x ¢ matrix

Hg—1
Hq—2
A(pig—15- -5 p0) =
M1
Ho

It follows from (3.15) that, with respect to the basis {(¢ — 1)?7*};<x<,for I, the matrix
M(©) of © takes the form M(©) = A(a?',a972,...,a,1) + U + I where U is a
strictly upper triangular and II = 7 - X for some X € M,(A). Let X = A'4+U’'+ L' be
the decomposition of X given in (3.15) and write A’ = A(&—1,&4-2,-..,&1,&0) for some
& € Ao Writing U(©) = U+ nU’ and L(O) = rwL’ we see that with respect to the
basis {(¢ — 1) *} <<, for I}, the matrix M(©) takes the form

(3.16) M(©) = A(a9™t + 71, a? 2+ 7€ o,...,a+7E, 1+7&) + U(O) + L(O)

where U(0) is strictly upper triangular and L(©) is strictly lower triangular. Denoting by
M (©) the reduction of M(0) mod 7 we see that:

a?1 * * ok k%
a?l”? %« % % %
M) =
al %
1
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Asa™ = a?" mod ¢ then:

a ok ok * * *
a?  x * * *
(3.17) MO =
a?™t «
1

§4 : Properties of the modules R(7):
We decompose T4(A, ) as direct sum of right A-modules thus

(4.1) T(A,m) =2 R1) @ R2)®---® R(q)

where R(i) is the i'" row of T;(A, 7). Each R(i) is free over A with rk4(R(i)) = ¢. However
there is an isomorphism

(4.2) To(A;m) @a Afm = Ty(A/m)
under which R(i) descends to R(i), the i"-row of T;(A/x). The modules R(i) are pairwise

v

isomorphically distinct over 74(A/7) as rky/,[R(i)] = ¢+ 1 —i. Hence:
(4.3) R(i) =z R(j) <= i = j.
We proceed to study the duality properties of the R(i). Fix the following notation
T, = TA7m 5 R@GE) = ithrowof T, ; C(j) = 4™ column of Tg.
Then R(i), C(j) are respectively right and left ideals in 7;. Define @ = (¢;;) € My(A) by
1 t+j = q+1

qi; =
0 otherwise

Clearly Q@ = Q' = Q7! Define 6 : T, — T, by8(4) = QA'Q. Then 6 is an
anti-involution on 7, which takes a left ideal J to a right ideal 6(J); in particular:

(4.4) 6(C(k)) = R(g+1—k).

If M is a right T;-module then Homry, (M, 7,) is a left 7;-module. In particular:

(4.5) Home, (R(K), T;) = C(k).

We use 6 to convert a left 7,-module M to a right 7,-module M by means of
mx*xa = 0(a)m

where m € M and a € 7;. Note that if J is a left ideal in 7, then 6(J) is a right ideal in
7,; moreover, we see that 6 induces an isomorphism of right 7,-modules

0: %7 = 6(J).

If M is a right module its dual module M*, defined by M* = eHomE(M,E), is also a
right module. It follows from (4.4) and (4.5) that:

(4.6) R(K)*= R(q+1— k).
Choose @ € {1,2,...,p — 1} to satisfy 6(z) = 2% (= wyay~ ). Then y? — 1 factorises
completely over F, as y?—1 = (y—1)(y —a)(y —@?)...(y —a?!). Hence

11



(4.7) Fp[Cy] = Fp(@) x Fp(@®) x -+ x Fy(@?™") x Fy(1)

where F,(@") is the 1-dimensional F,[C,]-module on which y acts by y-z = a@‘z..
Proposition 4.8: There is an exact sequence 0 — R(1) — R(q) — Fy(1) — 0.
Proof : Consider the ¢ x ¢ matrix I' = A(z~! — 1) so that

01 00 0 0

0 010 00

I — S Do

0 00O 10

0 00O 01

m= 0 0 0 00
Then I'" = m-1I;. Define T : Ty(A,7) = Te(A,m) by I's(8) = T -pB. Then I',

is a homomorphism of right 7;(A, 7) modules and is evidently injective as 7 is a nonzero
element of the integral domain I,. Write a typical element 5 € R(1) as

by by ... b1 b, 0 0 ... 0 0
0o 0 ... 0 0 0 0o ... 0 0
8 = Do : : so that T.(3) = : : : :
0 0 ... 0 0 0 0o ... 0 0
0o 0 ... 0 0 0 0o ... 0 0
o o0 ... 0 0 wby wby ... wby—1 by
Thus R(1) = Tw(R(1)) C R(q). However, a typical element v € R(q) has the form
0 0o ... 0 0
0 0o ... 0 0
Y= : : : : € R(q)
0 0o ... 0 0
mCc1T TC ... 7TCq_1 Cq

which differs from an element of T',(R(1)) only in the (g,q)"* entry. As abelian groups,
R(q)/T«(R(1)) & A/m = F,. Finally, from the form of A(y~1) € T,(A/m),

a * * * * *
@ x * *
a3 * *
Ay™) =
@il x
1

y acts trivially on the right of the (g, q)"" entry. Thus, R(q)/T«(R(1)) = Fp(1). Hence,
as claimed, we have an exact sequence of A-modules 0 — R(1) L R(q) = Fy(1) = 0. O

In the remaining cases we have :

12



Proposition 4.9: For 1 < k < g — 1 there are exact sequences of A-modules

0— R(k+1) = R(k) — F,(a@) — 0.

Proof : First note that

I.(R(k+1)) C R(k)

for 1<k<qg-1.

To make this statement precise consider a typical element

0 0 0 0 0 0
0 0 0 0 0 0
B = 0 0 0 0 0 0 € R(k+1).
7Tb1 7Tbk71 7Tbk bk+1 bk+2 bq
0 0 0 0 0 0
Then
0 0 0 0 0 0
0 0 0 0 0 0
LB = | 7 mhp—1 by brp1 b2 b, | € R(k)
0 0 0 0 0 0
0 0 0 0 0 0

~Y

Thus R(k+1)

0 0

0 0
v = ng 71'68_1

0 0

0 0

which differs from a typical element of 'y (R(k+ 1

0

Ck

o

0

0

0
Ck+1
0
0

0

as abelian groups, R(k)/T.(R(k+1)) = A/xn

My™Y) € T,(A/7) takes the form

a

*

62

13

I'v(R(k+1)) C R(k). A typical element v € R(k) has the form

0 0
0 0
Ck+2 Cq
0 0 € R(k)
0 0
0 0
)) only in the (k, k)*" entry, showing that,

I

F,. Finally, from (3.17) the reduction

*
*

ak o+ x * *

@t

1



Hence in the right action in the quotient, y acts on the (k, k)" entry as multiplication by
@®. Thus, as A-modules, R(k)/T.(R(k+1)) =TF,(@) so, as claimed, we get an exact

sequence 0 — R(k+1) <F_> R(k) — Fp(ak) 0. -

It is useful to describe R(1) and R(q) as Galois modules. One first checks that R(q) satisfies
conditions (i), (ii) and (iii) of (1.4). In particular p = (0,0,...,0,1) € R(q) satisfies
-y = p. Thus it follows from (1.4) that:

Proposition 4.10 : R(q) = I}.

It is straightforward to see that I}, = (I¢)*. From (4.6) and (4.10) it follows that:

(4.11) R(1) = Ig.

85: Decomposing the augmentation ideal of A :

The collection {E, }1<r<pg—1 is an integral basis for I where

Eg-1prs = yFa® —1 for 1<k<qg—1 and 1<s<p.

Eg1pts = x°-1 for 1<s<p-1.
Make the change of basis to {®,}1<y<pg—1 Wwhere

Por—typrs = Eu—1pts — FEg-1psrs for 1<k<g—1 and 1<s<p-—1;
Pryp = L for 1<k<q-—1;
q)(q—l)p+s = E(q—l)p-l—s for 1<s<p-1.

Then {®,}1<,<p(g—1) is an integral basis for the right ideal [y — 1) as
Qh—t)pps = (v —1)a® for 1<k<qg—1 and 1<s<p-—1

Dy = yk—l for 1<k<q-—1.

As this extends to an integral basis for Ig is follows that Ig/[y — 1) is free over Z.
Moreover if §: Ig — Ig/ly — 1) is the identification map then

(5.1) (P(g—1)p+s)1<s<p-1 is an integral basis for Ig/[y —1) .

However §(®(4_1)p+s) = §(z° —1) from which we see easily that Ig/[y —1) is isomorphic
to Ic as a module over Z[C,]. Computing the action of y~! on I we find

(z°=1)-y' = 2%y l-y”
— yq_l(xe*(s) _ 1)

_ <yq 1 1)( 0+(s) _ ) + (279*(5)—1)

Write X -1 = h(ms _ 1) S0 that ( 1)
Observing that (y?~!' — 1)($9*(s) “ey-1

1<s<p—1 1s an integral basis for Ig/[y —1) .
) the above calculation thereby shows

(X*—1).y ! = X461

14



which coincides with the Galois action on I¢. Thus Ig/[y—1) = Ic and we have shown
(5.2) There exists an exact sequence 0 — [y —1) — Ig — I — 0.

We proceed to show that the exact sequence of (5.2) splits. To economise on notation
we use boldface symbols Hom, Ext* when describing homomorphisms and extensions of
A-modules and standard Roman font, Hom and Ext*  when referring to homomorphisms
and extensions of modules over Z[C)]. First note that

Z]p k=1
(5.3) Ext*(Z, Ic) =
0 k= 2.

Any Z[C,]-module becomes a module over A via the projection A — Z[C,]. Thus:
Proposition 5.4:  Ext!(Z[C,],R(k)) = Z/p forallk (1<k<yq).

Proof : Let i denote the inclusion ¢ : Z[C},] — A. Applying the induced representation
functor i, to the exact sequence 0 — Ic — Z[Cp] — Z — 0 gives an exact sequence

(*) 0—i.(Ic) > A= Z[Cy] — 0.
Now i, (Ic) = @7, R(t) so that (*) can be re-written as an extension
(**) 0— @], Rt) > A—=Z[Cy =0

which is classified by cohomology classes ¢ = (ct)1<t<4 Where ¢; € Ext'(Z[C,], R(t)). If
Ext!(Z[C,], R(k)) = 0 then A decomposes as a direct sum A = R(k) @ X where the
module X occurs in the extension

0= D R(t) = X = Z[Cy] =0

classified by the sequence (c;)iz;. However A, being the integral group ring of a fi-
nite group, is indecomposable (cf [4] p.678). Consequently each c; # 0 and hence each
Ext!(Z[C,], R(k)) # 0. Now note that i*(Z[C,]) = Z?; from the Eckmann-Shapiro
isomorphism Ext!(Z[C,],i.(Ic)) = Ext! (i*(Z[C,]), Ic) and (5.3) we see that

Ext'(Z[C,),i.(Ic)) = ExtYZ,Ic)! = Z/p®---SZ/p.

q

As above, i.(Ic) = @f_, R(k). Hence @}_, Ext'(Z[C,|,R(k)) = Z/p® -+ BZ[p. As

q
Ext!(Z[C,], R(k)) # 0 then each Ext'(Z[C,],R(k)) = Z/p as claimed. ]

~

From the Eckmann-Shapiro isomorphism Ext?(Z,i.(I¢)) = Ext?(Z,Ic) we see from
(5.3) that Ext?(Z,i.(I¢)) = 0. However

éExH(Z, R(k)) = Ext’(Z, éR(k:)) ~ Ext?(Z,i.(I¢))
k=1 k=1
from which it follows that:
(5.5) Ext*(Z,R(k)) = 0 forallk (1<k<gq).
Now Hom(i*(Ig), Ic¢) = Hom(Z, I¢)@ = 0. From the Eckmann-Shapiro isomorphism
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Hom(lg,i.(Ic)) = Hom(i*(Ig),Ic) we see that Hom(Ig,i.(Ic)) = 0. Hence
(5.6) Hom(lg,R(k)) = 0 forallk (1<k<gq).

As Z[C,] is indecomposable, from the exact sequence 0 — Ic — Z[C,] — Z — 0 it
follows that Ext'(Z,Ic)) # 0. As Ic = R(1) then Ext'(Z,R(1)) # 0. However,
Ext!(Z,i.(Ic)) = Ext'(i*(Z),Ic) = Ext}(Z,Ic) = Z/p so that

bi_, Ext'(Z,R(k) = Z/p.
As Ext'(Z,R(1)) # 0 it follows that:
Z]p k=1

1

(5.7) Ext!(Z, R(k))
0 k#1.

Applying Hom(—, R(k)) to the exact sequence 0 — Ig — Z[Cy] — Z — 0 we obtain a
long exact sequence in cohomology, from which, in conjunction with (5.4), (5.5) and (5.6),
we extract the following portion:

Hom(Ig, R(k)) — Ext'(Z,R(k)) — Ext(Z[C,),R(k)) — Ext'(Ig,R(k)) — Ext*(Z,R(k))
|| || || | |
0 — ExtY(Z, R(k)) — Z/p — Ext!(Ig, R(k)) — 0.

In the case k = 1 then Ext'(Z,R(1)) = Z/p so that Ext!'(Ig,R(1)) = 0 whilst if
k#1 then Ext'(Z, R(k)) = 0 so that Ext'(Ig, R(k)) = Z/p; that is:

0 k=1

I

(5.8) Ext! (I, R(k))
Z/p k # 1.

Theorem 5.9 : I decomposes as a direct sum Ig = I @ Y for some A-module Y.

Proof : First consider the exact sequence 0 — Ic — Z[Cp] — Z — 0. By taking induced

representations we obtain an exact sequence 0 — i.(Ig) — A 5 Z[C,] — 0. As
i«(Ic) 2 @I_, R(k) and p~!(Ig) = I we obtain an exact sequence

q
0— @R(kz)—>[GL>IQ —0
k=1
classified by a sequence of cohomology classes ¢ = (c1,c2,...,¢q) where ¢, € Ext!(T, 0, R(k)).
As c; € Ext'(Ig,R(1)) = 0 then Ig = R(1)@®Y where Y is given as the extension
0— @y Rk) —Y S 1p —0

classified by (ca,...,¢;). The conclusion follows as R(1) = I¢. O

As above we continue to use boldface symbols Hom, Ext® when describing homomorphisms
and extensions of A-modules but we now use italics Hom, Ext® when referring to homomor-
phisms and extensions of modules over Z[Cy]. Let j:Z[Cy] — A denote the inclusion; we
note that [y—1) = j.(Ig) and j*(Ic) = ZP~Y; thus Hom([y—1),I¢)) = Hom(Ig,ZP~ ')
However Hom(Igp,Z) = 0 so that we have:
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(5.10) Hom(ly—1),70)) = 0
Corollary 5.11: The exact sequence of (5.2) splits.

Proof : It suffices to construct a right splitting of (5.2); that is, a A-homomorphism
s:1Ig/ly—1) — Ig such that jos = Id where, as above, § : Ig — Ig/[y — 1) is the
identification map. We first show that the isomorphism Ig = Y @ I of (5.9) implies
that Y = [y — 1). Thus let ¢ : I¢ — Y @ I be the isomorphism of (5.9) and let 1 denote
the projection ¢ : [y —1) & Ic — Ic. The restriction 3 o Oly-1) : [y—1) = Ic is
necessarily zero by (5.10). Hence ¢ restricts to an injection

Ply-1:ly—1) =Y

and induces an isomorphism ¢, : Ig/[y — 1) — (Y/¢(ly — 1)) @ Ic. Clearly we have
tkz([y — 1)) = rkz(Y)) = p(g — 1), from which it follows that Y/¢(Jy — 1)) is finite.
However, Ig/[y — 1) is torsion free so that Y/@([y —1)) = Oand ¢ : [y — 1) — Y

is the required isomorphism. Consequently [y — 1) @ Ic = Ig. As Io = Ig/[y — 1) it
follows that there is an isomorphism h : [y — 1) & Ig/[y — 1) — Ig. As Coker(f) & I,
it follows, again from (5.10), that h([y — 1)) C Ker(§) = [y —1). As h injective then
Ker(4)/h([y — 1)) is finite. However, the quotient ([y — 1) & Ig/[y—1)) /[y —1) = I¢
is torsion free, so that h([y — 1)) = Ker(f). Thus I decomposes as the internal direct sum
I = Ker(f) + h(Ig/[ly —1)). Take o to be the restriction of jo h to Ig/[y — 1). Then
o = hoh:Ig/ly—1) — Ig/[y —1) is an isomorphism and s = hoo ' : Iq/[y —1) = Ig
is the required right splitting of (5.2). O

Corollary 5.12: Ig decomposes as a direct sum Ig = [y—1) @ Ic.

86 : Proof of Theorem C :
It follows from (5.12) that there is an exact sequence 0 — Ic®ly—1) = A—Z—0.
Applying I}, ® — we obtain an exact sequence

0= (Eol)e(Foly-1) - IEeA - TE®Z —0
which, by (1.10), (1.11) we may write more conveniently as
(6.1) 0— (IFolo)oAdb — AL o TE 0.
As AYa=1) and I}, ® I¢ are self-dual, then dualisation of (6.1) gives an exact sequence
(6.2) 0—1Ic =AY - (IFeolc)®Ale-D —o.
Splicing (6.1) and (6.2) together gives an exact sequence
(6.3) 0—Ic — AP™H — AP=D 75 0
However, E is monogenic and finitely presented so there is an exact sequence
(6.4) 0 K-—A —A—1T5—0
Comparison of (6.3) and (6.4) via the generalised form of Schanuel’s Lemma (cf [21]) gives
(6.5) To @ APTO-1 >~ @ AP
We may modify (6.4) successively, first to an exact sequence

(6.6) 0+ KHAP — AP0 5 A —T5 50
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Then, using (6.5), to an exact sequence

(6.7) 0= Ic@APH=L Ly Artd s A 5 TE 0
Finally to an exact sequence
(6.8) 0>Ic—S—A—1I—0

where § = AP*?/j(APT0=1) Tt follows from the ‘de-stabilisation theorem’ of [9] (Prop.
5.17, p. 97) that S is projective. Moreover, from the exact sequence

0 — APH=1 5 APHd 5 g 50

we see that S @ APTb—1 =2 APtb That is, S is stably free of rank 1. However, A satisfies
the Eichler condition so that, by the Swan-Jacobinski Theorem ([5] §51),

S = A.
Substitution of S = A back into (6.8) gives the required basic sequence for A.
K(q)
_ /N _
(6.9) 0O — Ic —A——A— 1 — 0.
where K (q) is the kernel of the surjection A — E, so proving Theorem C. a

87: Some cohomological considerations :

We continue to write Ext® (resp. Ext®) when referring to extensions of modules over A
(resp. Z[Cp]). Observe that i.(I}) = T, = @7_, R(r) and *(R(r)) = I. From the first
Eckmann-Shapiro relation we obtain:

Ext2(T,T) = @D Ext(i.(I8). R(r)
r=1

[12

P Ext®(15,i*(R(r))
r=1
q

P . 12)

r=1

I

Noting that Ext?(I%, 1) = Z/p then Ext*(7,,7,) = Z/p®---®Z/p. Likewise

~
q

from the second Eckmann-Shapiro relation we deduce that
Ext?(R(r), T,) Ext?(R(r),i.(I%)

Ext?(i*(R(r), It,)
Ext?(1%, I%).

111 1R

Hence we see that  Ext*(R(r),7,) = Z/p. Writing 7, = @?_, R(s) we have
q

@ Ext?(R(r),R(s)) = Z/p. As Z/p is indecomposable then for each r € {1,..., ¢} there
s=1

exists o(r)e{l,...,q} such that:
Z/p s=o(r)

I

(7.1) Ext?(R(r), R(s))
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The correspondence i — o(i) evidently defines a mapping o : {1,...,q} — {1,...,q}. As
R(1) = I¢ and R(q) = I}, it follows from (6.9) that o(¢) = 1. We claim that the mapping
o:{1,...,q} = {1,...,q} is bijective. It suffices to show that o is surjective. Suppose not;
then there exists k € {1,...,q} such that for alli € {1,...,¢} Ext?(R(i), R(k)) = 0. Thus
Ext?(T,, R(k)) = @?_, Ext?(R(i), R(k)) = 0. By duality

Ext*(R(k)*, T,") = 0.
However, R(k)* = R(q+ 1 —k) and 7, = T, = @I_, R(s) so that, for all s € {1,...,q}
Ext?(R(qg+1— k), R(s)) = 0.
This contradicts (7.1) above. Thus ¢ is surjective and hence bijective. To summarise:

Proposition 7.2 : There exists a (necessarily unique) permutation o of {1,...,q} satis-
fying o(q) = 1 with the property that, for each ¢ € {1,...,q},

Zlp  j=o(i)
Ext’(R(i), R(j)) =

0 Jj # o(i).
Each R(i) is monogenic; hence for each i € {1,...,q} there is an exact sequence
(7.3) X@i@) = (00— K()—A— R(i)—0)
Zlp  j=o(i)

so that, by dimension shifting, Ext!(K(i), R(j)) =
0 Jj # o(i).
Recall from §1 that Z[Co] ® Ic = i.(Ic) = i(I5) = Z[C) ®I; and that
Z[Cyl® A = A% Applying the functor Z[Cy;] ® — to (6.9) gives an exact sequence
K

/N

00— iy(Ie) — AT L3 AT G (Ie) — 0

where K = Z[Cy] ® K(q). By (3.12), i.(Ic) = Ty(A,7) = @, R(i). Moreover
T R(i) 2 @I, R(c(i)) so that we have an exact sequence

K

(14) 0 L, (o) — AL N @R — 0

On comparing the portion 0 — K — A? — @7_, R(i) - 0 of (7.4) with
o186 = (0= @D, K(i) > AT — D, R(i) — 0)
it follows from Schanuel’s Lemma that K ® A7 = (@7, K(i)) & A% We claim
Proposition 7.5 : There exists an exact sequence of the form
0— @@L, R(e(i) - A — P, K@) — 0.
Proof : Modify the portion 0 — @Y, R(c(i)) > A? — K — 0 of (7.4) first to
0— P, R(0(i) - A® A — K & A? — 0, then, using the other half of (7.4), to

0 = @@L, R(o(i)) — A% — (BL, K(i) © A — 0.
Dualisation gives 0 — (D%, K(i)*) @ AT = A2 — P! R(o(i))* — 0
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which we modify again to 0 — @, K(i)* — A%/((A1)) = DL, R(c(i))* — 0.

Again by the ‘de-stabilisation theorem’ of [7] we see that A%4/(1(A?) is stably free of rank
q over A. By the Swan-Jacobinski Theorem, A?7/(1(A%) = A9 there is an exact sequence

0 = P, K@) — A — DL, R(c(i))* — 0.
Re-dualisation gives the desired sequence 0 — @7_; R(co(i)) = A? —» @7, K(i) » 0. O

Theorem 7.6 : For each i there exists an exact sequence
W(i) = (0 —» R(o(i)) — P(i) — K(i) — 0).
in which P(i) is projective of rank 1 over A. Moreover, €7, P(i) = A%

Proof : Let W] denote the congruence class of the extension constructed in (7.5),

W = (0= @j, R(a(j) » A= D, K(i) = 0).
Then (W] € Ext'(@!_, K(i), i_1 R(0(4)) = D] ;= L Ext! (K (i), R(c(4))). Dimension
shifting applied to (7.2) shows that Extl(K(i),R(j)) = 0 when j # o(i) so that
Ext' (@, K1), Bj_; R(0(j))) = L Ext! (K (i), R(o (i)
and W is congruent to a direct sum W ~ W(1)&--- @ W(q) where W(i) has the form
W(@i) = (0 = R(o(i)) = P(i) — K(i) — 0). In particular, A? = P(1)® P(q)

so that each P(i) is projective. By Swan’s ‘local freeness’ theorem ([4 ] §32) each P( )RQ
is free over A ® Q. As each P(i) is nonzero, a straightforward calculation of Z-ranks shows

that rky (P(i)) = 1. O
Splicing the exact sequence X (i) of (7.3) with W(i) of (7.6) gives an extension

K(i)

/N
(7.7) Z@) = (0 — R(o(i)) —P(i) —— A — R(i) — 0).
For future reference, we note again that o(q) = 1 and that P(q) = A in the basic
sequence Z(q) = &(gq). We now proceed to determine the permutation o.

88 : A p-adic construction :

Denote by 7 the ring of p-adic integers and by A = A ®y 7 the p-adic completion
of A. For any A-lattice M, we denote by M = M ®p A. the corresponding A-lattice. We
have p-adic analogues of (4.8) and (4.9):

(8.1) There is an exact sequence of A-modules 0 — R(1) < R(q) — F,(1) — 0.
(8.2) For 1<k < q— 1 there are exact sequences of A-modules
0 — R(k+1) < R(k) — F,(a*) — 0.

Let iy : 7 — [F, be the canonical mapping. There exists a ¢'" root of unity @ € Z such that
1(@) = a. so that A(y~!) takes the form
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Q)
Q) x
*

% *

~ a3 *
AMy™) =

as ™l o«

1

Let Z(ak) denote the i[cq] module whose underlying Z module is Z on which y acts, on
the right, as multiplication by a*.

Proposition 8.3 : R(k+1) = R(k) ®7 Z@) for 1<k<q-1.

Proof : There is a canonical ring homomorphism 7;(21\, 7) — [F,[C,] whose kernel is the
Jacobson radical of 7,(A, 7). However from the product structure of (4.7) it follows by
Rosen’s Theorem ([4], [20]) that 74(A,7) decomposes uniquely as a direct sum of ideals

TA7 =2 he el

~

where Ji./Jp Nrad(T(A, 7)) = F,[a*]. However Ty (A,7) = R(1) & ---& R(q)

and so, by (8.2), R(k)/R(k) Nrad(Ty(A,7)) = Fla*] so that J, = R(k). Now consider
the exact sequence 0 — iy(Ic) — A — Z[C’q] — 0 and take tensor product — ® Z[d].
As A ® Z[a] = A and Z[C,] ® Z[a) = Z[C,) it follows that i.(Io) ® Z[a] = i.(Io).
As in (3.12), i.(Ic) = T(A,7) so that Ty(A,7) ® Z[a] = T4(A,7). By uniqueness
of the above decomposition it follows that there is a permutation 7 of A{l, ...,q} such
that R(k) ® Z[a] = R(7(k)). The permutation is easily determined; as R(k) — F,[a*] it
follows that R(k) ® Z[a] — F,[a"] ® Z[a] = F,[a"*!]. As R(k 4+ 1) — F,[a"!] we see that

R(k) @ Z[a] = R(k + 1) as claimed. O
Corollary 8.4 : ]/%(k +1) =3 R(1) ®7 Z(&k) for 1<k<gqg-1.
Corollary 8.5 : R(1) 2 R(q) ®s Z(@).

Start with a basic sequence 0 — Ic — A — A — I — 0 and, using (4.10), (4.11)
rewrite in ‘row notation’ thus

K(q)
(8.6) 0—— R(1) —»A/—\» A — R(q) — 0.

Applying — ®gz Z to (8.6) gives an exact sequence

K(q)
_ ~/ N\~

(8.7) 0—— R(1) ——A>—+A — R(q) — 0.
On applying — ®5 Z(d) to (8.7) iteratively and appealing to (8.3) and (8.5) we generate
exact sequences S(k) with 2 <k < g thus.
K(k-1)
S(k) 0—— R(k) ——A—— A — R(k-1)— 0.



—

Splicing the sequences S(k) together gives the following periodic sequence of length 2¢ which
shows that strongly diagonal resolutions exist at the p-adic level.

K(2) m)
/N N _
- R - A -~ - A — R(1)
NS NS
R(q) R(2)
89 : Proof of Theorem D :

As above Z will denote the completion of Z at p. We denote by Der the derived module
category of the group ring A= Z[G] and by ‘a’ the relation of isomorphism in Der. A
standard calculation (cf [8] p. 133) gives

\N)

K(q) K
_ /N /N
A A .

0— R(1) —

Endpe:(Z) = Z/|G| = Z/pq.

As ¢ is invertible in 7 this simplifies to Endper(i) >~ Z/p. Given a lattice L over Z
D, (L) will denote the n'* generalised syzygy of L. Then (cf [8] p.107) for each n > 1 there
is a ring isomorphism Endpe (Dy (L)) = Endpe(L). In particular:

(9.1) Endpe(Dn(Z)) = Z/p for all n > 1.

For lattices L, M over A, Yoneda’s cohomological interpretation of module extensions ([23];
see also Chap IIT of [12]) gives an isomorphism Ext"(L,M) = H"(L,M). Also the
Corepresentation Theorem (cf [8], p.78, more generally Chap. 5 of [9]) computes cohomology
in the derived module category as H"(L, M) = Hompe (D, (L), M). Combining the two
we see that:

(9.2) Ext"(L,M) = Hompe (D, (L),M) for n > 1.
In particular, ExtQ(DZ-(Z), Di+2(2)) = Endper(DHg(z)) so that, by (9.1),
(9.3) Ext?(D;(Z), Dis2(Z)) = Z/p forall i > 1.

Next we note:
Proposition 9.4 : [y — 1) ® Z is projective as a module over Z[G.

Proof : Let j : 2[0(1] < Z|G) be the inclusion of group rings and let I (Cy) denote the
augmentation ideal in z[Cq]. As ¢ is invertible in Z it follows, as in the proof of Maschke’s
Theorem, that I(C,) ®Z = Z[C,). Hence j,(I(Cy)) @ ju(Z) = j.(Z[C,]) = Z|G]. Thus
J«(I(Cy)) is projective over Z[G]. The result now follows as [y — 1) ®Z = J«(I(Cy)). O

Theorem 9.5 : o is the g-cycle given by 0(i) = i+ 1for 1 <i<g—1ando(q) =1.
Proof : Consider the following statements P (i) for 1 <i <g— 1:
P(i) : ]?(7) ~ Dgi_l(z) and o(r) =r+1 for 1<r<i.

We have already observed that o(q) = 1 so it will suffice to prove that each P(i) is true.
Recall from (5.9) that the augmentation ideal I(G) splits as a direct sum

I(G) = Icely-1) = R)&y-1).
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From the augmentation sequence 0 — E(T) (y—-1)® Z) — 2[0] — 7 — 0 we see

— —~

from (9.4) that R(1) ~ D;(Z) so establishing P(1). Now suppose that P(¢) is true for

—

i < g and note that the sequence S(i) of §8 has the form

K(i)
S() O—»R(/i?l)—»f&/—\:f&—»%%&
Hence R(/z—l—\l) ~ Dg(}?(?)). The inductive hypothesis 1?(7) ~ Dgi,l(% now implies
(*) R{+1) ~ Daon(2).

—

Consequently Ext2(R(i), R(i + 1)) = Ext?(Dg_1(Z),Dais1(Z)) = Z/p. In particular,

—

Ext?(R(i),R(i + 1)) # 0. However, by (7.2) there exists a unique j € {1,...,q} such

—_—

that Ext?(R(i), R(j)) # 0 namely j = o(i). Consequently, o(i) = i+ 1 and
P(i) = P(i+1) as claimed. O
On writing 1 = ¢+ 1 modg the sequences Z(i) of (7.7) now become

K (i)

/N
(9.7) Z() = (0 —R@+1) —Pl)Z—SA — R(i) — 0).

By splicing the sequences Z(i) we thereby obtain the following exact sequence

K(q) K(g—1) K(2) K(1)
/N N /N 7N\
0 — R(1) — P(g)—> A —P(g-1]— -+ - A »P(1) —> A — R(1) — 0

NS
R(q) R(2)
in which each P(i) is projective of rank 1 over A and, by (6.9), P(¢) = A. Asin (7.6)

(@I PG) e A = @L, Pl = AL
Hence @g;ll P(i) is stably free of rank ¢ — 1 and so, by the Swan-Jacobinski Theorem,
(9.8) DL P() = A
This completes the proof of Theorem D. O

8§10 : Proof of Theorem A:

Consider the exact sequences {Z(7) }1<i<q constructed in (9.7) above. Defining Z(n) =
Z(i) when n =i modq we obtain exact sequences {Z(n)}n,ez. Splicing the sequences
Z(n) together gives the following exact sequence

0313 0pra O 03, Oyp s 03,5
Sio= (. 2 piy1) A p) — A S P(i—1) —= )
where 8;1_1 = , om, and 8;1 = a, . Taking 0,, ; = (y—1)s and 55; = (Zy)«
where ¥, = 1+4+y+---+ y?~1 it is straightforward to see that the following sequence
S_ is exact

o= _ _

S o= (e Ny g Py g P Do T g ).
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Indeed, if j: Cy — G(p,q) is the inclusion then S_ is the induced resolution S— = j,(€)
where £ is the standard resolution of Z over Z[Cy]

£ = ( --Szio] R ze) S 2o B zie) Sz .. ).
Taking direct sums we obtain the following exact sequence
a;—n 3 0 ag—n 2 0 a;—n 1 0 fjn
( 0 Z;+3> ( 0 Z;+2> ( 0 Z27+1> (80 8;)
S8 =(.. 27 Ph+oAr 27 AsA BT Ph)oA S —" ).

Evidently S; ¢ S— is infinite in both directions and is periodic with period 2¢g. Truncating
at the third differential gives an exact sequence, infinite to the left:

CHINCT N

101) ... 2% p@yaenr ¥ Aer "% PA)eA
However, we also have an exact sequence
(%)
0 a5 of + oy €
(10.2) Pl A ~—"AdAN —— A —Z — 0
N /
Ieely-1)

Merging the two gives a complete resolution of Z which begins
(B;M 0) ( 9 o ) .
0 y-1 5 0 07
N P e R A AT T A S Z 0
and continues

P+l @A <8;6:22>y0) AdA <8%E>_10> P

N
(n)@A(aﬁz)A@A...

and where {813((]) i ﬁk ’ P(§_+ ma) i ];(_k)
k+2mq T k ) k+2m - k-

We have constructed a diagonal resolution of Z with period 2g. Moreover, by (9.8),
@?;11 P(i) = A9'. This completes the proof of Theorem A. |

§11: Proof of Theorem B :
By a projective n-segment P we shall mean an exact sequence of A-modules
P=0O—->N—=>P,—- =P —M-=D0)

where Py,..., P, are finitely generated projective A-modules. Given a projective n-
segment P we recall the Swan-Wall finiteness obstruction x(P) is defined by

X(P) = S (-1)7[R] € Ko(A).

We say that a projective n-segment P is free when each P, is free. It is well known and
straightforward to prove that:
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Proposition 11.1 : Ifn>2and P = 0> N—> P, > ---—> P —> M —0)isa
projective n-segment with y(P) = 0 then there exists a free n-segment

F=0=>N=>A" A1 5 ... 5 A" 5 M —0).

PutyY = 0—[y—1) = A) = - [y—1) — 0). and for 1 < i < g—1 denote by W(i) the
direct sum W(i) = Z(i) @)Y where Z(i) constructed as in (9.7). Then W(i) is a projective
2-stem W(i) = (0 > R(i+1)@®[y—1) - PH)dA > ADA— RGi)@®[y—1) = 0).
Splicing the sequences W(i) together by Yoneda product gives a projective (2¢-2)-stem
Q = W(@—1)oW(g—2)o---oW(1) thus:
Q= (0—=R@aly-1) = Qp2— Q1= R1&[y—1)—0)

ADA r odd
where Qr =

A® P(r/2) r even.
Then x(Q) = S71[P(s)] = [@Z] P(s)]. However, by (9.8), @I_} P(s) = AL
Hence x(Q) = 0. By (4.11) and (5.12) we see that R(1)® [y —1) = Ig. However
R(q) = R(1)*and [y —1) = [y—1)* so that R(¢q) ® [y — 1) = If. We have constructed
a projective (2¢-2)-segment

Q= 0—=1t—=Qyqo2——Q —Ig—0)

with x(Q) = 0. It follows immediately from (11.1) that:

(11.2) There exists a free (2¢-2)-segment (0 — I5s — A2 — ... — A% — [ — 0).
Corollary 11.3 :  There exists a free 2¢g-segment
S=0-2Z—>A—>A%2— ... 5 A" 5 A—>7Z—0).

Proof : Let £ be the standard exact sequence & = (0 - Ig - A - Z — 0). The
dual sequence has the form & = (0 = Z — A — I — 0). Taking F to be the free
(2¢-2)-segment constructed in (11.2) we see that the Yoneda product S = £*oF o isa
free 2¢-segment of the required form

S=0—2Z—>A—> A2 ... 5 A" 5 A—>7Z—0). O

Theorem B is now immediate, being a slightly weaker statement than (11.3).
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