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ABSTRACT

We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the
VeryLargeTelescopeFOcal ReducerandSpectrograph(FORS2) across the wavelength range 411–810 nm.
The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm
on a V=12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The
ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy,
supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great
potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we
obtained HST-quality light curves from the ground.

Key words: planets and satellites: atmospheres – stars: individual (WASP-39) – techniques: photometric –

techniques: spectroscopic

1. INTRODUCTION

Transmission spectroscopy is a key to unlocking the secrets
of close-in exoplanet atmospheres. Observations have started to
unveil a vast diversity of irradiated giant planet atmospheres
with clouds and hazes that play a prominent role across the
entire mass and temperature regime (Charbonneau et al. 2002;
Pont et al. 2008; Knutson et al. 2014; Kreidberg et al. 2014;
Evans et al. 2016; Sing et al. 2016). Observations from space
have played a leading role in the field, followed by significant
achievements from the ground with the first results from multi-
object (Bean et al. 2010; Crossfield et al. 2013; Gibson et al.
2013a; Jordán et al. 2013; Stevenson et al. 2014) and long-slit
spectroscopy (Sing et al. 2012).

Ground-based spectrographs, which operate at medium
resolution, have a high potential for characterizing transiting
exoplanets because they provide optical transmission spectra
that are highly complementary to the near- and mid-IR regime,
which is to be covered by the upcoming James-Webb Space
Telescope. The FOcal Reducer and Spectrograph(FORS2,
Appenzeller et al. 1998) mounted on the VeryLargeTelescope
(VLT) at the European Southern Observatory (ESO) has
recently undergone an upgrade with the aim to improve its
capability for exoplanet transmission spectroscopy (Boffin
et al. 2015). Sedaghati et al. (2015) have recently presented
observations of WASP-19b with the upgraded FORS2
instrument, but found a featureless flat transmission spectrum.

We have initiated a ground-based multi-object transmission
spectroscopy of WASP-6b, WASP-31b, and WASP-39b that
covers the wavelength range 360–850 nm using VLTFORS2.
These targets were selected for follow-up as their transmission
spectra showed evidence of alkali metal absorption based on
the results of Hubble Space Telescope (HST) observations
(Nikolov et al. 2015; Sing et al. 2015; Fischer et al. 2016). Our
aim is to test the performance of FORS2, following its recent

recommissioning (Sedaghati et al. 2015), by comparing the
transmission spectra against results from the HST.
In this paper we report the first results from our comparative

study for WASP-39b. This warm Saturn is one of the most
favorable exoplanets for transmission spectroscopy (Faedi et al.
2011) with a pressure scale height of >H 1000 km, translating
into an atmospheric signal of dD = 455 ppm (Winn 2010).
The recent HST results reported by Sing et al. (2016) and
Fischer et al. (2016) show agreement with model spectra of a
clear atmosphere and evidence of absorption from sodium and
potassium, which makes WASP-39b an excellent target for
ground-based optical transmission spectroscopy.

2. OBSERVATIONS

Time series observations were carried out during two
primary transits of WASP-39b on UT 2016 March 8 and 12
with the FORS2 spectrograph mounted on the UT1 telescope at
the European Southern Observatory on Cerro Paranal in Chile
for program 096.C-0765 (PI: Nikolov). Data were collected in
multi-object spectroscopy mode at medium resolution with a
mask consisting of two broad slits centered on WASP-39 and
one nearby reference star (known as 2MASS 14292245-
0321010) at an angular separation of ∼5 7. The slits had
lengths of ∼90″ and widths of 22″ to eliminate possible
differential slit light losses from guiding imperfections and
seeing variations. Both observations were performed with the
same slit mask and the red detector, which is a mosaic of two
CCDs. The field of view was positioned such that each
individual chip imaged the spectrum of one star. To improve
the duty cycle, the fastest available readout mode (∼30 s) was
employed.
During the first night we used the dispersive element

GRIS600B, which covers the spectral range from 360 to
620 nm at a resolving power of ~R 600. We monitored
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WASP-39 and the reference star (B magnitude difference of
−0.97) for 312 minutes under photometric conditions. The
field of view rose from an air mass of 1.89 to 1.07 and set to an
airmass of 1.16. The seeing gradually increased, with median
values from 0.7 to 1.8″ in the course of the observation, as
measured from the spectra cross-dispersion profiles. A total of
216 exposures were collected with an integration time of 60 s.

During the second night we exploited the dispersive element
GRIS600RI, which covers the range from 540 to 820 nm, in
combination with the GG435 filter to isolate the first order.
Both sources (R magnitude difference of −1.26) were observed
for 304 minutes under photometric sky conditions and
increasing seeing, with a median value of 0.9–2.3″. The field
of view rose from an air mass of 1.53 to 1.07 and set to an air
mass of 1.23. A telescope guiding error at UT 4:45 prevented
data collection for ∼5 minutes (during transit egress). A total of
232 exposures were collected with an integration time of 50 s.

3. DATA REDUCTIONS

Our analysis commenced from the raw images with
subtraction of bias frame and flat field correction. The relevant
master calibration frames were calculated by median-combin-
ing 100 individual frames. Spectral extractions were performed
in IRAF, employing the APALL procedure. The background
was estimated by taking the median count level in a box of
pixels away from the spectral trace, and was subtracted from
the stellar counts for each wavelength. We found that the
aperture diameters of 24 and 30 pixels and a sky region from 40
to 70 pixels minimize the dispersion of the out-of-transit flux of
the corresponding white-light curves for the first and second
night, respectively.

Wavelength calibration of the extracted stellar spectra was
performed using spectra of an emission lamp obtained after
each transit observation with a mask identical to the science
mask, but with slit widths of 1″. A wavelength solution was
established for each source with a low-order Chebyshev
polynomial fit to the centers of a dozen lines, the positions of
which were determined with a Gaussian fit. We then placed the
extracted spectra on a common Doppler-corrected rest frame
through cross-correlation to account for subpixel wavelength
shifts in the dispersion direction. We found a displacement
range of the spectra <3 pixels during each observation; the
gravity flexure of the instrument is the most likely reason
for this.

Example spectra of WASP-39 and the reference star are
displayed in Figure 1. The typical signal-to-noise ratio (S/N)
achieved for WASP-39 and the reference star were 267 and
160 per pixel for the central wavelength of GRIS600B and 326
and 191 per pixel for the central wavelength of GRIS600RI.
The one-dimensional spectra were then used to generate both
white-light and spectrophotometric time series after summing
the flux from each bandpass.

4. LIGHT CURVE ANALYSIS

White and spectroscopic light curves were created from the
time series of each night for both the target and reference star
by summing the flux of each stellar spectrum along the
dispersion axis. Spectroscopic light curves were produced by
adopting the set of bands defined in Sing et al. (2016) to enable
a direct comparison with the HST transmission spectrum of

WASP-39b. White-light curves were computed from 440 to
607 nm and from 540 to 810 nm for the first and second night,
respectively. The range from 360 to 440 nm of GRIS600B was
discarded in the white-light curve analysis because the S/N
was insufficient owing to the low sensitivity of the red detector
in that spectral region. Relative differential light curves were
produced for the white-light and spectroscopic light curves by
dividing the WASP-39 flux by the reference star flux. This
correction removes the effects of atmospheric transparency
variations, as demonstrated in Figure 1. The light curve from
the second night showed a decrease in flux by between
∼30 minutes before and ∼80 minutes after the mid-transit. The
exact cause of this effect is unknown, but it is most likely
related to the vignetting of the field of view.
We fit each transit light curve with a two-component

function that simultaneously models the transit and systematic
effects. To model the transits, we adopted the complete analytic
function given in Mandel & Agol (2002), which is parame-
trized with the mid-transit times (Tmid), orbital period (P) and
inclination (i), normalized planet semimajor axis ( *a R ), and
planet-to-star radius ratio ( *R Rp ).
Stellar limb-darkening was accounted for by adopting the

two-parameter quadratic law with coefficients u1 and u2,
computed using a three-dimensional stellar atmosphere model
grid (Magic et al. 2015), adopting the closest match to the
effective temperature, surface gravity, and metallicity of
WASP-39 that were found in Faedi et al. (2011). Our choice
for the limb-darkening law was motivated by the recent study
of Espinoza & Jordán (2016), where the quadratic law has been
demonstrated to introduce a negligible bias on the derived
transit parameters for transiting systems similar to WASP-39.
The quadratic limb-darkening law has also been extensively
used in previous multi-object spectroscopy characterization
studies of transiting exoplanets, e.g., Bean et al. (2010), Gibson
et al. (2013a, 2013b), Stevenson et al. (2014, 2016), Jordán
et al. (2013), Mallonn et al. (2015), Mallonn & Strassmeier
(2016), and Nortmann et al. (2016). Theoretical limb-darkening
coefficients were obtained by fitting the limb-darkened
intensities of the three-dimensional models multiplied by the
throughput profiles of GRIS600B and GRIS600RI (Sing 2010).
To account for systematics, we used a low-order polynomial

(up to second degree with no cross terms) of air mass, spectral
shift (displacement of the stellar spectra in the dispersion axis,
as described in Section 3), average FWHM, the vertical
position of the center of the spectrum of each channel, time,
and the rate of change of the rotator angle. We then generated
systematics models that spanned all possible combinations of
detrending variables and performed separate fits using each
systematics model included in the two-component function.
The Akaike information criterion (AIC; Akaike 1974) was
calculated for each attempted function and used to marginalize
over the entire set of functions following Gibson (2014). Our
choice to rely on the AIC instead of the Bayesian information
criterion (BIC; Schwarz 1978) was determined by the fact that
the BIC is more biased toward simple models than the AIC.
The AIC therefore provides a more conservative model for the
systematics and typically results in larger or more conservative
error estimates, as demonstrated by Gibson (2014). Margin-
alization over multiple systematics models assumes equal prior
weights for each model tested. This is a sensible assumption for
simple polynomial expansions of basis inputs; however, the
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introduction of more complex functional forms of the inputs
(e.g., exponentials, sinusoids) would break the symmetry of the
models and weaken this assumption when using simple model
selection criteria such as the AIC.

The errors on each spectrophotometric data point from each
time series were initially set to the pipeline values, which are
dominated by photon noise, with readout noise also taken into
account. We determined the best-fitting parameters

Figure 1. VLTFORS2 stellar spectra and the corresponding white-light transit light curves for WASP-39b and the reference star. Left and right column panels show
the GRIS600B (blue) and GRIS600RI (red) data sets, respectively. First row: example stellar spectra used for relative spectrophotometric calibration. The dashed line
indicates the wavelength range used to produce the white-light curves. Second row: raw light curves of both sources. Third row: WASP-39 light curve relative to the
reference star with the best-fit transit and systematics model (A), detrended light curve along with the best-fit transit model (B), and common-mode correction (A/B).
Fourth row: residual flux of the best-fit transit and systematics model to WASP-39.
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simultaneously with the Levenberg–Marquardt least-squares
algorithm as implemented in the MPFIT7 package of
Markwardt (2009) using the unbinned data. The final results
for the uncertainties of the fitted parameters were taken from
MPFIT after we rescaled the errors per data point based on the
standard deviation of the residuals. Residual outliers larger than
s3 (typically a few) were clipped in all light curves and the
final results obtained with a fit performed using the rest of
the data.

When fitting the white-light curve from the second night, we
excluded data points from the first ∼40 minutes (because of the
higher noise) and those exhibiting the flux drop as detailed in
Section 3. We modeled each of the three remaining pieces of
the light curve with individual systematics models and a
common transit model. We found an excellent agreement
between the fitted transit parameters from the two nights
(Table 1).

For the spectroscopic light curves, a common-mode
systematics model was established by simply dividing the
white-light transit light curve to a transit model (Sing et al.
2012; Deming et al. 2013; Gibson et al. 2013a, 2013b; Huitson
et al. 2013; Nikolov et al. 2015). We computed the transit
model using the weighted mean values of the orbital inclination
and *a R from both observations. To find the best-fit radius
and limb-darkening coefficients for the white-light curves, we
fitted for these quantities, but fixed the remaining parameters to
the weighted mean values, and the measured white-light transit
depths are reported in Table 1.

We found systematics models containing an air mass,
spectral shift, and FWHM terms to result in the highest
evidence for the white-light curves. Following Pont et al.
(2006), we assessed the levels of residual red noise by
modeling the binned variance with a s s s= +Nw r

2 2 2( ) ( )
relation, where sw is the uncorrelated white noise component, N
is the number points in the bin, and sr characterizes the red

noise. Typical white and red noise dispersions were found to be
s ~ 540w and ∼410 and s ~ 105r and ∼100ppm. The
weighted mean values and radii found in the white-light curve
analysis are in excellent agreement with the results of Sing
et al. (2016) and Fischer et al. (2016).
The common-mode technique relies on the similarities of

time-dependent systematics, which can be characterized by the
light curves themselves and removed individually for each
spectral wavelength bin. Empirically determining and remov-
ing slit light losses has an advantage over a parameterized
method, as higher order frequencies are naturally subtracted.
The common-mode factors from each night were then removed
from the corresponding spectroscopic light curves before
model fitting (see Figure 1).
We then performed fits to the spectroscopic light curves

using the same set of systematics models as in the white-light
curve analysis and marginalized over them as described above.
For these fits, *R Rp and the first limb-darkening coefficient u1
were allowed to vary for each spectroscopic channel, while the
central transit time and system parameters were fixed to the
weighted mean values. Again, the same quadratic limb-
darkening law was used with the nonlinear coefficient fixed
to its theoretical value, determined in the same way as for the
white-light curve, and u1 was allowed to vary. We performed
tests by fitting only the first or second coefficient and fixing the
other to its theoretical value; we found no difference in the
resulting transmission spectrum. Fitting for the linear limb-
darkening coefficient is a practice introduced by Southworth
(2008). This practice has been demonstrated to generally
perform well. Ground-based multi-object spectroscopy studies
have also implemented this method, e.g., Stevenson et al.
(2014, 2016), Mallonn et al. (2015), and Mallonn &
Strassmeier (2016). We also fitted for both limb-darkening
coefficients simultaneously and found that the uncertainty of
the nonlinear coefficient is large. This implies that the quality
of the light curves is insufficient for constraining the nonlinear
coefficient. However, since the transmission spectrum did not
significantly change, we chose to fix the nonlinear term to its
theoretical prescription and fit for the linear term only. We
report the results for *R Rp and the limb-darkening parameters
in Table 2 and show the best-fit transit models in Figures 2 and
3. Much simpler systematics models were favored at the
marginalization step for the spectroscopic light curves,
typically containing only one term, e.g., linear airmass or a
spectral shift term. In addition, we found that the spectroscopic
light curves showed less scatter when flat fielding was not
applied.
As checks of our reduction methods, we also performed a fit

to the spectroscopic light curves without a common-mode
correction and inflated the uncertainties with the β scaling
parameter. We also measured the radii for the blue grism by
treating the systematics as a time-dependent Gaussian process
(Gibson et al. 2012) without applying the common-mode
correction; we found a consistent transmission spectrum. For
the red grism the systematics are more complex and cannot be
modeled using only time dependence. In all these checks we
found the final transmission spectra to be in excellent
agreement.

5. TRANSMISSION SPECTRUM

The measured VLTFORS2 transmission spectrum of
WASP-39b is plotted in Figure 4. Its main characteristics

Table 1
System Parameters

Parameter Value

P(day) 4.055259 (adopted)
e 0 (adopted)
GRIS600B
Tmid (MJD) 57455.26602±0.00013
i, () 87.64±0.17

*a R 11.42±0.17

*R Rp 0.1477±0.0013

u1 0.433±0.032
u2 0.27
GRIS600RI
Tmid (MJD) 57459.32103±0.00021
i, () 88.07±0.23

*a R 11.64±0.15

*R Rp 0.1457±0.0013

u1 0.485±0.065
u2 0.30
Weighted mean:
i, () 87.79±0.14

*a R 11.54±0.11

*R Rp , GRIS600B 0.14696±0.00062

*R Rp , GRIS600RI 0.14600±0.00084

7 http://www.physics.wisc.edu/craigm/idl/fitting.html
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include sodium and potassium absorption features, spanning
∼5 and ∼3 atmospheric pressure scale heights, respectively,
and a relatively flat baseline. Band 587–590 nm, which is
centered on the sodium line core, shows larger absorption than
the surrounding bands in each of the two separate epoch
observations with GRIS600B and GRIS600RI. Comparing the
pairs of radius measurements of our result to the spectrum of
(Sing et al. 2016), we can find that all of the measurements are
in agreement within their uncertainties. A least-squares fit with
a constant being the only fitted parameter to the differences
between the HSTSTIS and VLTFORS2 spectra, using the
uncertainties combined in quadrature, gives c2 of 38.68 for 27
degrees of freedom and an offset between the two spectra of

*D = R R 0.00097 0.00043p . The probability of obtaining
this c2 value is~7% and cannot reject a constant offset model;
this implies that the spectra are consistent. It should be noted
that the overall level of the VLTFORS2 transmission spectrum
is as uncertain as the white-light curve depths for the two
grisms (see Section 4), which accounts for common-mode
corrections, and correlations with other transit parameters that
are fixed for the spectroscopic fits. When we stitch multiple
transit spectra together, we can ensure that the same system
parameters are used, but we cannot correct for bias in various
common-mode corrections.

To estimate the significance of the Na and K detection, we
performed a horizontal line fit to the FORS2 transmission
spectrum, excluding the measurements in the Na (2) and K (1)
bins. We then computed the weighted mean value of the Na
measurement and compared the difference of this measurement
with the measurement from the horizontal line. When we

repeated this for the Na and K lines, we found 3.2 and s1.7
confidence levels.

6. DISCUSSION

We compared the FORS2 transmission spectrum to a variety
of different cloud-free atmospheric models based on the
formalism of Fortney et al. (2008, 2010). We averaged the
models within the transmission spectrum wavelength bins and
fitted these theoretical values to the data with a single free
parameter that controls their vertical position. We computed the
c2 statistics to quantify the model selection with the number of
degrees of freedom for each model given by n = -N m,
where N is the number of data points and m is the number of
fitted parameters.
Results from the model comparison are shown in Figure 5.

We find the cloud-free solar-metallicity models with an
artificially added ´1 uniform absorber from large particles
(red line) and ´10 Rayleigh scattering from small particles
(blue line) to be the best-match to the 28 data points. The
featureless models with ´100 enhanced scattering from large
particles (the horizontal brown line in Figure 5) and ´1000
Rayleigh scattering (orange line) resulted in quite high values
for the c2-statistic and were disfavored.
We also performed a linear fit to the Rayleigh slope from

411 to 530 nm to empirically measure the temperature at the
planet’s day–night terminator. Assuming an atmospheric
opacity source(s) with an effective extinction (scattering
+absorption) cross-section that follows a power law of index
α, i.e., s s l l= a

0 0( ) , the transmission spectrum is then
proportional to the product aT given by

*a
m

l
=T

g

k

d R R

d ln
. 1

p( )
( )

where μ is the mean molecular mass, g is the surface gravity, k
is the Boltzman constant, and T is the temperature (Lecavelier
Des Etangs et al. 2008). We found a good fit to the 12 FORS2
data points (c = 3.12 for n = 10, m=2) giving
a = - T 4795 3913 K. For comparison, a horizontal line fit
(cloud deck) resulted in a slightly poorer fit with c = 3.92 for
n = 11 and m=1. When we adopt the equilibrium temper-
ature from Faedi et al. 2011, the slope of the transmission
suggests an effective extinction cross-section of
s s l l= - 

0 0
4.3 3.5( ) , which is consistent with Rayleigh

scattering.
When we assume Rayleigh scattering (i.e., adopting

a = -4), which is the case for a pure gaseous H2 atmosphere
or scattering, we find a best-fit terminator temperature of
1199±978, which is in agreement with the result of Fischer
et al. (2016).
The model comparison to our VLT observations demon-

strates that scenarios including an atmosphere dominated by a
cloud deck or strong Rayleigh scattering are ruled out. A clear
atmosphere with clouds and hazes seems to be the most
plausible scenario for WASP-39b, which is in agreement with
the results from HST and Spitzer. This is in contrast to WASP-
6b and HD189733b, two other planets with equilibrium
temperatures similar to WASP-39b (∼1100 K) and measured
optical transmission spectra that reveal hazy atmospheres.
Our results also demonstrate the capability and high potential

of FORS2 to characterize exoplanets in transmission. We note
that the efficiency and wavelength coverage of our observation

Table 2
Transmission Spectrum and Quadratic Limb-darkening Coefficients

λ (nm) *R Rp u1 u2

411−425 0.14673±0.00255 0.612±0.027 0.216
425−440 0.14578±0.00170 0.669±0.028 0.225
440−450 0.14648±0.00139 0.546±0.036 0.229
450−460 0.14454±0.00135 0.574±0.024 0.233
460−470 0.14554±0.00122 0.572±0.025 0.239
470−480 0.14459±0.00089 0.517±0.026 0.246
480−490 0.14449±0.00106 0.478±0.026 0.246
490−500 0.14560±0.00111 0.484±0.023 0.249
500−510 0.14453±0.00109 0.464±0.024 0.256
510−520 0.14403±0.00096 0.380±0.035 0.265
520−530 0.14339±0.00198 0.446±0.028 0.267
530−540 0.14501±0.00099 0.394±0.023 0.268
540−550 0.14523±0.00112 0.412±0.027 0.273
550−565 0.14617±0.00096 0.397±0.025 0.283
565−587 0.14641±0.00067 0.310±0.017 0.289
587−590 0.15026±0.00206 0.228±0.049 0.289
590−607 0.14634±0.00078 0.305±0.021 0.285
565−587 0.14479±0.00114 0.348±0.015 0.310
587−590 0.14951±0.00214 0.352±0.038 0.311
590−607 0.14389±0.00130 0.385±0.017 0.312
607−630 0.14516±0.00070 0.351±0.013 0.313
630−645 0.14440±0.00088 0.331±0.015 0.314
645−660 0.14520±0.00113 0.329±0.016 0.313
660−680 0.14446±0.00120 0.324±0.012 0.314
680−710 0.14414±0.00067 0.327±0.010 0.314
710−765 0.14459±0.00145 0.323±0.012 0.315
765−770 0.14742±0.00130 0.300±0.026 0.315
770−810 0.14643±0.00090 0.309±0.013 0.315
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Figure 2. Spectroscopic light curves from GRIS600B offset by an arbitrary constant for clarity. First panel: raw target-to-reference flux. Second panel: common-mode
corrected data and the best-fit model. Third panel: detrended light curves and the best-fit transit model. Fourth panel: residuals with s1 error bars. The dashed lines
show the median residual level, with dotted lines indicating the dispersion, which is also labeled for each channel.
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could further be increased by exploiting the blue rather than the
red detector when using grism GRIS600B with an expected
improvement of ~ ´2 in S/N. This is especially pertinent to
constraining the near-UV slope caused by molecular hydrogen
and could provide constraints on the planet temperature and
base pressure.

7. CONCLUSION

We report on a ground-based optical transmission spectrum
for WASP-39b that covers the wavelength range from 411 to

810 nm and was obtained with the recently upgraded
VLTFORS2 instrument, configured for multi-object spectrosc-
opy. We detect an absorption from sodium s~3.2( ) and find
evidence of potassium s~1.7( ). Our spectrum is consistent
with the transmission spectrum obtained with the HST and
further supports the finding of a largely clear atmosphere. Our
study demonstrates the high potential of the instrument for
optical transmission spectroscopy; it is capable of obtaining
HST-quality light curves from the ground. Compared to HST,
the larger aperture of VLT will allow for fainter targets to be

Figure 3. Same as Figure 2, but for GRIS600RI.
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observed and will achieve higher spectral resolution, which can
greatly aid comparative exoplanet studies.
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Figure 5. Comparison of the FORS2 transmission spectrum (dots and boxes refer to GRIS600B and GRIS600RI, respetively) to models (continuous lines).
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