Diagonal resolutions for metacyclic groups

FEA Johnson and JJ Remez

Abstract

We show the finite metacyclic groups G(p,q) admit a class of projective resolutions which are periodic of period 2q and which in addition possess the properties that a) the differentials are 2×2 diagonal matrices; b) the Swan-Wall finiteness obstruction (cf [21], [22]) vanishes. We obtain thereby a purely algebraic proof of Petrie's Theorem ([16]) that G(p,q) has free period 2q.

Keywords: Diagonal resolution; metacyclic group.

Mathematics Subject Classification (AMS 2010):

Primary 16E05; 20C10: Secondary 18E30

$\S 0$: Introduction:

The metacyclic group $G(p,q) = C_p \rtimes C_q$ is the semi-direct product of cyclic groups where p is an odd prime, q is a divisor of p-1 and where C_q acts on C_p via the natural imbedding $C_q \hookrightarrow \operatorname{Aut}(C_p)$. It is known that G(p,q) has cohomological period 2q and hence (cf [21], [22]) the trivial module $\mathbb Z$ has a finitely generated projective resolution of period 2q over the integral group ring $\Lambda = \mathbb Z[G(p,q)]$. In this paper we show that each G(p,q) admits a projective resolution

$$\Delta_* = (\cdots \to \Delta_{2n+1} \overset{\partial_{2n+1}}{\to} \Delta_{2n} \overset{\partial_{2n}}{\to} \Delta_{2n-1} \overset{\partial_{2n-1}}{\to} \cdots \overset{\partial_2}{\to} \Delta_1 \overset{\partial_1}{\to} \Delta_0 \to \mathbb{Z} \to 0)$$

of diagonal type described by the following conditions (i) - (iii):

- (i) $\Delta_0 = \Lambda$;
- (ii) for each $k \geq 1$ $\Delta_{2k-1} = \Lambda \oplus \Lambda$ and $\Delta_{2k} = P(k) \oplus \Lambda$ where P(k) is a projective module of rank 1 over Λ ;
- (iii) for each $k \geq 2$ the differential ∂_k has the diagonal form $\partial_k = \begin{pmatrix} \partial_k^+ & 0 \\ 0 & \partial_k^- \end{pmatrix}$.

Such a resolution is periodic of period 2q when P(k+mq)=P(k) and $\partial_{k+2mq}^{\pm}=\partial_k^{\pm}$ for all $k,m\geq 1$; in addition it is said to be almost free when

$$\bigoplus_{r=1}^{q-1} P(r) \cong \Lambda^{(q-1)} \text{ and } P(q) \cong \Lambda.$$

Theorem A: For any odd prime p and any divisor q of p-1, the trivial module \mathbb{Z} admits an almost free resolution of diagonal type and period 2q over $\Lambda = \mathbb{Z}[G(p,q)]$.

In general, if the finite group G has cohomological period 2q then its free period is $2\delta q$ where δ is a positive integer which divides the order of the projective class group $\widetilde{K}_0(\mathbb{Z}[G])$. Moreover, there are cases known in which $\delta>1$; for example, certain generalised quaternionic groups Q(8;p,q) (cf [1], [13], [14]). However, Theorem A implies that in the present case $\delta=1$; that is:

Theorem B: The group G(p,q) has free period 2q.

The conclusion of Theorem B follows implicitly from the main theorem of Petrie's paper [16], where it is proved in a topological context by showing that a certain surgery obstruction vanishes. By contrast, our proof is purely module theoretic.

In the proof of Theorem A the lower strand of the resolution is easily constructed, being induced up from the standard resolution of C_q thus:

$$\dots \Lambda \overset{y-1}{\rightarrow} \Lambda \overset{\Sigma_y}{\rightarrow} \Lambda \overset{y-1}{\rightarrow} \Lambda \overset{\Sigma_y}{\rightarrow} \Lambda \overset{y-1}{\rightarrow} \Lambda \overset{\Sigma_y}{\rightarrow} \Lambda \overset{y-1}{\rightarrow} \Lambda \overset{\Sigma_y}{\rightarrow} \dots$$

By contrast, far more work is required to construct the upper strand

$$\cdots \stackrel{\partial_{2n+2}^+}{\to} \Lambda \stackrel{\partial_{2n+1}^+}{\to} P(n) \stackrel{\partial_{2n}^+}{\to} \Lambda \stackrel{\partial_{2n-1}^+}{\to} P(n-1) \stackrel{\partial_{2n-2}^+}{\to} \Lambda \stackrel{\partial_{2n-3}^+}{\to} \dots$$

To do this we first describe Λ as a fibre product

$$\Lambda \quad \to \quad \mathcal{T}_q(A, \pi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[C_q] \quad \to \quad \mathbb{F}_p[C_q].$$

Here A is a ring of cyclotomic integers which ramifies completely over p; $\pi \in A$ is the unique prime over p; $\mathcal{T}_q(A,\pi)$ is the following quasi-triangular subring of $M_q(A)$

$$\mathcal{T}_q(A,\pi) = \{X = (x_{rs})_{1 \le r,s \le n} \in M_q(A) \mid x_{rs} \in (\pi) \text{ if } r > s\}.$$

We denote by R(i) the i^{th} row of $\mathcal{T}_q(A,\pi)$ considered as a right Λ -module so that

$$\mathcal{T}_q(A,\pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q).$$

The obvious projections $\Lambda \to \mathcal{T}_q(A, \pi)$ and $\mathcal{T}_q(A, \pi) \to R(i)$ compose to give a surjection $p_i : \Lambda \to R(i)$. In particular, each R(i) is $monogenic^{\dagger}$; that is, generated by a single element over Λ . Defining $K(i) = \text{Ker}(p_i : \Lambda \to R(i))$ we first show:

Theorem C: There exists an exact sequence of the following form

$$\mathfrak{S}(q) = (0 \longrightarrow R(1) \longrightarrow \Lambda \xrightarrow{K(q)} \Lambda \longrightarrow R(q) \longrightarrow 0)$$

We refer to $\mathfrak{S}(q)$ as a basic sequence; it demonstrates the non-obvious fact that K(q) is also monogenic. From the existence of $\mathfrak{S}(q)$ we proceed to deduce:

Theorem D: For $1 \le i \le q-1$ there are exact sequences over Λ of the form

$$\mathfrak{S}(i) = (0 \longrightarrow R(i+1) \longrightarrow P(i) \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0)$$

where $P(2), \ldots, P(q)$ are projective modules of rank 1 such that $\bigoplus_{i=2}^q P(i) \cong \Lambda^{q-1}$.

[†] The referee points out that monogenic modules are frequently called cyclic modules.

Splicing the segments $\mathfrak{S}(i)$ together with $\mathfrak{S}(q)$ gives the exact sequence which constitutes the upper strand in Theorem A, namely:

$$0 \longrightarrow R(1) \longrightarrow \Lambda \xrightarrow{K(q)} \Lambda \xrightarrow{K(q-1)} \cdots \cdots \xrightarrow{K(2)} \Lambda \xrightarrow{K(1)} \Lambda \longrightarrow R(1) \longrightarrow 0.$$

The possibility of constructing such diagonal resolutions originates from the fact that the augmentation ideal I_G of G = G(p,q) decomposes as a direct sum

$$I_G \cong \overline{I_C} \oplus [y-1).$$

Here y is a generator of C_q and [y-1) is the right ideal of Λ generated by y-1 whilst $\overline{I_C}$ is the Galois module obtained from the action of C_q on the augmentation ideal I_C of C_p ; as we shall see, $\overline{I_C}$ is isomorphic to R(1). The existence of such a direct sum decomposition has been known for many years (cf. the paper of Gruenberg and Roggenkamp [7]). However, in the interests of clarity and completeness we give a direct proof (see §5 below).

Beyond Theorem A it is tempting to conjecture that each G(p,q) admits a diagonal resolution with the additional property that each $P(i) \cong \Lambda$. Such a resolution is called *strongly diagonal*; in fact our proof of Theorem D shows that the p-adic completion $\widehat{\Lambda}$ admits such a strongly diagonal resolution. In [10] the first named author showed the existence of strongly diagonal resolutions in all the cases G(p,2); that is, for the dihedral groups of order 2p. For $q \geq 3$, the task of constructing resolutions of this stronger type is less straightforward. If the sequences $\mathfrak{S}(1), \ldots, \mathfrak{S}(q-1)$ could be modified to the form

$$\mathfrak{S}(i)' = (0 \longrightarrow R(i+1) \longrightarrow \Lambda \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0)$$

we could splice them together with $\mathfrak{S}(q)$ to give an exact sequence of period 2q

$$0 \longrightarrow R(1) \longrightarrow \Lambda \xrightarrow{K(q)} \Lambda \xrightarrow{K(q-1)} \Lambda \xrightarrow{K(2)} \Lambda \xrightarrow{K(1)} \Lambda \xrightarrow{R(1)} \Lambda \xrightarrow{R(2)} \Lambda$$

to form the upper strand in a strongly diagonal resolution. This in turn would imply that each K(i) is monogenic, a fact which is yet to be established in general.

Apart from the dihedral groups, strongly diagonal resolutions were previously known to exist only for the groups G(5,4) and G(7,3), ([15], [19]), both cases being established by direct calculation. Elsewhere [11] we shall establish the existence of $\mathfrak{S}(1)', \ldots, \mathfrak{S}(q-1)'$ for certain small values of p and q. In particular, we are able to show the existence of strongly diagonal resolutions in the cases;

$$G(5,4);$$
 $G(7,3),$ $G(7,6);$ $G(11,5),$ $G(11,10);$ $G(13,3),$ $G(13,4),$ $G(13,6);$ $G(17,4);$ $G(19,3),$ $G(19,6),$ $G(19,9).$

The authors wish to thank the referee whose careful attention to detail revealed a number of notational inconsistencies.

§1 : Some standard modules over $\mathbb{Z}[G(p,q)]$

For each integer $n \geq 2$ we denote by C_n the cyclic group $C_n = \langle x \mid x^n = 1 \rangle$. For the remainder of this paper we fix an odd prime p, an integral divisor q of p-1 and write d = (p-1)/q. Recalling that $\operatorname{Aut}(C_p) \cong C_{p-1}$ then there exists an element $\theta \in \operatorname{Aut}(C_p)$ such that $\operatorname{ord}(\theta) = q$. Taking p to be a generator of p0 and making a once and for all choice of p0 with order p0, we construct the semi-direct product p0 and p1 then p2 where p3 the homomorphism p4 and p5. There is then a unique integer p6 in the range p6 and p7 such that p8 and p9 then has the presentation

$$G(p,q) = \langle x, y \mid x^p = y^q = 1; yxy^{-1} = x^a \rangle.$$

The integer a will have a fixed meaning in what follows. We denote by Λ the integral group ring $\Lambda = \mathbb{Z}[G(p,q)]$ and by $i: \mathbb{Z}[C_p] \hookrightarrow \Lambda$ and $j: \mathbb{Z}[C_q] \hookrightarrow \Lambda$ the respective inclusions. Indecomposable lattices over Λ have been classified up to genus, though not up to isomorphism, by Pu [17]. Here we shall need only a small selection from Pu's list. Depending on context, \mathbb{Z} may denote the trivial module over any of the group rings Λ , $\mathbb{Z}[C_p]$ or $\mathbb{Z}[C_q]$. Moreover I_C will denote the augmentation ideal of $\mathbb{Z}[C_p]$ and I_Q the augmentation ideal of $\mathbb{Z}[C_q]$. Clearly I_C is defined by the exact sequence of $\mathbb{Z}[C_p]$ -modules

$$0 \to I_C \stackrel{\iota}{\hookrightarrow} \mathbb{Z}[C_p] \stackrel{\epsilon}{\to} \mathbb{Z} \to 0.$$

On dualising we get an exact sequence $0 \to \mathbb{Z} \xrightarrow{\epsilon^*} \mathbb{Z}[C_p] \xrightarrow{\iota^*} I_C^* \to 0$ where $\epsilon^*(1) = \Sigma_x = 1 + x + x^2 + \cdots + x^{p-1}$. It is a standard and easily verified fact that

(1.1) I_C^* and I_C are isomorphic as $\mathbb{Z}[C_p]$ -modules.

If $i_*(-)$ denotes 'extension of scalars' from $\mathbb{Z}[C_p]$ -modules to Λ -modules then:

(1.2) $i_*(I_C)$ and $i_*(I_C^*)$ are isomorphic as Λ -modules.

As I_C^* and I_C are not actually identical we find it convenient to distinguish between them. We identify the dual I_C^* with the quotient $\mathbb{Z}[C_p]/(\Sigma_x)$. As (Σ_x) is a two-sided ideal in $\mathbb{Z}[C_p]$ then I_C^* is naturally a ring; indeed, putting $\zeta = \exp(2\pi i/p)$ then:

(1.3) There is a ring isomorphism $I_C^* \cong \mathbb{Z}[\zeta]$.

If M is a module over $\mathbb{Z}[C_p]$ then by a Galois structure on M we mean an additive automorphism $\Theta: M \to M$ such that $\Theta^q = \mathrm{Id}_M$ and $\Theta(m \cdot x) = \Theta(m) \cdot \theta(x)$ for all $m \in M$ where θ is our chosen automorphism of C_p . By a Galois lattice we shall mean a pair (M, Θ) where M is a lattice over $\mathbb{Z}[C_p]$ and Θ is a Galois structure on M. The Galois lattice (M, Θ) becomes a (right) lattice over Λ via the action

$$m \cdot x^r y^s b = \Theta^{-s} (m \cdot x^r).$$

Significant examples of Galois lattices arise from ideals of $\mathbb{Z}[C_p]$ which satisfy $\theta(J) = J$. For such an ideal J we put $\overline{J} = (J, \Theta_J)$ where Θ_J is the restriction of θ to J. Thus we obtain Galois lattices $\overline{\mathbb{Z}[C_p]}$, $\overline{I_C}$ and $\overline{(x-1)^k I_C}$ $(k \geq 1)$. Similarly we denote by $\overline{I_C^*}$ the Galois lattice obtained from the dual of the augmentation ideal. Evidently $\overline{I_C^*}$ is a quotient $\overline{I_C^*} = \overline{\mathbb{Z}[C_p]}/(\Sigma_x)$. This last module is fundamental in what follows and we note the following properties which characterise it amongst Λ -modules.

Proposition 1.4: Let M be a Λ -lattice satisfying the following three conditions:

- (i) there exists $\mu \in M$ such that $\mu \cdot y = \mu$ and $M = \operatorname{span}_{\mathbb{Z}} \{ \mu \cdot x^r \mid 0 \le r \le p-1 \};$
- (ii) $\operatorname{rk}_{\mathbb{Z}}(M) = p 1$.
- (iii) $m \cdot \Sigma_x = 0$ for each $m \in M$;

Then $M \cong_{\Lambda} \overline{I_C^*}$ and $\{\mu \cdot x^r \mid 0 \le r \le p-2\}$ is a \mathbb{Z} -basis for M.

Proof: We note that conditions (ii) and (iii) above are satisfied for $\overline{I_C^*}$. Let $\natural: \overline{\mathbb{Z}}[C_p] \to \overline{I_C^*}$ be the natural mapping and put $\eta = \natural(1)$. Then $\eta \cdot y = \eta$ and $\{\eta \cdot x^r \mid 0 \leq r \leq p-2\}$ is a \mathbb{Z} -basis for $\overline{I_C^*}$. Now suppose that M is a Λ -lattice satisfying conditions (i), (ii) and (iii) and consider the homomorphism of abelian groups $\Psi: \overline{I_C^*} \to M$ defined on the basis $\{\eta \cdot x^r \mid 0 \leq r \leq p-1\}$ by $\Psi(\eta \cdot x^r) = \mu \cdot x^r$. As $M = \operatorname{span}_{\mathbb{Z}}\{\mu \cdot x^r \mid 0 \leq r \leq p-1\}$ then Ψ is necessarily surjective and as $\operatorname{rk}_{\mathbb{Z}}(\overline{I_C^*}) = \operatorname{rk}_{\mathbb{Z}}(M) = p-1$ then Ψ is bijective and $\{\mu \cdot x^r \mid 0 \leq r \leq p-2\}$ is a \mathbb{Z} -basis for M. Evidently Ψ is now an isomorphism of $\mathbb{Z}[C_p]$ -modules. Moreover from the identities $\eta \cdot y = \eta$ and $\mu \cdot y = \mu$ it follows easily that Ψ is also an isomorphism over Λ .

For any Galois lattice (M,Θ) there is an isomorphism of abelian groups

$$\Psi: \mathbb{Z}[C_q] \otimes (M, \Theta) \stackrel{\simeq}{\longrightarrow} i_*(M) \ (= M \otimes_{\mathbb{Z}[C_n]} \Lambda)$$

defined by taking $\Psi(y^b \otimes m) = \Theta^{-b}(m) \otimes y^b$. It is straightforward to check that Ψ is also a homomorphism of (right) Λ -modules. We obtain:

Proposition 1.5: $\mathbb{Z}[C_q] \otimes (M, \Theta) \cong i_*(M)$ for any Galois lattice (M, Θ) .

Taking $J = \mathbb{Z}[C_p]$ and noting that $i_*(\mathbb{Z}[C_p]) = \Lambda$ we now see from (1.5) that :

(1.6)
$$\mathbb{Z}[C_q] \otimes \overline{\mathbb{Z}[C_p]} \cong \Lambda.$$

In contrast to (1.1), $\overline{I_C^*}$ is <u>not</u> isomorphic to $\overline{I_C}$ and $\overline{(x-1)^kI_C}$ is not, in general, isomorphic to either $\overline{I_C^*}$ or $\overline{I_C}$.

Let Z be a set with |Z|=q on which $\widehat{C_q}=\{1,\theta,\ldots,\theta^{q-1}\}$ acts transitively on the left; for each $z\in Z$ let F(z) be the free $\mathbb{Z}[C_p]$ -module of rank 1 with basis element [z] and put $F(Z)=\bigoplus_{z\in Z}F(z)$. Then F(Z) is a Galois module with Galois structure Θ where

$$\Theta([z] \cdot x^r) = [\theta_*(z)] \cdot \theta(x^r)$$

and it is straightforward to see that, as Λ -modules, $F(Z) \cong \Lambda$. More generally, suppose that Z is a finite set on which \widehat{C}_q acts freely on the left and denote by $Z = Z_1 \coprod \ldots \coprod Z_m$ the partition of Z into disjoint orbits where each $|Z_i| = q$. By the above, $F(Z_i) \cong \Lambda$ for each i so that $F(Z) = \bigoplus_{i=1}^m F(Z_i) \cong \Lambda^m$; that is:

(1.7) If Z is a finite set on which \widehat{C}_q acts freely with m orbits then $F(Z) \cong \Lambda^m$. We first prove:

Proposition 1.8: $\overline{I_C} \otimes [\Sigma_y) \cong \Lambda^d$.

Proof: Note that $i^*(\overline{I_C} \otimes [\Sigma_y)) \cong I_C \otimes \mathbb{Z}[C_p] \cong \bigoplus_{e=1}^{p-1} F(e)$ where F(e) is the free module of rank 1 over $\mathbb{Z}[C_p]$ on the basis element $(x^e - 1) \otimes \Sigma_y$. Now $\widehat{C_q} = \{ \mathrm{Id}, \theta, \theta^2, \dots, \theta^{q-1} \}$ acts freely on $Z = \{ (x^e - 1) \otimes \Sigma_y \mid 1 \leq e \leq p - 1 \}$. via the action

$$\theta_*((x^e-1)\otimes \Sigma_y) = (\theta(x^e)-1)\otimes \Sigma_y$$

under which Z decomposes as a disjoint union $Z_1 \coprod ... \coprod Z_d$ of $d = \frac{(p-1)}{q}$ cyclic orbits. In the above notation, $\overline{I_C} \otimes [\Sigma_y) \cong \bigoplus_{r=1}^d F(Z_r) \cong \Lambda^d$.

Corollary 1.9: $\overline{I_C} \otimes [y-1) \cong \Lambda^{d(q-1)}$.

Proof: The exact sequence $0 \to [y-1) \to \Lambda \to [\Sigma_y) \to 0$ gives an exact sequence

$$0 \to \overline{I_C} \otimes [y-1) \to \overline{I_C} \otimes \Lambda \to \overline{I_C} \otimes [\Sigma_y) \to 0.$$

As $\overline{I_C}\otimes [\Sigma_y)\cong \Lambda^d$ this latter sequence splits. Hence $\overline{I_C}\otimes [y-1)\oplus \Lambda^d\cong \Lambda^{p-1}$ so that $\overline{I_C}\otimes [y-1)$ is stably free of rank p-d-1. As Λ satisfies the Eichler condition then, by the Swan-Jacobinski Theorem $\overline{I_C}\otimes [y-1)\cong \Lambda^{p-d-1}$. However p-d-1=d(q-1) and so $\overline{I_C}\otimes [y-1)\cong \Lambda^{d(q-1)}$ as claimed

For any Λ -lattices $A, B, (A \otimes B)^* \cong A^* \otimes B^*$. As Λ and [y-1) are self-dual then:

Corollary 1.10:
$$\overline{I_C^*} \otimes [y-1) \cong \Lambda^{d(q-1)}$$
.

It is a standard consequence of Frobenius reciprocity that $M \otimes \Lambda \cong \Lambda^m$ whenever M is a Λ -lattice with $\mathrm{rk}_{\mathbb{Z}}(M) = m$. In particular:

(1.11)
$$\overline{I_C^*} \otimes \Lambda \cong \Lambda^{(p-1)}$$
.

$\S 2:$ A fibre product decomposition for $\mathbb{Z}[G(p,q)]$:

As is well known, $\mathbb{Z}[C_p]$ has a canonical fibre product decomposition

where $\epsilon: \mathbb{Z}[C_p] \to \mathbb{Z}$ is the augmentation map and \mathbb{F}_p is the field with p elements. To proceed, we briefly recall the cyclic algebra construction. Thus let S denote a commutative ring and $\theta: S \to S$ a ring automorphism of finite order dividing q; in particular, θ satisfies the identity $\theta^q = \text{Id}$. The cyclic ring $C_q(S, \theta)$ is then the (two-sided) free S-module

$$C_q(S, \theta) = S \mathbf{1} + S \mathbf{y} \dots + S \mathbf{y}^{n-1}$$

of rank q with basis $\{1, \mathbf{y}, \dots \mathbf{y}^{q-1}\}$ and with multiplication determined by the relations

$$\mathbf{y}^q = \mathbf{1}$$
 ; $\mathbf{y}\xi = \theta(\xi)\mathbf{y}$ $(\xi \in S)$.

So defined, $C_q(S, \theta)$ is an extension ring of S. In the fibre product (2.1) θ induces a ring automorphism of order q on $\mathbb{Z}[C_p]$. As θ fixes Σ_x then θ induces a ring automorphism on the quotient $I_C^* = \mathbb{Z}[C_p]/(\Sigma_x)$. Likewise the augmentation ideal I_C is stable under θ and θ induces the identity automorphism both on the quotient $\mathbb{Z} = \mathbb{Z}[C_p]/I_C$ and \mathbb{F}_p . As the homomorphisms in (2.1) are equivariant with respect to these ring automorphisms we may apply the cyclic algebra construction $C_q(-,\theta)$ to (2.1). Identifying $C_q(\mathbb{Z}[C_p]) = \mathbb{Z}(G(p,q))$,

 $\mathcal{C}_q(\mathbb{Z}) = \mathbb{Z}[C_q], \ \mathcal{C}_q(\mathbb{F}_p) = \mathbb{F}_p[C_q]$ we obtain a fibre product

$$\mathbb{Z}[G(p,q)] \rightarrow \mathcal{C}_q(I_C^*,\theta)$$

$$(2.2) \hspace{3.1em} \downarrow \hspace{3.1em} \downarrow$$

$$\mathbb{Z}[C_q] \longrightarrow \mathbb{F}_p[C_q].$$

To proceed to a more tractable description of $C_q(I^*, \theta)$ we first make the identification $C_q(I^*, \theta) \otimes \mathbb{Q} \cong C_q(\mathbb{Q}(\zeta), \theta)$ where, as above, ζ is a primitive p^{th} root of unity. We note ([2], Lemma 3) that $p = (\zeta - 1)^{p-1}u$ for some unit $u \in \mathbb{Z}(\zeta)^*$. In particular:

(2.3) p ramifies completely in $\mathbb{Z}(\zeta)$.

Applying $-\otimes \mathbb{Q}$ to (2.2) we see that $\mathbb{Q}[G(p,q)] \cong \mathbb{Q}[C_q] \times \mathcal{C}_q(\mathbb{Q}(\zeta), \theta)$ as $\mathbb{F}_p[C_q] \otimes \mathbb{Q} = 0$. Thus $\mathcal{C}_q(\mathbb{Q}(\zeta), \theta)$ is a semisimple \mathbb{Q} -algebra. Moreover the centre $\mathcal{Z}(\mathcal{C}_q(\mathbb{Q}(\zeta), \theta))$ is a field, namely the subfield $\mathbb{Q}(\zeta)^{\theta}$ of $\mathbb{Q}(\zeta)$ fixed by θ ; hence:

(2.4) $C_q(\mathbb{Q}(\zeta), \theta)$ is a simple \mathbb{Q} -algebra.

§3 : A quasi-triangular representation of G(p,q):

If B is commutative ring and $I \triangleleft B$ is an ideal we denote by

$$\mathcal{T}_q(B, I) = \{ X = (x_{rs})_{1 \le r, s \le n} \in M_q(B) \mid x_{rs} \in I \text{ if } r > s \}$$

the ring of upper quasi-triangular matrices over B relative to I; when $I = \{0\}$ then $\mathcal{T}_q(B,\{0\}) = \mathcal{T}_q(B)$ is simply the ring of upper triangular matrices over B. We denote by $\mathcal{U}_q(B,I)$, $\mathcal{U}_q(B)$ the corresponding unit groups. Under the induced homomorphism $\mathfrak{h}: M_q(B) \to M_q(B/I)$ we have

(3.1)
$$\mathcal{T}_q(B,I) = \natural^{-1}(\mathcal{T}_q((B/I)))$$

Likewise from the induced map on unit groups $\natural : \operatorname{GL}_q(B) \to \operatorname{GL}_q(B/I)$ we see

(3.2)
$$\mathcal{U}_q(B,I) = \natural^{-1}(\mathcal{U}_q(B/I)).$$

Note that θ acts on $\mathbb{Z}(\zeta)$ via the isomorphism $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong C_{p-1}$. Let $A = \mathbb{Z}[\zeta]^{\theta}$ denote the subring fixed by θ . Putting $\pi = (\zeta - 1)^q$, it follows from (2.3) that:

(3.3) p ramifies completely in A and π is the unique prime in A over p.

We shall show that $C_q(I^*, \theta) \cong T_q(A, \pi)$. This may be regarded as a concrete form of Rosen's Theorem [20]. Whilst this isomorphism is known in principle (cf p.358 of [18]), for the purpose of calculation it is necessary to give an explicit description. To this end observe that $\{1, \zeta, \ldots, \zeta^{q-1}\}$ is an A-basis for $\mathbb{Z}(\zeta)$. On writing successively

$$\zeta = (\zeta - 1) + 1$$

$$\zeta^{2} = (\zeta - 1)^{2} + 2(\zeta - 1) + 1$$

$$\zeta^{r} = (\zeta - 1)^{r} - \sum_{k=0}^{r-1} (-1)^{r-k} {r \choose k} \zeta^{k}$$

we may make a sequence of elementary basis transformations to show that:

(3.4)
$$\{(\zeta - 1)^{q-1}, (\zeta - 1)^{q-2}, \dots, (\zeta - 1), 1\}$$
 is an A-basis for $\mathbb{Z}(\zeta)$.

G(p,q) acts on the right of $\mathbb{Z}(\zeta)$ by $\mathbb{Z} \cdot (x^r y^s) = \theta^{-s}(\mathbb{Z} \cdot \zeta^{-r})$. Via the basis of (3.4), this action gives a representation $\lambda : G(p,q) \to \mathrm{GL}_q(A)$ where $\lambda(x^{-1})$ is given by

$$\lambda(x^{-1})[(\zeta-1)^r] = \begin{cases} (\zeta-1)^{r+1} + (\zeta-1)^r & 1 \le r \le q-2 \\ \pi + (\zeta-1)^{q-1} & r = q-1. \end{cases}$$

Hence the matrix of $\lambda(x^{-1})$ takes the quasi-triangular form

As x^{-1} generates C_p , the restriction of λ to C_p is also quasi-triangular; that is:

(3.5)
$$\lambda(C_p) \subset \mathcal{U}_q(A, \pi).$$

It follows that the full representation $\lambda: G(p,q) \to GL_q(A)$ is also quasi-triangular. To see this, let $X \in M_q(A)$ be an upper triangular matrix; we say that X is unitriangular when in addition $X_{ii} = 1$ for all i. A unitriangular matrix X will be called a generalized Jordan block when in addition $X_{ij} \neq 0 \iff j = i$ or j = i + 1. The following is straightforward.

Proposition 3.6: Let A be a commutative integral domain, let $X, Z \in M_q(A)$ be unitriangular matrices and suppose that $Y \in M_q(A)$ satisfies XY = YZ; if X is a generalized Jordan block then Y is upper triangular.

Let $\natural: GL_q(A) \to GL_q(A/\pi)$ denote the canonical homomorphism. The above expression for $\lambda(x^{-1})$ shows that $\natural \circ \lambda(x^{-1})$ is a generalized Jordan block. Hence for all $r, \natural \circ \lambda(x^r)$ is unitriangular. Writing $\theta(x) = x^t$ then $x \cdot y^{-1} = y^{-1}x^t$ so that

$$\natural \circ \lambda(x) \ \natural \circ \lambda(y^{-1}) \ = \ \natural \circ \lambda(y^{-1}) \ \natural \circ \lambda(x^t).$$

Taking $X=\natural\circ\lambda(x),\,Y=\natural\circ\lambda(y^{-1})$ and $Z=\natural\circ\lambda(x^t)$ in (3.6) shows that $\natural\circ\lambda(y^{-1})$ is upper triangular. As y^{-1} generates C_q then $\operatorname{Im}(\natural\circ\lambda)\subset\mathcal{U}_q(A/\pi)=\natural^{-1}(\mathcal{U}_q(A/\pi))$; thus:

Theorem 3.7: $\lambda(G(p,q) \subset \mathcal{U}_q(A,\pi)$.

Consequently λ induces a ring homomorphism $\lambda_* : \mathbb{Z}[G(p,q)] \longrightarrow \mathcal{T}_q(A,\pi)$. Noting that $\lambda_*(\Sigma_x) = 0$ then λ_* induces ring homomorphisms

$$\widehat{\lambda}_* : \mathcal{C}_q(I^*, \theta) \to \mathcal{T}_q(A, \pi) \quad ; \quad \widehat{\lambda}_* \otimes \mathrm{Id} : \mathcal{C}_q(\mathbb{Q}(\zeta), \theta) \to M_q(A \otimes \mathbb{Q}).$$

As $C_q(\mathbb{Q}(\zeta), \theta)$ is a simple \mathbb{Q} -algebra then $\widehat{\lambda}_* \otimes \mathrm{Id} : C_q(\mathbb{Q}(\zeta), \theta) \to M_q(A \otimes \mathbb{Q})$ is injective and hence also:

(3.8)
$$\widehat{\lambda}_* : \mathcal{C}_q(I^*, \theta) \to \mathcal{T}_q(A, \pi)$$
 is injective.

In fact λ_* is also surjective. To see this, suppose that \mathcal{C} , \mathcal{T} are both orders in the same finite dimensional semisimple \mathbb{Q} -algebra and that $\lambda: \mathcal{C} \to \mathcal{T}$ is an injective ring homomorphism. As \mathcal{C} , \mathcal{T} both have the same \mathbb{Z} -rank it follows that $\lambda(\mathcal{C})$ has finite index δ in \mathcal{T} . Furthermore δ is determined by the relation $\mathcal{D}isc(\mathcal{T}) = \delta^2 \mathcal{D}isc(\mathcal{C})$ between discriminants. In our case, taking $\mathcal{C} = \mathcal{C}_q(I^*, \theta)$ and $\mathcal{T} = \mathcal{T}_q(A, \pi)$, one may calculate (cf [18] Chapter 2) that:

(3.9)
$$\mathcal{D}isc(\mathcal{C}_q(I^*,\theta)) = \pm \mathcal{D}isc(\mathcal{T}_q(A,\pi)) = \pm \pi^{q(q-1)}q^{q^2}.$$

In consequence, $\delta = 1$. Thus as previously claimed $\hat{\lambda}_*$ is surjective; hence:

Theorem 3.10: $\widehat{\lambda}_*: \mathcal{C}_q(I^*, \theta) \rightarrow \mathcal{T}_q(A, \pi)$ is a ring isomorphism.

We may now re-interpret (2.2) as a fibre square of the form

(3.11)
$$\mathbb{Z}[G(p,q)] \rightarrow \mathcal{T}_q(A,\pi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[C_q] \rightarrow \mathbb{F}_p[C_q]$$

We note that $C_q(I_C^*, \theta)$ is simply another description of the induced module $i_*(I_C^*)$. As $T_q(A, \pi) \cong C_q(I_C^*, \theta)$ it follows from (1.2) that:

(3.12)
$$i_*(I_C) \cong i_*(I_C^*) \cong \mathcal{T}_q(A, \pi).$$

Whilst the quasi-triangularity of $\lambda_*(x^{-1})$ is evident by construction, that of $\lambda_*(y^{-1})$ is known only implicitly from (3.7). To complete our account we elicit some explicit information on the form of $\lambda_*(y^{-1})$. For $0 \le k \le q-2$ define

$$U(k) \ = \ {\rm span}_A \{ (\zeta - 1)^r \mid k + 1 \le r \le q - 1 \}$$

and put U(k)=0 for $q-1\leq k$. Recalling that $(\zeta-1)^q\in(\pi)$ it is straightforward to check that :

(3.13)
$$U(k)U(l) \subset U(k+l+1) + (\pi).$$

We now consider the Galois action given by $\Theta(\zeta) = \zeta^a$.

Proposition 3.14: For each k, $1 \le k \le q-1$ there are elements $v(k) \in U(k)$ and $\pi(k) \in (\pi)$ such that $\Theta[(\zeta-1)^k] = a^k(\zeta-1)^k + v(k) + \pi(k)$.

Proof: Observe that $\Theta(\zeta - 1) = \Theta(\zeta) - 1 = \zeta^a - 1$ and that

$$\zeta^{a} - 1 = ((\zeta - 1) + 1)^{a} - 1$$

$$= a(\zeta - 1) + \sum_{s=2}^{a} {a \choose s} (\zeta - 1)^{s}.$$

Let $\mathcal{P}(k)$ be the statement for $\Theta[(\zeta-1)^k]$. Then $\mathcal{P}(1)$ is verified on putting

$$v(1) = \sum_{s=2}^{a} {a \choose s} (\zeta - 1)^s \text{ and } \pi(1) = 0.$$

Suppose $\mathcal{P}(r)$ is true for $1 \leq r \leq k$ where k < q - 1. As Θ is a ring homomorphism then

$$\begin{split} \Theta[(\zeta-1)^{k+1}] &= & \Theta(\zeta-1) \cdot \Theta[(\zeta-1)^k] \\ &= & [a(\zeta-1) + \upsilon(1)] \cdot \left[a^k(\zeta-1)^k + \upsilon(k) + \pi(k)\right] \\ &= & a^{k+1}(\zeta-1)^{k+1} + \Upsilon + \Psi \\ \left\{ \begin{array}{l} \Upsilon &= & a^k \upsilon(1)(\zeta-1)^k + a(\zeta-1)\upsilon(k) + \upsilon(1)\upsilon(k) \\ \Psi &= & [a(\zeta-1) + \upsilon(1)] \, \pi(k). \end{array} \right. \end{split}$$

where

Clearly $\Psi \in (\pi)$ whilst $\Upsilon \in U(k+1) + (\pi)$ by (3.13). Thus for some $v(k+1) \in U(k+1)$ and $\pi(k+1) \in (\pi)$ we have

$$\Upsilon + \Psi = \upsilon(k+1) + \pi(k+1).$$

Hence $\Theta[(\zeta - 1)^{k+1}] = a^{k+1}(\zeta - 1)^{k+1} + v(k+1) + \pi(k+1)$ verifying $\mathcal{P}(k+1)$.

Any $Y \in M_q(A, \pi)$ can be written uniquely as a sum

(3.15)
$$Y = \Delta(Y) + U(Y) + L(Y)$$

where $\Delta(Y)$ is diagonal, U(Y) is strictly upper triangular and L(Y) is strictly lower triangular. Moreover, as $Y \in \mathcal{T}_q(A, \pi)$ then $L(Y) = \pi L'(Y)$ for some strictly lower triangular matrix L'(Y). If $\mu_0, \mu_1, \dots, \mu_{q-1} \in A$ we denote by $\Delta(\mu_{q-1}, \dots, \mu_0)$ the diagonal $q \times q$ matrix

$$\Delta(\mu_{q-1}, \dots, \mu_0) = \begin{pmatrix} \mu_{q-1} & & & \\ & \mu_{q-2} & & \\ & & \ddots & \\ & & & \mu_1 & \\ & & & & \mu_0 \end{pmatrix}$$

It follows from (3.15) that, with respect to the basis $\{(\zeta-1)^{q-k}\}_{1\leq k\leq q}$ for I_C^* , the matrix $M(\Theta)$ of Θ takes the form $M(\Theta) = \Delta(a^{q-1}, a^{q-2}, \dots, a, 1) + U + \Pi$ where U is a strictly upper triangular and $\Pi = \pi \cdot X$ for some $X \in M_q(A)$. Let $X = \Delta' + U' + L'$ be the decomposition of X given in (3.15) and write $\Delta' = \Delta(\xi_{q-1}, \xi_{q-2}, \dots, \xi_1, \xi_0)$ for some $\xi_i \in A$. Writing $U(\Theta) = U + \pi U'$ and $L(\Theta) = \pi L'$ we see that with respect to the basis $\{(\zeta-1)^{q-k}\}_{1\leq k\leq q}$ for I_C^* , the matrix $M(\Theta)$ takes the form

(3.16)
$$M(\Theta) = \Delta(a^{q-1} + \pi \xi_{q-1}, a^{q-2} + \pi \xi_{q-2}, \dots, a + \pi \xi_1, 1 + \pi \xi_0) + U(\Theta) + L(\Theta)$$

where $U(\Theta)$ is strictly upper triangular and $L(\Theta)$ is strictly lower triangular. Denoting by $\overline{M}(\Theta)$ the reduction of $M(\Theta)$ mod π we see that:

$$\overline{M}(\theta) = \begin{pmatrix} a^{q-1} & * & * & * & * & * \\ & a^{q-2} & * & * & * & * \\ & & \ddots & & & \\ & & & a^1 & * \\ & & & & 1 \end{pmatrix}.$$

As $a^{-r} = a^{q-r} \mod q$ then:

(3.17)
$$\overline{M}(\theta^{-1}) = \begin{pmatrix} a & * & * & * & * & * \\ & a^2 & * & * & * & * \\ & & \ddots & & & \\ & & & a^{q-1} & * \\ & & & & 1 \end{pmatrix}.$$

$\S 4$: Properties of the modules R(i):

We decompose $\mathcal{T}_q(A, \pi)$ as direct sum of right Λ -modules thus

(4.1)
$$\mathcal{T}_{q}(A,\pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q)$$

where R(i) is the i^{th} row of $\mathcal{T}_q(A, \pi)$. Each R(i) is free over A with $\mathrm{rk}_A(R(i)) = q$. However there is an isomorphism

(4.2)
$$\mathcal{T}_q(A,\pi) \otimes_A A/\pi \cong \mathcal{T}_q(A/\pi)$$

under which R(i) descends to $\check{R}(i)$, the i^{th} -row of $\mathcal{T}_q(A/\pi)$. The modules $\check{R}(i)$ are pairwise isomorphically distinct over $\mathcal{T}_q(A/\pi)$ as $\operatorname{rk}_{A/\pi}[\check{R}(i)] = q+1-i$. Hence:

$$(4.3) R(i) \cong_{\Lambda} R(j) \iff i = j.$$

We proceed to study the duality properties of the R(i). Fix the following notation

$$\mathcal{T}_q = \mathcal{T}_q(A, \pi)$$
 ; $R(i) = i^{th} \text{ row of } \mathcal{T}_q$; $C(j) = j^{th} \text{ column of } \mathcal{T}_q$.

Then R(i), C(j) are respectively right and left ideals in \mathcal{T}_q . Define $Q=(q_{ij})\in M_q(A)$ by

$$q_{ij} = \begin{cases} 1 & i+j = q+1 \\ 0 & \text{otherwise} \end{cases}$$

Clearly $Q = Q^t = Q^{-1}$. Define $\theta : \mathcal{T}_q \to \mathcal{T}_q$ by $\theta(A) = QA^tQ$. Then θ is an anti-involution on \mathcal{T}_q which takes a left ideal J to a right ideal $\theta(J)$; in particular:

(4.4)
$$\theta(C(k)) = R(q+1-k).$$

If M is a right \mathcal{T}_q -module then $\operatorname{Hom}_{\mathcal{T}_q}(M,\mathcal{T}_q)$ is a left \mathcal{T}_q -module. In particular:

(4.5)
$$\operatorname{Hom}_{\mathcal{T}_q}(R(k), \mathcal{T}_q) \cong C(k).$$

We use θ to convert a left \mathcal{T}_q -module M to a right \mathcal{T}_q -module θM by means of

$$m * \alpha = \theta(\alpha)m$$

where $m \in M$ and $\alpha \in \mathcal{T}_q$. Note that if J is a left ideal in \mathcal{T}_q then $\theta(J)$ is a right ideal in \mathcal{T}_q ; moreover, we see that θ induces an isomorphism of right \mathcal{T}_q -modules

$$\theta: \ ^{\theta}J \stackrel{\simeq}{\longrightarrow} \ \theta(J).$$

If M is a right module its dual module M^* , defined by $M^* = {}^{\theta}\operatorname{Hom}_{\mathcal{T}_q}(M,\mathcal{T}_q)$, is also a right module. It follows from (4.4) and (4.5) that:

(4.6)
$$R(k)^* \cong R(q+1-k)$$
.

Choose $\overline{a} \in \{1, 2, \dots, p-1\}$ to satisfy $\theta(x) = x^{\overline{a}} (= yxy^{-1})$. Then $y^q - 1$ factorises completely over \mathbb{F}_p as $y^q - 1 = (y-1)(y-\overline{a})(y-\overline{a}^2)\dots(y-\overline{a}^{q-1})$. Hence

$$(4.7) \mathbb{F}_p[C_q] \cong \mathbb{F}_p(\overline{a}) \times \mathbb{F}_p(\overline{a}^2) \times \cdots \times \mathbb{F}_p(\overline{a}^{q-1}) \times \mathbb{F}_p(1)$$

where $\mathbb{F}_p(\overline{a}^k)$ is the 1-dimensional $\mathbb{F}_p[C_q]$ -module on which y acts by $y \cdot \mathbf{z} = \overline{a}^k \mathbf{z}$..

Proposition 4.8: There is an exact sequence $0 \to R(1) \hookrightarrow R(q) \to \mathbb{F}_p(1) \to 0$.

Proof: Consider the $q \times q$ matrix $\Gamma = \lambda(x^{-1} - 1)$ so that

$$\Gamma = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ \pi & 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Then $\Gamma^q = \pi \cdot I_q$. Define $\Gamma_* : \mathcal{T}_q(A, \pi) \to \mathcal{T}_q(A, \pi)$ by $\Gamma_*(\beta) = \Gamma \cdot \beta$. Then Γ_* is a homomorphism of right $\mathcal{T}_q(A, \pi)$ modules and is evidently injective as π is a nonzero element of the integral domain I_C^* . Write a typical element $\beta \in R(1)$ as

$$\beta = \begin{pmatrix} b_1 & b_2 & \dots & b_{q-1} & b_q \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \text{ so that } \Gamma_*(\beta) = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \pi b_1 & \pi b_2 & \dots & \pi b_{q-1} & \pi b_q \end{pmatrix}.$$

Thus $R(1) \cong \Gamma_*(R(1)) \subset R(q)$. However, a typical element $\gamma \in R(q)$ has the form

$$\gamma = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ \pi c_1 & \pi c_2 & \dots & \pi c_{q-1} & c_q \end{pmatrix} \in R(q)$$

which differs from an element of $\Gamma_*(R(1))$ only in the $(q,q)^{th}$ entry. As abelian groups, $R(q)/\Gamma_*(R(1)) \cong A/\pi \cong \mathbb{F}_p$. Finally, from the form of $\lambda(y^{-1}) \in \mathcal{T}_q(A/\pi)$,

$$\lambda(y^{-1}) = \begin{pmatrix} \overline{a} & * & * & * & * & * \\ & \overline{a}^2 & * & * & * & * \\ & & \overline{a}^3 & * & * & * \\ & & & \ddots & & \\ & & & & \overline{a}^{q-1} & * \\ & & & & & 1 \end{pmatrix}$$

y acts trivially on the right of the $(q,q)^{th}$ entry. Thus, $R(q)/\Gamma_*(R(1)) \cong_{\Lambda} \mathbb{F}_p(1)$. Hence, as claimed, we have an exact sequence of Λ -modules $0 \to R(1) \stackrel{\Gamma_*}{\hookrightarrow} R(q) \to \mathbb{F}_p(1) \to 0$. \square In the remaining cases we have :

Proposition 4.9: For $1 \le k \le q-1$ there are exact sequences of Λ -modules

$$0 \to R(k+1) \hookrightarrow R(k) \to \mathbb{F}_p(\overline{a}^k) \to 0.$$

Proof: First note that $\Gamma_*(R(k+1)) \subset R(k)$ for $1 \le k \le q-1$.

To make this statement precise consider a typical element

$$\beta = \begin{pmatrix} 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \pi b_1 & \dots & \pi b_{k-1} & \pi b_k & b_{k+1} & b_{k+2} & \dots & b_q \\ \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix} \in R(k+1).$$

Then

$$\Gamma_*(\beta) = \begin{pmatrix} 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \pi b_1 & \dots & \pi b_{k-1} & \pi b_k & b_{k+1} & b_{k+2} & \dots & b_q \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix} \in R(k).$$

Thus $R(k+1) \cong \Gamma_*(R(k+1)) \subset R(k)$. A typical element $\gamma \in R(k)$ has the form

$$\gamma = \begin{pmatrix} 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \pi c_1 & \dots & \pi c_{k-1} & c_k & c_{k+1} & c_{k+2} & \dots & c_q \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix} \in R(k)$$

which differs from a typical element of $\Gamma_*(R(k+1))$ only in the $(k,k)^{th}$ entry, showing that, as abelian groups, $R(k)/\Gamma_*(R(k+1)) \cong A/\pi \cong \mathbb{F}_p$. Finally, from (3.17) the reduction $\lambda(y^{-1}) \in \mathcal{T}_q(A/\pi)$ takes the form

$$\lambda(y^{-1}) = \begin{pmatrix} \overline{a} & * & * & * & * & * & * & * & * \\ & \overline{a}^2 & * & * & * & * & * & * & * \\ & \ddots & & & & & & & * \\ & & \overline{a}^k & * & * & * & * & * \\ & & & & \overline{a}^{q-1} & * \\ & & & & & 1 \end{pmatrix}$$

Hence in the right action in the quotient, y acts on the $(k,k)^{th}$ entry as multiplication by \overline{a}^k . Thus, as Λ -modules, $R(k)/\Gamma_*(R(k+1)) \cong \mathbb{F}_p(\overline{a}^k)$ so, as claimed, we get an exact sequence $0 \to R(k+1) \stackrel{\Gamma_*}{\hookrightarrow} R(k) \to \mathbb{F}_n(\overline{a}^k) \to 0$.

It is useful to describe R(1) and R(q) as Galois modules. One first checks that R(q) satisfies conditions (i), (ii) and (iii) of (1.4). In particular $\mu = (0,0,\ldots,0,1) \in R(q)$ satisfies $\mu \cdot y = \mu$. Thus it follows from (1.4) that:

Proposition 4.10: $R(q) \cong \overline{I_C^*}$.

It is straightforward to see that $\overline{I_C^*} \cong (\overline{I_C})^*$. From (4.6) and (4.10) it follows that:

$$(4.11) \quad R(1) \cong \overline{I_C}.$$

§5: Decomposing the augmentation ideal of Λ :

$$\begin{cases} E_{(k-1)p+s} &= y^k x^s - 1 & \text{for } 1 \le k \le q - 1 & \text{and } 1 \le s \le p. \\ E_{(q-1)p+s} &= x^s - 1 & \text{for } 1 \le s \le p - 1. \end{cases}$$

Make the change of basis to $\{\Phi_r\}_{1 \leq r \leq pq-1}$ where

Make the change of basis to
$$\{\Phi_r\}_{1 \le r \le pq-1}$$
 where
$$\begin{cases}
\Phi_{(k-1)p+s} = E_{(k-1)p+s} - E_{(q-1)p+s} & \text{for } 1 \le k \le q-1 \text{ and } 1 \le s \le p-1; \\
\Phi_{kp} = E_{kp} & \text{for } 1 \le k \le q-1; \\
\Phi_{(q-1)p+s} = E_{(q-1)p+s} & \text{for } 1 \le s \le p-1.
\end{cases}$$

Then
$$\{\Phi_r\}_{1 \le r \le p(q-1)}$$
 is an integral basis for the right ideal $[y-1)$ as
$$\left\{ \begin{array}{ll} \Phi_{(k-1)p+s} &=& (y^k-1)x^s \quad \text{ for } 1 \le k \le q-1 \quad \text{ and } 1 \le s \le p-1 \\ \Phi_{kp} &=& y^k-1 \quad \text{ for } 1 \le k \le q-1. \end{array} \right.$$

As this extends to an integral basis for I_G is follows that $I_G/[y-1)$ is free over \mathbb{Z} . Moreover if $\natural: I_G \to I_G/[y-1)$ is the identification map then

(5.1)
$$\sharp (\Phi_{(q-1)p+s})_{1\leq s\leq p-1}$$
 is an integral basis for $I_G/[y-1)$.

However $\sharp (\Phi_{(q-1)p+s}) = \sharp (x^s-1)$ from which we see easily that $I_G/[y-1)$ is isomorphic to I_C as a module over $\mathbb{Z}[C_p]$. Computing the action of y^{-1} on I_G we find

$$(x^{s}-1) \cdot y^{-1} = x^{s}y^{-1} - y^{-1}$$

$$= y^{q-1}(x^{\theta_{*}(s)} - 1)$$

$$= (y^{q-1} - 1)(x^{\theta_{*}(s)} - 1) + (x^{\theta_{*}(s)} - 1)$$

Write $X^s-1=\natural(x^s-1)$ so that $(X^s-1)_{1\leq s\leq p-1}$ is an integral basis for $I_G/[y-1)$. Observing that $(y^{q-1}-1)(x^{\theta_*(s)}-1)\in [y-1)$ the above calculation thereby shows

$$(X^s - 1) \cdot y^{-1} = X^{\theta_*(s)} - 1$$

which coincides with the Galois action on $\overline{I_C}$. Thus $I_G/[y-1)\cong \overline{I_C}$ and we have shown (5.2) There exists an exact sequence $0\to [y-1)\to I_G\to \overline{I_C}\to 0$.

We proceed to show that the exact sequence of (5.2) splits. To economise on notation we use boldface symbols \mathbf{Hom} , \mathbf{Ext}^k when describing homomorphisms and extensions of Λ -modules and standard Roman font, Hom and \mathbf{Ext}^k , when referring to homomorphisms and extensions of modules over $\mathbb{Z}[C_p]$. First note that

(5.3)
$$\operatorname{Ext}^k(\mathbb{Z}, I_C) \cong \begin{cases} \mathbb{Z}/p & k = 1 \\ 0 & k = 2. \end{cases}$$

Any $\mathbb{Z}[C_q]$ -module becomes a module over Λ via the projection $\Lambda \to \mathbb{Z}[C_q]$. Thus:

Proposition 5.4: Ext¹($\mathbb{Z}[C_q], R(k)$) $\cong \mathbb{Z}/p$ for all k ($1 \le k \le q$).

Proof: Let *i* denote the inclusion $i : \mathbb{Z}[C_p] \hookrightarrow \Lambda$. Applying the induced representation functor i_* to the exact sequence $0 \to I_C \to \mathbb{Z}[C_p] \to \mathbb{Z} \to 0$ gives an exact sequence

(*)
$$0 \to i_*(I_C) \to \Lambda \to \mathbb{Z}[C_q] \to 0.$$

Now $i_*(I_C) \cong \bigoplus_{t=1}^q R(t)$ so that (*) can be re-written as an extension

(**)
$$0 \to \bigoplus_{t=1}^q R(t) \to \Lambda \to \mathbb{Z}[C_q] \to 0$$

which is classified by cohomology classes $c = (c_t)_{1 \le t \le q}$ where $c_t \in \mathbf{Ext}^1(\mathbb{Z}[C_q], R(t))$. If $\mathbf{Ext}^1(\mathbb{Z}[C_q], R(k)) = 0$ then Λ decomposes as a direct sum $\Lambda \cong R(k) \oplus X$ where the module X occurs in the extension

$$0 \to \bigoplus_{t \neq k} R(t) \to X \to \mathbb{Z}[C_q] \to 0$$

classified by the sequence $(c_t)_{t\neq k}$. However Λ , being the integral group ring of a finite group, is indecomposable (cf [4] p.678). Consequently each $c_k \neq 0$ and hence each $\mathbf{Ext}^1(\mathbb{Z}[C_q], R(k)) \neq 0$. Now note that $i^*(\mathbb{Z}[C_q]) \cong \mathbb{Z}^q$; from the Eckmann-Shapiro isomorphism $\mathbf{Ext}^1(\mathbb{Z}[C_q], i_*(I_C)) \cong \mathrm{Ext}^1(i^*(\mathbb{Z}[C_q]), I_C)$ and (5.3) we see that

$$\operatorname{Ext}^1(\mathbb{Z}[C_q], i_*(I_C)) \cong \operatorname{Ext}^1(\mathbb{Z}, I_C)^q \cong \underbrace{\mathbb{Z}/p \oplus \cdots \oplus \mathbb{Z}/p}_q.$$

As above, $i_*(I_C) \cong \bigoplus_{k=1}^q R(k)$. Hence $\bigoplus_{k=1}^q \mathbf{Ext}^1(\mathbb{Z}[C_q], R(k)) \cong \underbrace{\mathbb{Z}/p \oplus \cdots \oplus \mathbb{Z}/p}_q$. As

$$\mathbf{Ext}^1(\mathbb{Z}[C_q], R(k)) \neq 0$$
 then each $\mathbf{Ext}^1(\mathbb{Z}[C_q], R(k)) \cong \mathbb{Z}/p$ as claimed.

From the Eckmann-Shapiro isomorphism $\mathbf{Ext}^2(\mathbb{Z}, i_*(I_C)) \cong \mathbf{Ext}^2(\mathbb{Z}, I_C)$ we see from (5.3) that $\mathbf{Ext}^2(\mathbb{Z}, i_*(I_C)) = 0$. However

$$\bigoplus_{k=1}^q \mathbf{Ext}^2(\mathbb{Z}, R(k)) \;\cong\; \mathbf{Ext}^2(\mathbb{Z}, \bigoplus_{k=1}^q R(k)) \;\cong\; \mathbf{Ext}^2(\mathbb{Z}, i_*(I_C))$$

from which it follows that:

(5.5)
$$\mathbf{Ext}^{2}(\mathbb{Z}, R(k)) = 0 \text{ for all } k \quad (1 \leq k \leq q).$$

Now $\operatorname{Hom}(i^*(I_Q), I_C) \cong \operatorname{Hom}(\mathbb{Z}, I_C)^{(q)} = 0$. From the Eckmann-Shapiro isomorphism

 $\mathbf{Hom}(I_Q, i_*(I_C)) \cong \mathrm{Hom}(i^*(I_Q), I_C)$ we see that $\mathbf{Hom}(I_Q, i_*(I_C)) \cong 0$. Hence (5.6) $\mathbf{Hom}(I_Q, R(k)) = 0$ for all k $(1 \le k \le q)$.

As $\mathbb{Z}[C_p]$ is indecomposable, from the exact sequence $0 \to \overline{I_C} \to \overline{\mathbb{Z}[C_p]} \to \mathbb{Z} \to 0$ it follows that $\mathbf{Ext}^1(\mathbb{Z}, \overline{I_C}) \neq 0$. As $\overline{I_C} \cong R(1)$ then $\mathbf{Ext}^1(\mathbb{Z}, R(1)) \neq 0$. However, $\mathbf{Ext}^1(\mathbb{Z}, i_*(I_C)) \cong \mathrm{Ext}^1(i^*(\mathbb{Z}), I_C) \cong \mathrm{Ext}^1(\mathbb{Z}, I_C) \cong \mathbb{Z}/p$ so that

$$\bigoplus_{k=1}^q \mathbf{Ext}^1(\mathbb{Z}, R(k)) \cong \mathbb{Z}/p.$$

As $\mathbf{Ext}^1(\mathbb{Z}, R(1)) \neq 0$ it follows that:

(5.7)
$$\mathbf{Ext}^1(\mathbb{Z}, R(k))$$
 \cong
$$\begin{cases} \mathbb{Z}/p & k=1\\ 0 & k \neq 1. \end{cases}$$

Applying $\mathbf{Hom}(-, R(k))$ to the exact sequence $0 \to I_Q \to \mathbb{Z}[C_q] \to \mathbb{Z} \to 0$ we obtain a long exact sequence in cohomology, from which, in conjunction with (5.4), (5.5) and (5.6), we extract the following portion:

$$\begin{aligned} \mathbf{Hom}(I_Q,R(k)) &\to \mathbf{Ext}^1(\mathbb{Z},R(k)) &\to \mathbf{Ext}^1(\mathbb{Z}[C_q],R(k)) &\to \mathbf{Ext}^1(I_Q,R(k)) &\to \mathbf{Ext}^2(\mathbb{Z},R(k)) \\ & || & || & || & || & || & || \\ & 0 &\to \mathbf{Ext}^1(\mathbb{Z},R(k)) &\to \mathbb{Z}/p &\to \mathbf{Ext}^1(I_Q,R(k)) &\to 0. \end{aligned}$$

In the case k=1 then $\mathbf{Ext}^1(\mathbb{Z},R(1))\cong \mathbb{Z}/p$ so that $\mathbf{Ext}^1(I_Q,R(1))=0$ whilst if $k\neq 1$ then $\mathbf{Ext}^1(\mathbb{Z},R(k))=0$ so that $\mathbf{Ext}^1(I_Q,R(k))\cong \mathbb{Z}/p$; that is:

(5.8)
$$\mathbf{Ext}^1(I_Q, R(k))$$
 \cong
$$\begin{cases} 0 & k=1 \\ \mathbb{Z}/p & k \neq 1. \end{cases}$$

Theorem 5.9: I_G decomposes as a direct sum $I_G \cong \overline{I_C} \oplus Y$ for some Λ -module Y.

Proof : First consider the exact sequence $0 \to I_C \to \mathbb{Z}[C_p] \to \mathbb{Z} \to 0$. By taking induced representations we obtain an exact sequence $0 \to i_*(I_C) \to \Lambda \xrightarrow{p} \mathbb{Z}[C_q] \to 0$. As $i_*(I_C) \cong \bigoplus_{k=1}^q R(k)$ and $p^{-1}(I_Q) = I_G$ we obtain an exact sequence

$$0 \longrightarrow \bigoplus_{k=1}^{q} R(k) \longrightarrow I_G \stackrel{p}{\longrightarrow} I_Q \longrightarrow 0$$

classified by a sequence of cohomology classes $\mathbf{c} = (c_1, c_2, \dots, c_q)$ where $c_k \in \mathbf{Ext}^1(I_Q, R(k))$. As $c_1 \in \mathbf{Ext}^1(I_Q, R(1)) = 0$ then $I_G \cong R(1) \oplus Y$ where Y is given as the extension

$$0 \longrightarrow \bigoplus_{k \neq 1} R(k) \longrightarrow Y \stackrel{p}{\longrightarrow} I_Q \longrightarrow 0$$

classified by (c_2, \ldots, c_q) . The conclusion follows as $R(1) \cong \overline{I_C}$.

As above we continue to use boldface symbols $\operatorname{\mathbf{Hom}}$, $\operatorname{\mathbf{Ext}}^a$ when describing homomorphisms and extensions of Λ -modules but we now use italics Hom , Ext^a when referring to homomorphisms and extensions of modules over $\mathbb{Z}[C_q]$. Let $j:\mathbb{Z}[C_q]\hookrightarrow \Lambda$ denote the inclusion; we note that $[y-1)=j_*(I_Q)$ and $j^*(\overline{I_C})\cong \mathbb{Z}^{p-1}$; thus $\operatorname{\mathbf{Hom}}([y-1),\overline{I_C}))\cong \operatorname{Hom}(I_Q,\mathbb{Z}^{p-1})$ However $\operatorname{Hom}(I_Q,\mathbb{Z})=0$ so that we have:

(5.10)
$$\text{Hom}([y-1), \overline{I_C})) = 0$$

Corollary 5.11: The exact sequence of (5.2) splits.

Proof : It suffices to construct a right splitting of (5.2); that is, a Λ -homomorphism $s:I_G/[y-1)\to I_G$ such that $\ \ \circ s=I_G$ where, as above, $\ \ :I_G\to I_G/[y-1)$ is the identification map. We first show that the isomorphism $I_G\cong Y\oplus \overline{I_C}$ of (5.9) implies that $Y\cong [y-1)$. Thus let $\varphi:I_G\to Y\oplus \overline{I_C}$ be the isomorphism of (5.9) and let ψ denote the projection $\psi:[y-1)\oplus \overline{I_C}\to \overline{I_C}$. The restriction $\psi\circ\varphi_{|[y-1)}:[y-1)\to \overline{I_C}$ is necessarily zero by (5.10). Hence φ restricts to an injection

$$\varphi_{|[y-1)}:[y-1)\to Y$$

and induces an isomorphism $\varphi_*: I_G/[y-1) \to (Y/\varphi([y-1)) \oplus \overline{I_C}$. Clearly we have $\operatorname{rk}_{\mathbb{Z}}([y-1)) = \operatorname{rk}_{\mathbb{Z}}(Y)) = p(q-1)$, from which it follows that $Y/\varphi([y-1))$ is finite. However, $I_G/[y-1)$ is torsion free so that $Y/\varphi([y-1)) = 0$ and $\varphi: [y-1) \xrightarrow{\simeq} Y$ is the required isomorphism. Consequently $[y-1) \oplus \overline{I_C} \cong I_G$. As $\overline{I_C} \cong I_G/[y-1)$ it follows that there is an isomorphism $h: [y-1) \oplus I_G/[y-1) \to I_G$. As $\operatorname{Coker}(\natural) \cong \overline{I_C}$, it follows, again from (5.10), that $h([y-1)) \subset \operatorname{Ker}(\natural) = [y-1)$. As h injective then $\operatorname{Ker}(\natural)/h([y-1))$ is finite. However, the quotient $([y-1) \oplus I_G/[y-1))/[y-1) \cong \overline{I_C}$ is torsion free, so that $h([y-1)) = \operatorname{Ker}(\natural)$. Thus I_G decomposes as the internal direct sum $I_G = \operatorname{Ker}(\natural) \dotplus h(I_G/[y-1))$. Take σ to be the restriction of $\natural \circ h$ to $I_G/[y-1)$. Then $\sigma = \natural \circ h: I_G/[y-1) \xrightarrow{\simeq} I_G/[y-1)$ is an isomorphism and $s = h \circ \sigma^{-1}: I_G/[y-1) \to I_G$ is the required right splitting of (5.2).

Corollary 5.12: I_G decomposes as a direct sum $I_G \cong [y-1) \oplus \overline{I_C}$.

§6: Proof of Theorem C:

It follows from (5.12) that there is an exact sequence $0 \to \overline{I_C} \oplus [y-1) \to \Lambda \to \mathbb{Z} \to 0$. Applying $\overline{I_C^*} \otimes -$ we obtain an exact sequence

$$0 \to \ (\overline{I_C^*} \otimes \overline{I_C}) \oplus (\overline{I_C^*} \otimes [y-1)) \ \to \ \overline{I_C^*} \otimes \Lambda \ \to \ \overline{I_C^*} \otimes \mathbb{Z} \ \to 0$$

which, by (1.10), (1.11) we may write more conveniently as

$$(6.1) 0 \to (\overline{I_C^*} \otimes \overline{I_C}) \oplus \Lambda^{d(q-1)} \to \Lambda^{p-1} \to \overline{I_C^*} \to 0.$$

As $\Lambda^{d(q-1)}$ and $\overline{I_C^*} \otimes \overline{I_C}$ are self-dual, then dualisation of (6.1) gives an exact sequence

$$(6.2) 0 \to \overline{I_C} \to \Lambda^{p-1} \to (\overline{I_C^*} \otimes \overline{I_C}) \oplus \Lambda^{d(q-1)} \to 0.$$

Splicing (6.1) and (6.2) together gives an exact sequence

$$(6.3) 0 \to \overline{I_C} \longrightarrow \Lambda^{(p-1)} \longrightarrow \Lambda^{(p-1)} \longrightarrow \overline{I_C^*} \to 0$$

However, $\overline{I_C^*}$ is monogenic and finitely presented so there is an exact sequence

$$(6.4) 0 \to K \longrightarrow \Lambda^b \longrightarrow \Lambda \longrightarrow \overline{I_C^*} \to 0$$

Comparison of (6.3) and (6.4) via the generalised form of Schanuel's Lemma (cf [21]) gives

$$(6.5) \overline{I_C} \oplus \Lambda^{p+b-1} \cong K \oplus \Lambda^p$$

We may modify (6.4) successively, first to an exact sequence

$$(6.6) 0 \to K \oplus \Lambda^p \longrightarrow \Lambda^{p+b} \longrightarrow \Lambda \longrightarrow \overline{I_C^*} \to 0$$

Then, using (6.5), to an exact sequence

$$(6.7) 0 \to \overline{I_C} \oplus \Lambda^{p+b-1} \xrightarrow{j} \Lambda^{p+b} \longrightarrow \Lambda \longrightarrow \overline{I_C^*} \to 0$$

Finally to an exact sequence

$$(6.8) 0 \to \overline{I_C} \longrightarrow S \longrightarrow \Lambda \longrightarrow \overline{I_C^*} \to 0$$

where $S = \Lambda^{p+b}/j(\Lambda^{p+b-1})$. It follows from the 'de-stabilisation theorem' of [9] (Prop. 5.17, p. 97) that S is projective. Moreover, from the exact sequence

$$0 \to \Lambda^{p+b-1} \xrightarrow{j} \Lambda^{p+b} \to S \to 0$$

we see that $S \oplus \Lambda^{p+b-1} \cong \Lambda^{p+b}$. That is, S is stably free of rank 1. However, Λ satisfies the Eichler condition so that, by the Swan-Jacobinski Theorem ([5] §51),

$$S \cong \Lambda$$
.

Substitution of $S \cong \Lambda$ back into (6.8) gives the required basic sequence for Λ .

$$(6.9) 0 \longrightarrow \overline{I_C} \longrightarrow \Lambda \xrightarrow{K(q)} \Lambda \longrightarrow \overline{I_C^*} \longrightarrow 0.$$

where K(q) is the kernel of the surjection $\Lambda \to \overline{I_C^*}$, so proving Theorem C.

§7: Some cohomological considerations:

We continue to write \mathbf{Ext}^a (resp. Ext^a) when referring to extensions of modules over Λ (resp. $\mathbb{Z}[C_p]$). Observe that $i_*(I_C^*) \cong \mathcal{T}_q \cong \bigoplus_{r=1}^q R(r)$ and $i^*(R(r)) \cong I_C^*$. From the first Eckmann-Shapiro relation we obtain:

$$\mathbf{Ext}^{2}(\mathcal{T}_{q}, \mathcal{T}_{q}) \cong \bigoplus_{\substack{r=1\\q}}^{q} \mathbf{Ext}^{2}(i_{*}(I_{C}^{*}), R(r))$$

$$\cong \bigoplus_{\substack{r=1\\q\\r=1}}^{q} \mathbf{Ext}^{2}(I_{C}^{*}, i^{*}(R(r)))$$

$$\cong \bigoplus_{r=1}^{q} \mathbf{Ext}^{2}(I_{C}^{*}, I_{C}^{*})$$

Noting that $\operatorname{Ext}^2(I_C^*, I_C^*) \cong \mathbb{Z}/p$ then $\operatorname{\mathbf{Ext}}^2(\mathcal{T}_q, \mathcal{T}_q) \cong \underbrace{\mathbb{Z}/p \oplus \cdots \oplus \mathbb{Z}/p}_q$. Likewise

from the second Eckmann-Shapiro relation we deduce that

$$\begin{array}{ccc} \mathbf{Ext}^2(R(r),\mathcal{T}_q) & \cong & \mathbf{Ext}^2(R(r),i_*(I_C^*) \\ & \cong & \mathrm{Ext}^2(i^*(R(r),I_C^*) \\ & \cong & \mathrm{Ext}^2(I_C^*,I_C^*). \end{array}$$

Hence we see that $\mathbf{Ext}^2(R(r), \mathcal{T}_q) \cong \mathbb{Z}/p$. Writing $\mathcal{T}_q \cong \bigoplus_{s=1}^q R(s)$ we have $\bigoplus_{s=1}^q \mathbf{Ext}^2(R(r), R(s)) \cong \mathbb{Z}/p$. As \mathbb{Z}/p is indecomposable then for each $r \in \{1, \ldots, q\}$ there exists $\sigma(r) \in \{1, \ldots, q\}$ such that:

(7.1)
$$\mathbf{Ext}^{2}(R(r), R(s)) \cong \begin{cases} \mathbb{Z}/p & s = \sigma(r) \\ 0 & s \neq \sigma(r). \end{cases}$$

The correspondence $i\mapsto \sigma(i)$ evidently defines a mapping $\sigma:\{1,\ldots,q\}\to\{1,\ldots,q\}$. As $R(1)\cong\overline{I_C}$ and $R(q)\cong\overline{I_C^*}$ it follows from (6.9) that $\sigma(q)=1$. We claim that the mapping $\sigma:\{1,\ldots,q\}\to\{1,\ldots,q\}$ is bijective. It suffices to show that σ is surjective. Suppose not; then there exists $k\in\{1,\ldots,q\}$ such that for all $i\in\{1,\ldots,q\}$ $\mathbf{Ext}^2(R(i),R(k))=0$. Thus $\mathbf{Ext}^2(\mathcal{T}_q,R(k))=\bigoplus_{i=1}^q\mathbf{Ext}^2(R(i),R(k))=0$. By duality

$$\mathbf{Ext}^2(R(k)^*, \mathcal{T}_q^*) = 0.$$

However, $R(k)^* \cong R(q+1-k)$ and $\mathcal{T}_q^* \cong \mathcal{T}_q \cong \bigoplus_{s=1}^q R(s)$ so that, for all $s \in \{1, \dots, q\}$

$$\mathbf{Ext}^{2}(R(q+1-k),R(s))=0.$$

This contradicts (7.1) above. Thus σ is surjective and hence bijective. To summarise:

Proposition 7.2: There exists a (necessarily unique) permutation σ of $\{1, \ldots, q\}$ satisfying $\sigma(q) = 1$ with the property that, for each $i \in \{1, \ldots, q\}$,

$$\mathbf{Ext}^2(R(i),R(j)) \;\;\cong\;\; \left\{ \begin{array}{ll} \mathbb{Z}/p & \quad j=\sigma(i) \\ \\ 0 & \quad j\neq\sigma(i). \end{array} \right.$$

Each R(i) is monogenic; hence for each $i \in \{1, \ldots, q\}$ there is an exact sequence

(7.3)
$$\mathcal{X}(i) = (0 \to K(i) \to \Lambda \to R(i) \to 0)$$

so that, by dimension shifting, $\operatorname{Ext}^1(K(i),R(j))\cong \left\{ \begin{array}{ll} \mathbb{Z}/p & j=\sigma(i)\\ 0 & j\neq\sigma(i). \end{array} \right.$

Recall from §1 that $\mathbb{Z}[C_q] \otimes \overline{I_C} \cong i_*(I_C) \cong i_*(I_C^*) \cong \mathbb{Z}[C_q] \otimes \overline{I_C^*}$ and that $\mathbb{Z}[C_q] \otimes \Lambda \cong \Lambda^q$. Applying the functor $\mathbb{Z}[C_q] \otimes -$ to (6.9) gives an exact sequence

$$0 \longrightarrow i_*(I_C) \longrightarrow \Lambda^q \xrightarrow{\Lambda} \Lambda^q \longrightarrow i_*(I_C) \longrightarrow 0$$

where $K = \mathbb{Z}[C_q] \otimes K(q)$. By (3.12), $i_*(I_C) \cong \mathcal{T}_q(A,\pi) \cong \bigoplus_{i=1}^q R(i)$. Moreover $\bigoplus_{i=1}^q R(i) \cong \bigoplus_{i=1}^q R(\sigma(i))$ so that we have an exact sequence

(7.4)
$$0 \longrightarrow \bigoplus_{i=1}^{q} R(\sigma(i)) \longrightarrow \Lambda^{q} \stackrel{\uparrow}{\longrightarrow} \Lambda^{q} \longrightarrow \bigoplus_{i=1}^{q} R(i) \longrightarrow 0.$$

On comparing the portion $0 \to K \to \Lambda^q \to \bigoplus_{i=1}^q R(i) \to 0$ of (7.4) with

$$\bigoplus_{i=1}^q \mathcal{S}(i) = (0 \to \bigoplus_{i=1}^q K(i) \to \Lambda^q \to \bigoplus_{i=1}^q R(i) \to 0)$$

it follows from Schanuel's Lemma that $K\oplus \Lambda^q \cong (\bigoplus_{i=1}^q K(i)) \oplus \Lambda^q$. We claim

Proposition 7.5: There exists an exact sequence of the form

$$0 \to \bigoplus_{i=1}^q R(\sigma(i)) \to \Lambda^q \to \bigoplus_{i=1}^q K(i) \to 0.$$

Proof: Modify the portion $0 \to \bigoplus_{i=1}^q R(\sigma(i)) \to \Lambda^q \to K \to 0$ of (7.4) first to $0 \to \bigoplus_{i=1}^q R(\sigma(i)) \to \Lambda^q \oplus \Lambda^q \to K \oplus \Lambda^q \to 0$, then, using the other half of (7.4), to

$$0 \ \to \ \bigoplus_{i=1}^q R(\sigma(i)) \longrightarrow \Lambda^{2q} \longrightarrow (\bigoplus_{i=1}^q K(i)) \ \oplus \ \Lambda^q \ \to \ 0.$$

Dualisation gives $0 \to (\bigoplus_{i=1}^q K(i)^*) \oplus \Lambda^q \xrightarrow{\iota} \Lambda^{2q} \longrightarrow \bigoplus_{i=1}^q R(\sigma(i))^* \to 0$

which we modify again to $0 \to \bigoplus_{i=1}^q K(i)^* \to \Lambda^{2q}/(\iota(\Lambda^q)) \to \bigoplus_{i=1}^q R(\sigma(i))^* \to 0$.

Again by the 'de-stabilisation theorem' of [7] we see that $\Lambda^{2q}/(\iota(\Lambda^q))$ is stably free of rank q over Λ . By the Swan-Jacobinski Theorem, $\Lambda^{2q}/(\iota(\Lambda^q)) \cong \Lambda^q$ there is an exact sequence

$$0 \to \bigoplus_{i=1}^q K(i)^* \longrightarrow \Lambda^q \longrightarrow \bigoplus_{i=1}^q R(\sigma(i))^* \to 0.$$

Re-dualisation gives the desired sequence $0 \to \bigoplus_{i=1}^q R(\sigma(i)) \to \Lambda^q \to \bigoplus_{i=1}^q K(i) \to 0$. \square

Theorem 7.6: For each i there exists an exact sequence

$$W(i) = (0 \rightarrow R(\sigma(i)) \longrightarrow P(i) \longrightarrow K(i) \rightarrow 0).$$

in which P(i) is projective of rank 1 over Λ . Moreover, $\bigoplus_{i=1}^q P(i) \cong \Lambda^q$.

Proof: Let [W] denote the congruence class of the extension constructed in (7.5),

$$\mathcal{W} = (0 \to \bigoplus_{i=1}^q R(\sigma(i)) \to \Lambda^q \to \bigoplus_{i=1}^q K(i) \to 0).$$

Then $[\mathcal{W}] \in \operatorname{Ext}^1(\bigoplus_{i=1}^q K(i), \bigoplus_{j=1}^q R(\sigma(j))) \cong \bigoplus_{i,j=1}^q \operatorname{Ext}^1(K(i), R(\sigma(j)))$. Dimension shifting applied to (7.2) shows that $\operatorname{Ext}^1(K(i), R(j)) = 0$ when $j \neq \sigma(i)$ so that

$$\operatorname{Ext}^1(\bigoplus_{i=1}^q K(i), \bigoplus_{i=1}^q R(\sigma(i))) \cong \bigoplus_{i=1}^q \operatorname{Ext}^1(K(i), R(\sigma(i)))$$

and \mathcal{W} is congruent to a direct sum $\mathcal{W} \approx \mathcal{W}(1) \oplus \cdots \oplus \mathcal{W}(q)$ where $\mathcal{W}(i)$ has the form $\mathcal{W}(i) = (0 \to R(\sigma(i)) \to P(i) \to K(i) \to 0)$. In particular, $\Lambda^q \cong P(1) \oplus \cdots \oplus P(q)$ so that each P(i) is projective. By Swan's 'local freeness' theorem ([4], §32) each $P(i) \otimes \mathbb{Q}$ is free over $\Lambda \otimes \mathbb{Q}$. As each P(i) is nonzero, a straightforward calculation of \mathbb{Z} -ranks shows that $\mathrm{rk}_{\Lambda}(P(i)) = 1$.

Splicing the exact sequence $\mathcal{X}(i)$ of (7.3) with $\mathcal{W}(i)$ of (7.6) gives an extension

(7.7)
$$Z(i) = (0 \longrightarrow R(\sigma(i)) \longrightarrow P(i) \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0).$$

For future reference, we note again that $\sigma(q) = 1$ and that $P(q) = \Lambda$ in the basic sequence $\mathcal{Z}(q) = \mathfrak{S}(q)$. We now proceed to determine the permutation σ .

§8 : A p-adic construction :

Denote by $\widehat{\mathbb{Z}}$ the ring of p-adic integers and by $\widehat{\Lambda} = \Lambda \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ the p-adic completion of Λ . For any Λ -lattice M, we denote by $\widehat{M} = M \otimes_{\Lambda} \widehat{\Lambda}$, the corresponding $\widehat{\Lambda}$ -lattice. We have p-adic analogues of (4.8) and (4.9):

- (8.1) There is an exact sequence of $\widehat{\Lambda}$ -modules $0 \to \widehat{R}(1) \hookrightarrow \widehat{R}(q) \to \mathbb{F}_p(1) \to 0$.
- (8.2) For $1 \le k \le q-1$ there are exact sequences of $\widehat{\Lambda}$ -modules

$$0 \to \widehat{R}(k+1) \hookrightarrow \widehat{R}(k) \to \mathbb{F}_p(\overline{a}^k) \to 0.$$

$$\widehat{\lambda}(y^{-1}) = \begin{pmatrix} \widehat{a} & * & * & * & * & * \\ \widehat{a}^2 & * & * & * & * \\ & \widehat{a}^3 & * & * & * \\ & & \ddots & & \\ & & & \widehat{a}^{q-1} & * \\ & & & & 1 \end{pmatrix}.$$

Let $\widehat{\mathbb{Z}}(\widehat{a}^k)$ denote the $\widehat{\mathbb{Z}}[C_q]$ module whose underlying $\widehat{\mathbb{Z}}$ module is $\widehat{\mathbb{Z}}$ on which y acts, on the right, as multiplication by \widehat{a}^k .

Proposition 8.3: $\widehat{R}(k+1) \cong_{\widehat{\Lambda}} \widehat{R}(k) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a})$ for $1 \leq k \leq q-1$.

Proof: There is a canonical ring homomorphism $\mathcal{T}_q(\widehat{A}, \widehat{\pi}) \to \mathbb{F}_p[C_q]$ whose kernel is the Jacobson radical of $\mathcal{T}_q(\widehat{A}, \widehat{\pi})$. However from the product structure of (4.7) it follows by Rosen's Theorem ([4], [20]) that $\mathcal{T}_q(\widehat{A}, \widehat{\pi})$ decomposes uniquely as a direct sum of ideals

$$\mathcal{T}_q(\widehat{A},\widehat{\pi}) \cong \widehat{J}_1 \oplus \cdots \oplus \widehat{J}_q$$

where $\widehat{J}_k/\widehat{J}_k \cap \operatorname{rad}(\mathcal{T}_q(\widehat{A},\widehat{\pi})) \cong \mathbb{F}_p[\overline{a}^k]$. However $\mathcal{T}_q(\widehat{A},\widehat{\pi}) \cong \widehat{R}(1) \oplus \cdots \oplus \widehat{R}(q)$

and so, by (8.2), $\widehat{R}(k)/\widehat{R}(k) \cap \operatorname{rad}(\mathcal{T}_q(\widehat{A},\widehat{\pi})) \cong \mathbb{F}[\overline{a}^k]$ so that $\widehat{J}_k = \widehat{R}(k)$. Now consider the exact sequence $0 \to i_*(\widehat{I}_C) \to \widehat{\Lambda} \to \widehat{\mathbb{Z}}[C_q] \to 0$ and take tensor product $-\otimes \widehat{\mathbb{Z}}[\widehat{a}]$. As $\widehat{\Lambda} \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{\Lambda}$ and $\widehat{\mathbb{Z}}[C_q] \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{\mathbb{Z}}[C_q]$ it follows that $i_*(\widehat{I}_C) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong i_*(\widehat{I}_C)$. As in (3.12), $i_*(\widehat{I}_C) \cong \mathcal{T}_q(\widehat{A},\widehat{\pi})$ so that $\mathcal{T}_q(\widehat{A},\widehat{\pi}) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \mathcal{T}_q(\widehat{A},\widehat{\pi})$. By uniqueness of the above decomposition it follows that there is a permutation τ of $\{1,\ldots,q\}$ such that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[a] \cong \widehat{R}(\tau(k))$. The permutation is easily determined; as $\widehat{R}(k) \to \mathbb{F}_p[\overline{a}^k]$ it follows that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \to \mathbb{F}_p[\overline{a}^k] \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \mathbb{F}_p[\overline{a}^{k+1}]$. As $\widehat{R}(k+1) \to \mathbb{F}_p[\overline{a}^{k+1}]$ we see that $\widehat{R}(k) \otimes \widehat{\mathbb{Z}}[\widehat{a}] \cong \widehat{R}(k+1)$ as claimed.

Corollary 8.4: $\widehat{R}(k+1) \cong_{\widehat{\Lambda}} \widehat{R}(1) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a}^k)$ for $1 \leq k \leq q-1$.

Corollary 8.5: $\widehat{R}(1) \cong_{\widehat{\Lambda}} \widehat{R}(q) \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(\widehat{a}).$

Start with a basic sequence $0 \to \overline{I_C} \longrightarrow \Lambda \longrightarrow \Lambda \to \overline{I_C^*} \to 0$ and, using (4.10), (4.11) rewrite in 'row notation' thus

(8.6)
$$0 \longrightarrow R(1) \longrightarrow \Lambda \xrightarrow{K(q)} \Lambda \longrightarrow R(q) \longrightarrow 0.$$

Applying $-\otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ to (8.6) gives an exact sequence

(8.7)
$$0 \longrightarrow \widehat{R}(1) \longrightarrow \widehat{\Lambda} \xrightarrow{\widehat{K}(q)} \widehat{\Lambda} \longrightarrow \widehat{R}(q) \longrightarrow 0.$$

On applying $-\otimes_{\widehat{\mathbb{Z}}}\widehat{\mathbb{Z}}(\widehat{a})$ to (8.7) iteratively and appealing to (8.3) and (8.5) we generate exact sequences $\widehat{\mathbf{S}(\mathbf{k})}$ with $2 \leq k \leq q$ thus.

$$\widehat{\mathbf{S}(\mathbf{k})} \qquad 0 \longrightarrow \widehat{R}(k) \longrightarrow \widehat{\Lambda} \stackrel{\widehat{K}(k-1)}{\longrightarrow} \widehat{\Lambda} \longrightarrow \widehat{R}(k-1) \longrightarrow 0.$$

Splicing the sequences $\widehat{\mathbf{S}(\mathbf{k})}$ together gives the following periodic sequence of length 2q which shows that strongly diagonal resolutions exist at the p-adic level.

$$0 \longrightarrow \widehat{R}(1) \longrightarrow \widehat{\Lambda} \xrightarrow{\widehat{K}(q)} \widehat{\Lambda} \xrightarrow{\widehat{K}(q-1)} \widehat{\Lambda} \xrightarrow{\widehat{K}(2)} \widehat{\Lambda} \xrightarrow{\widehat{K}(1)} \widehat{\Lambda} \longrightarrow \widehat{R}(1) \longrightarrow 0.$$

$$\widehat{R}(q) \qquad \widehat{R}(2)$$

§9: Proof of Theorem D:

As above $\widehat{\mathbb{Z}}$ will denote the completion of \mathbb{Z} at p. We denote by \mathcal{D} er the derived module category of the group ring $\widehat{\Lambda} = \widehat{\mathbb{Z}}[G]$ and by ' \approx ' the relation of isomorphism in \mathcal{D} er. A standard calculation (cf [8] p. 133) gives

$$\operatorname{End}_{\mathcal{D}\mathrm{er}}(\widehat{\mathbb{Z}}) \cong \widehat{\mathbb{Z}}/|G| \cong \widehat{\mathbb{Z}}/pq.$$

As q is invertible in $\widehat{\mathbb{Z}}$ this simplifies to $\operatorname{End}_{\mathcal{D}\mathrm{er}}(\widehat{\mathbb{Z}}) \cong \mathbb{Z}/p$. Given a lattice L over $\widehat{\mathbb{Z}}$, $\mathbf{D}_n(L)$ will denote the n^{th} generalised syzygy of L. Then (cf [8] p.107) for each $n \geq 1$ there is a ring isomorphism $\operatorname{End}_{\mathcal{D}\mathrm{er}}(\mathbf{D}_n(L)) \cong \operatorname{End}_{\mathcal{D}\mathrm{er}}(L)$. In particular:

(9.1)
$$\operatorname{End}_{\operatorname{Der}}(\mathbf{D}_n(\widehat{\mathbb{Z}})) \cong \mathbb{Z}/p \text{ for all } n \geq 1.$$

For lattices L, M over $\widehat{\Lambda}$, Yoneda's cohomological interpretation of module extensions ([23]; see also Chap III of [12]) gives an isomorphism $\operatorname{Ext}^n(L,M) \cong H^n(L,M)$. Also the Corepresentation Theorem (cf [8], p.78, more generally Chap. 5 of [9]) computes cohomology in the derived module category as $H^n(L,M) \cong \operatorname{Hom}_{\mathcal{D}\mathrm{er}}(\mathbf{D}_n(L),M)$. Combining the two we see that:

(9.2)
$$\operatorname{Ext}^{n}(L, M) \cong \operatorname{Hom}_{\mathcal{D}\mathrm{er}}(\mathbf{D}_{n}(L), M) \text{ for } n \geq 1.$$

In particular, $\operatorname{Ext}^2(\mathbf{D}_i(\widehat{\mathbb{Z}}), \mathbf{D}_{i+2}(\widehat{\mathbb{Z}})) \cong \operatorname{End}_{\mathcal{D}er}(\mathbf{D}_{i+2}(\widehat{\mathbb{Z}}))$ so that, by (9.1),

(9.3)
$$\operatorname{Ext}^{2}(\mathbf{D}_{i}(\widehat{\mathbb{Z}}), \mathbf{D}_{i+2}(\widehat{\mathbb{Z}})) \cong \mathbb{Z}/p \text{ for all } i \geq 1.$$

Next we note:

Proposition 9.4: $[y-1)\otimes\widehat{\mathbb{Z}}$ is projective as a module over $\widehat{\mathbb{Z}}[G]$.

Proof : Let $j: \widehat{\mathbb{Z}}[C_q] \hookrightarrow \widehat{\mathbb{Z}}[G]$ be the inclusion of group rings and let $I(C_q)$ denote the augmentation ideal in $\widehat{\mathbb{Z}}[C_q]$. As q is invertible in $\widehat{\mathbb{Z}}$ it follows, as in the proof of Maschke's Theorem, that $I(C_q) \oplus \widehat{\mathbb{Z}} \cong \widehat{\mathbb{Z}}[C_q]$. Hence $j_*(I(C_q)) \oplus j_*(\widehat{\mathbb{Z}}) \cong j_*(\widehat{\mathbb{Z}}[C_q]) \cong \widehat{\mathbb{Z}}[G]$. Thus $j_*(I(C_q))$ is projective over $\widehat{\mathbb{Z}}[G]$. The result now follows as $[y-1) \otimes \widehat{\mathbb{Z}} = j_*(I(C_q))$. \square

Theorem 9.5: σ is the q-cycle given by $\sigma(i) = i+1$ for $1 \le i \le q-1$ and $\sigma(q) = 1$.

Proof: Consider the following statements P(i) for $1 \le i \le q-1$:

$$\mathbf{P}(i):$$
 $\widehat{R(i)} \approx \mathbf{D}_{2i-1}(\widehat{\mathbb{Z}})$ and $\sigma(r) = r+1$ for $1 \le r < i$.

We have already observed that $\sigma(q) = 1$ so it will suffice to prove that each $\mathbf{P}(i)$ is true. Recall from (5.9) that the augmentation ideal I(G) splits as a direct sum

$$I(G) = \overline{I_C} \oplus [y-1) \cong R(1) \oplus [y-1).$$

From the augmentation sequence $0 \to \widehat{R(1)} \oplus ([y-1) \otimes \widehat{\mathbb{Z}}) \longrightarrow \widehat{\mathbb{Z}}[G] \longrightarrow \widehat{\mathbb{Z}} \to 0$ we see from (9.4) that $\widehat{R(1)} \approx \mathbf{D}_1(\widehat{\mathbb{Z}})$ so establishing $\mathbf{P}(1)$. Now suppose that $\mathbf{P}(i)$ is true for i < q and note that the sequence $\widehat{\mathbf{S}(\mathbf{i})}$ of §8 has the form

$$\widehat{\mathbf{S}(\mathbf{i})} \qquad 0 \longrightarrow \widehat{R(i+1)} \longrightarrow \widehat{\Lambda} \stackrel{\widehat{K(i)}}{\longrightarrow} \widehat{\Lambda} \longrightarrow \widehat{R(i)} \longrightarrow 0.$$

Hence $\widehat{R(i+1)} \approx \mathbf{D}_2(\widehat{R(i)})$. The inductive hypothesis $\widehat{R(i)} \approx \mathbf{D}_{2i-1}(\widehat{\mathbb{Z}})$ now implies $\widehat{R(i+1)} \approx \widehat{\mathbf{D}}_{2i+1}(\widehat{\mathbb{Z}})$.

Consequently $\operatorname{Ext}^2(\widehat{R(i)}, \widehat{R(i+1)}) \cong \operatorname{Ext}^2(\mathbf{D}_{2i-1}(\widehat{\mathbb{Z}}), \mathbf{D}_{2i+1}(\widehat{\mathbb{Z}})) \cong \mathbb{Z}/p$. In particular, $\operatorname{Ext}^2(\widehat{R(i)}, \widehat{R(i+1)}) \neq 0$. However, by (7.2) there exists a unique $j \in \{1, \ldots, q\}$ such that $\operatorname{Ext}^2(\widehat{R(i)}, \widehat{R(j)}) \neq 0$ namely $j = \sigma(i)$. Consequently, $\sigma(i) = i+1$ and $\mathbf{P}(i) \Rightarrow \mathbf{P}(i+1)$ as claimed.

On writing $1 \equiv q + 1 \mod q$ the sequences $\mathcal{Z}(i)$ of (7.7) now become

$$(9.7) \mathcal{Z}(i) = (0 \longrightarrow R(i+1)) \longrightarrow P(i) \xrightarrow{K(i)} \Lambda \longrightarrow R(i) \longrightarrow 0).$$

By splicing the sequences $\mathcal{Z}(i)$ we thereby obtain the following exact sequence

$$0 \longrightarrow R(1) \longrightarrow P(q) \xrightarrow{K(q)} \Lambda \xrightarrow{K(q-1)} K(2) \xrightarrow{K(1)} \Lambda \xrightarrow{R(1)} \Lambda \xrightarrow{R(q)} R(2)$$

in which each P(i) is projective of rank 1 over Λ and, by (6.9), $P(q) = \Lambda$. As in (7.6)

$$\left(\bigoplus_{i=1}^{q-1} P(i)\right) \oplus \Lambda \cong \bigoplus_{i=1}^{q} P(i) \cong \Lambda^{q}.$$

Hence $\bigoplus_{i=1}^{q-1} P(i)$ is stably free of rank q-1 and so, by the Swan-Jacobinski Theorem,

$$\bigoplus_{i=1}^{q-1} P(i) \cong \Lambda^{q-1}.$$

This completes the proof of Theorem D.

§10: Proof of Theorem A:

Consider the exact sequences $\{\mathcal{Z}(i)\}_{1\leq i\leq q}$ constructed in (9.7) above. Defining $\mathcal{Z}(n)=\mathcal{Z}(i)$ when $n\equiv i \mod q$ we obtain exact sequences $\{\mathcal{Z}(n)\}_{n\in\mathbb{Z}}$. Splicing the sequences $\mathcal{Z}(n)$ together gives the following exact sequence

$$S_{+} = (\dots \xrightarrow{\partial_{2n+3}^{+}} P(n+1) \xrightarrow{\partial_{2n+2}^{+}} \Lambda \xrightarrow{\partial_{2n+1}^{+}} P(n) \xrightarrow{\partial_{2n}^{+}} \Lambda \xrightarrow{\partial_{2n-1}^{+}} P(n-1) \xrightarrow{\partial_{2n-2}^{+}} \dots)$$

where $\partial_{2n-1}^+ = \iota_n \circ \pi_n$ and $\partial_{2n}^+ = \alpha_n$. Taking $\partial_{2n-1}^- = (y-1)_*$ and $\partial_{2n}^+ = (\Sigma_y)_*$ where $\Sigma_y = 1 + y + \dots + y^{q-1}$ it is straightforward to see that the following sequence S_- is exact

$$\mathcal{S}_{-} = (\cdots \to \Lambda \xrightarrow{\partial_{2n+3}^{-}} \Lambda \xrightarrow{\partial_{2n+2}^{-}} \Lambda \xrightarrow{\partial_{2n+1}^{-}} \Lambda \xrightarrow{\partial_{2n}^{-}} \Lambda \xrightarrow{\partial_{2n-1}^{-}} \Lambda \xrightarrow{\partial_{2n-2}^{-}} \dots).$$

Indeed, if $j: C_q \hookrightarrow G(p,q)$ is the inclusion then \mathcal{S}_- is the induced resolution $\mathcal{S}_- = j_*(\mathcal{E})$ where \mathcal{E} is the standard resolution of \mathbb{Z} over $\mathbb{Z}[C_q]$

$$\mathcal{E} = (\cdots \stackrel{y-1}{\to} \mathbb{Z}[C_q] \stackrel{\Sigma_y}{\to} \mathbb{Z}[C_q] \stackrel{y-1}{\to} \mathbb{Z}[C_q] \stackrel{\Sigma_y}{\to} \mathbb{Z}[C_q] \stackrel{y-1}{\to} \mathbb{Z}[C_q] \stackrel{\Sigma_y}{\to} \dots).$$

Taking direct sums we obtain the following exact sequence

$$\mathcal{S}_{+} \oplus \mathcal{S}_{-} \; = \; \big(\; \dots \overset{\left(\begin{smallmatrix} \partial_{2n+3}^{+} & 0 \\ \partial_{2n+3}^{-} \\ 0 & \xrightarrow{\partial_{2n+3}^{-}} \end{smallmatrix} \right)}{\longrightarrow} \; P(n+1) \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n+2}^{+} & 0 \\ 0 & \xrightarrow{\partial_{2n+2}^{-}} \end{smallmatrix} \right)}{\longrightarrow} \; \Lambda \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n+1}^{+} & 0 \\ 0 & \xrightarrow{\partial_{2n+1}^{-}} \end{smallmatrix} \right)}{\longrightarrow} \; P(n) \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n}^{+} & 0 \\ 0 & \xrightarrow{\partial_{2n}^{-}} \end{smallmatrix} \right)}{\longrightarrow} \; \dots \; \big).$$

Evidently $S_+ \oplus S_-$ is infinite in both directions and is periodic with period 2q. Truncating at the third differential gives an exact sequence, infinite to the left:

$$(\mathbf{10.1}) \qquad \dots \overset{\begin{pmatrix} \partial_5^+ & 0 \\ 0 & \partial_5^- \end{pmatrix}}{\longrightarrow} P(2) \oplus \Lambda \overset{\begin{pmatrix} \partial_4^+ & 0 \\ 0 & \partial_4^- \end{pmatrix}}{\longrightarrow} \Lambda \oplus \Lambda \overset{\begin{pmatrix} \partial_3^+ & 0 \\ 0 & \partial_3^- \end{pmatrix}}{\longrightarrow} P(1) \oplus \Lambda$$

However, we also have an exact sequence

(10.2)
$$P(1) \oplus \Lambda \xrightarrow{\begin{pmatrix} \partial_2^+ & 0 \\ 0 & \partial_2^- \end{pmatrix}} \Lambda \oplus \Lambda \xrightarrow{\partial_1^+ + \partial_1^-} \Lambda \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Merging the two gives a complete resolution of \mathbb{Z} which begins

$$\cdots \stackrel{\left(\begin{smallmatrix} \partial_{2n+3}^+ & 0 \\ 0 & y-1 \end{smallmatrix}\right)}{\longrightarrow} P(1) \oplus \Lambda \stackrel{\left(\begin{smallmatrix} \partial_2^+ & 0 \\ 0 & \partial_2^- \end{smallmatrix}\right)}{\longrightarrow} \Lambda \oplus \Lambda \stackrel{\partial_1^+ + \partial_1^-}{\longrightarrow} \Lambda \stackrel{\epsilon}{\to} \mathbb{Z} \to 0$$

and continues

$$\dots P(n+1) \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n+2}^+ & 0 \\ 0 & \Sigma_y \end{smallmatrix}\right)}{\longrightarrow} \Lambda \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n+1}^+ & 0 \\ 0 & y-1 \end{smallmatrix}\right)}{\longrightarrow} P(n) \oplus \Lambda \overset{\left(\begin{smallmatrix} \partial_{2n}^+ & 0 \\ 0 & \Sigma_y \end{smallmatrix}\right)}{\longrightarrow} \Lambda \oplus \Lambda \dots$$

and where

$$\left\{ \begin{array}{lll} P(q) & = & \Lambda & ; & P(k+mq) & = & P(k) \\ \partial_{k+2mq}^+ & = & \partial_k^+ & ; & \partial_{k+2m}^- & = & \partial_k^-. \end{array} \right.$$

We have constructed a diagonal resolution of \mathbb{Z} with period 2q. Moreover, by (9.8), $\bigoplus_{i=1}^{q-1} P(i) \cong \Lambda^{q-1}$. This completes the proof of Theorem A.

§11: Proof of Theorem B:

By a projective n-segment \mathcal{P} we shall mean an exact sequence of Λ -modules

$$\mathcal{P} = (0 \to N \to P_n \to \cdots \to P_1 \to M \to 0)$$

where P_1, \ldots, P_n are finitely generated projective Λ -modules. Given a projective n-segment \mathcal{P} we recall the Swan-Wall finiteness obstruction $\chi(\mathcal{P})$ is defined by

$$\chi(\mathcal{P}) = \sum_{r=1}^{n} (-1)^r [P_r] \in \widetilde{K}_0(\Lambda).$$

We say that a projective *n*-segment \mathcal{P} is *free* when each P_r is free. It is well known and straightforward to prove that:

Proposition 11.1: If $n \ge 2$ and $\mathcal{P} = (0 \to N \to P_n \to \cdots \to P_1 \to M \to 0)$ is a projective *n*-segment with $\chi(\mathcal{P}) = 0$ then there exists a free *n*-segment

$$\mathcal{F} = (0 \to N \to \Lambda^{a_n} \to \Lambda^{a_{n-1}} \to \cdots \to \Lambda^{a_1} \to M \to 0).$$

Put $\mathcal{Y} = (0 \to [y-1) \to \Lambda) \xrightarrow{\Sigma_y} \Lambda \to [y-1) \to 0$), and for $1 \le i \le q-1$ denote by $\mathcal{W}(i)$ the direct sum $\mathcal{W}(i) = \mathcal{Z}(i) \oplus \mathcal{Y}$ where $\mathcal{Z}(i)$ constructed as in (9.7). Then $\mathcal{W}(i)$ is a projective 2-stem $\mathcal{W}(i) = (0 \to R(i+1) \oplus [y-1) \to P(i) \oplus \Lambda \to \Lambda \oplus \Lambda \to R(i) \oplus [y-1) \to 0$). Splicing the sequences $\mathcal{W}(i)$ together by Yoneda product gives a projective (2q-2)-stem $\mathcal{Q} = \mathcal{W}(q-1) \circ \mathcal{W}(q-2) \circ \cdots \circ \mathcal{W}(1)$ thus:

$$Q = (0 \to R(q) \oplus [y-1) \to Q_{2q-2} \to \cdots \to Q_1 \to R(1) \oplus [y-1) \to 0)$$

where

$$Q_r = \begin{cases} \Lambda \oplus \Lambda & r \text{ odd} \\ \Lambda \oplus P(r/2) & r \text{ even.} \end{cases}$$

Then $\chi(\mathcal{Q}) = \sum_{s=1}^{q-1} [P(s)] = [\bigoplus_{s=1}^{q-1} P(s)]$. However, by (9.8), $\bigoplus_{s=1}^{q-1} P(s) \cong \Lambda^{q-1}$.

Hence $\chi(\mathcal{Q}) = 0$. By (4.11) and (5.12) we see that $R(1) \oplus [y-1) \cong I_G$. However $R(q) \cong R(1)^*$ and $[y-1) \cong [y-1)^*$ so that $R(q) \oplus [y-1) \cong I_G^*$. We have constructed a projective (2q-2)-segment

$$Q = (0 \to I_G^* \to Q_{2q-2} \to \cdots \to Q_1 \to I_G \to 0)$$

with $\chi(Q) = 0$. It follows immediately from (11.1) that:

(11.2) There exists a free (2q-2)-segment $(0 \to I_G^* \to \Lambda^{a_{2q-2}} \to \cdots \to \Lambda^{a_1} \to I_G \to 0)$.

Corollary 11.3: There exists a free 2q-segment

$$S = (0 \to \mathbb{Z} \to \Lambda \to \Lambda^{a_{2q-2}} \to \cdots \to \Lambda^{a_1} \to \Lambda \to \mathbb{Z} \to 0)$$

Proof: Let \mathcal{E} be the standard exact sequence $\mathcal{E} = (0 \to I_G \to \Lambda \to \mathbb{Z} \to 0)$. The dual sequence has the form $\mathcal{E}^* = (0 \to \mathbb{Z} \to \Lambda \to I_G^* \to 0)$. Taking \mathcal{F} to be the free (2q-2)-segment constructed in (11.2) we see that the Yoneda product $\mathcal{S} = \mathcal{E}^* \circ \mathcal{F} \circ \mathcal{E}$ is a free 2q-segment of the required form

$$S = (0 \to \mathbb{Z} \to \Lambda \to \Lambda^{a_{2q-2}} \to \cdots \to \Lambda^{a_1} \to \Lambda \to \mathbb{Z} \to 0).$$

Theorem B is now immediate, being a slightly weaker statement than (11.3).

F.E.A. Johnson

Department of Mathematics

University College London

Gower Street, London WC1E 6BT, U.K.

e-mail address: feaj@math.ucl.ac.uk

J.J. Remez

Department of Mathematics

University College London

Gower Street, London WC1E 6BT, U.K.

e-mail address: j.remez@alumni.ucl.ac.uk

REFERENCES

- [1]: S.Bentzen and I. Madsen; On the Swan subgroup of certain periodic groups. Math. Ann. 264 (1983) 447-474.
- [2] : B.J. Birch; Cyclotomic fields and Kummer extensions; pp 85-93 of 'Algebraic Number Theory' JWS Cassels and A. Fröhlich (Editors). Academic Press 1965.
- [4]: C.W. Curtis and I. Reiner; Methods of Representation Theory; Volume I. Wiley-Interscience, 1981.
- [5]: C.W. Curtis and I. Reiner; Methods of Representation Theory; Volume II. Wiley-Interscience, 1987.
- [7]: K.W. Gruenberg and K.W. Roggenkamp; Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. Lond. Math. Soc. 31 (1975) 149-166.
- [8]: F.E.A. Johnson; Stable modules and the D(2)-problem. LMS Lecture Notes In Mathematics, vol. 301. CUP 2003.
- [9]: F.E.A. Johnson; Syzygies and homotopy theory. Springer-Verlag 2011.
- [10]: F.E.A. Johnson; Syzygies and diagonal resolutions for dihedral groups. Communications in Algebra 44 (2015) 2034-2047.
- [11]: F.E.A. Johnson and J.J. Remez; Strongly diagonal resolutions for metacyclic groups. (in preparation).
- [12]: S. Mac Lane; Homology. Springer-Verlag 1963.
- [13]: R.J. Milgram; Evaluating the Swan finiteness obstruction for periodic groups (preprint, Stanford University 1979).
- [14]: R.J. Milgram; Odd index subgroups of units in cyclotomic fields and applications: pp 269-298 of Lecture Notes in Mathematics, vol. 854, Springer-Verlag, 1981.
- [15]: A.J. Nadim. A periodic monogenic resolution. PhD Thesis, University College London 2015.
- [16]: T. Petrie; Free metacyclic group actions on homotopy spheres. Ann. of Math. 94 (1971) 108-124.
- [17]: L.C. Pu. Integral representations of non-abelian groups of order pq. Michigan Journal of Mathematics 12 (1965) 231-246.
- [18]: I. Reiner; Maximal Orders. Academic Press, 1975.
- [19]: J.J. Remez; Diagonal resolutions for the metacyclic groups G(pq). PhD Thesis, University College London 2012.
- [20]: M. Rosen; Representations of twisted group rings. PhD Thesis, Princeton University 1963.

- [21]: R.G. Swan; Periodic resolutions for finite groups. Ann.of Math. 72 (1960) 267-291.
- [22]: C.T.C. Wall; Periodic projective resolutions. Proc. London Math. Soc. 39 (1979) 509-553.
- [23]: N. Yoneda; On the homology theory of modules. J. Fac. Sci. Tokyo, Sec. I, 7 (1954) 193-227.