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Abstract

Persuasion is an activity that involves one party (the per-
suader) trying to induce another party (the persuadee) to be-
lieve or do something. For this, it can be advantageous for
the persuader to have a model of the persuadee. Recently,
some proposals in the field of computational models of ar-
gument have been made for probabilistic models of what the
persuadee knows about, or believes. However, these develop-
ments have not systematically harnessed established notions
in decision theory for maximizing the outcome of a dialogue.
To address this, we present a general framework for repre-
senting persuasion dialogues as a decision tree, and for using
decision rules for selecting moves. Furthermore, we provide
some empirical results showing how some well-known deci-
sion rules perform, and make observations about their general
behaviour in the context of dialogues where there is uncer-
tainty about the accuracy of the user model.

Introduction
Computational models of argument can potentially be used
for systems to persuade users to change their behaviour (e.g.,
to eat less, to exercise more, to vote) (Hunter 2014a).

In this work, we make no assumption on the knowledge
or on the behaviour of the persuadee. We propose a gen-
eral framework representing persuasion problems as deci-
sion problems to solve them exactly using state-of-the-art
methods in decision theory. Composed of several indepen-
dent units, the framework is general enough to be able to
take into account various types of behaviour for both the per-
suader and the persuadee. The determination of a dialogue
as being succesful in the persuasion can be done using, for
instance, different Dung’s semantics (1995) or other types
of functions (e.g., degree of belief in a persuasion goal).

Persuasion Dialogues
A persuader (the proponent) has a dialogue with a per-
suadee (the opponent) to make her believe (or disbelieve)
some combination of arguments (e.g., to do more exercise or
to eat healthier food). For the sake of simplicity, in this pa-
per, we deal with two agents and a singleton goal. However,
our work can be extended to more agents and any number
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of goals as long as only one persuader is involved. Build-
ing upon Dung’s abstract argumentation (1995), a dialogue
concerns an argument graph G without self-attacks where
Args(G) is the set of arguments in G, and Attacks(G) is
the set of attack relations in G.

More formally, a persuasion dialogue is a sequence of
moves D = [m1, . . . ,mh]. In this work, a move consists in
positing an argument a ∈ Args(G). The attacks to and from
this argument in relation to the arguments already posited
come from the original graph. Equivalently, we use D as a
function with an index position i to return the move at i (i.e.,
D(i) = mi). The parameter h is the horizon of the debate,
i.e., the maximum number of moves that can be played. It
is justified by the need to keep the persuadee engaged. A
shorter debate (i.e., a smaller value for h) gives more chance
to keep the persuadee in the debate until the end. However,
it also lowers the number of ways to make a valid point in
the debate (see Section experiments for a discussion).

Probabilistic User Models
Each odd (resp. even) move in the dialogue is a persuader
(resp. persuadee) move. However, the persuadee moves are
played with respect to the arguments she believes in, in re-
action to the persuader positing an argument. Therefore,
an efficient strategy needs to take into account the possible
subsets of arguments the persuadee believes in. Indeed, an
agent is unlikely to posit arguments she does not have faith
in. To that end, the persuader keeps and updates a belief
model of the persuadee and uses it in her decision process.
We use the epistemic approach to probabilistic argumenta-
tion (Thimm 2012; Hunter 2013; Hunter and Thimm 2014;
Baroni, Giacomin, and Vicig 2014), defining a model as a
mass distribution over all possible subsets of believed argu-
ments.
Definition 1 A mass distribution P over Args(G) is such
that

∑
X⊆Args(G) P (X) = 1. The probability of an argu-

ment A is P (A) =
∑
X⊆Args(G) s.t. A∈X P (X).

For a mass distribution P and A ∈ Args(G), P (A) is
the belief that an agent has in A (i.e., the degree to which
the agent believes the premises and the conclusion drawn
from those premises). When P (A) > 0.5 the agent believes
the argument to some degree, whereas when P (A) ≤ 0.5
the agent disbelieves the argument to some degree. Each
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Figure 1: Example of a decision tree

element of the mass distribution is a possible world X ⊆
Args(G), where X (resp. Args(G) \ X) is the subset of
arguments believed (resp. disbelieved) by the persuadee.

The persuader uses a mass distributionP as a belief model
of the persuadee and updates it at each stage of the dialogue
depending on the move made. For this, we consider the no-
tion of an update method σ(Pi−1, D(i)) = Pi generating a
mass distribution Pi from Pi−1 based on the move D(i).

Decision Trees for Dialogues
In order to reach the persuasion goal, the persuader has to
posit the right sequence of arguments with respect to this
model. We use the very well known notion of decision trees
and adapt them to persuasion, in order to compute a policy,
an action to perform (i.e., an argument to posit) in each pos-
sible state of the dialogue (see next section for more details).

A decision tree represents all the possible combinations
of decisions and outcomes of a sequential decision-making
problem. In a two-agents problem, a path from the root to
any leaf crosses alternatively nodes associated to the propo-
nent (called decision nodes in this work) and nodes associ-
ated to the opponent (called chance nodes or nature nodes).
In the case of a dialogue represented as a decision tree, a
path is one possible permutation of the argument set, i.e.,
one possible complete dialogue between the two agents. If
horizon h is smaller than the number of arguments, every
execution (and thus path) is at most of length h. In this case,
it is a permutation of a subset of the argument set. An edge
between any two nodes n and n′ in the tree is the decision
that has to be taken by the corresponding agent in order to
transition from node n to node n′.

Figure 1 shows an example of a decision tree for h = 2.
Square nodes are decision nodes and circle nodes represent
chance nodes. The central square node is the root of the tree
while v1, . . . , v6 are the leaves.

Note that no assumption is made on the behaviour of the
persuadee, i.e., we do not consider that the opponent is ad-
versarial, or compliant, or plays strategically, etc. However,
we assume that the behaviour of the opponent can be repre-
sented by a probability distribution in each node, called the
decision model of the persuadee. This probability distribu-
tion gives the probability of each of the possible moves that
can be taken in the node. The decision model is unknown
to the persuader. However, this stochastic assumption is not
a restriction. Indeed, as each node of the decision tree is
unique and represents a unique part of history, any global
behaviour of the persuadee can be represented as a set of the

Algorithm 1: Decision tree building
Function Build(arguments, h, goal)

tree = root node
3 foreach permutation p of arguments of size h do

current = root node
type = chance node
model = uniform distribution
foreach argument a in p except last one do

n = add a node of type type linked to
currentNode by edge tagged a
currentNode = n
type = other type
model = UpdateBelief(model, a)

12 val = Evaluate(model, p, goal)
add leaf of value val to currentNode linked by
edge tagged last(p)

return tree
Function UpdateBelief(model, a)

16 apply Ambivalent (model, a)
return model

Function Evaluate(model, p, goal)
return 1

2 belief of goal in model + 1
21goal∈p

probability distributions, one for each chance node.

Valuation of an execution
The values associated with the leaves are the valuation given
to one particular dialogue. For instance, v1 is the outcome of
the dialogue D = [a, c], representing how desirable is this
execution with respect to (1) the persuasion goal of the per-
suader and (2) the final belief in this goal by the persuadee.
Therefore, they are computed only for the persuader, from
her point of view. For the sake of simplicity, in this paper,
the value vi of dialogue i is the average of (2) the value of
the final belief in the goal and (1): a value of 1 if the goal
has been posited in dialogue i or 0 otherwise.

This function can be replaced to take into account differ-
ent goals and interactions between them (e.g., synergies) or
combinations more complex than the average (e.g., ordered
weighted average (Yager 1988)). Note that Dung’s dialec-
tical semantics (1995) can also be used. For instance, the
value of the goal can be 1 if it is in the grounded extension,
0 otherwise.

Algorithm 1 presents the whole building process of the
decision tree started with Build(Args(G), horizon, goal).
Line 12 (resp. 16) is the function to replace in order to use
a different evaluation (resp. update) function. Note that the
notion of awareness to some arguments can be captured by a
different way to build the permutations (see Line 3). Indeed,
instead of the permutations of size h, any subset of each
permutation, representing the arguments the agent is aware
of, can be added as a valid execution. This will lead to paths
of different lengths, handled by decision trees without any
modification.
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Example 1 We use a refinement function for redistribut-
ing mass from possible worlds not satisfying α to possible
worlds satisfying α. We define the satisfaction operator such
as X ⊆ Args(G) satisfies an argument A (resp. its nega-
tion) (denoted X |= A) if A is (resp. is not) in X . Let α
be an argument or its negation, P a mass distribution, and
k ∈ [0, 1]. The refinement function (Hunter 2015), denoted
Hk
α(P ), returns the mass distribution P ′ as follows:

P ′(X) =

{
P (X) + (k × P (hα(X))) if X |= α
(1− k)× P (X) if X 6|= α

and where hα(X) = X \ {A} when α is of the form A and
hα(X) = X ∪ {A} when α is of the form ¬A.

In Example 1, hα returns the possible world closest to X
but with α no longer satisfied. If k = 1, then all the mass is
transferred from the worlds not satisfying α to worlds satis-
fying α. If k < 1, then only a proportion is transferred. This
gives flexibility to model updates in different types of per-
suadee. For instance, if we want to model a persuadee who
does not fully believe arguments played by the persuader,
we can use k < 1 to update the model so that the argument
is not fully believed in the model.

Note that, even though the definition of the refinement
function is given for one subset X , it needs to be applied on
all possible subsets to update the whole belief model. For
|Args(G)| arguments, 2|Args(G)| subsets exist. This may lead
to a computationaly intractable problem. To address this is-
sue, a method exploiting the structure of the argument graph
G has been recently developed (Hadoux and Hunter 2016).
It uses conditional probabilistic independance and graphs of
50 arguments have been handled satisfactorily.

Example 2 (Example 1 cont’d) Let us use the ambivalent
update method (Hunter 2015), that raises the belief in a
posit, and lowers the belief in its attackees. At step i in the
dialogue, the ambivalent method generates Pi from Pi−1 as
follows, where Φ = {¬C | (A,C) ∈ Attacks(G)}.

If D(i) = A!, then Pi = H0.75
Φ (H0.75

A (Pi−1)).

where Hk
{α1,...,αn}(P ) = Hk

α1
(. . . Hk

αn
(P )).

The ambivalent method can be replaced by any update
method (see (Hunter 2015) for more methods). The aim of
this flexibility is to model different kinds of persuadees with
different kinds of behaviours, some of which are not ratio-
nal.

Decision Rules and Optimization
Once the decision tree is built, we need to select, in each de-
cision node, an action to perform (i.e., an argument to posit
in each state of the debate) from the point of view of the per-
suader. This association of a node with the action to perform
in this node is called a policy. The aim is to compute an opti-
mal policy, the best action to perform in each decision node.
For this, we use a decision rule, composed by two parts: one
aggregating the values of all children of a decision node and
the other for aggregating all the children of a chance node.

For the sake of simplicity, we will only consider the rules
maximizing the value in each decision node. The difference

will be made on the part of the rule dealing with the children
of each chance node. This work presents (but is not limited
to) commonly used rules in decision theory.

The second part of a decision rule corresponds to an as-
sumption of the decision model of the persuadee such that it
can be translated to a probability distribution. We call this
distribution the profile of the persuadee, with respect to a
given decision rule. Note that the profile is a consequence
of the choice of a decision rule and changing it amounts to a
change of decision rule. The performance of the rule is di-
rectly correlated with the difference between the profile and
the actual decision model. We call this difference the error.

We list in the following four decision rules. Each rule
is presented with the desired behaviour induced in the per-
suader, its formula and the profile associated.

Optimistic selection (MaxiMax) The MaxiMax rule is
applied if the persuader wants to adopt an optimistic be-
haviour, i.e., to consider that the persuadee wants to max-
imize the outcome as well. Recall that the outcome is given
from the point of view of the persuader only. Let n be a
chance node and (n1, . . . , ni, . . . , nk) the children (decision
nodes and/or leaves) of node n. The MaxiMax rule defines
the value V (n) is node n as follows:

V (n) = γ × max
i∈{1,...,k}

V (ni)

Note γ ∈ [0, 1] is a discount factor making an outcome less
desirable than the same one at least one step closer from the
current step. It enables the agent to choose the shortest se-
quence amongst several with identical outcomes. We only
define the rules in the chance nodes as for this work we al-
ways maximize in the others. The associated profile of the
persuadee is a probability distribution concentrated on the
decision yielding the highest outcome.
Example 3 If a chance node n has three children n1, n2

and n3 with values v1 = 1, v2 = 2, v3 = 3. Therefore,
the profile is a distribution (0, 0, 1).

Pessimistic selection (MaxiMin) (Wald 1950) The strict
opposite of the optimistic behaviour is the pessimistic one.
This time, the persuader anticipates the opponent will al-
ways try to minimize the outcome. It can be related to a
two-players zero-sum game where a negative outcome for
one player is positive for the other. A pessimistic behaviour
is suitable when performing better than a minimum thresh-
old is critical. The MaxiMin rule is defined as follows:

V (n) = γ × min
i∈{1,...,k}

V (ni)

The profile is a distribution concentrated on the decision
yielding the lowest reward.
Example 4 (Example 3 cont’d) The profile associated to
children n1, n2 and n3 is (1, 0, 0).

Hurwicz α-criterion (Hurwicz 1952) Hurwicz α-cri-
terion is a generalization of both MaxiMax and MaxiMin.
It defines a parameter, α, acting as an optimism factor. This
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rule allows us to define a balance between optimism and pes-
simism to have a more nuanced solution that is less sensitive
to the error. This criterion is defined as follows:

V (n) = γ × (α× max
i∈{1,...,k}

V (ni)

+(1− α)× min
i∈{1,...,k}

V (ni))

Note that an α = 1 (resp. 0) is equivalent to the MaxiMax
(resp. MaxiMin). The profile is a distribution with a proba-
bility of α for the best decision (from the persuader point of
view), (1− α) for the worst and 0 for all the others.
Example 5 (Example 3 cont’d) The profile for an α = 0.8
is (0.2, 0, 0.8).

Laplace insufficient reason criterion The assumption
made by this rule is that having no information amounts to
having an equal chance for all the outcomes. This rule is a
maximum expected utility with a uniform probability distri-
bution and is defined as follows:

V (n) = γ ×
∑

i∈{1,...,k}

(
1

k
× V (ni)

)
The profile is a uniform distribution over all the decisions
that can be made in the chance node considered.
Example 6 (Example 3 cont’d) The profile is ( 1

3 ,
1
3 ,

1
3 ).

Choosing a decision rule
The choice of a decision rule is driven by the desired be-
haviour for the persuader, the behaviour assumed for the per-
suadee but also by the amount of risk we are willing to take.

For instance, in an informal discussion where we do not
fear to lose the debate, the MaxiMax rule can be used to in-
crease the impact of our point if we believe the persuadee
to be credulous. However, in a more serious situation, for
instance a police negotiator trying to make a hostage-taker
surrender, being optimistic can be dramatic if the worse sit-
uation is not addressed effectively.

Optimizing the tree
The optimization of a decision tree amounts to the compu-
tation of the optimal decision to take in each decision node,
i.e., the optimal policy. It is done by applying the decision
rule by backward induction, starting from the leaves up to
the root. For instance, in the case of MaxiMin, each leaf
returns its value, each chance node returns the value of its
lowest yielding child and each decision node the value of its
highest yielding child. Moreover, each decision node keeps
track of which child yields the highest outcome.
Example 7 Let us define the outcomes of the decision tree
depicted in Figure 1 as given in Table 1a. Table 1b shows
the resulting optimal decision for each decision rule. As we
can see, the optimal decision is different. For instance the
MaxiMax decision rule tells us to play argument b. However,
while this can lead to the best outcome (3) we also have a
chance to obtain the worst one (-10).
Example 7 shows the need to choose carefully the decision
rule to apply.

v1 v2 v3 v4 v5 v6

0.8 0.5 -10 3 0.6 1

(a) Outcome values

method n′ n′′ n′′′ action in n0

MaxiMax 0.8 3 1 b
MaxiMin 0.5 -10 0.6 g
Hurwicz α = 0.2 0.56 0.4 0.92 g
Hurwicz α = 0.5 0.65 -3.5 0.8 g
Hurwicz α = 0.8 0.74 -7.4 0.68 a
Laplace 0.65 -3.5 0.8 g

(b) Optimal action for each decision rule

Table 1: Example of optimal decision for each rule

Experiments
In this section, we present the experiments we conducted
in order to study the behaviour of each decision rule with
respect to the behaviour of the persuadee and the error in the
representation of this behaviour by the persuader.

Graph generation and tree optimization
First, we randomly generate 100 graphs with 8 arguments
without cycles. For each graph, 5 different persuasion goals
are randomly selected giving a final set of 500 persuasion
problems. Note that the low number of arguments is due to
the update method. It can be overcome by using structure
optimizations such as (Hadoux and Hunter 2016).

We studied the evolution of the performance of each rule
when the actual decision model of the persuadee differs from
the profile with a divergence interval d. This divergence is
computed using the Jensen-Shannon divergence (JSD) (Lin
1991), a symmetrical bounded (between 0 and 1) extension
of the Kullback-Leibler divergence, defined as follows:

JSD(P ‖ Q) =
1

2
D(P ‖M) +

1

2
D(Q ‖M)

where P is the profile, Q the actual distribution, M =
1
2 (P +Q) and D is the Kullback-Leibler divergence. The di-
vergence can be seen as a measure of the error where d = 0
means the assumed profile and the actual decision model of
the persuadee are identical.

We also compare using a naive random decision rule,
picking a uniform random decision in each node, for each
player, as a baseline. For each of the 500 graphs, the opti-
mal policy is computed for each decision rule.

Experimental run
One run of experiments for one of the 500 graphs and a
lower bound lb for the divergence d is computed as presented
in Algorithm 2. Starting from the root, with a profile associ-
ated to the chosen decision rule, Run(profile, lb) is called.
In the root (if it is not a leaf), the optimal decision is applied
(Line 6), leading to a chance node or a leaf. If it is a leaf,
the run terminates, returning the value in this leaf (Line 8).
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Algorithm 2: Experimental run algorithm
Function Run(profile, divergence)

return DecNode (root, profile, divergence)

Function DecNode(node, profile, divergence)
4 if node is a leaf then return node.value

else
6 return ChnNode (node.optimalChild, profile,

divergence)

Function ChnNode(node, profile, divergence)
8 if node is a leaf then return node.value

else
10 p = random distribution s.t. JSD(p, profile) ∈

[divergence, divergence+ 0.1]
11 n = draw a child of node using p
12 return DecNode (n, profile, divergence)

Otherwise, a distribution of probabilities over the children of
this node is created at the given divergence from the profile
(Line 10). The next node is drawn following this discrete
distribution (Lines 11 and 12). If it is a leaf, the run termi-
nates and returns the value in this leaf (Line 4). Otherwise
(i.e., a decision node), the process is reiterated (Line 6).

Figures 2a, 2b, 2c and 2d present the results averaged on
1000 runs performed on each of the 500 graphs for hori-
zons of 2, 4, 6, and 8. Each x on the x-axis is the lower
bound of an interval of 0.1 of divergence between the pro-
file of the persuadee and the created distribution (Line 13 of
Algorithm 2). For instance, x = 2 means the divergence
is between 0.2 and 0.3 in each chance node. Distributions
at a divergence superior to 0.7 could not always be created.
The y-axis presents the average outcome of the 1000 runs on
each of the 500 graphs.

Interpretation of the results
Interestingly, we can see that some intuitive observations can
be found in each figure.
• The naive random decision rule is not affected by the error

on the persuadee.
• The MaxiMax rule outperforms the other rules when the

error is low.
Intuitively, MaxiMax is the best rule to apply when the error
is zero. Indeed, in this case, the persuadee is perfectly rep-
resented and she is maximizing as well. Therefore, no pol-
icy can yield a better outcome. A big divergence does not
mean the persuadee will play the minimum yielding action
but rather will have a probability close to zero on playing the
maximum yielding one.
• In the same way, we can see that Hurwicz with α = 0.8,

i.e. closer to the MaxiMax than to the MaxiMin, follows
the same trend as MaxiMax.

However, while performing possibly slightly worse than
MaxiMax when the error is zero, the results are less im-
pacted by the increase in the error. Therefore, this rule may

be more suitable than MaxiMax when the model of the per-
suadee is less sure to be accurate.

• At the other end of the spectrum, MaxiMin and Hurwicz
with α = 0.2 perform better when the error is larger.

Indeed, MaxiMin and Hurwicz with α = 0.2 aim for the
highest minimal value. Therefore, with a large error, the per-
suadee has a smaller probability to play the minimum value
and will therefore yield a higher outcome than expected. By
including a part of the highest outcome, Hurwicz rule man-
ages to circumvent the inability of MaxiMin to differenti-
ate two decisions with an identical minimum and a different
maximum, thus yielding a highest average outcome.

During the optimization phase, Laplace and Hurwicz with
α = 0.5 rules maximize an average of the values of sev-
eral children nodes. Laplace rule uniformly averages on all
children while Hurwicz uniformly averages on the minimum
and the maximum only. Therefore, the results are relatively
insensitive to the error. They are between the maximum and
the minimum for each interval of divergence. These two
rules perform better than the naive random because the av-
erages are made only in chance nodes (where naive random
draws uniformly for each type of node). They maximize in
decision nodes. Note that the curves are shorter because no
distribution could be computed at a divergence greater than
0.4 of those profiles. Indeed, the more uniform the profile is,
the lower the maximum divergence to any distribution is.

Increasing the horizon of the dialogue has a double ef-
fect. Allowing more plays for the persuader gives her a
higher chance to posit the goal argument as well as defend-
ers. However, it also enables the persuadee to posit more
arguments to try to defeat the goal argument. Therefore, the
effects of the horizon are hard to determine a priori and it
needs to be tuned for a given persuasion problem.

Besides the numerical value of the outcome, the horizon
has a role in the amount of risk taken when choosing a par-
ticular decision rule.

• With a longer horizon, playing MaxiMax will perform at
least as good as the others with a bigger error.

Indeed, as we can see, with a longer horizon, the error needs
to be bigger as well for the MaxiMax curves to fall below all
the others (except the naive random).

Finally, these observations mean the outcome is depen-
dent of the combination of three factors: the decision rule,
the error and the horizon. Empirical assumptions can be de-
rived from these results:

• With optimistic rules (MaxiMax and Hurwicz with an α
close to 1), the less accurate the profile is, the bigger the
horizon needs to be.

• Optimistic rules perform better with a low error.

• If the error cannot fall under a known threshold, pes-
simistic rules may perform better (in these experiments,
if the error is at least of 0.3).

• If no information is available on the possible error, an av-
eraging rule (Laplace or Hurwicz with α = 0.5) will yield
a minimum guaranteed outcome. This lower bound can be
formally derived from the problem definition.
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Figure 2: Results for different horizons

Note that MaxiMax is the only rule that does not take into
account the minimum value. Therefore, a minimal outcome
cannot be guaranteed with this rule. If the error is big, the
MaxiMax rule can perform worse than the naive random.

Conclusions
In this paper, we have presented a systematic procedure to
transform a persuasion problem into a decision problem and
how to apply state-of-the-art methods to solve it. We also
theoretically and empirically reviewed and compared the
best known decision rules in this context. We derived some
intuitions to efficiently choose the decision rule. In order to
exploit this framework, one needs to: (1) determine a valu-
ation function suitable to the problem, (2) choose an update
function depending on the behaviour of the persuadee and
(3) select a decision rule based on the desired behaviour and
the amount of risk to consider for the persuader.

Most proposals for dialogical argumentation focus on pro-
tocols (e.g., (Prakken 2005), (Prakken 2006), (Fan and Toni
2011), (Caminada and Podlaszewski 2012)) with strategies
being under-developed. See (Thimm 2014) for a review of
strategies in multi-agent argumentation. Strategies in ar-
gumentation have been analyzed using game theory (e.g.,

(Rahwan and Larson 2008), (Fan and Toni 2012)), but these
are more concerned with issues of manipulation, rather than
persuasion. There are also some proposals for using proba-
bility theory to, for instance, select a move based on what an
agent believes the other is aware of (Rienstra, Thimm, and
Oren 2013), or, to approximately predict the argument an
opponent might put forward based on an history (Hadjiniko-
lis et al. 2013). Neither consider belief in the arguments.
Other works represent the problem as a probabilistic finite
state machine with a restricted protocol (Hunter 2014b), and
generalize it to POMDPs when there is uncertainty on the
internal state of the opponent (Hadoux et al. 2015).

More decision rules can be studied in the context of per-
suasion problems in order to define other behaviours. In fu-
ture work, we will examine regret methods, such as MinMax
Regret (Savage 1961). This class of rules efficiently captures
the notion of safety with respect to the error and yields poli-
cies within a given bound to the optimal one.
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