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Abstract

Pre-clinical biomaterial development and testing have traditionally relied on 2D

in vitro, or complex in vivo assays. It is essential for the cell environment to

match the natural tissue in terms of matrix density, architecture, components

(including stress/strains) for tissue models to behave in a natural manner. The

aim of this project is to improve existing in vitro models for the biomaterial

testing.

Plastically compressed collagen hydrogels were used to create a simple

and accessible 3D model. Improvement in hydrogel stiffness was achieved

using pre-crosslinked, polymeric collagen, as a starting material. Hydrogels

were formed by blending polymeric and monomeric collagens, which delayed

the aggregation of collagen fibrils, and enabled cell incorporation at physiolog-

ical pH.

Plastic compression of the novel hydrogel resulted in stiffer constructs; how-

ever, during compression, cells were exposed to reversible (i.e. using mobile

macromolecules) increases in cell-damaging fluid shear stresses.

In the material degradation model, it was found that the release rates of

PLGA degradation products were influenced by cells in the collagen matrix;

and differed significantly between 2D (24 hours) and 3D (7 days) models.

Imaging of cells cultured within the biomaterial also demonstrate the up-take

of biomaterials within cells within the model after 10 days in culture.

Nanoparticle drug delivery via hyaluronan nanoparticle (HA-NP) was im-
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proved by increasing blockage at the fluid leaving surface (FLS). The HA-NP

was designed to gradually release trapped simvastatin, which was measured

indirectly via BMP2 production over time. Although results were inconclusive,

initial experiments demonstrated sustained BMP2 production by cells over 5-9

days.

This work has demonstrated novel ways to improve the stiffness of the

model construct, and an improved understanding of particle movement within

the hydrogel during plastic compression. The models for biomaterial test-

ing have demonstrated that it was possible to track biomaterials in the con-

struct/cells over time, enabling real-time monitoring of the biomaterial and cells

at the implant site.
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Chapter 1

Introduction

Tissue engineering (TE) was described by Langer and Vacanti (1993) as “an

interdisciplinary field that applies the principles of engineering and life sciences

toward the development of biological substitutes that restore, maintain, or im-

prove tissue function or a whole organ”. This still holds true for many TE appli-

cations, yet it is clear the field has evolved beyond this scope, to encompass

biological substitutes that are aimed at replicating tissue environment and func-

tion in vitro (as a tissue model) for use as a tool in the study of basic cell biology

and cell/tissue response to external stimuli (i.e. drugs, biomaterials, etc.).

One of the main approaches/aims in TE is to produce off-the-shelf tissue re-

placements that can replace impaired or lost tissue function, when wound heal-

ing is limited by the regeneration capacity in humans (i.e. leading to scar tissue

which can impede tissue function). The complexity of whole organ means that

current engineered constructs cannot replace the “whole unit”. Instead, they

are designed at the tissue level to only ‘fix’ parts of a damaged organ/tissue.

These repairs can be performed using autologous, allogeneic or xenogenic

transplants; but when there is a lack of healthy donor tissue, or concerns of

donor site morbidity or large injury sites, artificial implant constructs can be-

come an important tool in restoring lost tissue function.

23
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The success rates in recovering tissue function varies depending on the

complexity of the tissue structure and the level of cell involvement (i.e. in bioin-

tegration) in the tissue function (i.e. it is easier to create the physical scaffold

for tissue such as tendons and cornea which does not have a high reliance on

cells to function). However, the mechanisms underlying the cell involvement

in tissue repair and biointegration of tissue implants is complex and not fully

understood. An improved understanding of cell behaviour and environmen-

tal cues which trigger such responses within biological tissues is essential to

achieve improved post-implant outcomes.

In order to have better control over cell behaviour, TE requires an interdis-

ciplinary approach to the design of implant materials.

Many current TE implants are able to achieve partial restoration of tissue

function, with the caveat of potential scarring at the implant site and suscep-

tibility to material failure over time. This is particularly the case if the implant

material is insufficiently integrated with the surrounding tissue.

Modern approaches to produce a functional tissue that is designed to re-

place tissue lost to trauma or disease, now acknowledge the need for cell in-

volvement for long term success of the implanted construct. However, the diffi-

culty in engineering a successful construct lies in the difficulty in understanding

cell behaviour within their natural environment, and the ability to use this knowl-

edge to control cell behaviour within an artificial construct. This means that

a trial-and-error approach to the development of biomaterial formulation and

structure is adopted, to create an implant which can stimulate a physiological

cell response.

This is where model systems (in vivo and in vitro (supplemented with com-

putational and mathematical models); further discussed in section 1.3) are

needed to test and screen biomaterials for the efficient development of im-

proved biomaterials, used to replace lost tissue function. Additionally, tissue



CHAPTER 1. INTRODUCTION 25

models designed to act like natural tissues can be used to help understand

and predict human tissue response to stimuli (i.e. implant biomaterials, drugs,

etc.). These model systems can be thought of as a stand alone screening tool,

designed with selected tissue specific features/variables found in native tis-

sues (at the right amount and location); which can be used to further develop

implantable biological substitutes, and can be used to study cell interaction

with its extracellular matrix (ECM), other cells and implant biomaterials. This

approach has so far been useful and important in understanding cell response

(i.e. growth factor secretion, gene regulation, matrix remodeling, etc.) to me-

chanical and chemical characteristics of biomaterials.

A particular focus of this thesis will be to develop tissue models which can

help improve the efficiency and efficacy of biomaterial development, by screen-

ing and selecting for material compositions and/or physical properties that lead

to improved cell response and implant outcome.

The understanding of cell interaction with its extracellular matrix, and resul-

tant cell response are key to producing reliable tissue models. These models

are especially relevant for later stages of biomaterial development, where the

availability of a reliable in vitro screening platform for biomaterials will increase

efficiency of data gathering, and minimise the use of animal models (and as-

sociated ethical, time and cost implications); especially when there is also the

question of human relevance in animal models. In short, there is a need for a

reliable, relevant (representative of the cell interaction within the target tissue)

and accessible platform to test and develop biomaterials.

1.1 Research motivations

The main motivation for this research is for the advancement of current 3-

Dimensional (3D), in vitro tissue modeling platforms. This is in the context of
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improving in vitro 3D models, for the testing of biomaterials (for its possible

effects on the local tissue upon implantation. Studies of particular interest are:

• Material longevity within the body

• Degradation and remodeling rates of materials in a tissue-like environ-

ment

• Cell response and behaviour within the material over time

• Effect of biomaterial on surrounding tissue/cells over time

Although, much of the tissue responses to biomaterials are traditionally

tested in vivo (animal model), there are various limitations to the use of ani-

mal models (please see section 1.3.1).

As discussed further in section 1.2, many current biomaterials are com-

posed of synthetic materials. Yet, a full understanding of the effects of syn-

thetic materials on the body, particularly at the cellular level, is often lacking.

Although many in vitro and in vivo models already exist to gauge the safety and

efficiency of biomaterial implants, there is still a need for an in vitro, human rel-

evant, tissue model that is simple, accessible, reproducible and quick to

produce. In particular, there is a need for a species and tissue specific model

which allows for:

• The simplification and isolation of test variables

• Easy monitoring and testing of the model

• The study of biomaterial effects on human tissues, especially its cells,

over a extended period of time in a natural-tissue like ECM environment

With the aim to:

• Produce a replicable and reliable tissue model
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• Increase model relevance to human tissue

• Improve tissue specificity (by incorporating tissue relevant cell types, or

physical characteristics into the material)

• Increase productivity (i.e. higher throughput)

• Reduce time, effort and resources in biomaterial testing

The main purpose of this research is to engineer a tissue-like construct that

is capable of producing and predicting native soft-tissue responses to bioma-

terials (which are highly dependent on resident cells). These constructs must

be able to react to external stimuli in a tissue-like manner (i.e. a skin model

should behave like skin (in health and in disease) in terms of gene regulation,

protein composition and/or cell responses).

Since the natural tissue is often too complex to reproduce and analyse, the

aim is not to create identical tissue mimics. However, most tissues can be

simplified and be defined by its predominant physical and chemical features

(i.e. matrix stiffness, cell/matrix density, matrix alignment, presence of other

proteins and growth factors). The strategy is therefore to produce in vitro tis-

sue models by incorporate these engineerable features into the basic collagen

scaffold to produce “tissue specific” models.

The approach is to use the minimum number of these “building blocks”

(physiochemical cues) to direct cells into behaving in a physiological manner.

1.2 Tissue engineering – biomaterials as implants

or tissue models?

Although tissue implants are made to mimic tissue function and can, to an

extent, replace lost or impaired tissues, they are not generally used as tissue
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models. So, what is the difference between tissue modeling platforms and

implant materials?

The answer is that they are usually made with different priorities in mind.

There are very different requirements in the engineering of materials intended

for tissue modeling, versus those intended as replacement tissues as an im-

plantable material. Materials in tissue modeling, most typically, are used as a

platform for understanding the basic biological response/mechanisms to an ex-

ternal stimuli (i.e. drugs, biomaterials). This is especially important in modern

research where there is an almost infinite number of possible test variables.

The testing of multiple variables would imply the priority for any model tissue

is to be highly reproducible, with low variation between batches. To facilitate

the generation of useful information from the models, it must be relevant to

the target tissue, be easy to manipulate and is simple enough (in terms of

its components) to understand the influence of individual variables on the test

outcome; the option to build/increase complexity within the model will also be

beneficial.

This contrasts with the priorities of tissues engineered for implantation (i.e.

skin, bone, tendon grafts) where they must, first and foremost, be safe and

biocompatible. The reproducibility of the construct is not often expected, as

patient-derived cells are notoriously difficult to control. Nevertheless, it is as-

sumed (in a cell-dense construct) that resident cells will create the necessary

architecture, proteins and micro-environments, to replace the implanted scaf-

fold material, as the new tissue gains biological function and integrate with

surrounding tissues over time.

It is essential to make this distinction, and to make clear that this research

is focused on the development of in vitro tissue models. Therefore the priorities

for the model constructs are reproducibility, and relevance to target tissues.
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1.3 Current types of tissue-models – in vivo and

in vitro

Many tissue models exist to test and predict tissue response to an implant

material. This section aims to provide an overview of the current approaches,

and its associated advantages and disadvantages; to ultimately justify the need

for developing next-generation, 3-dimentional, in vitro model systems.

1.3.1 In vivo models

The term in vivo is defined as processes performed or taking place within a

living organism, and in biological research it often refers to animal models used

to study biological processes and mechanisms within a complete and intact

system.

For example, a common in vivo assays for bone-replacement biomaterials

is the bone defect models, where part of the animal bone is surgically removed

and replaced by biomaterials in a live animal model (Li et al., 2015). One of the

advantages of an in vivo model is that implanted biomaterials will be subjected

to physiological mechanical loading and biological reactions (i.e. inflammation)

until the construct is removed for analysis.

The variables tested in vivo typically include the toxicity of new components

and its effects on all organs/tissues of the body. However, the drawbacks as-

sociated with animal models include its complexity and limited accessibility.

This means that tissue assays (apart from blood tests or skin biopsy etc.) are

typically end-point, and require a large number of animals to study a range of

variables, or temporal changes to the biomaterial and the surrounding tissue

over time. This poses ethical, cost and time issues which needs to be justified.

The majority of the animal models in biomaterial research (especially in the
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early stages of pre-clinical trial research) are laboratory mice because of the

relative ease to introduce genetic modifications (i.e. disease specific models

with similar pathologies to human disease), and reduced cost, space and time

implications compared to other mammalian models. Typically, pre-clinical tri-

als in vivo progress onto large animal models (with an improved resemblance

to human physiology), only after preliminary tests in smaller animal models.

The problem comes when the mice/rat model “inaccurately” predicts human

tissue responses and give rise to false positive and negative results, leading

to the abandonment of potentially useful biomaterials, whilst further develop-

ing materials which may potentially be non-compatible with humans (which are

bound to fail with further testing) (Ennever et al., 1987) (McGonigle and Rug-

geri, 2014). This questions whether the heavy reliance on animal models for

biomaterial (and drug) testing can be justified.

Nevertheless, it is important to acknowledge that animals models are indis-

pensable in testing systemic effects and overall safety of drugs/biomaterials,

especially over a long period of time. But prior to this stage of biomaterial test-

ing, reliable in vitro tests are needed to provide human tissue specific screen-

ing of biomaterials (to reduce false positive and negative results of material

effect on the tissue) during their development.

1.3.2 In vitro models – 2-Dimensional VS 3-Dimensional

In vitro (or “in glass”) refers to experiments carried out away from the intact

living organism. The major benefit to isolating cells for culture in vitro is that

it allows for a simpler model with isolated test variables, and easy access to

the tissue components for analysis. In vitro models can refer to tissue sections

(i.e. lung sections/biopsy) or cells, cultured both on (most typically coated

tissue culture plastic (TCP)) and within a cell-adherent material. However, this
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is where a distinction must be drawn between 2-dimensional (2D) (i.e. cells on

coated culture plates, matrigel surface, etc) and 3-dimensional (3D) (i.e. cells

within a biomaterial) culture systems.

2D systems typically refer to cell mono-layers cultured on a stiff and flat

surface (i.e. tissue culture plastic). Examples of 3D soft tissue models in-

clude electrospun poly(ester urethane)ureas (Courtney et al., 2006) and 3D

full thickness skin models based on silk and collagen (with studies of cross-

talk between cell types in the skin model) (Bellas et al., 2012); where cells are

embedded within a biomaterial.

The main differences for cells seeded in 2D culture and the natural tissue

are:

• Spatial cues (including cell-matrix, cell-cell attachments)

• Substrate stiffness

• Concentration gradients (i.e. nutrients and growth factors)

In terms of mechanical properties, the stiffness of the cell substrate is no-

tably different between 2D and 3D systems. Substrate stiffness is important

as cells can exert and sense contractile forces via its cytoskeleton from the

attached substrate. This ultimately affects cell behaviour such as migration,

differentiation, etc. (Discher et al., 2005). Cell seeded in 2D cultures are usu-

ally attached to ultra-stiff tissue culture plastic, with very high resistance to cell

contraction in one plane, whilst other surfaces are surrounded by a fluid en-

vironment, which offers little cell attachment sites, and even less resistance

to cell exerted contractile forces (although it should be said that this is until

cells (i.e. fibroblasts) on a 2D surface naturally produce ECM proteins, and

transform their 2D environment into 3D over time). This contrasts with a true

3D environment where physiological stimulation is from all dimensional planes

surrounding the cell.
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As an example, studies comparing cell activity within 2D and 3D ex vivo

lung cancer models (decellularised matrix seeded with human alveolar based

epithelial adenocarcinoma A549 cell-line) have differences in cell proliferation

and apoptosis rates. Differences in the metalloproteinase expression between

the 2D and 3D models were also noted, where MMPs-1, -2 and -10 were at

increased levels in 3D, and MMP-9 was only found in the 3D model. Impor-

tantly, cells nodules, the hallmark of lung cancer, were only formed within 3D

constructs (Mishra et al., 2012).

The differences between findings from 2D and 3D in vitro models highlights

the importance of cell-cell and cell-matrix interactions (Nyga et al., 2011), and

other culture environment factors, such as the perfusion of the construct (i.e.

microfluidics) (van Duinen et al., 2015). Just taking cell migration as an exam-

ple, the changes in ECM topography (i.e. alignment of matrix and the ECM

ligand density available for cell attachment) has been found to affect the mi-

gration rate and the extent of cell spreading and polarity. In 3D, the size of the

interfibrillar space also dictate the rate of migration (Doyle et al., 2013) (Cukier-

man et al., 2001). Also, in terms of cell signalling, an upregulation in myosin II

activity and cell migration rates can be seen within 3D matrices (Doyle et al.,

2009).

The concentration of essential nutrients available to cells in 2D and 3D will

differ due to the density of the culture environment. In 2D, the culture media

(and so nutrients) are freely available to at least part of the cell surface. Within

a 3D system, nutrients used up by cells will have to diffuse through the dense

matrix, resulting in a concentration gradient for nutrients between the cells and

the culture media outside the matrix. Although, note that the matrix can add to

the complex cell signalling system by acting as a reservoir for soluble growth

factors (Hynes, 2009).

In most cases, a 3D in vitro model system can be engineered to represent
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a natural tissue environment as cells are naturally found embedded within the

ECM (a 3D environment; with exceptions i.e. epi-/endothelial cells) composed

of a wide range of ECM proteins; which supports cells within a structured scaf-

fold and present environmental cues to interstitial cells (i.e. cell-matrix and

cell-cell interactions, growth factors and cytokines).

Designing 3D in vitro matrices

Again, since cells in 2D (especially those cultured on TCP) receive non-physiological

stimulation from their environment, their response/behaviour are unlikely to

predict complex, natural, tissue responses. Therefore there is a need for 3D

models with a cell environment representative of the natural tissue.

When designing the 3D model, it is especially important to consider:

• What the cell senses - is it 3D for the cell?

• What are the predominant environmental cues for cells in the target tissue

Cells are typically several tens of micrometer in size. The surrounding ma-

terial/matrix must therefore also be in the same scale for cells to truly be em-

bedded within a 3D environment. For example, if cells are embedded within

a scaffold with pores measuring hundreds of micrometer, the smaller cells will

only attach to part of the pore circumference. 3D spatial cues will therefore be

lacking as cells are attached in one plane - effectively becoming a 2D surface

to the cells.

Cells in 3D receive feedback regulation from its surrounding matrix. They

respond, for example, to matrix stiffness, alignment, topography and chemical

cues (i.e. the concentration of oxygen, nutrients and proteins). It is therefore

clear that the structure and topography of cell substrate material has impli-

cation on cell behaviour, making it essential to consider the material used to
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create the tissue model. It is important not to forget different tissue types (i.e.

musculoskeletal, cardiac, kidneys, liver, skin, etc.) will involve different tissue

organisation, components and cell-types; which will need to be taken into ac-

count when developing tissue-specific models.

1.3.3 Synthetic and natural materials in tissue engineering

Synthetic polymers are popular scaffold materials as they have highly control-

lable chemical compositions, and both physical and mechanical properties (i.e.

typically much stronger than natural polymer derived materials, and can be de-

signed to match the mechanical strength of host tissues). Additionally they

are generally cost efficient to produce, have good availability and many syn-

thetic polymers are already clinically approved for use within the body for other

applications (i.e. PLGA are approved by the FDA for drug delivery).

Although there is a high degree of control over physical features and chem-

ical composition of the material, the synthetic material itself will not integrate

with the existing tissue in the body. In most modern TE applications, the syn-

thetic polymers is used to deliver (or encourage cell migration into the scaf-

fold), and support cells until it is eventually replaced by the cell-produced ECM;

which is necessary for implants to obtain biological function (indirect tissue en-

gineering (Brown, 2013b)). In such circumstances, the initial construct is usu-

ally non-physiological (apart from matching host tissue mechanical strength),

and will only mature into a tissue-like construct with time. The implication

of this is that the synthetic matrix would need to be designed with mechan-

ical/chemical cues (such as tissue-like stiffness, cell-attachment site density,

degradation rate, topography and/or growth factors and cytokines) to direct cell

behaviour, to encourage the production and retention of ECM proteins.

A frequent problem in synthetic materials is the low rate of ECM deposi-
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tion in vitro, meaning long periods in culture is necessary for its maturation

(i.e. newly synthesised collagen is only slowly incorporated into the bulk tissue

(Foroughi et al., 2008)). This could be due to the lack of molecular ’crowding’ at

the collagen deposition site because constructs are often culture in an environ-

ment which has limited macromolecule density (much lower than physiological

levels normally found in the ECM environment). With sufficient macromolecule

density in the culture environment, the excluded volume effect is found to accel-

erate the kinetics of protein assembly and fibril formation in vitro (Lareu et al.,

2007).

The production of cell-synthesised extracellular matrix (ECM) is also highly

dependent on the activity of resident cells. Once the synthetic material has de-

graded, the degradation products or active ingredients released from the bio-

materials will be in contact with the surrounding tissues. Yet often the effects of

such by-products on resident cells (of different cell-types), and the surround-

ing tissue, is not clear (i.e. is it carcinogenic or toxic to cells? does it cause

fibrosis?). To add to the complexity, primary cell sources (i.e. autologous cells

isolated from a patient) can have variable activity, with very different ECM pro-

duction rates. This means that degradation rates of a biomaterial needs to be

controllable (and customisable for each patient); especially in view of their use

in the clinical setting.

Nevertheless, the ability to customise synthetic materials means it is effec-

tive for use as implant materials - when the variables to control cell-behaviour

is known. This indirect tissue engineering method is, however, impractical for

use in high-throughput model systems due to the long culture period for the

ECM to be produced; not to mention the high level of cell dependency, leading

to the high variability expected in cell-produced ECM.

Natural materials on the other hand, may be better suited as a substrate for

model tissues. This is because the substrate is made of naturally existing pro-
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teins of the ECM which contain the cell attachment sites, and physiochemical

cues for cells. Examples of natural polymers used in TE include proteins nat-

urally found within the ECM environment, such as collagen (most commonly

types I and II), elastin, fibrinogen/fibrin and hyaluronic acid (at different quan-

tities, depending on tissue type). Cell-attachment proteins such as laminins

and fibronectins can easily be incorporated into protein scaffolds which will fur-

ther provide tissue-like cues to cells, although the requirements for these ECM

components will depend on the cell type incorporated into the tissue model.

This category also includes other naturally derived materials such as polysac-

charides and polyesters (Mano et al., 2007)) which can be extracted from non-

mammalian animals, microorganisms or plants.

The main advantages of using natural materials to support cells in tissue

models is that these molecules are naturally recognised by cells and are more

likely to stimulate physiological responses in cells (similar to the natural envi-

ronment i.e. migration, proliferation, remodeling of matrix). Additionally, many

natural matrix-forming proteins are able to spontaneously (at specific condi-

tions) form a scaffold in vitro (i.e. collagen hydrogels, fibrin scaffolds) because

they contain precise amino acid sequences and structure which are difficult to

replicate in the synthetic material.

However, there are also limitations to reconstituted proteins scaffolds. Par-

ticularly because these scaffolds are formed without cell involvement or cell-

directed control of the matrix architecture; which may in turn affect cell be-

haviour (Cheema et al., 2011). The lack of mechanical properties of hydro-

gel based scaffolds can also be a problem, as it is one of the many physi-

cal cues cells detect from the ECM. However scaffolds can be made stronger

by interventions such as chemical cross-linking of the protein. For example,

cross-linked gelatin or fibrinogen have been found to support muscle myoblast

cell line (C2C12) proliferation, despite initial cell damage due to cross-linking
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(Sando et al., 2011).

Examples of in vitro 3D models taken from the natural tissue (i.e. ex vivo)

includes the use of tissue sections or decellularised models (often top-down

approaches of material fabrication); where tissues maintain the complex tissue

structure whilst also having improved access for in vitro assays. For example,

a decellularised lung model (with in silico modeling) found that cells in 3D had

reduced proliferation rates (observed through ki-67 staining and cell counting)

and were able to demonstrate cell-type differences in response to drug treat-

ment (Stratmann et al., 2014) .

Although decellularised explanted lung tissue contain the complex tissue

structures (not currently reproducible in artificial 3D constructs), the culture of

these samples required constant perfusion and so currently have limited poten-

tial for up-scaling. Also since they are obtained from natural tissues, some vari-

ation between samples can be expected. On the other hand, 3D models built

artificially (bottom-up fabrication) are considerably simplified compared to ani-

mal tissue models (Mishra et al., 2012), but are a step forward from 2D models

and generally show improved physiological cell responses in drug screening

compared to traditional in vitro 2D models (as reviewed by Nam et al. (2015)).

1.3.4 Regulations and international standards for biomate-

rial testing

The International Organisation for Standardisation (ISO) have published guide-

lines and regulation for the use of medical devices in biological settings to en-

sure a standard of animal welfare (ISO 10993-2), and patient safety during

animal and clinical tests. ISO 10993 describes the international standards ex-

pected for biological evaluation of medical devices, with a total of 20 chapters

to date (August 2016).
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ISO 10993 aims to provide guidelines for the protection of patients from the

use of medical devices, including biomaterials, by providing guidance in the

systemic analysis and biological evaluation of medical devices (ISO 10993-1).

The regulations encompass both natural and synthetic materials designed for

long-term (i.e. more than 30 days) contact with human tissues, and is designed

to assess and manage the risks involved with prolonged contact between bio-

materials and human tissues.

Since the tissue models discussed in this thesis was not intended for direct

human tissue contact (i.e. not intended for implant), the guidelines in ISO

10993 do not directly apply to the collagen model material described in this

thesis. Instead, it describes potential test parameters for the model during in

vitro biomaterial testing. For example, ISO 10993-9 describes the need for in

vitro test on material degradation (may include chemical components used in

the manufacturing process), which can also be studied in 3D tissue models as

demonstrated in chapter 7 in this thesis. Other potential areas of application

of the 3D model is in the study of cell response to the biomaterial and its

components (i.e. cytotoxicity, genotoxicity and carcinogenicity; ISO 10993-5),

and material degradation due to chemical alterations to the medical device

(ISO 10993-13).

The successful implementation of 3D models as early biomaterial tests and

screening, outside of animal models, will help to reduce the need for in vivo

models. This thereby helps meet the principles of the National Centre for the

Replacement, Refinement and Reduction of Animals in Research (NC3Rs),

which aim to promote new technologies to replace, reduce and refine the use

of animal models in research.
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1.4 Collagen

Collagen is a family of proteins that is highly conserved between species dur-

ing evolution. Collagen molecules are composed of three polypeptide chains

arranged as a triple helix (Ramachandran and Kartha, 1954) (Ramachandran

and Kartha, 1955). The composition of each chain (also known as α-chains)

can vary, which is reflected in the chain nomenclature (i.e. α1, α2, etc.). To

date, at least 29 types of collagen have been identified, most of which can be

roughly divided into three groups depending on its function (Abraham et al.,

2011) (Khoshnoodi et al., 2006) (Gordon and Hahn, 2010):

• Fibril-forming collagens - most common are types I (found most predom-

inantly in load bearing tissues), II (cartilage) and XI (cartilage, interver-

tebral disc). All fibril forming collagens have long uninterrupted helical

domains capped with N- and C- terminals containing non-collagenous

propeptides, and provide the supporting matrix of most tissues

• Network-forming collagens - types IV (basement membranes), VIII (suben-

dothelium of vascular walls) and X (endochondrial growth plates) are ex-

amples of network-forming collagens found within the body

• Fibril-associated collagens (FACIT) - such as types IX (cartilage, cornea),

XII (dermis, tendons) and XIV (bone, dermis) can be found associated

with underlying collagen fibres

The tissue models used throughout this thesis is based on type-I collagen

- a type of fibril forming collagen.

This section aims to review current knowledge of the type-I collagen protein,

in particular, its chemical composition, structure and its interaction with cells.
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1.4.1 What is Type-I collagen?

Type-I collagen is one of the most abundant type of collagen in the body. It is a

fibril forming collagen, and provides the structural integrity in most connective

and load bearing tissues (skin, tendons, bones, etc).

The triple helix of each type-I collagen molecule is made of two α1, and one

α2 chains. Each chain is composed of ∼1050 amino acids, with the main body

of the chain consisting of repeating –Gly-X-Y– units; such that glycine (Gly) is

found at every third amino acid along the chain. Glycine at every third position

is important for an undistorted structure, as Gly at any other position is found

to be highly destabilising (Brodsky et al., 2008) (Persikov et al., 2000).

Since it is often difficult to study the intact collagen molecule due to its

tight structure (i.e. sterical hinderance), shorter fiber forming peptides (∼36

amino acid residues) with variations in the –Gly-X-Y– sequence have been

used to study the effect of amino acid sequence on its fiber forming propensi-

ties (O’Leary et al., 2011). Using these short sequences, it has been found that

Proline (Pro) and Hydroxyproline (Hyp) are most commonly found in the X and

Y positions respectively; with this configuration leading to the highest stability

of the collagen triple helix (Persikov et al., 2000). Deviations from this Gly-Pro-

Hyp sequence (i.e. to Gly-Pro-Pro) results in a less stable gel (Kar et al., 2006).

The importance of Hyp in the collagen molecules has been highlighted in early

studies in to the collagen molecule for stability (Gustavson, 1955) (Jimenez

et al., 1973) (Berg and Prockop, 1973).

In mammalian tissue, type-I collagen molecules are produced within fibrob-

lasts (and other cells, i.e. osteoblasts; depending on the tissue type), and

are secreted into the extracellular space before they can be assembled into

the ECM. Briefly, the biosynthesis of collagen molecules begin with the col-

lagen α-chain production. Translated collagen chains are modified by post-
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translational modification in the rough endoplasmic reticulum, where proline

and lysine residues (in the Y position) are hydroxylated to form hydroxyproline

and hydroxylisine. These hydroxilated amino acids are needed for triple helix

stability (Ramachandran et al., 1973) and for intermolecular cross-linking.

As the three α-chains come together to form a triple helix, interchain disul-

fide bonds at the C-terminal of the α-chain aligns the chains into conformation

(Doege and Fessler, 1986), allowing hydrogen bonds to hold the rest of the

chains together. Both water bridges (Brodsky et al., 2008) and electrostatic

interactions (Persikov et al., 2005) are also thought to have a role in stabilis-

ing the triple helix (i.e. the Hyp residue may form water bridges with carboxyl

groups of adjacent chains (Suzuki and Fraser, 1980)). The triple helix at this

stage is called the pro-collagen molecule (figure 1.1), and is packaged at the

golgi apparatus for secretion into the extracellular space.

For collagen molecules to aggregate and form fibrils, the pro-collagen molecule

must be cleaved at either ends of the molecule by N- and C-procollagen pro-

teinase (Kadler et al., 1987), so that a relatively short non-helical region (telopep-

tides) remain at either terminal. The cleavage of procollagen terminals re-

moves any steric hindrance, and enables the association of adjacent tropocol-

lagen molecules (widely used in hydrogel formation) in a “quarter staggered”

formation; such that adjacent and parallel collagen molecules are displaced

by approximately 1/4 of the molecule length, which measures 67 nm (a D

period). On an electron micrograph, this displacement can be observed as

distinct banding patterns on the collagen fibre (Williams et al., 1978). This as-

sociation of collagen molecules continue until fibres are formed (in vitro, fibres

typically measure about ∼20-40nm in diameter (Williams et al., 1978)).

Further processing of the fibre is then needed for collagen fibres to achieve

the level of mechanical strength found in natural tissues, so that it can support

cells and other proteins within the matrix.
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Figure 1.1: Schematic of procollagen processing derived from (Canty and
Kadler, 2005). Individual collagen chains produced within the cells forms a
triple helix through C-terminal disulfide bond formation. The resultant procol-
lagen molecule is further processed by N- and C-procollagen peptidase which
removes either terminals, allowing the collagen molecules to assemble into fib-
rils (with a quater-staggered arrangement) after secretion into the extracellular
space.
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1.4.2 Chemical alterations of the collagen structure – Cross-

linking

Collagen molecules immediately after fibrillogenesis are only held together by

weak labile bonds. For the collagen matrix to gain mechanical properties nor-

mally found in mature tissues, interfibrillar covalent cross-links between colla-

gen molecules is necessary (Yang et al., 2008).

Interfibrillar cross-linking

Collagen molecules are naturally cross-linked together via two distinct pro-

cesses. The first of which involves an enzymatic process mediated by lysyl

oxidase to form divalent (and subsequent trivalent) intermolecular cross-links

at defined sites along the collagen molecule. With age, non-enzymatic reac-

tion with glucose result in the formation of advanced glycation products (AGE),

leading to further cross-linking.

In enzymatic cross-linking, the residues involved will depend on the tissue

type (i.e. the level of lysine hydroxilation within the collagen molecule) and age

of the tissue. The majority of cross-links in adult skin and tendons are aldem-

ine based. Lysyl oxidase causes the oxidative deamination of ε-amino groups

of specific lysine residues of fibrils in the non-helical regions (telopeptides) of

the molecule. The resultant lysine-aldehyde then reacts with opposing ε-amino

groups of hydroxylysine in the helical region of the molecule. This type of cross-

link is called dehydrohydroxylysinonorleucine (deH-HLNL) (Bailey and Peach,

1968). These then spontaneously reacts with histidine to form Histidinohydrox-

ylysinonorleucine (HHL) (Yamauchi et al., 1987) which is a more stable trivalent

cross-link.

Although there are many potential cross-link mechanisms, it is clear that de-

ficiencies in hydroxilation or copper ions (causing decreased lysyl oxidase ac-
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tivity) lead to tissues with decreased mechanical properties (Dahl et al., 2005).

The second mechanism is through non-enzymatic cross-linking. Prolonged

incubation of collagen in excess glucose within an oxygen-rich environment

led to an increase in cross-linking and browning of collagen constructs (Kohn

et al., 1984). Reactive oxygen species was found to mediate glucose induced

collagen cross-linking (Fu et al., 1992) (Fu et al., 1994) by forming advanced

glycation products (AGE). The formation of AGEs is initiated by the formation

of a schiff base between glucose and a protein amino group (i.e. lysine side

chains), which then stabilises into an intermediate keto amine (amadori prod-

uct). Further glycolysis over time leads to the formation of glyoxal, methyl

glyoxal and 3-deoxyglycosone which reacts with ECM proteins to form AGEs

(Snedeker and Gautieri, 2014). Evidence suggests that soluble AGE can di-

rectly stimulate cross-link formation in collagen (instead of simply being an

end-product of cross-link formation) (Sajithlal et al., 1998).

However, for the direct engineering of collagen constructs in vitro, imme-

diate and efficient methods to improves construct mechanical properties is

usually needed. Artificial interfibrillar cross-linking of collagen fibrils (without

enzyme action) is possible with chemical (i.e. gluteraldehyde; including photo-

chemical agents such as riboflavin) or physical (i.e. dehydration) treatments.

The mechanism and residues involved in these artificial crosslinking methods

vary, but ultimately, all methods result in the interfibrillar cross-linking of col-

lagen fibrils. Compared to natural cross-linking methods, these methods ef-

ficiently increases mechanical properties of collagen based materials (Chan-

dran et al., 2012) (Olde Damink et al., 1996) (Chan and So, 2005), but will also

damage cells in the area of treatment.

Therefore, the current challenge is to introduce covalent cross-links into in

vitro constructs in a quick, and cell friendly manner; for the production of scaf-

folds with increased mechanical properties. This challenge will be addressed,
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and further discussed, in chapters 3 and 4.

1.4.3 In vitro collagen fibrillogenesis to produce hydrogels

Type-I collagen molecules in solution are surrounded by a water shell. When

fibrillogenesis is triggered at physiological conditions in vitro, collagen molecules

spontaneously assemble with neighboring molecules in a quarter staggered

arrangement to form fibers.

Electrostatic interactions and hydrogen bonds (i.e. involving bridging water

molecules) appear to be the driving force for fibrillogensis. Hodge and Schmitt

(1960) identified narrowly defined clustered of basic and acidic polar groups

on collagen molecules, which match the corresponding relative position on

an adjacent molecule when displaced at the quarter staggered arrangement.

The interprotein interactions are more likely to form in clusters, rather than

uniformly throughout the collagen molecule. This is because some amino acids

are better hydrogel bond donors (i.e. arginine and lysine) or receptors (i.e.

glutamine and aspartate) than others (Streeter and de Leeuw, 2011). Packing

of the collagen molecules optimises the alignment of hydrophobic side chains

(Hulmes et al., 1973). Hydrophobic interactions between collagen molecules

can potentially be stabilising (Streeter and de Leeuw, 2011), as a reduced

amount of water shell on non-polar groups encourages interaction between

adjacent collagen molecules.

The collagen fibrous matrix structure and organisation depend on the con-

ditions of assembly (Comper and Veis, 1977). Nevertheless, all collagen hy-

drogel formation process begin with a nucleation phase, where polymerisa-

tion of the collagen protein begins in small clusters. Fibres form as collagen

monomers in solution continue to aggregate, until fibrillogenesis is complete.

Turbidity assays of collagen hydrogels often describe this as the lag phase
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(before nucleation) and growth phase (formation of fibres), detected when the

collagen solution turns opaque during the latter stage.

The hydrogel at this stage assumes a loose mesh-like fibrous structure,

containing ∼ 0.2-0.6% (w/w) collagen protein, and mostly water in the interfib-

rillar space (with embedded cells, ECM proteins or biomaterials).

Factors currently known to influence collagen fibrillogenesis, and the stabil-

ity of resultant hydrogels include:

• Collagen molecule structure (with or without telopeptides) and composi-

tion (i.e. in short peptide sequences)

• Solution pH

• Salt concentrations

• Gelling temperature

• Collagen density

• Presence of other proteins and macromolecules

Type-I collagen molecules used in hydrogel formation are usually native

acid-soluble collagen (tropocollagen; with telopeptides), or collagen molecules

cleaved of most of their telopeptide (atelocollagen). Both forms are derived

from natural tissues, but are extracted using different processes. Tropocolla-

gen normally extracted from young and growing tissues (using a weak acidic

solution) are ‘whole’ collagen molecules with the telopeptides intact. Atelocol-

lagen extracted from (usually insoluble) tissues using pepsin lack the complete

telopeptide sequences normally found at the terminals of collagen molecules.

Both are able to form hydrogels under similar physiological conditions, but at

different rates; and result in gels with different physical properties. For exam-

ple, atelocollagen has reduced ability to form well organised fibrils (Brennan
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and Davison, 1981), aggregation rates, resistance to collagenase treatment

(Walton et al., 2010) and thermal stability compared to tropocollagen derived

hydrogels (Snowden and Swann, 1979).

Gelling conditions - pH, temperature and salt concentrations

Fibrillogenesis is described as an entropy driven process and is usually best

at physiological temperature (∼37°c). Temperatures too high can potentially

denature the collagen protein into gelatin, whilst a low temperature will delay

fibrillogenesis. Indeed, Comper and Veis (1977) found that the temperature

can affect the nucleation (lag) phase of fibrillogenesis (but not the subsequent

growth phase of gel formation).

Salt (NaCl) concentrations have been shown to influence the nucleation

time (lag phase) during fibrillogenesis (Snowden and Swann, 1979); which may

be attributed to changes in electrastatic interactions needed in nuclei formation

(Comper and Veis, 1977). The presence of salts is important for the formation

of structrually defined fibrils (Harris and Reiber, 2007), as fibrils formed without

salts are less organised with spindle shaped aggregates.

Fibrillogenesis at neutral pH and physiological salt concentrations (pH6.5-

8; in the presence of 150mM salt) led to stable hydrogels with fibers displaying

the expected banding patterns, indicative of collagen molecule fusion with ad-

jacent molecules at perfect alignment. At low pH (∼pH 2-5), only poorly formed

fibrils were produced. At pH 9, banding patterns of fibrils were present, but par-

allel bundling of collagen molecules appeared to be looser (Harris and Reiber,

2007).
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Other molecules

The rate and extent of type-I collagen fibrillogenesis are susceptible to influ-

ence by other proteins and molecules, mainly, via changes in electrostatic in-

teractions.

Changes in electrostatic interactions due to the presence of anions (es-

pecially chloridion and sulphates) affected the rate and extent of fibrillogen-

esis, possibly by altering the density of the hydration layer around collagen

molecules. Although the exact effect depend on the type of anion and its con-

centration (Xing et al., 2011), the isoelectric point (pI) of collagen monomers

are highly influenced by ion species (Li and Douglas, 2013). Some effects on

the matrix structure and stability of the collagen structure was also noted.

Proteins naturally found within most tissues (i.e. proteoglycans and gly-

cosaminoglycans (GAGs)) can also impact on collagen hydrogel formation.

For example, GAGs such as dermatan sulphate added to the collagen solu-

tion prior to fibrillogenesis reduced nucleation time, increase rate of growth

phase and increased the overall extent of collagen precipitation (Snowden and

Swann, 1980) (Paderi et al., 2009). High density proteoglycans, on the other

hand, increased nucleation time, but had little effect on other parameters of

fibrillogenesis. They are also thought to exert influence on fibrillogenesis via

electrostatic interactions (Mathews, 1965), where negatively charges on the

polysaccharide interacts with the positive charges of the protein.

Another study found that the polysaccharide, ficoll, affected fibrillogenesis

by increasing the lag time during nucleation, increased fibre growth rates and

changed the architecture of the resultant matrix fibril (Dewavrin et al., 2014).

Other molecules, such as modified small leucine-rich proteoglycans (SLRPs)

were able to delay fibrillogenesis in a dose dependent manner (Paderi et al.,

2009).
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Why use collagen hydrogels?

The main advantage of using collagen hydrogels in TE is the possibility of

incorporating cells within an ECM-like matrix at time-zero (as the matrix is

being formed) without direct cell involvement.

The reason collagen hydrogels enables cells to behave in a physiological

manner is because they provide the interstitial cells with native tissue-like fluid

and solid components, mechanical properties, topographical features and ori-

entation cues - all of which changes with time in response to cell action (Brown,

2013a). The accessibility of the in vitro material will also enable the visualisa-

tion and study of cell-matrix interactions (i.e remodeling (Grinnell, 2003), cell

attachment (Jiang and Grinnell, 2005), migration (Grinnell et al., 2005)).

The collagen matrix can be made more complex by building additional fea-

tures into the basic hydrogel (bottom-up approach to TE (Brown, 2013b)). This

makes it possible to isolate variables and tailor the model with tissue-specific

features, which will ultimately impact on cell behaviour within the model tissue.

1.5 Plastically compressed hydrogels as tissue mod-

els

Cellular collagen hydrogels (typically containing >99% water) was first de-

scribed by Elsdale and Bard in 1972 (Elsdale and Bard, 1972), and have

since been a used to characterise cell behaviour within a 3D environment.

The super-hydrated hydrogels, consisting mostly of water, have only weak me-

chanical properties and can quickly be resorbed when placed in vivo (Tabata

et al., 2000). This means interstitial cells can potentially lose their surrounding

supportive matrix.

Plastic compression of collagen type-I hydrogels is a technique developed
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by Brown et al. (2005), where excess fluid trapped between fibrils of the hydro-

gel lattice during fibrillogenesis is expelled from the matrix by a combination of

compressive load, gravity and capillary action (fluid absorbed into contacting

blotting paper). This process increases collagen density within the construct

to physiological levels, without altering its chemical composition. It is termed

‘plastic’ because compression expels the liquid non-reversibly, and water does

not return to the collagen fibre lattice even on the removal of the compressive

load (Brown et al., 2005).

The advantage of using plastic compression is their cell-compatibility when

improving hydrogel collagen density. If, for example, the hydrogel is made from

a collagen solution with a density of ∼ 2mg.ml-1, the resultant hydrogel will

contain ∼ 0.2% collagen, and 99.8% water. With a single plastic compression,

collagen density typically increases at least 55 folds, to ∼ 11−18% (w/w)(Brown

et al., 2005) (Abou Neel et al., 2006) (Cheema et al., 2008). The resultant

compressed collagen have been shown to persist for at least 5 weeks in vivo

(Mudera et al., 2007). Cells can remodel and migrate through the construct,

but the overall dimensions and shape remains relatively unchanged over the

culture period (Alekseeva et al., 2012b).

There are currently two standardised methods to produce plastically com-

pressed collagen gel, namely a) downward flow compression (Brown et al.,

2005) (figure 1.2) and b) upward flow compression ((Alekseeva et al., 2011))

(figure 1.3); each referring to the predominant direction of fluid flow during com-

pression. Both methods essentially result in compressed collagen constructs

with similar µ-structures (figure 1.4). However, downward flow compression

has the advantage of customisable shape and size of the final compressed

construct (as the hydrogel can be made in customised moulds), whilst the

upward flow method is optimised for constructs produced in multiwell-plates,

which allows for increased reproducibility and through-put.
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Figure 1.2: Schematic of downward flow compression of collagen hydrogels.
Hydrogels are transferred from their moulds onto blotting paper, protected on
either sides by nylon mesh (and a layer of metal mesh for easy handling). A
load is then applied from top of the gel to expel excess fluid from the hydrogel,
downwards onto the blotting paper.
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Figure 1.3: Setup for upward-flow plastic compression set within culture well-
plates. (a) Custom-machine for rolling Whatman chromatography paper (4cm
thick) to produce well-sized absorbent plungers. (b) Schematic of upward-flow
plastic compression where absorbent plungers and an external load are placed
onto the hydrogels (separated by blotting paper discs to protect the hydrogel).
Fluid flows out of the hydrogel and travels upwards into the plunger.
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Figure 1.4: Collagen hydrogel compresses into a thin membrane-like material
(typically between 50-150µm) with a mesh-like structure observable on the
hydrogel surface (bird’s-eye view (X-Y plane; SEM image). The cross-section
SEM image (Z plane; adapted from Hadjipanayi et al. (2011a)) reveals that
collagen fibrils are arranged into a lamellae-like micro-structure. The density of
collagen fibrils/lamellae is non-uniform throughout the hydrogel cross-section,
and is highest at the fluid leaving surface (annotated above; with schematic
representation of cell entrapment between collagen fibres within the construct).
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In all studies within this thesis, upward flow compression is used on the

collagen hydrogels due to the high throughput potential and reproducibility,

important for in vitro tissue model systems. Briefly, the process begins from

the application of an absorbent paper discs and a plunger (made from a roll

of blotting paper) onto the hydrogel. Note that the amount of pressure/load

on the compression system only influences the compression rate at the initial

stages of compression (Hadjipanayi et al., 2011a). One specific feature of the

compressed collagen gel is the presence of a fluid leaving surface (FLS) (figure

1.4). This FLS consists of a dense concentration of collagen lamellae layers (1-

5µm thick, observed in the cross-section (z-plane) view of the compressed gel).

Although these lamellae are found throughout the thickness of the gel, their

density was highest towards the FLS (Brown et al., 2005). The high density

at the FLS, and so increased blockage/resistance to fluid outflow causes fluid

flow to reverse, and escape through other surfaces of the hydrogel (further

discussed in chapter 4, pg.125).

By default the surface opposite the FLS is the non-fluid leaving surface

(NFLS), and usually contains a collagen matrix that is relatively less dense

compared to the FLS. However, if the initial hydrogel thickness is high, a sec-

ondary FLS (with increased collagen density) forms in place of the NFLS, with

an associated increase in resistance to fluid outflow through the secondary

FLS. The finding that a secondary FLS forms at the surface directly opposite

the FLS (i.e. the NFLS), and not at the sides of the hydrogel, suggests that

fluid flow is subsequently directed towards the NFLS (i.e. the NFLS becomes

a secondary FLS so that both top and bottom surfaces of the hydrogel has

a high collagen density compared to the rest of the gel) (Tan, 2015). Note

again that the NFLS only becomes the secondary FLS in gels with a high initial

thickness, and can therefore be controlled to some extent, to create a defined

collagen matrix microstructure within the collagen hydrogel.
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The main advantages of using plastically compressed hydrogel constructs

is the relative ease and speed in producing cellular, collagen-dense constructs

(produced within minutes-hours, instead of weeks if reliant on cell migration

and cell-ECM production). Additionally, the resultant constructs are thin and

‘see-through’, allowing the real-time monitor of model tissues (figure 1.4). The

ECM structure (type-I collagen) is formed around the cells from time-zero (t0),

negating the dependence on cells to migrate into dense collagen structures,

and remodel (or produce) the ECM structure. Diverse cell types - such as

those derived from skin (Hadjipanayi et al., 2009b), muscle (Kayhanian et al.,

2009), bone (Bitar et al., 2008), vein (Hadjipanayi et al., 2011b) and nerves

(Georgiou et al., 2013) - have been successfully cultured within compressed

hydrogels.

Since cells are embedded within, and are supported by, a dense collagen

ECM, the cues received from the compressed collagen matrix will be compara-

ble (at least more physiological compared to 2D plastic plate cultures) to that of

their native environment. Here, collagen type-I acts as a structural scaffold to

which cells and other cell-influencing proteins/molecules can be incorporated

to increase the tissue specificity of the model. These external ECM cues can

then impact cell behaviour.

1.6 Interactions between cells and type-I collagen

For most cells, the ECM provides more than just structural support. Cells are

able to attach to, and sense their surrounding environment - including both

chemical and physical cues presented to the cells. For example, soluble growth

factors (as a chemical cue) can be bound to the ECM which regulates their dis-

tribution, activation and presentation to cells within the matrix (Hynes, 2009).

However, the main focus (in the first part) of this thesis is to create a physi-
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ological physical environment by creating cell substrates that can match the

natural tissue mechanical properties of stiff soft tissues; and in doing so, cre-

ate a model tissue which produces physiological cell response to implanted

biomaterials.

In terms of sensing their physical environment (i.e. matrix stiffness/ de-

formability and topography), cells interact with the ECM through attachment.

Mechanical stimuli are converted into chemical signals, which in turn affect cell

behaviour. This process of mechanotransduction can be via a range of cell-

matrix attachments, with integrins being the most prominent and studied group

of cell-matrix attachments.

Integrins are a family of cell surface receptors which link the cell external

and internal environment. They can work with other proteins such as cadherins

(involved in cell-cell attachment; (Gumbiner, 1996)), syndecans and selectins,

to name a few, in order to produce cell-cell and cell-matrix interactions which

are found in the natural tissue (Ramage, 2011).

The cell surface integrins α1β1, α2β1, α10β1 and α11β1 are known to as-

sociate with collagen molecules (White et al., 2004). The binding activity of

integrins to ECM is regulated from inside the cell, but requires the formation

of focal adhesion complexes to connect the cell internal and external environ-

ments. Focal adhesion and the process of mechanotransduction is complex

and involves many proteins (upwards of 180 proteins (Kuo, 2013)) and path-

ways. Binding of talin and other adaptor proteins to β-subunit of the integrins

has a key role in integrin activation within the cell (Legate and Fssler, 2009)

(Mason et al., 2012) (β-subunits of the integrins regulate integrin activation

through conformational change).

Binding of the integrins to the ECM proteins focuses clusters of integrin

molecules within the plasma membrane. After initial activation, focal adhe-

sions matures into multi-protein complexes at the cytoplasmic interface where
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actin filaments and other intracellular signaling molecules are recruited (Hynes,

2002).

The ability of cells to sense matrix stiffness, or more accurately their de-

formability, is partly dependent on the contractility of the actin-myosin cytoskele-

ton, which is transmitted to the ECM through integrins and focal adhesions.

Cells respond to the stiffness of their substrate by altering their cytoskeleton

organisation, cell-substrate adhesion and other processes which affect cell be-

haviour (Mason et al., 2012).

For example, focal adhesion size linearly depend on local force exerted

by cells. Mature focal adhesions elongate and orientate in the direction of

actin stress fibres and applied force. Cell-substrate adhesion increases due

to increased stiffness (Engler et al., 2004), and this change in adhesion al-

ters cell shape which help regulate polarisation and alignment of stress fibers

within cells (Zemel et al., 2010) (i.e. cells sense the tension of the material

(Marenzana et al., 2006)). Similarly, cells also respond to changes in colla-

gen fibril diameter and alignment (i.e. topography), and was found to increase

matrix synthesis on thicker fibrils (i.e. 300nm diameter fibrils instead of 30nm)

(Muthusubramaniam et al., 2012).

In order to produce a model that closely mimic the native tissue, it is impor-

tant to understand the causes of cell behaviour changes, and the factors which

cause physiological and tissue specific cell responses within the model.

1.6.1 Modeling of cell response within plastically compressed

collagen hydrogels

As discussed in section 1.6, cells (such as fibroblasts), attach and respond

to the cues provided by the collagen matrix. Examples (from the literature)

of cell behaviour studied/modeled within the plastically compressed collagen
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hydrogel 3D matrix are discussed below.

Cell viability

Cell viability is typically measured using live/dead cell staining and imaging

techniques (East et al., 2010) (Wong et al., 2013) within the compressed hydro-

gel. Without other interventions, the cell viability within collagen hydrogels after

plastic compression was found to be ≥ 90% (Brown et al., 2005), with many

studies reporting a higher percentage of viable cells (of different cell types)

within the compressed gel. This high level of viable cells is likely attributed

to the controlled compression of the sample, and the high permeability of the

construct to cell essential molecules (constructs typically ∼ 100µm thick). The

thin sample also means that cells can be easily visualised when embedded

within the matrix.

Generally, it is difficult to correlate the effects of cell-essential molecules,

such as oxygen, to cell behaviour in vivo (due to the presence of other con-

founding variables). The simplified in vitro tissue model therefore acts as a

powerful tool in studying the effect of oxygen concentrations (within a 3D con-

struct), on cells. For the measurement of oxygen permeability, and its effect

on cells, Ardakani et al. (2014) used a spiraled compressed cellular gel, with

oxygen probes to measure the partial pressure of oxygen in the core, middle

and outer layers of the construct. Cell viability within the construct remained

above 70% even at the core. Although the partial pressure of oxygen was many

times lower than the outer layers, this was not pathological. Another study by

Cheema et al. (2008) showed that the majority of cells (≥ 55%) remain alive

within the core of a spiral collagen hydrogel constructs, even with a relatively

low oxygen partial pressure, after 10 days in culture.

Anandagoda et al. (2012) also studied the effect of applying a layer of

hyaluronic acid (HA) adjacent to a cellular compressed gel layer (spiraled to-
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gether), and found a ∼ 88% cell viability at the HA-collagen gel interface. Cells

trapped in areas away from the HA saw a similar live cell count of ∼ 89%. The

model was able to show that the HA component swelled as the compressed

collagen gel got thinner, leading to the hypothesis that the dehydrating effect

of HA on the collagen gel component caused the (albeit small number of) cell

death, and the effect was therefore not due to toxicity of the HA material.

Migration

Migration of cells within the 3D construct with the appropriate directional cues,

can be an indication of the extent of cell attachment to the matrix and the pres-

ence of chemical (or physical) gradients (i.e. oxygen, growth factors). Within

the compressed hydrogel construct, cells migrated in response to oxygen con-

centration gradients (from an area of lower to higher partial pressure of oxygen)

(Ardakani et al., 2014). Non-proliferating cells were also found to aggregate

at the stiff-end of a construct which has been produced with a longitudinal

collagen density gradient (material stiffness range between 1057-2305 kPa),

demonstrating that cells will migrate in response to substrate stiffness (Hadji-

panayi et al., 2009c).

The ability for cells to migrate within the type-I collagen derived constructs

was also implied in the layer integration of hydrogels, as it was thought that

cells drag and bend collagen fibrils as they migrate between layers (Meshel

et al., 2005). Indeed, adhesive strength between two layers of collagen gels

increased with culture time for cellular constructs (6-fold increase by 1 week in

culture) (Hadjipanayi et al., 2009a), and not in its acellular equivalent. Since

cells migrate between contacting layers, the adhesion strength will also depend

on the contact surface area between the two layers (Marenzana et al., 2007)

(and presumably the level of cell activity and number of cells present).
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Proliferation

Cells naturally proliferate in growing tissues, and also for the maintenance

of cell populations during cell-turnover. Proliferation of cells within the colla-

gen hydrogel is typically measured through changes in the amount of total

cell metabolic activity over time, through imaging, or more reliably through the

quantification of total DNA content within the construct (as an end-point assay).

Within the collagen hydrogel, factors that influence proliferation rates in-

clude the initial cell seeding density; where a low density resulted in a relatively

high proliferation rate (compared to cells within samples containing a high ini-

tial cell density; MG63 osteosarcoma cell-lines used in this study) (Bitar et al.,

2008). This difference in cell proliferation rates was observed for up to 10 days,

possibly when cell density within the ‘low cell density samples’ increased to a

level where cell-cell inhibition occurred.

The link between high cell density and low proliferation rates was also ob-

served in a study by Hadjipanayi et al. (2009b). The study found that the matrix

stiffness surrounding the cells (not just the overall cell substrate) directly regu-

lated proliferation rates, such that a graded increase in proliferation rates was

seen with increasing collagen density.

Differentiation

The monitor of cell differentiation within the model will be essential to predict

tissue development over culture time, particularly when cell types with the po-

tential to differentiate into different lineages are involved.

For example, an obvious measure of long term success of an implant (other

than in cartilage and ligament tissues) is the development of a blood supply.

Previous studies have been able to demonstrate angiogenesis within the plas-

tically compressed constructs with the co-culture of human dermal fibroblasts
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(HDF) and human umbilical vein endothelial cells (HUVEC) (Hadjipanayi et al.,

2010). Here, physiological hypoxia was identified as a factor which encouraged

an angiogenic response, where endothelial cell clusters (positively stained for

CD31 and vWF) were formed by 1 week within the capillary like structures.

Others

Other interesting measures of cell behaviour within the plastically compressed

hydrogel include the regulation of protein/growth factor production, gene regu-

lation and matrix remodeling.

Cheema et al. (2008) showed that cells respond to reduced oxygen partial

pressures in their environment, by significantly increasing the level of vascular

endothelial growth factor (VEGF) expression (at a maximum 151-folds). Impor-

tantly, the model was able to reflect the temporal change in VEGF levels over

time, such that peak levels were seen at days 7 and 8, followed by an imme-

diate drop in VEGF expression. In this study, it was also observed that cells

may alter their consumption of oxygen in low oxygen environments. For exam-

ple, partial pressure within the core of a cell-dense construct increased from

∼ 25mmHg to ∼ 60mmHg over time, with no obvious changes in cell numbers

over several days in culture.

In terms of gene regulation by cells, Karamichos et al. (2008) showed that

cells (primary HBMSCs) respond to matrix stiffness, and that the amount of

serum within the collagen construct affected gene regulation and force gener-

ation. An increased matrix stiffness corresponded to a decrease in cell force

generation, and increased lag time before the onset of hydrogel contraction

(Karamichos et al., 2007). It was also found that the lag time to cell contrac-

tion, and the amount of force generated by cells, had some dependence on

the amount of fetal calf serum (FCS) present within the cell environment. In

the presence of 10% (v/v) FCS, an increase in matrix stiffness up-regulated
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COL3 and MMP2 expression; whilst in 20% FCS, MMP2, COL3 and COL1

were unaffected (or slightly down-regulated) by matrix stiffness (Karamichos

et al., 2008).

The remodeling of the matrix by cells can also be studied in vitro over time

within hydrogel constructs. The kinetics of collagen fibril (enzymatic) degrada-

tion is strain/load dependent, affecting the rate of MMP secretion and collagen

deposition (Hadi et al., 2012) (Collins et al., 2005). Over time in a cell-seeded

construct, the remodeling action of cells gradually loosens the matrix (Tan,

2015, p.215). The overall shape of the compressed collagen construct, how-

ever, remains unchanged even after cell remodeling (Alekseeva et al., 2012b).

All in all, the above models have shown that cells respond to hydrogel:

• Matrix stiffness

• Matrix/cell binding site density

• Chemical gradients (i.e. growth factors, oxygen)

• Cell density

• Topography

1.6.2 Further engineering of plastically compressed hydro-

gels

Plastically compressed collagen gel is used as the basic model for next-generation

models with added tissue-specific features. Therefore, it is important to review

all methods of compressed hydrogel manipulation already in the literature; in-

cluding chemical and physical features that has previously been incorporated

into the basic model. Many of these features designed to build an increasingly

complex model, to ultimately improve the relevance of the material to the target
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tissue. These features provide environmental cues that are designed to direct

cell behaviour, and can include chemical cues such as growth factors, cell-

attachment proteins; or physical cues such as the structure (i.e. topography,

anisotropy and alignment) and stiffness of the construct.

The examples listed below involve direct engineering of the collagen con-

struct (predominantly free of direct cell involvement), and means that changes

to the hydrogel (and therefore its effect on cells) are instant and controllable.

Mechanical properties

Multiple studies have shown the importance of matching native tissue and bio-

material stiffness for optimal construct-tissue integration (Moroni and Elisseeff,

2008). The mechanical properties of biomaterials are often quoted in stiffness

(Young’s modulus), shear modulus and the stress and strain until failure. A typ-

ical compressed collagen sheets have been reported to have a break strength

of 0.6 ± 0.11 MPa and a Young’s modulus of 1.5 ± 0.36 MPa (Brown et al.,

2005). This value is often short of the nature tissue strengths (where individual

hydrated collagen fibrils can have a Young’s modulus of 0.2-0.5 GPa (van der

Rijt et al., 2006).

Normally, standard methods to improve mechanical properties of collagen

materials will involve some form of chemical cross-linking, such as with genipin

or gluteraldehyde. However, the purpose of using plastically compressed hy-

drogels, instead of stiff and dense collagen materials (such as decelluarised

collagen sponges), is their good initial interstitial cell viability immediately after

fabrication. The use of harsh cross-linking methods defeats this purpose.

Photochemical cross-linking using photoactivated riboflavin is one possible

way to cross-link cellular gels, as they are only activated when illuminated with

blue light (Wong et al., 2013) (Rich et al., 2014). Topical application of riboflavin

and its subsequent cross-linking resulted in some interstitial cell survival, which
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then populate the hydrogel with time.

Alternatively, mechanical properties can be improved by further increas-

ing the density of collagen within the construct. Double compression (second

plastic compression of rolled compressed collagen sheet) achieved twice the

collagen density (increased from 12.6% to 23.1% collagen), and resulted in a

significantly increased break stress and modulus (Abou Neel et al., 2006).

Collagen fibril diameter within hydrogels was also reported to influence

mechanical properties of the hydrogel. Cyclic loading (cycles of 20% strain

and relaxation) encouraged side-to-side collagen fibril fusion in hydrogels, as

seen by the increase in cross-sectional fibril diameters. After 144 cycles, the

break stress, elastic modulus and break strain have increased 450%, 125%

and 133% respectively (Cheema et al., 2007a).

Mechanical properties of the construct can also be improved by incorporat-

ing a supporting biomaterial within the hydrogel. For example, a PLGA mesh

has been incorporated between collagen hydrogel layers before compression

(Ananta et al., 2012) to produce a material that is easier to handle. Similarly

Deng et al. (2014) have shown an increase in construct Young’s modulus, from

2.31MPa to 70MPa, after aligned PGA fibers were incorporated within the

hydrogel. This provided interstitial cells with temporary stress shielding from

externally applied force. However, since the increased strength of the construct

was dependent on the PGA fibers, the subsequent hydrolysis of the PGA (and

so the lost of fiber continuity) caused a sharp decrease in the Young’s modulus.

Anisotropy and topography

Another important consideration is the surface anisotropy and µ-structure of

the construct as perceived by resident cells. This can impact on cell align-

ment, differentiation and construct perfusion for the long-term survival of cells

within the construct.
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Anisotropy within the collagen construct has been produced at different hi-

erarchial/structural levels; from the nano-scale (i.e. alignment of the collagen

fibrils) up to the micron-scale (i.e. embossing channels onto the construct

during compression) (Kureshi et al., 2010). In the same study, alignment of

cells (WI38; lung fibroblast-like cells) parallel to embossed grooves was also

demonstrated.

Further guidance of cells within channels was explored using conical-shaped

channels, created from soluble phosphate glass fibres which ‘opened’ at dif-

ferent rates when the glass fibres began dissolving from the thinner end. This

produced a channel which opened towards the thicker end of the fiber with time

(Alekseeva et al., 2012a), with the aim to ultimately encourage directional cell

migration.

Alternatively, gross anisotropy of the compressed collagen gel can be achieved

by topical surface cross-linking (i.e. applying directional stripes) of the collagen

gel (Wong et al., 2013). This resulted in a doubled break stress in one axis of

the hydrogel (parallel to the stripes).

Patterns (i.e. grooves) and channels can easily be embossed onto the

hydrogel surface during plastic compression (Brown et al., 2005) (Alekseeva

et al., 2012b) (Tan et al., 2014); or within the collagen construct (Alekseeva

et al., 2012a) (Cheema et al., 2010). Note that for surface embossing, the

above studies have found that pattern and shape of the mould is replicated

most faithfully at the FLS (Alekseeva et al., 2012b), and surface patterns does

not deform when additional layers are compressed onto the patterned surface

(Tan et al., 2014). Grooves remained stable even in culture (with cell remod-

eling) over a test period of 14 days (Alekseeva et al., 2012b). This can po-

tentially provide directional cues for cell migration and perfusion within thicker

constructs Cheema et al. (2010).
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Chemical cues

Another important consideration for in vitro tissue engineering is the impact

of chemical cues found in the matrix environment, such as growth factors, on

resident cells. Cells produce growth factors and other proteins with culture.

Pre-cultured cellular compressed hydrogel construct can be used to deliver

physiological levels (and combinations) of growth factors (i.e. for angiogensis

in response to hypoxic culture conditions; such as HIF-1α, VEGF and matrix

remodeling proteins such as MMP2 and MMP9) into a second construct. Had-

jipanayi et al. (2011b) demonstrated that angiogenic growth factors (produced

in response to hypoxic conditions; in the pre-cultured gel) diffused towards the

new hydrogel by day 1, resulting in increased mean length of capillary like

structures. Cell density in the initial growth factor delivering gel influenced ex-

tent of vascularisation (i.e. increased cell density (and presumably the amount

of growth factors produced as a result) improved signs of vascularisation).

Others

Multiple layers of collagen hydrogels can be compressed together to build com-

plexity within the tissue model (i.e. test migration of cells or interaction between

two different cell types in adjacent layers). Layers were found to have good in-

tegration when compressed together (Tan et al., 2014). Topical crosslinking

at the layer interface also further improved integration of compressed colla-

gen sheets (Wong et al., 2013). The presence of cells within the hydrogel

also improved layer integration as cells are thought to migrate across the layer

interface whilst bending and carrying collagen fibrils across the interface (Had-

jipanayi et al., 2009a).
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1.7 Aims and objectives

The overall aim of this research is to produce next-generation, 3D hydrogel-

based, soft tissue models with the ability to predict native tissue response to

implant biomaterials. Since type-I collagen is one of the most abundant pro-

teins found in human tissues, it is used as a tissue model substrate to provide

physiological spatial cues for cells (i.e. cell-matrix attachments).

Overall, it is currently possible to generate tissue-like models using plasti-

cally compressed collagen hydrogels with:

• Dense extracellular matrix around various cell types

• Defined microstructures (i.e. FLS with collagen density gradient)

• Controllable matrix stiffness (within a modest range)

• Controllable surface topography

• Multi-layers with good perfusion of cell-essential nutrients

• Construct anisotropy

• Easy in vitro access for monitoring

Nevertheless, for the modeling of some soft tissues, such as skin and ten-

don, a matrix with increased stiffness and complexity will be required; and the

production of the next generation with such features is the aim for the current

study.

The objectives of the current studies are:

1. Increase mechanical properties of the collagen model substrate whilst

retaining initial cell viability

2. Monitor biomaterial and cell response within a tissue-like model over time
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1.7.1 Thesis overview

The aim of this study is to develop 3D soft tissue models with improved rele-

vance to human tissues, and to study biomaterials within the accessible tissue-

like model over time. All tissue models are based on plastically compressed

hydrogels made of type-I collagen, the main structural proteins of most soft

tissues.

This thesis is divided into two main sections. First involves the develop-

ment of an in vitro model tissue with increased mechanical properties. The

key feature of this model tissue is that it must contain an initial live cell pop-

ulation within the construct, have increased mechanical properties compared

to traditional compressed collagen hydrogels, and has the potential for high

through-put testing (in well plates). This was explored in chapter 3 by devel-

oping a novel hydrogel using a pre-crosslinked collagen (polymeric collagen,

blended with traditional gel forming tropocollagen molecules) as the starting

material for gel formation. Chapter 4 continues onto the characterisation of

the resultant polymeric collagen containing gels. It was found that the blend

gels collapsed quickly upon compression, leading to cell-damaging fluid shear

stresses. Chapter 5 explores methods which can control fluid efflux rates from

hydrogels by increasing the filtration effect (using macromolecules) at the FLS

of the hydrogel.

The second part of the study looks into the applications of compressed

collagen hydrogel based soft tissue models. Chapter 6 deals with the modeling

of nanoparticle drug-delivery, and its effect on local tissues. Specifically, the

growth factor, bone morphogenic protein-2 (BMP-2) is thought to be produced

(in bone-like tissues) in response to statin drugs. Temporal changes to BMP2

protein levels was therefore tracked within the model. Chapter 7 studies the

degradation of biomaterials (using fluorescent PLGA as a test material) within
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a tissue-like environment. The degradation rates of the biomaterial in 2D and

3D (with/without cells), and the fate of the degraded biomaterial, are studied.

The methods common to all studies throughout this thesis are detailed in

chapter 2. Finally, the main findings and conclusions of the studied models are

summarised in chapter 8.



Chapter 2

Materials and Methods

Materials and methods used routinely throughout the project are listed in this

chapter. Any variations to the methods (or methods specific to the study) can

be found in the methods section of subsequent chapters.

2.1 Cells

Neonatal human dermal fibroblasts (HDF) and human osteosarcoma cell-line

MG63 were cultured in 1000mg glucose Dulbecco’s modified Eagle’s medium

(DMEM; Sigma, UK), supplemented with 10% (v/v) fetal calf serum (FCS; First

Link, UK) and 1% penicillin streptomycin (Gibco Life Technologies, UK). Cells

were removed from monolayer culture by washing with phosphate buffer saline

(PBS) and incubating with trypsin (0.5% trypsin-EDTA; Gibco Life Technolo-

gies, UK) for 5 minutes at 37°c.

2.2 Collagen hydrogel preparation

Conventional collagen hydrogels were prepared, on ice, by neutralising 80%

(v/v) rat tail acid-soluble type-I collagen (between 2.05 and 2.16mg.ml-1 in

70
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acetic acid, First link, UK) containing 10% 10x Minimum Essential Medium

(MEM) (Gibco life technologies, UK) using 5M and 1M sodium hydroxide (NaOH).

The drop-wise addition of NaOH gradually changed the colour of the phenol

red pH indicator (included in the 10xMEM), from yellow to fuchsia pink, when

neutralised. The remaining 10% volume was made up with phosphate buffer

saline (PBS) or DMEM (with or without cells). The neutralised collagen solu-

tion was gelled by incubation in 24-well plates at 37°C, 5%CO2, for 30 minutes

(gel volume depended on the study).

2.3 Polymeric collagen extraction

Polymeric collagen was extracted from tendons due to their relatively high poly-

merised type-I collagen content (see chapter 3 for further details). Fresh ten-

dons were frozen at −20°c for storage. 2 - 6g ostrich (2 years old) or calf

tendons were homogenized in liquid nitrogen using a stainless steel mortar

and pestle. The resulting tendon granules were pre-treated overnight at 4°c

in excess (∼150ml per gram of tendon) 0.5M ethylenediaminetetraacetic acid

(EDTA; Sigma-Aldrich) adjusted to pH 7.4, with at least one change (Steven,

1967). Treated tendon granules were washed twice in distilled water prior to

expansion in 0.5M acetic acid (∼100ml per gram of tendon). The solution was

stirred constantly with a magnetic stirrer at 4°C for at least 3 hours and the ex-

panded collagen was recovered as polymeric collagen by stirring with a glass

rod during neutralization (5 and 1M sodium hydroxide (NaOH)). This collected

the polymeric collagen as it shear aggregated onto the glass rod. Collagen

fibrils were suspended in 0.5M acetic acid, and re-precipitated at least twice

to remove impurities trapped between collagen fibrils. Where necessary, the

polymeric collagen solution was sterilized by mixing with an equal volume of

chloroform (BDH Laboratory Supplies, UK). Collagen concentration was ad-
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justed to 2mg.ml-1 in 0.5M acetic acid before use (Wong et al., 2014).

2.4 Plastic compression

Following gelation, collagen hydrogels were plastically compressed based on

previously described methods (Brown et al., 2005). A modified method more

suited for up-scaling processes, namely in multi-well culture plates, was used

for all plastic compression processes (Alekseeva et al., 2011). Briefly, ab-

sorbent paper roll plungers were made by rolling blotting paper (Whatman

grade 1 chromatography paper, 93x4cm) into a coil (∼ 15mm diameter; auto-

claved for sterilisation when required). This was placed onto hydrogels formed

in 24-well plates. The two components were separated by two well-sized pa-

per discs (Whatman, grade 1 paper) to prevent the hydrogel from sticking to

the plunger, and to prevent the unintentional embossing of the coil (plunger)

pattern onto the gel. Weights of 21g per well was used where specified. Af-

ter the completion of plastic compression, the plunger roll was removed. PBS

or cell media were then added to each well immediately to keep the samples

hydrated. The paper discs separating the plunger and hydrogel can then be

removed at this point. Samples were then carefully detached from the base of

the well, and used or cultured as required.

2.5 Rate of plastic compression

Rate of hydrogel compression was measured as the mass gained (fluid ab-

sorbed from the hydrogel) by an absorbent plungers with compression time.

The plunger mass was measured every 30 seconds in the first 5 minutes of

compression, and then every minute subsequently until no further mass gain

was detected. No additional external weights was loaded onto the compres-
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sion system in this part of the study.

2.6 Quantification of cell proliferation and cell tox-

icity

Alamar blue is a redox indicator used to quantify total cell metabolic activity

within the sample. The alamar blue compound is also known as resazurin

which is blue, and mostly non-fluorescent. However, it is reduced by cell mi-

tochondrial activity to form a red fluorescent compound which can then be

detected using a spectrophotometer. At selected time points, samples were in-

cubated with 10% (v/v) alamar blue (AbD, Serotec) solution in phenol red-free

DMEM for 4 h (500µl per well). Duplicates of 100µl of alamar blue solution

from each well was transferred into a 96 multiwell plate, and absorbance was

read with a microplate spectrophotometer (MR700 microplate reader, Dynat-

ech Laboratories) at 510 and 590 nm. Samples were subsequently washed

with PBS and returned to culture after culture media was added to each well.

2.7 Cell viability assay

Cell viability within compressed (or uncompressed) gels was confirmed by fluo-

rescent imaging after a 45 minute incubation of the cellular hydrogel with stains

consisting of 17µl ethidium homodimer (2mM; Invitrogen) and 20µl calcein-AM

(4mM; Fluka Analytical) diluted in 5ml PBS (0.5ml of diluted stain solution in

each well of a 24-well plate). Images were taken on the Olympus BX61. For

each sample, images of three random fields of view was captured for cell count-

ing. The number of live (green, calcein-AM stained) and dead (red, ethidium

homodimer stained) cells were only included if the cells were within a digitally



CHAPTER 2. MATERIALS AND METHODS 74

superimposed frame (identical for each field of view).

2.8 Histology

Collagen constructs were prepared using a routine protocol. Samples were

fixed with 4% paraformaldehyde for subsequent histological processing. Pro-

cessed samples were embedded in paraffin wax and sectioned to a thickness

of 8 - 10 µm. This was followed by standard haematoxylin & eosin (H&E) stain-

ing protocol. Briefly, sections were dried at 60°c overnight and de-paraffined

the following day before rehydration through an descending alchohol series.

The slides were washed gently in running water and was placed in haemotox-

ilin (Sigma, UK) for 10 minutes. Slides were dipped into acid-alcohol solution

5-6 times, washed and placed in eosin (Sigma,UK) for a further 10 minutes.

The sections were then dehydrated with a ascending alcohol series and finally

mounted in DPX (VWR, BDH Prolabo). Samples were subsequently viewed

on a standard light microscope (Olympus, BH-2).

2.9 Scanning electron microscopy preparation

Samples were fixed in 2.5% glutaraldehyde (in 0.1M sodium cacodylate buffer)

for at least 1 hour, and were subsequently washed with 0.1M sodium cacody-

late buffer. Fixed samples were then dehydrated with a series of ascend-

ing alcohol concentration and hexamethyldisilazane (Aldrich, USA) treatment

overnight. The dried samples were then sputter-coated with gold-palladium

(K550, Emitech) and imaged as detailed below.
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2.10 Microscopy

2.10.1 Light

In early samples, haematoxilin and eosin (H&E) stained sections were visu-

alised and imaged using a Olympus BH-2 microscope and Olympus Camedia

digital camera. Subsequent samples were visualised and imaged on the Zeiss

Primovert microscope (Zeiss Axiocam 105 color camera).

Birefringence

On the Olympus BH-2 light microscope, a rotating light polarising filter was

installed at the light source. Images were then taken using the Olympus BH-2

microscope and Olympus Camedia digital camera.

2.10.2 Fluorescence

Two different fluorescent microscopes have been used. Either the Olympus

BX61 microscope with fluorescent light source from X-cite series 120Q, or

the Olympus BH2-RFCA (with light source Olympus BH2-RFL-T3). In the lat-

ter, images were taken in black and white with a Hamamatsu digital camera

(C4742-95). Images were subsequently processed using ImageJ to adjust

colours to reflect those seen on the microscope.

2.10.3 Scanning electron microscope (SEM)

Sputter coated samples were imaged at 15-25kV on the SEM (JEOL JSE-5000

SEM, Japan)
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2.11 Fluorometry

Fluorescent particles in solution were detected using a spectrophotometer.

Earlier samples were analysed using a Perkin-Elmer LS50B fluorescence spec-

trometer (3ml samples in cuvette). Fluorescent hyaluronic acid nanoparticles

(HA-NP) (from Uppsala University; see chapter 6 for more details) tagged with

fitc were detected at an excitation and emission wavelength of 495nm and

520nm respectively.

An infinite M200Pro (Tecan) plate reader was used for later experiments,

where fitc-tagged HA-NP were now measured at excitation and emission wave-

lengths of 485nm and 535nm. Rhodamine tagged PLGA materials were mea-

sured at excitation and emission wavelengths of 530nm and 590nm.

2.12 Statistical analysis

All studies were conducted with at least 3 samples per experimental variable,

and data were represented as mean ± standard deviation, where appropri-

ate. Unless otherwise stated, t-tests were used to compare two groups, and

one-way ANOVA (analysis of variance; LSD post-hoc) were used in instances

where more than two groups were being compared, assuming a normal distri-

bution of data. The confidence interval was set at P ≤ 0.05.



Chapter 3

Methods development for cellular

polymeric collagen constructs

Mechanical properties of an acellular collagen hydrogel can be improved eas-

ily through the covalent cross-linking of the matrix. However, in order to effi-

ciently create stiff tissue models, cell incorporation is important, and current

challenges generally lie in the increase of hydrogel stiffness in a cell friendly

manner.

In a collagen hydrogel (and other collagen derived materials), its stiffness

depends on 1) the density of collagen, and 2) the extent of bonding (cova-

lent and others) between adjacent collagen molecules. Although issues on

collagen density within hydrogels can be overcome by plastic compression,

current hydrogel materials (described in detail in section 1.5) are formed from

monomeric collagen species, and lack interfibrillar covalent cross-links. This

absence in collagen cross-linking leads to decreased stiffness in a typical hy-

drogel construct compared to the natural tissue.

Generally, improvements of material mechanical properties is achieved by

forming covalent cross-links between collagen molecules. It is, however, im-

portant that cells within the construct remain viable for the use of a hydrogel as

77
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a substrate to be justified. This rules out the use of most (if not all) chemical

methods of artificial cross-linking, due to their cytotoxicity (chapter 1.4.2). In

this chapter, a new solution to improving collagen material mechanical proper-

ties (without the use of artificial cross-linking) was studied. This is based on

the use of a natural and highly polymerised form of type-I collagen (polymeric

collagen) to produce cell-compatible and cell-supportive materials.

The focus of this chapter is on identifying the optimal collagen source and

extraction process of polymeric collagen to form a stiff and cellular material

at time-zero, so that it can ultimately be used as a 3D in vitro model of stiff

tissues.

3.1 What is polymeric collagen?

All collagenous tissues containing type-I collagen will contain a fraction of col-

lagen soluble in neutral salts and weak acid solutions (tropocollagen). This

leaves a ‘bulk’ collagen mass composing primarily of a polymerised form of

type-I collagen (i.e. polymeric collagen - representing the mature cross-linked

bulk of tissue collagen) and some impurities. The proportion of polymeric colla-

gen will depend on the tissue source (species, age, and tissue type), but often

accounts for the majority of type-I collagen within the tissue.

In commercial collagen extraction processes, much of the polymeric col-

lagen is treated as a waste product after acid-soluble collagen extraction, or

are otherwise pepsin treated to produce smaller units of acid-soluble atelo-

collagen (Rubin et al., 1965) (Drake et al., 1966) which can be reconstituted

to form a hydrogel. This excess in polymeric collagen, and the general lack

in commercially available polymeric collagen, goes to show that soluble col-

lagen isotypes are often the focus of collagen research, as studies into the

nature and uses of polymeric collagen fell out of general interest from 1980s
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onwards (with virtual absence of publication). As a result, polymeric collagen

has not previously been considered as a tissue engineering (TE) material (i.e.

where cell-collagen materials were needed for tissue engineering, collagen

gels based on acid-soluble collagen were used).

3.2 Polymeric collagen as a potential source of

ready-made cross-links

Much of the work characterising polymeric collagen has been published in

the 1960s-70s. However, issues with purity of extracted polymeric collagen

were not solved until 1964, when it was reported that a Japanese technique

(Nishihara method) was used to isolate purified polymerised collagen using

pre-treatment of a tissue in crude α-amylase (Steven, 1964) (only crude prepa-

rations of α-amylase resulted in increased polymeric collagen purity so the re-

sult was attributed to contaminants within this preparation). It is noteworthy

that the polymeric collagen in this report was extracted from aged, previously

insoluble, tissues which comprise almost entirely of covalently cross-linked col-

lagen fibrils. The collagen extracted by this method differed from acid soluble

collagen in that it was an insoluble, highly cross-linked, form of collagen which

could be suspended as a colloid in dilute acid. However, collagen fibrils from

most tissues do not disperse fully in solution even with (crude) α-amylase treat-

ment. It was therefore thought that other interactions must exist between col-

lagen fibrils in the polymerised collagen (Mathews, 1965). Calcium ions were

suggested as a possible further interaction between collagen fibrils as Steven

(1967) later reported that collagen fibrils completely dispersed in a weak acid

following treatment with a divalent cation chelating agent, Ethylenediaminete-

traacetic acid (EDTA). EDTA is thought to remove calcium ions within polymeric
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collagen, which stabilised its linkage with non-collagen protein (Spichtin and

Verzar, 1969), and enabled the full dispersion of collagen fibrils. Indeed during

the polymerisation of soluble collagen fibrils, the presence of small amounts of

calcium ions accelerated the association of fibrils (Evans and Drouven, 1983),

and suggest some involvement of the ion between collagen fibrils.

Observations from current studies concur in that EDTA treatment of less

matured tissues improved the dissipation of collagen fibrils in solution; how-

ever, it was also observed that overly crosslinked tissues (i.e. decellularised

collagen sponges) did not respond to EDTA treatment, as covalent bonds were

unaffected by EDTA.

Once polymeric collagen was suspended in solution, it became possible to

remove impurities from between its fibrils. It therefore represents an attractive

source of collagen materials for biotechnological and tissue engineering as it

is physiologically cross-linked and potentially strong and stable.

3.2.1 Extraction of polymeric collagen

Collagen composition of a tissue (i.e. procollagen, tropocollagen or enzymat-

ically cross-linked polymeric collagen) depend on the age (Miyahara et al.,

1982) (Wu et al., 2005), species (Angele et al., 2004) and the tissue source

(Schofield et al., 1971). For example, polymeric collagen can be extracted

without EDTA treatment from intestinal submucosa (Steven et al., 1969), but

requires additional trypsin treatment for cartilage (Steven and Thomas, 1973).

Choosing the source of polymeric collagen depended on the polymeric col-

lagen yield, which in turn is dependent on the extent of naturally occurring

cross-links between collagen fibrils. In young tissues, cross-linking between

collagen molecules is likely to be immature, involving acid-labile aldimine cross-

links. Such bonds can be found between lysine-derived aldehydes and the e-
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amino group of hydroxylysine, giving dehydro-hydroxylysino-noruleucine (deH-

HLNL) bonds (Bailey and Peach, 1968); or between a free aldehyde of an acti-

vated histidine and an e-amino group of hydroxylysine within the collagen triple

helix (dehydro-histidino-hydroxymerodesmosine (deH-HHMD) bonds) (Robins

and Bailey, 1973). Such immature cross-links associated with recent synthesis

are easily broken (Jackson and Bentley, 1960) (Kang and Gross, 1970), lead-

ing to their extractions as acid soluble collagen (and low yields of polymeric

collagen). Only as the tissue ages, the acid labile cross-links are stabilised

by insoluble bonds between the collagen fibrils (Bailey, 1969) (Miyahara et al.,

1982). However, excessive cross-links between the collagen fibrils would be

equally undesirable for the purposes of extracting polymeric collagen if the

polymeric collagen cannot be suspended in dilute acid (and it would be less

able to remove impurities trapped between fibrils). The ideal source of poly-

meric collagen would therefore likely come from fast growing and relatively

young tissues (i.e. those with a moderate extent of interfibrillar collagen cross-

links).

In terms of tissue types, polymeric collagen has been extracted from vari-

ous soft tissues such as skin, tendon, sclera, cornea and intestinal submucosa

(Schofield et al., 1971). However, in terms of type-I collagen donor source,

tendons represent the optimal choice due to the relatively high proportion of

type-I collagen within the tissue (therefore less impurities).

Tendon Source

Tendon was investigated as a source of polymeric collagen (as opposed to

other tissue types, such as skin) due to its high percentage of type-I collagen,

which could account for up to 85% of the tissue.

It is important to carefully consider the tendon source as the species, age

and tendon type can impact on the extractability and yields of polymeric colla-
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gen. Here, tendons from several different species (and in one case, different

age) have been used for the extraction of polymeric collagen. Tendons under

investigation included ostrich achilles tendons (at 6 and 24 months of age), calf

achilles tendon (exact age unknown, from local butchers) and chicken feet ten-

don (sourced frozen from supermarket). Freeze-dried calf skin (kindly supplied

by Devro, UK) was also tested for the extraction of polymeric collagen. Obser-

vations from each of the tendons under investigation are listed in the table 3.1,

and further discussed after the methods detailing the extraction of polymeric

collagen below.

Homogenisation

Tendons (except freeze-dried granules from Devro) were homogenised to start

the extraction process. Homogenisation increased the surface area to volume

ratio of the tendon for EDTA treatment and collagen fibril suspension in weak

acid. Homogenisation of the tissue is sometimes used in collagen extraction

processes (Liu et al., 2001), though not always necessary for tendons that are

particularly susceptible to acid extraction (i.e. rat tails).

Several methods of homogenisation were tested and compared for their

extraction efficiency, and ease of use.

(a) Cryostat

This method involved the cutting of tendon samples into thin sections to in-

crease the surface area of the tendon exposed to the weak acid solution:

1. Tendons were cut into smaller pieces (measuring approximately

1-1.5 cm) and weighed

2. Each tendon piece was set horizontally in a block of ice (so

that it was cut parallel to the collagen fibers)
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3. The ice block was mounted onto a cutting block using optimal

cutting temperature compound (OCT), and was left to set at

−30°c for at least 30 minutes

4. Tendon sections were cut at ∼ 10µm

The tendons were cut sufficiently fine for polymeric collagen to be extracted.

However, this process was found to be time consuming (and potentially labour

intensive) and so lack efficiency for large scale polymeric collagen extraction.

(b) Blender

An alternative method attempting to increase cutting efficiency was tested (us-

ing a kitchen blender):

1. Tendons were placed in 0.5M acetic acid

2. The tendons were then blended using a standard kitchen blender

until visibly homogensied (i.e. cloudy)

The problem with this method was that some tendons did not expand in the

weak acid, and were difficult to cut. Prolonged blending in this case resulted

in excess heat, which can denature collagen. The resultant collagen solution

was frothy, viscous and solidifies spontaneously over time at 4°c.

(c) Mortar and pestle (*method primarily used in this study)

An alternative homogenisation method was tested based on physical crushing

of frozen tendons using a cold stainless steel mortar and pestle:

1. Up to 2g of tendon was placed in a pre-frozen (−20°c) stainless

steel mortar and pestle
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2. Liquid nitrogen was carefully poured into the mortar so that the

tendons were covered

3. The pestle was slowly dropped onto the liquid nitrogen and

frozen tendon

4. Immediately, a sledge hammer was used to apply force onto

the pestle, which homogenised the tendon

5. This was repeated until the tendon was transformed into a fine

power (in some cases only coarser granules of tendons could

be obtained - e.g. tendons that are suspected to be highly

cross-linked)

The mortar and pestle method was effective and efficient in generating ho-

mogenised tendon granules.

Overall, the use of physical force to crush frozen tendons (methods c) was

more efficient in producing small granules of tendons. The mortar and pestle

was used to homogenise tendons for any further experiments.

Extraction of polymeric collagen from homogenised tendons

The method used in this study for polymeric collagen extraction from tissues

were simplified based on those published by Steven (1967). A flow chart of the

methods used by Steven is displayed here for reference (figure 3.1).
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Figure 3.1: Polymeric collagen extraction method using EDTA-treatment prior
to expansion in weak acid. This flow chart was obtained directly from Steven
(1967).

The main differences between both methods is that, in the revised methods:

• Samples were not de-fatted with acetone

• Samples were not centrifuged to separate the suspended polymeric col-

lagen and insoluble contaminants. Repeated suspension and shear ag-

gregation of polymeric collagen from dilute acid appeared to be effective

in separating polymeric collagen from insoluble contaminants

• Different concentrations of acetic acid and EDTA solutions were used

(solutions were more concentrated in the modified methods to ensure

maximum calcium chelation and yield of polymeric collagen)
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Detailed methods used in this study for the extraction of polymeric collagen

from homogenised tendons are as follows:

1. Homogenised tendons were placed in excess 0.5M EDTA solution overnight

with at least one change of solution. EDTA (Sigma, UK) was dissolved

in distilled water adjusted to pH 8 using NaOH. Once EDTA dissolved,

concentrated hydrochoric acid (HCl) was used to adjust the solution to

pH 7.5

2. Following EDTA treatment, tendon granules were collected by centrifuga-

tion at 2000rpm (2 minutes) and washed in distilled water (at least twice)

3. 0.5M acetic acid was added to the EDTA-treated tendons on a magnetic

stirrer and left at 4 °c for at least 3 hours to allow time for the tendons to

expand

4. On ice, polymeric collagen was collected by shear aggregation (using a

glass rod or similar) during neutralisation of the solution using 5M NaOH

(neutralisation on ice ensured that most acid-soluble collagen remained

in solution). Polymeric collagen precipitated at ∼pH 6-7

5. The polymeric collagen was re-suspended in 0.5M acetic acid and pre-

cipitated at least two further times to reduce impurities trapped within the

collagen fibrils

6. The solution was then sterilised by equal volume of chloroform if neces-

sary, and stored at 4°c for up to 1 week for future use
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Polymeric collagen extracted from different sources

Species Age (months) Tissue source Observations
Ostrich 6 Achilles tendon Very soluble in weak acid (even with-

out homogenisation and EDTA treat-
ment). Low yields of polymeric colla-
gen. Formed hydrogels when at 4°c
over 24 hours when neutralised.

Ostrich 24 Achilles tendon Good polymeric collagen source with
high yields.

Chicken - Feet tendon Polymeric collagen extracted did not
aggregate immediately upon neutrali-
sation, and suggested the presence of
impurities in the solution. Collection of
polymeric collagen was difficult as col-
lagen did not stick to stirring rod.

Calf - Achilles tendon Extracted polymeric collagen visually
appeared similar to that of ostrich ten-
dons. Reduced yields as a proportion
of the tendon did not expand in dilute
acid (even after EDTA treatment).

Calf
(freeze-
dried)

- Skin Small yields during initial shear aggre-
gation, but collagens precipitated with
further and continuous agitation (on
magnetic stirrer). Collagen appeared
dense and sticky.

Table 3.1: Observations of polymeric collagen extracted from different sources.

Yields from 6-month old ostrich and chicken tendons were low due to the

lack of polymeric collagen precipitation and difficulty in collecting the collagen.

Some insoluble collagen was extracted from freeze dried calf skin, but the col-

lagens did not aggregate immediately upon neutralisation. This indicated the

possible presence of impurities which hinder the aggregation of the polymeric

collagen. Good yields of polymeric collagen were obtained from both 24-month

old ostrich and calf tendons, but were most reliably extracted from ostrich ten-

don. In some instances, homogenised calf tendons failed to swell in dilute acid

even after EDTA treatment. This might be an indication of either more cova-
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lent cross-links being present within localised areas within the calf tendons, or

that other interactions between collagen fibrils exists (apart from the calcium

ions that are holding and stabilising collagen fibrils within the matrix). There

have been reports of localised, site-specific regions of mineralisation along

the length of tendons (Kerns et al., 2016), which may explain the difficulty in

extracting polymeric collagen from parts of the calf tendon. Although from a

different collagen type and source, observations from cartilage tissues also in-

dicate this differential swelling ability, where most of the tissue will not expand

even with prolonged EDTA treatment, except those in the growth plate region

(Brown and Byers, 1989).

Overall, extraction of polymeric collagen from 24-month-old ostrich ten-

dons resulted in optimal yields, closely followed by calf tendons. Both ten-

don sources have been used to extract polymeric collagen, with initial studies

based primarily on 24-month-old ostrich tendons, and later studies on calf ten-

dons (switch in tendon source was due to the better availability of calf tendons).

3.2.2 Potential applications for polymeric collagen

Aligned polymeric collagen constructs

Shear aggregation of polymeric collagen was an efficient method of collecting

polymeric collagen, and produced a material that was grossly aligned. This

potentially provide directional mechanical cues for the control of cell behaviour.

This was particularly interesting for the prospects of generating a tendon tis-

sue model as it potentially incorporates increased mechanical properties (pro-

vided by the covalent cross-links between the collagen fibril) and the alignment

of the collagen fibres, which mimics the features seen in the natural tendon

(although fibres within the tendon will be further arranged in bundles). Indeed,

Puxkandl et al. (2002) showed that the intermolecular cross-link are essential
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for the normal functioning of the tendon, without which, collagens were shown

to have reduced tensile strength and increased strain to failure (which is also

typical of very young collagen from rats).

Examples of other methods of generating constructs with an aligned matrix

include the electrospinning of collagen fibres (Matthews et al., 2002), which

can then be seeded with cells. But the drawback is that this is cell dependent

and requires weeks of culture for cells to migrate into the construct. Even within

hydrogels, there are ways to generate collagen fibre alignment, such as by cell

induced internal tension on uni-axially tethered collagen hydrogels (Georgiou

et al., 2013), or by external tension through repeated strain/relaxation cycles

(Cheema et al., 2007a). But this also has the drawback (as seen in many

other hydrogel based constructs, in that the collagen fibrils cannot be easily

cross-linked due to the cell toxicity of artificial cross-linking methods.

Here, polymeric collagen contains pre-crosslinked fibrils and can be aligned

(when extracted) from solution. It therefore has potential to address one of

the current challenges of tissue engineering which is to generate a cellular,

anisotropic and strong construct (with aligned fibres) in a short space of time.

This was tested by adding cells in to the polymeric collagen solution, during

neutralisation and shear aggregation to incorporate cells within the construct.

The aim was to produce a cellular and aligned collagen material with increased

mechanical properties (due to the presence of pre-crosslinked collagen), and

a tissue-like structure detected at the cell level.

Optimisation of polymeric collagen collection

First, methods used to collect and align polymeric collagen was optimised. The

main concerns to address here are the alignment and orientation of collagen

fibrils, and the ease of use. For the repeatable collection of polymeric collagen,

an even application of shear force was thought to be necessary; so manual
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stirring was not reliable.

Using a magnetic stirrer attached to a glass rod (neutralisation using dialy-

sis tube), significant proportions of polymeric collagen were collected, but most

remained unaligned and remained stuck to the magnetic stirrer. This resulted

in a mass of polymeric collagen being collected at the bottom of the flask with

little being aligned by wrapping around the glass rod.

To overcome the issue of polymeric collagen collecting at the base of the

construct, and improved alignment of polymeric collagen, a hand held device

based on a simple motorised unit was designed and made as summarised in

table 3.2. The shape of the polymeric collagen collection unit (generation 4b)

eventually developed for use in experiments is shown in figure 3.2.
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Methods for the collection and alignment of polymeric collagen using the

custom made hand-held device. This part of the study was carried out with the

help of Miss Danielle Baptista (summer placement student):

1. In a small glass beaker, 1-part 10xMEM was added to 9 parts polymeric

collagen suspended in 0.5M acetic acid (2mg collagen/ml; at 4°c)

2. A motorised unit attached to a custom made collagen collector (see table

3.2) was switched on after submerging half the length of the collector in

the collagen suspension

3. 5M (and later 1M) NaOH was added drop wise to the collagen solution

until a colour changed from yellow to fuchsia pink (phenol red pH indicator

contained within 10xMEM). Polymeric collagen aggregated between ∼

pH6− 7

4. Once the solution was neutralised, the solution was stirred for an addi-

tional two minutes

5. Polymeric collagen was removed from solution and cut perpendicular to

the fibril orientation to free the collagen sheet from the collector

6. The polymeric collagen was cultured in DMEM (supplemented with 10%

(v/v) FCS and 1% (v/v) penicillin streptomycin), or was fixed for analysis

Shear aggregation of polymeric collagen during neutralisation using the

custom made device (figure 3.2) produced aligned sheets polymeric collagen,

as seen in the SEM and birefringence images (figure 3.3).
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Description Image Observations
Original Magnetic stirrer attached

perpendicular to a glass-
rod using parafilm.

A significant proportion of
polymeric collagen was not
aligned as they collected on
the magnetic stirrer instead
of the glass rod.

Generation
1

Three needles arranged
around a circular gear
piece. Needles were ∼
1cm apart.

Polymeric collagen only
collected around individual
needles. The gap between
each needle may need to
be shortened.

Generation
2

A metal mesh was rolled
into a cylinder on top of a
circular gear piece.

Collagen lacked alignment
and often slipped from the
mesh.

Generation
2.5

Stainless steel wires was
sewn onto the wire mesh
(perpendicular to the
shear force) so collagen
fibrils can ‘grip’ the wires
and wrap around the
cylindrical mesh.

Same problems were en-
countered as generation 2
(polymeric collagen did not
grip on to the sewn wires).

Generation
3

Increased density of nee-
dles was used to shorten
gap between needles.

Some (patchy) collagen
alignment. There was a ten-
dency for collagen to wrap
around the needles, and to
slip from the collector.

Generation
4a

A cap was added to the
exposed end of the nee-
dles, and sealed with
paraffin wax. Metal wire
was wrapped around the
needles to help prevent
collagen slippage.

The additional cap pre-
vented most collagen from
wrapping around individual
needles, and the collagen
from slipping from the nee-
dles. There was visible
alignment of polymeric
collagen. It was difficult to
separate the collagen from
the extra metal wires.

Generation
4b

Similar to generation 4a,
but without additional
metal wire for easier
retrieval of polymeric col-
lagen from the collector
after shear aggregation.

Yields of shear aggregated
was similar to those col-
lected in generation 4a, but
without the added difficulty
in retrieving shear aggre-
gated collagen.

Table 3.2: Development of custom polymeric collagen collector unit for the
shear aggregation and alignment of polymeric collagen fibrils during neutral-
isation of the collagen solution. A motor unit is connected to one end of the
collector (as shown in figure 3.2).
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Figure 3.2: Schematic of custom-made machine and a collector unit made of
stainless-steel needles (generation 4b; please refer to table 3.2) for collection
of aggregated polymeric collagen from a beaker of polymeric collagen solution
during neutralization. The red arrows denote the direction of shear during the
collection of the aggregated collagen material from solution.
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Figure 3.3: Shear-aggregated polymeric collagen. (a) Image of shear aggre-
gated polymeric collagen material (b) SEM image of shear-aggregated poly-
meric collagen with highly aligned collagen fibrils. (c) Birefringence image of
polymeric
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This method was used to generate cellular constructs as cells were added

into the collagen solution during shear aggregation (at step 3 in the methods

below, as the polymeric collagen begins to aggregate).

The results from the H&E stained cellular polymeric collagen sections showed

that apart from the presence of cells at day 0 (immediately after the fabrication

of the construct), no cells were found in constructs with culture (figure 3.4).

This indicated that although cells were incorporated into the construct, cells

did not remain viable within the construct over time. This was thought to be

due to the exposure of cells to acidic conditions (as cells were added to the so-

lution at ∼ pH6 when the polymeric collagen began to aggregate). Therefore

a further test to study cell viability after cell exposure to acidic pH was carried

out.

Fibroblast monolayers cultured in a 24-well plate (pre-cultured for 1 day to

allow for cell attachment to the wells) were treated for a period of 0, 10, 20 or

30 minutes, in PBS adjusted to pH6 or pH5.5 (using hydrocholoric acid). The

cells were stained (live/dead) and counted as described in section 2.7.

Figure 3.5 showed that the rate of cell death increased sharply when the

pH of the cell environment was decreased from pH6, to pH5.5; and that the

extent of cell damage was dependent on the length of exposure to the low pH.

For example, the amount of cell death after exposure to pH5.5 for 10 minutes

was ∼50%, which increased to over 70% at 30 minutes of exposure.

Therefore, it was concluded that the exposure of cells to reduced pH con-

ditions within the aligned construct was damaging to interstitial cells, and cells

found in the H&E images at day 0 may require time as they undergo apoptosis.

Cells are an essential component of the tissue model, and so the aim of

this part of the experiment is to find an alternative method to incorporate cells

into the polymeric collagen material, without exposing the cells to sub-neutral

pH.
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(a) At day 0 in culture

(b) At day 1 in culture

(c) At day 5 in culture

(d) At day 14 in culture

Figure 3.4: H&E images of shear aggregated polymeric collagen. Cells (HDF)
were added during the neutralisation of the polymeric collagen solution. Con-
structs were cultured for up to 14 days.
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Figure 3.5: Cell viability after exposure to a solution of pH5.5 and pH6 for up
to 30 minutes.
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Therefore, an alternative method for incorporating cells and aggregated

(aligned; ∼ 1x1cm) polymeric collagen was tested, and involved the incorpo-

ration of both the cells and aligned polymeric collagen construct between two

pre-formed layers of conventional (acid-soluble) collagen hydrogels (i.e. like a

sandwich), which was then compressed together to form a single, integrated,

construct; and cultured for up to 14 days.

The hypothesis is that cells will preferentially attach to the stiffer collagen

matrix (polymeric collagen), and so respond primarily to the mechanical cues

from the polymeric collagen. Cells added to the hydrogel may, however, mi-

grate towards the stiff polymeric collagen (Hadjipanayi et al., 2009c). Alterna-

tively, if cells do not migrate towards the polymeric collagen, it may also benefit

from the presence of polymeric collagen as cells have been found to respond

to the stiffness of the surrounding matrix (Hadjipanayi et al., 2009b).

H&E imaging (at 1, 7 and 14 days of culture) of constructs with cells applied

directly to the polymeric collagen, showed that cells were primarily attached to

the polymeric collagen, and not the acid-soluble collagen hydrogels, at all time

points (figure 3.6). Cells observed at later time points assumed a spindle-like

morphology, typical of HDFs.

However, it was evident from the images that the distribution of the poly-

meric collagen constructs were highly variable within the construct, and dif-

fered in collagen and cell densities within, and between, samples. This meant

that it would be of limited use as a tissue model.
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(a) Day 1

(b) Day 7

(c) Day 14

Figure 3.6: H&E stained histological images of cells and aligned polymeric
collagen sandwiched between two layers of conventional hydrogel. Constructs
were cultured for a) 1 day b) 7 days or c) 14 days.
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Polymeric collagen containing hydrogels

A clue to an alternative method in using polymeric collagen came from initial

studies on polymeric collagen extracted from young ostrich tendons (6 months

old). The young tendons were found to produce collagen suspension which

aggregated only slowly into a gel at 4c. This made it possible to seed cells

into the fibrillar collagen at neutral pH prior to coalescing together into a stable

mesh material. This was similar to conventional collagen gel formation from

monomers except that the component fibrils were cross-linked.

Since the major difference between 6 month-old and 24 month-old tendons

is the extent of stable cross-links between collagen fibrils (i.e. the younger tis-

sues contain a greater proportion of acid-labile collagens), it was hypothesised

that the soluble collagen interfered with the shear aggregation of the insoluble

polymeric collagen, and allowed the polymeric collagen to remain suspended

in solution even after neutralisation.

To replicate this delayed polymeric collagen aggregation effect, acid-soluble

collagen (normally used in hydrogel formation), was blended with polymeric

collagen extracted from older tendon tissues (previously aggregated immedi-

ately upon neutralisation). The aim here was to delay the aggregation of poly-

meric collagen from solution during the neutralisation of the collagen solution,

so that cells can be safely added to the suspension at neutral pH.

Briefly, the methods used to blend collagens for the formation of polymeric

collagen containing hydrogel was:

1. Polymeric collagen (extracted from calf or 24 month old ostrich) were

suspended in 0.5M acetic acid at a concentration of ∼ 2mg.ml-1

2. The polymeric collagen solution was blended, for at least 3 hours on a

magnetic stirrer, with acid-soluble tropocollagen (at a concentration of

∼ 2mg.ml-1) at a ratio of 1:0 4:1, 3:2, 1:1, 2:3, 1:4 and 0:1 (to give a



CHAPTER 3. METHODS DEVELOPMENT 101

polymeric collagen proportion of 100%, 80%, 60%, 50%, 40%, 20% and

0%)

3. 10% (v/v) 10xMEM was added to the solution prior to neutralisation us-

ing 5M and 1M NaOH, until a colour change from yellow to pink was

observed. Neutralised solutions were place at 4°c for up to 24 hours to

gel

With the absence of monomeric collagen, polymeric collagen precipitated/

aggregated immediately during neutralisation. However, with the incorporation

of monomeric collagen, the instant aggregation of polymeric collagen was pre-

vented, and a hydrogel was formed as hypothesised. Samples containing more

than 50% polymeric collagen were visibly less stable, and collapsed when dis-

turbed. Therefore, only samples containing 20, 40 and 50% polymeric collagen

were investigated further.

Shear aggregation of blend hydrogels resulted in some recovery of poly-

meric collagen. Samples discussed here were made with 2mg.ml-1 monomeric

and polymeric collagen solutions, blended to give 0, 20, 40 or 50% polymeric

collagen in solution (total volume of 25ml per sample). Contrary to expectation,

samples with the highest amount of monomeric collagen (and least polymeric

collagen (20%)) did not retain any polymeric collagen when shear aggregated

(11.5mg out of 10mg of polymeric collagen in the hydrogel was extracted;

i.e. all polymeric collagen including potentially some monomeric collagen).

Increasing the polymeric collagen concentration within the gel resulted in in-

creased retention polymeric collagen fibres (10.1mg out of 20mg, and 7.8 out

of 25mg polymeric collagen in gels containing 40 and 50% polymeric collagen;

figure 3.7).
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Figure 3.7: Mass of polymeric collagen shear aggregated during the neutralisa-
tion of blended collagen hydrogels. For all samples, a total amount of collagen
within the sample was 50mg (a concentration of 2mg.ml-1, in 25ml).

As a solution with a 1:1 ratio of polymeric and monomeric collagens was

able to prevent the instant aggregation of polymeric collagen fibres, there was

potential for cell incorporation after neutralisation of the solution, and before

collagen fibril aggregation, at neutral pH.

The findings in this chapter show it is possible to incorporate living

cells in a pre-crosslinked collagen matrix by developing techniques for han-

dling and aggregating polymeric collagen fibrils (in this case by incorporating

acid soluble collagen with the polymeric collagen). Although the use of shear

aggregation did not result in reproducible gels suitable for use as a tissue

model, it was possible to incorporate cells into hydrogel, in a manner simi-

lar to that of fibril formation used in making collagen gels; by blending-in of

monomeric collagen to delay the aggregation of polymeric collagen during neu-

tralisation. The result was a hydrogel with resident interstitial cells surrounded

by a cross-linked, stiff, collagen matrix, as required.



Chapter 4

Results: Stiff skin and tendon

model based on polymeric

collagen

4.1 Introduction

As discussed in section 1.4.3, hydrogel based constructs have the major ad-

vantage of interstitial cell seeding at time zero, when it would otherwise require

many weeks for cells to populate a porous scaffold, by conventional seeding.

Natural proteins such as type-I collagen (which is also abundant in many nat-

ural biological tissues) contains binding sites recognised by cell membrane

integrins. Particularly, for type-I collagen, α1β1 and α2β1 (see chapter 1) plays

an important role in dictating cell behaviour. So, the presence of collagen

molecules in the tissue model increases the biological relevance of the con-

struct, and encourage cells to behave as they would in their native ECM envi-

ronment.

In order to successfully model a tissue, which depends critically on cell-

matrix interactions, it is important to match material stiffness to the stiffness

103
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of native tissues to ensure cells receive similar environmental cues. Indeed

the stiffness of collagen hydrogels, and many biomaterials, have been shown

to greatly influence cell behaviour, such as proliferation (Hadjipanayi et al.,

2009b), migration (Hadjipanayi et al., 2009c) and results in changes to gene

expression (i.e. matrix remodeling genes) (Karamichos et al., 2008). The stiff-

ness of the matrix is therefore an important consideration for eventual tissue

function.

Mechanical properties/stiffness of a collagen hydrogel can be increased

by plastic compression which increases collagen density (by expelling excess

fluid) to ∼ 11− 18% (v/v) (Brown et al., 2005)(Abou Neel et al., 2006) (Cheema

et al., 2008). This matches collagen densities of some tissues, such as skin

(Brown, 2013a). However, adjacent collagen fibrils in a hydrogel are only

held together by non-covalent associations soon after fibrillogenesis, render-

ing them weaker in terms of mechanical strength compared to native tissues

(where fibrils are typically cross-linked enzymatically). In order for the hydro-

gel matrix to be a potential representative model of stiff tissues, such as skin

and tendons, further improvements in the mechanical properties of the type-I

collagen component of the matrix are needed.

The motivation of this study is therefore to generate a collagen hydrogel

based construct with improved mechanical properties, but importantly, to also

retain initial cell populations seeded within the construct at time-zero. This is

because one of the main advantages for collagen hydrogels is the ability to

create cellular constructs, as the construct is fabricated. In order to preserve

cell compatibility of the hydrogel, artificial cross-linking methods are unsuit-

able as they tend to be cell lethal. Examples include glutaraldehyde, which

is often used for cross-linking in many collagen material processes; for exam-

ple, prior to the extrusion of collagen fibrils (in suspension) during electrospin-

ning (Matthews et al., 2002). Other cross-linking methods include the use of
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Genipin (Mekhail et al., 2011) and photochemical cross-linking agents such as

riboflavin (Ibusuki et al., 2007) (Wong et al., 2013). However, such scaffolds

then need a cell seeding stage which is time consuming, variable and are de-

pendent on the cell type used. There is yet to be a non-cell damaging method

for the cross-linking of collagen fibrils, also with the potential to be up-scaled

for high throughput use.

The proposed solution to the lack of hydrogel mechanical properties (with

the condition that cell viability is preserved) is to make hydrogels from colla-

gens already with pre-existing covalent cross-links between their fibrils; namely,

polymeric collagen. In essence, the proposed method involves use of pre-

crosslinked collagen as a starting material to produce hydrogels; with the aim

to improve overall mechanical properties of the construct and preserved cell

viability.

In chapter 3, details regarding the development of a novel hydrogel made

from a blend of acid-soluble tropocollagen and polymeric collagen has been

described. The purpose of this study is to produce a tissue model which would

be representative of stiff tissues, such as aged skin and tendons. To achieve

this, the physical environment surrounding the ‘living’ cells will be altered by

incorporation of pre-cross-linked type-I collagen. The hypotheses to test are:

• The hydrogel after the incorporation of polymeric collagen can be plasti-

cally compressed

• Polymeric collagen within the hydrogel increases the mechanical proper-

ties of the material

• Cells can be seeded within polymeric collagen containing hydrogels, re-

taining time-zero cell viability

• Cells behaviour, such as proliferation, are similar and representative of a

native stiff tissue
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It is important to note that two distinct processes have been described in

chapter 3 to generate constructs containing polymeric collagen (please refer

to figure 4.1; and result in materials with different physical properties. This

chapter studies only the polymeric collagen containing hydrogels, generated

through the blending of monomeric and polymeric collagens - where cell incor-

poration at neutral pH is possible.

Figure 4.1: Flow-chart outlining the process for polymeric collagen extraction
from a tendon source (box 1), and the use of polymeric collagen to produce
cell-compatible blended hydrogels (box 2). The resultant polymeric collagen
materials are either (A) non-cellular, aligned polymeric collagen fibers or (B)
compressed blend collagen hydrogels (cell-compatible).
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4.2 Methods

Methods listed below are specific to this study. Further methods common to

studies throughout the thesis are listed in Chapter 2.

4.2.1 Polymeric collagen blend gel preparation

Collagen hydrogels were produced and compressed as mentioned in the method

sections 2.2 and 2.4 above. Blended pre-crosslinked collagen hydrogels were

produce by substituting half the volume of acid-soluble collagen with polymeric

collagen (adjusted to ∼2mg.ml-1 in 0.5M acetic acid). Blends of 20%, 40% and

50% polymeric collagen (w/w to acid-soluble collagen) were neutralised, gelled

and compressed as described.

4.2.2 Measurement of construct tensile mechanical proper-

ties

The Young’s modulus of compressed hydrogels with and without polymeric

collagen (50% w/w) was measured by dynamic mechanical analysis (DMA;

DMA7e, Perkin Elmer) through static tensile loading at 50mN.min-1 until fail-

ure. Samples were cut to approximately 2mm x 12mm. To ensure sufficient

grip of the sample onto the DMA clamps, steel meshes were folded onto both

ends of the construct (secured with superglue). Each construct was then mea-

sured using a digital caliper for exact construct dimensions. Throughout tensile

loading, samples were submerged in PBS to ensure they remain hydrated.
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4.2.3 Measurement of collagen density within compressed

gels

The density of collagen fibrils within compressed hydrogels was measured

based on the mass difference between the hydrated and freeze-dried con-

struct. Once the hydrogels were fully compressed within 24 well plates, PBS

was added to each well for easy handling. It was therefore important to gen-

tly and quickly blot the hydrogel on blotting paper to remove excess fluid on

the surface prior to measurement of the hydrated mass. All constructs were

subsequently freeze-dried (Modulyo, Edwards) overnight and weighed for the

weight of the dry solid fraction (i.e. collagen without the water).

4.2.4 Cell viability assay

Cell viability within compressed and uncompressed gels was confirmed by fluo-

rescent imaging after a 45 minute incubation of the cellular hydrogel with stains

consisting of 17µl ethidium homodimer (2mM; Invitrogen) and 20µl calcein-AM

(4mM; Fluka Analytical) diluted in 5ml PBS. Images were taken on the Olympus

BX61. For each sample, images of three random fields of view was captured

for cell counting. The number of live (green, calcein-AM stained) and dead

(red, ethidium homodimer stained) cells were only included if the cells were

within a digitally superimposed frame (identical for each field of view).

4.2.5 Total DNA assay

Total DNA was measured using Hoechst 33258 (Sigma) based on previously

published methods (Rago et al., 1990) (Rao and Otto, 1992). Cells within the

hydrogel were recovered by digesting each collagen construct in 1ml 0.2%

type-I bacterial collagenase (Gibco, USA) dissolved in PBS. Following a diges-
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tion time of 1 hour at 37°c (on a shaker), the suspension was centrifuged at

2000rpm for 5 minutes to collect cells. The cell pellet was re-suspended in

1ml distilled water and was repeatedly frozen (−20°c) and thawed to release

DNA content from within the cells. 100µl Hoechst solution (2µg/ml) was added

to an equal volume of DNA sample in a 96-well plate followed by absorbance

reading at 460nm. A DNA standard curve was prepared using increasing con-

centrations of calf thymus DNA (Sigma, USA) in saline sodium citrate buffer

adjusted to pH7.0.

4.2.6 Measurement of compressed hydrogel thickness

An optical method for measuring construct thickness was used on acid-soluble

collagen derived, or 50% polymeric collagen blend gels. Previous work on

compressed gel and optical thickness measurements have been carried out by

Tan (2015). 2.5ml hydrogels were set and compressed in 24-well plates. PBS

was added to each well to ensure samples remained hydrated prior to thick-

ness measurement (as dehydration will reduce construct thickness). For the

measurement, each sample (n = 4) was placed above a low powered (class

1, λ 1310nm) laser beam of a CTS-2 machine (Lein Applied Diagnostics, UK).

The focal point of the laser (with a range of approximately 1mm) moves through

the thickness of the sample whilst a detector within the machine detects any

reflected light at the gel surface. Changes in the reflection index through the

sampled area were registered as peaks of reflected light (converted into volt-

age) in the scan. A typical scan in this set-up registers two changes in reflective

index; firstly between the plastic well-plate/compressed gel, and also between

the compressed gel/air interface. These two interfaces distinguishes the upper

and lower boundaries of the construct, and so measures the thickness of the

compressed gel.
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4.2.7 Statistics

Data were represented as mean ± standard deviation, and were subjected to

one-way analysis of variance (ANOVA). The LSD post hoc test was used to

identify groups with a significant difference. Confidence internals were set at

P ≤ 0.05.

4.3 Results

4.3.1 Mechanical properties of blend gels containing poly-

meric collagen

The main objective of this study was to produce constructs with improved me-

chanical properties compared to compressed collagen hydrogels derived from

monomeric acid soluble collagen - which has been used in many tissue-like

models and for the study of cell behaviour within a ECM like environment (Had-

jipanayi et al., 2009b) (Hadjipanayi et al., 2009c) (Bitar et al., 2008) (Ardakani

et al., 2014). So, first it was important to establish the mechanical properties of

the novel polymeric collagen containing compressed hydrogels. Young’s mod-

ulus (E) was used as a measure of stiffness, and was calculated as stress

applied on the sample (σ) over sample strain (ε; change in length):

E =
σ

ε
=

force/cross-sectional area
change in length/original length

Plastically compressed collagens without polymeric collagen had a Young’s

modulus of 0.36 ± 0.10 MPa when tested under tensile strain. The Young’s

modulus had increased 3-folds to 1.051 ± 0.377 MPa with the blending in of

50% w/w polymeric collagen (P ≤ 0.001). Note that this compares well with

(and surpasses) the Young’s modulus of artificially cross-linked compressed
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collagen gels as shown in the study by Rich et al. (2014), where constructs

were photochemically cross-linked for 15 minutes in the presence of riboflavin

(a photoinitiator which produces oxygen free-radicals upon activation with blue

light) prior to compression. The Young’s modulus of the riboflavin cross-linked

construct was noted in the literature as 0.650 ± 0.073 MPa (Rich et al., 2014).

Note also that sample dimensions were similar between riboflavin cross-linked

gels and 50% (w/w) polymeric collagen blends where construct thickness (as

shown in results below) were 50-60µm and ∼50µm respectively.

4.3.2 Collagen density within compressed polymeric colla-

gen blend gels

The collagen density of the collagen constructs was measured by the weight

of freeze-dried collagen mass as a fraction of the hydrated compressed hy-

drogel, prior to drying. As expected, the overall mass of freeze-dried collagen

were similar across samples as the collagen concentration of both the acid-

soluble and polymeric collagen were both adjusted to a similar concentration

of ∼ 2mg/ml. However, as the proportion of polymeric collagen increased,

less water was retained by the construct during plastic compression (figure

4.2). Collagen density within the compressed hydrogel increased gradually

from 12.0 ± 1.1% when no polymeric collagen was added, up to 20.8 ± 5.1%

when half the collagen within the hydrogel was polymeric collagen (figure 4.2).

In effect, the high volume of fluid loss from the polymeric collagen blend gels

meant that the overall collagen density was highest in these samples. Collagen

density of 20 and 40% polymeric collagen gels after compression were within

this range, at 12.8± 2.0 and 15.1± 1.7% respectively.
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Figure 4.2: Hydrated and freeze-dried mass (mg) of compressed hydrogel
blends. Collagen density within compressed gels were calculated as dried
solid fraction over hydrated mass of compressed gels.
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4.3.3 Construct thickness with or without polymeric colla-

gen

Optical measurements of construct thickness found that an acid-soluble colla-

gen hydrogel compressed to a thickness of 258 ± 48 µm. A blended gel of

50% (w/w) acid-soluble collagen and polymeric collagen significantly reduced

construct thickness after compression to 49 ± 12µm (P ≤ 0.001) (figure 4.3).

Figure 4.3: Compressed hydrogel thickness of acid-soluble collagen or 50%
polymeric collagen derived hydrogels. Hydrogel thickness were measured op-
tically and without further sample processing (i.e. no further dehydration, and
represent a more accurate thickness value).

4.3.4 Compression profiles of polymeric collagen contain-

ing hydrogels

The rate of fluid loss from hydrogels was measured indirectly via the mass (i.e.

fluid) gained by the absorbent plunger over time (figure 4.4).

Complete compression of acid-soluble collagen derived hydrogels without

additional load (except plunger mass of ∼ 3g and weight of absorbed fluid) was

found to occur over 19 minutes. The rate of hydrogel compression decreased
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exponentially with time, and was the fastest between 0 and 30 seconds of

compression, where the initial compression rate was highest at 0.723 ± 0.103

ml/minute (for non-blended gels).

Figure 4.4: Compression profiles of collagen hydrogels with increasing pro-
portions of polymeric collagen (0, 20, 40 or 50% w/w (polymeric collagen/acid-
soluble collagen)) based on fluid absorbed by plunger during compression over
time. Weight of plungers prior to compression was set as 0 grams. Arrows in-
dicate the average time to complete compression for each blend.

With the substitution of 20% w/w of acid soluble collagen with polymeric

collagen, the initial compression rates increased to 0.959 ± 0.092 ml/minute.

Increased proportions of polymeric collagen within the hydrogel at 40 and 50%

further increased initial compression rates to 1.308 ± 0.270 and 1.325 ± 0.152

ml/minute respectively. Note that the overall time for complete compression

was much shorter in gels containing polymeric collagen, such that a gel con-

taining 20% polymeric collagen was completely compressed by 10 minutes,

and gels containing both 40 and 50% polymeric collagen were compressed by

7 minutes. It was observed that as initial rates increased (as found in gels with
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high proportions of polymeric collagen), the total compression time required

for complete compression decreased (figure 4.5).

Figure 4.5: Average initial compression rates against average time required for
complete compression for blended gels of up to 50% polymeric collagen.

4.3.5 Cell viability within blend collagen hydrogel

Increased compression rates, and therefore fluid shear stress, in polymeric

collagen containing hydrogels was potentially damaging to resident cells. It

was therefore important to study cell viability within blend hydrogels after plas-

tic compression. Cell were either stained green by calcein-AM if it was living,

with an intact membrane, or red in the cell nucleus by ethidium homodimer if

the cell membrane was damaged and the cell was dead. Cells within com-

pressed acid-soluble collagen derived gels were found to have a negligible

proportion of dead cells of 3.1 ± 1.6%. 20% polymeric collagen blends (with

modest increase in compression rates) had 16.0 ± 7.0% cell death at day 1

after compression. However, with further increases in hydrogel polymeric col-

lagen content (i.e. 40 and 50% polymeric collagen), significant cell death was

observed (80.3 ± 2.2 and 92.4 ± 5.6% respectively; table 4.1).
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Polymeric
collagen in

hydrogel (%)

Day 1 average
total number

of cells

Day 1 average total
live cell count (also
in % of total cells)

Day 7 average
total number

of cells

Day 7 average live
cell count (also in %

of total cells)
0 71.8 ± 7.4 69.6 ± 7.5 (96.9%) 37.0 ± 13.8 46.0 ± 8.9 (100%)
20 56.0 ± 7.2 47.0 ± 7.2 (84.0%) 79.0 ± 16.7 78.2 ± 16.0 (99.1%)
40 48.2 ± 20.3 10.6 ± 8.0 (19.7%) 38.0 ± 15.6 36.6 ± 14.4 (96.3%)
50 61.3 ± 17.5 4 ± 2 (7.6%) 53.4 ± 12.0 52.0 ± 11.2 (97.5%)

Table 4.1: Average total number of cells, and number of live cells (in a field of
view; determined by cell staining and counting) within blended collagen hydro-
gels at days 1 and 7 after plastic compression. Samples contain a blend of
polymeric (0, 20, 40 and 50%) and monomeric collagen; with an initial seeding
density of 15,000 cell/gel. Results are quoted as average number cells ± stan-
dard deviation (SD), including the number of live cells as a percentage of the
total number of cells (i.e. both live and dead) detected within the compressed
hydrogel.

Polymeric collagen in
hydrogel (%)

Uncompressed sample cell
death (%)

Compressed sample cell death
(%)

0 0± 0 3.1± 1.6
40 8.1± 7.8 80.3± 2.2

Table 4.2: Percentage cell death (± standard deviation (SD); determined by
cell staining and counting) within blended collagen hydrogels at day 1, with or
without plastic compression. Samples contain a blend of 0 or 40% polymeric
collagen, with monomeric collagen.
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It is important to note that this level of cell death within blended gels was

not seen prior to plastic compression (figure 4.6), with only 8.1 ± 2.2% cell

death before plastic compression, and 80.3 ± 2.2% after compression (table

4.2). Cell death within compressed blended gels was therefore attributed to

increased fluid shear stress experienced by cells during compression as op-

posed to the polymeric collagen itself used within the study.

Cell populations were able to recover and populate the compressed blended

gels with culture time as seen in 50% polymeric collagen samples from days 1

through to 14 (figure 4.6). In terms of absolute numbers in the live cell count,

cells increased an average of 66%, 345% and 1300% between days 1 and 7

(p≤ 0.001 for all samples), in samples containing 20, 40 and 50% polymeric

collagen respectively. The highest rates of cell proliferation were observed in

samples containing 40% and 50% polymeric collagen, and can be explained by

the low baseline for change (i.e. low number of surviving cells at day 1), and in-

creased physical space between cells (meaning less cell-cell contact and more

space for new cells to occupy). The only exception was in samples containing

no polymeric collagen, where the total live cell count decreased 34% between

days 1 and 7 (p≤ 0.001; figure 4.7, table 4.1), which could be a result of a over

population of cells at day 1, and so the number of cells adjusted according to

the available space and nutrients. Additionally, by day 7 most samples (apart

from 20% polymeric collagen samples) had a similar total cell count (despite

the difference in the number of initially viable cells) suggest the samples share

a similar limiting factor for cell proliferation (p=0.913 for 40% and p=0.079 for

50% polymeric collagen samples).
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Figure 4.6: Representative images of live/dead stained fibroblasts seeded
within compressed hydrogels at days 1, 7 or 14 days of culture. Hydrogels
were blended with either 20% or 50% polymeric collagen.
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Figure 4.7: The average total amount of cell count within blended colla-
gen samples (containing 0, 20, 40 or 50% polymeric collagen, blended with
monomeric collagen) at days 1 and 7 of culture following plastic compression.
Each column is segmented into two parts, showing the average number of live,
and dead, cells found within the sample.
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4.3.6 Cell proliferation within blended gels

The decrease in viable cells within blend gels was also reflected in the de-

creased total cell metabolic activity (as measured by alamar blue) and total

DNA detected from constructs immediately after compression, especially in

gels containing 40 or 50% (w/w) polymeric collagen (figure 4.8). In terms of

cell proliferation within the hydrogel over time (between 1 - 7 and 7 - 14 days),

cells in all samples (except 50% polymeric collagen) displayed a marked in-

crease in metabolic activity (P ≤ 0.001). A smaller increase in metabolic activ-

ity was noted in 50% polymeric collagen samples between days 1 and 7 (p =

0.054), which deceased with further incubation up to 14 days (p = 0.037). This

result would imply a lack of cell proliferation, and indeed cell death, based on

the metabolic activity alone. However, cell viability imaging (as seen in section

4.3.5 and figure 4.6) of 50% blends confirmed that more cells were present

with the construct at days 7 and 14 of culture, and that most cells were alive.

It was therefore important to also consider less variable measures of cell num-

bers such as total DNA within the construct. Indeed, a significant increase in

total DNA was observed with incubation between days 1 and 7 for all samples,

but was only significant for blended samples containing 40 or 50% polymeric

collagen (P = 0.033 and P = 0.006 respectively).
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Figure 4.8: Fibroblast-seeded compressed hydrogels containing a blend of
polymeric collagen (0, 20, 40 or 50% (w/w)) and monomeric collagen were
analysed for a) total cell metabolic activity at 1, 7 and 14 days of incubation and
b) total DNA within blend gels at 1 and 7 days of incubation (spectrophotometer
readings were converted into µg/ml DNA using a DNA standard curve). (∗P ≤
0.05, ∗ ∗ P ≤ 0.005)
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4.3.7 Histological sections of cellular blend gels

Histological staining was carried out on 20 and 50% polymeric collagen blends

which were incubated for 5 and 14 days to confirm the presence of living,

adherent cells. Fibroblasts seeded within the hydrogel at time-zero were still

present and visible within the blend hydrogels up to 14 days in culture. This

again supports the observation that fibroblasts can be successfully seeded

within polymeric-collagen-containing hydrogels, and be cultured over time (fig-

ure 4.9).

Figure 4.9: Histological staining (H&E) of cellular, compressed gels. 20 and
50% polymeric collagen blended samples were compared after incubation of 5
and 14 days.
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4.4 Discussion

Currently one factor hindering the development of collagen hydrogel constructs

for tissue engineering is the mismatch between initial cellularity and the general

lack in mechanical strength for it to be physiologically relevant to native tissues.

The main advantage of a collagen hydrogel is their ability to support interstitially

seeded cells - incorporated into the hydrogel as it is formed. However, cells

are known to be very sensitive to their environment, in particular, substrate

stiffness which previously cannot be easily replicated in a hydrogel without

cytotoxic cross-linking treatment. In this study, the aim was to bridge this gap

by introducing pre-crosslinked polymeric collagen fibrils as a starting material,

and in doing so, avoid artificial cross-linking of collagen fibrils.

This work is the first to systematically study the use of polymeric collagen in

a hydrogel to produce in vitro tissue models with intrinsic covalent cross-links

between collagen fibrils, and so improved mechanical properties. Plastic com-

pression was used on blended collagen hydrogels to increase the overall colla-

gen density to tissue levels, which also impacts on the mechanical properties

(i.e. compare hydrogels before (0.02% collagen) and after (∼ 12% collagen)

plastic compression). It was found that as the fraction of polymeric collagen in-

creased (up to 50% w/w to acid soluble collagen), the overall collagen density

within the compressed construct also increased. In a 50% polymeric collagen

construct, collagen density almost doubled from 12.0% to 20.8% (compared to

acid soluble collagen only constructs), which was reflective of their decreased

ability to trap water within the construct. That said, this difference in collagen

density was brought about by an increase in total water loss of ∼ 52µl from

within a blend gel (out of a 2.5ml hydrogel; based on the average difference in

plunger mass at the end of plastic compression). However the relatively small

difference in total volume had significant impact on hydrogel dimensions. In
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terms of construct dimensions, blend gels were much thinner than the con-

ventional hydrogel, despite similar starting volumes and collagen density. This

also points to the reduced fluid trapping ability of the blend gel. Based on the

thickness of the respective hydrogels, the total volume of the compressed gel

can be calculated, as:

Gel volume = πr2h

Where r was the radius of the hydrogel, used to calculate the area of the

circle (πr2); and h was the height of the compressed hydrogel. Hydrogel thick-

ness (height) were found to be 0.0258 ± 0.0045 and 0.0049 ± 0.0012 cm

for compressed acid-soluble collagen and 50% polymeric collagen derived hy-

drogels respectively. Since all hydrogels were set and compressed in 24-well

plates, the well diameter was taken as the gel diameter at 1.56cm (radius of

0.78cm), and the compressed gel volume was calculated:

Acid-soluble collagen gel volume = πr2h

= π(0.78)2 x 0.0258

= 0.0493cm3

Polymeric collagen blend gel volume = πr2h

= π(0.78)2 x 0.0049

= 0.0094cm3

The differences in average total volume within compressed acid-soluble col-

lagen derived (0.0493cm3; or 0.0493ml) and polymeric collagen blend (0.0094ml)
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gel was therefore ∼40µl. This was comparable to the differences in plunger

mass after plastic compression for the respective hydrogel samples (∼ 52µm).

Apart from the increased collagen density, the incorporation of polymeric

collagen into compressed hydrogels, as expected, increased material stiffness

(Young’s modulus) by ∼3 folds, to 1.051± 0.377MPa. This was much improved

compared to compressed hydrogels derived from acid-soluble collagen, and

so offers a promising basis for a model of slightly stiffer tissues.

For all samples, the rate of compression was highest during the first 30

seconds of compression (hereafter termed the initial compression rate), and

decreases exponentially with compression time. Initial compression rates in-

creased substantially within gels containing 40 or 50% polymeric collagen. The

increased compression rates in blended gels is likely due to a much diminished

blocking of fluid outflow (from the FLS) as fewer small collagen species were

present, therefore resulting in increased fluid shear stress (Hadjipanayi et al.,

2011a) and cell death. The reasoning behind this is the long-standing suspi-

cion that during collagen hydrogel formation, a proportion of collagen remains

poorly associated and mobile. It was understood that during the early stages

of collagen plastic compression, a dense mat of fibrils would be formed at the

FLS to produce a ‘ultra-filtration membrane’, which would be predicted to catch

(and so be clogged by) smaller mobile collagen aggregates, such as oligomers

and non-aggregated molecules (for schematic representation, see figure 4.10).

Increasing the proportion of polymeric collagen in these blended gels will rad-

ically and proportionally decrease the amount of small mobile species. This

in turn decreased the membrane fouling effect, and so increases fluid efflux

and shear across the stiff polymer fibrils. This is consistent with the measured

increased fluid outflow for polymeric collagen containing (blended) constructs.
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Figure 4.10: Schematic representation of collagen hydrogels during the begin-
ning and later stages of plastic compression. Red lines within diagram rep-
resent mobile collagen species, such as monomeric or oligomeric collagen,
which would be predicted to travel with fluid flow during plastic compression
and becomes retained by the dense collagen layer at the fluid leaving surface
(FLS) - further contributing to the filtration effect.
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In terms of cell viability, cell damage is well known to be minimal during

plastic compression of “conventional” acid-soluble collagen derived hydrogels

(Brown et al., 2005), and a similar 97% cell viability was seen here following

compression of non-blended hydrogels. However, significant cell death was

observed after compression of hydrogels containing a relatively high propor-

tion of polymeric collagen (40 and 50% at 80.3 ± 2.2 and 92.4 ± 5.6% respec-

tively). It was also within these samples where a high compression rate was

observed. The high fluid flow rates during compression of blended hydrogels

were likely to have caused the cell damage by increased fluid shear stress.

Although cells naturally experience some fluid dynamics and flow (i.e. blood-

flow), they are rarely damaged at physiological flow rates. Indeed the fluid

dynamics may be essential to the cell function, such as inflammation or cell

migration/alignment (Ng and Swartz, 2003). The mechanism by which at least

some cell types sense fluid shear stress was via cell surface/membrane defor-

mation and ion (i.e. Calcium) channels (Cunningham and Gotlieb, 2005); via

focal adhesion when cells remain attached to the ECM. (McCue et al., 2004).

The trigger of cell internal pathways can then affect cell essential pathways,

such as MAPK signaling as demonstrated in mesenchymal cells (Glossop and

Cartmell, 2009). However, when the fluid shear stress was sufficiently large,

as thought to be occurring in the polymeric collagen containing hydrogels, cell

membranes can sustain physical damage and undergo necrosis.

It was important to note that the cell population did recover with incuba-

tion time as reflected in the total DNA assay (figure 4.8), where an increase

in total DNA within all samples was observed between days 1 and 7. This in-

crease was however only significant for 40 and 50% polymeric collagen blends,

suggesting a higher proliferation rate within the polymeric collagen containing

gels. However, this finding was not consistent with the Alamar blue assay

(for total cell metabolic activity within a sample), which has commonly been
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used as a measure of cell proliferation. The Alamar blue assay indicated an

increase in total metabolic activity for all samples except 50% polymeric col-

lagen blends between 1 - 7 and 7 - 14 days. However, for 50% blends, there

was a non-significant increase in cell metabolic activity between days 1 and

7, and a subsequent significant decrease in metabolic activity between days

7 and 14. Visual data of blended gels i.e. live-dead cell imaging (figure 4.6)

would however indicate that total number of cells have increased with incuba-

tion time in 40 and 50% polymeric collagen blend gels (note also the change

in cell morphology in 50% polymeric collagen blends). The presence of live

cells within 50% polymeric collagen blend gels, coupled with the finding of de-

creased total metabolic activity may indicate the presence of quiescent cells.

However, whether this change was indeed due to increased matrix stiffness or

exposure to high fluid shear stress remains to be determined. Nevertheless,

both assays agree that a higher proportion of polymeric collagen within the hy-

drogel caused a drop in initial cell viability immediately after plastic compres-

sion. Since this cell death was only observed after the compression of blended

(fast-compressing) hydrogels, and that a rapid proliferation over 14 days was

observed post-compression, it was concluded that polymeric collagen itself is

cell compatible, and that the problem was the increased fluid shear.



Chapter 5

Results: Control of hydrogel

compression rates using large

molecules

5.1 Introduction

The generation of a novel, stiff and cellular collagen hydrogel matrix was de-

scribed in chapter 4, where it has been studied for its potential use as a stiff

tissue model.

This model is generated by including pre-crosslinked collagen into the struc-

ture of the hydrogel (so that the matrix is made of a mix of covalently cross-

linked polymeric collagen and acid-soluble (conventional gelling) collagen. Plas-

tic compression of these blended gels resulted in a construct with a three-fold

increase in matrix stiffness relative to gels derived from acid-soluble collagen

only (results in the previous chapter showed an increase in Young’s modulus

from 0.36 ± 0.10 to 1.05 ± 0.38 MPa). These blended hydrogels also sup-

ported the culture of resident cells in vitro over time. For a cell-rich gel, this

improves the physiological relevance of the hydrogel as a 3D tissue model,

129
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especially when the target tissue is relatively stiff.

However, as concluded in the previous chapter, the problem associated with

the novel polymeric collagen blend gels was the unusual cell death that was

observed during their fabrication. The cause of the cell death was pin-pointed

to the increased fluid shear stress (i.e. increased flow rates) during the plastic

compression of the new blended hydrogel; but it is important to stress that this

cell death is not normally observed during the plastic compression of conven-

tional, acid-soluble collagen, derived gels (Brown et al., 2005). Since plastic

compression of the hydrogel is an essential step in generating a physiologically

relevant model, this part of the study aims to devise a method to reduce shear

stresses on interstitial cells, and prevent cell damage. For this, the relationship

between fluid outflow during plastic compression and the factors that influence

fluid flow within the hydrogel needs to be further investigated.

5.1.1 What influences fluid flow rates within a hydrogel?

The ability of the collagen matrix to hold water is interesting because the differ-

ence in size between the interfibrillar space (∼ 10− 50nm2 or less, depending

on the compressive load (Serpooshan et al., 2011)) and the water molecule

(1.37Å (∼ 0.14nm) (Zhang and Xu, 1995)) is at least 70 fold; and water should,

according to its size, be able to easily flow through the hydrogel.

However during the plastic compression of collagen hydrogels, water only

leaves the hydrogel partially, and slowly, across several minutes (even with

external load). This suggests the presence of other factors from within the

hydrogel is preventing the free flow of water from the hydrogel.

External factors that are already known to impact hydrogel compression

rates include the amount of external load placed on the compression system,

and the total surface area of the fluid leaving surface (FLS) (Hadjipanayi et al.,
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2011a). However it is the factors within the gel that are thought to have the

greatest influence on the ability of water, which is encased within the matrix, to

escape.

Water within the hydrogel is held within a mesh of loosely associated col-

lagen fibril. This means that water trapped within the hydrogel must leave the

matrix through the spaces formed between collagen fibres during fibrillogene-

sis. Consequently the size of the interfibrillar space may affect the rate of water

efflux from the gel. A typical hydrogel is made of ∼ 99.8% (w/w) water, with the

remaining mass that might potentially block fluid flow comprising of collagen

molecules (∼ 0.2%) and some neutral salts (negligible amounts).

Salts within the hydrogel typically include soluble salts (such as sodium and

potassium chlorides) and molecules such as D-glucose, all of which are rela-

tively small compared to the estimated size of the interfibillar space (ions are

in the pico-meter range and glucose has a hydrodynamic radius of ∼ 0.46nm

(Lim et al., 2014)). These molecules are therefore unlikely to contribute to the

blockage at the FLS. Instead, it is thought that some collagen molecules are

not fully incorporated into a single-bodied matrix during fibrillogenesis, but re-

mained as monomers (or aggregated into small oligomeric collagen species),

which are mobile within the hydrogel, and can then block interfibrllar spaces

from within the hydrogel during compression (Hadjipanayi et al., 2011a).

Imaging of a fully compressed hydrogel sheet (cross-sectional SEM image

adapted from Brown et al. (2005) (figure 5.1) shows that a collagen density gra-

dient is formed within the hydrogel. The fact that collagen density was greater

at one surface of the collagen sheet suggest a collection of mobile collagen

molecules at the FLS (which acts as a ultrafiltration membrane). More specif-

ically it is thought that at the first signs of compression, collagen fibrils at the

surface of the hydrogel (at the fluid leaving surface) becomes compacted, min-

imising the interfibrillar space between these fibrils. This then acts as a filtra-
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tion membrane whereby collagen monomers or oligomers, not small enough to

squeeze through the narrowed space between the collagen fibrils at the FLS,

are trapped at the ‘filter’ and contributes to the progressive blocking and re-

duced fluid outflow. A lamellar structure within the hydrogel is also interesting

and may shed light onto the mechanism of micro-structure generation during

plastic compression (further discussion section 8).

Figure 5.1: Cross-sectional SEM image of a fully compressed hydrogel
adapted from Brown et al. (2005) (figure 4). Note the lamellar structure parallel
to the FLS within the hydrogel.

Other potential ways to reduce fluid flow

Changes to the hydrogel structure may provide the necessary increase in the

blockage at the FLS to reduce fluid flow. One possible change to the hydrogel

structure is the fibre thickness. Collagen fibril diameter have been found to

be ∼ 30nm when fibrillogenesis occured at 37°c over 30 minutes (Cheema

et al., 2007b). However, studies have found that collagen aggregation at lower

temperatures resulted in increased fibre thickness (Wood and Keech, 1960).

Increasing fibre thickness within a ‘closed system’ will be at the expense of the

limited amount of collagen molecules and is likely to result in fewer, but thicker,



CHAPTER 5. RESULTS: CONTROLLED COMPRESSION RATES 133

fibres and increased interfibrillar space.

Collagen density also potentially alters the fluid flow rate within the hydro-

gel, as increasing the amount of collagen fibrils will increase occupied space

by the collagen fibrils, and result in smaller ‘pores’. This would also lead to an

increase in mobile collagen species that can contribute to the FLS clogging.

Indeed, a collagen hydrogel containing 6mg.ml-1 atelocollagen required, on av-

erage, more time for complete compression compress (1ml gel, 41 minutes),

compared to a 2mg.ml-1 collagen hydrogel of the same volume (6 minutes).

For the novel blend gel, reduced amounts of mobile collagen monomers/

oligomers (as half of the soluble collagen molecules were substituted with pre-

crosslinked polymeric collagen) is expected to reduce FLS clogging, and would

explain the rapid fluid outflow reported in the previous chapter. It was therefore

hypothesised that replacing the molecules which contribute to the clogging of

interfibrillar space (i.e. increase the clogging/filtration effect) will decrease fluid

outflow rates, and so decrease the amount of fluid shear stress placed on

resident cells during the compression of fast-compressing hydrogels; such as

that seen in polymeric collagen containing hydrogels.

The main purpose of this study is to develop and understand methods for

decreasing the rate of fluid efflux from hydrogels, particularly where compres-

sion is unusually rapid. The approach is to improve the FLS barrier forma-

tion (clogging) using artificially introduced mobile macro-molecules. Two basic

mechanisms were tested within this aim. In the first, the tropocollagen (acid-

soluble collagen) of the gel itself was progressively cleaved by incubation with

pepsin, to generate potentially clogging atelocollagen species. In the second,

selected polymer macromolecules were added to the gelling collagen mix as

potential clogging agents.
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Figure 5.2: Schematic representation of fluid flow during plastic compression,
within cellular a) conventional hydrogel b) polymeric collagen blend hydrogel
and c) blend hydrogel containing large, FLS clogging, macromolecules (blue
circles). Non-associated (mobile monomeric and oligomeric) collagen species,
cells and water are normally enmeshed within the collagen hydrogel matrix
following fibrillogenesis. However, the (intrinsically present) mobile collagen
species are found in reduced quantities in blend hydrogels with a high poly-
meric collagen content (environments B and C). This causes a high fluid flow
rate (though to be damaging to cells; environment B), but can be reversed
when these mobile collagen species are replaced by large macromolecuels
which contribute to the blockage to fluid outflow at the FLS.
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5.1.2 Polymer macromolecules as clogging agents

The large polymers incorporated into the hydrogel, and tested in this study for

its efficiency in blocking the FLS are as follows:

Fibrinogen

Fibrinogen (Sigma, UK) is a naturally occurring plasma protein normally in-

volved in blood coagulation. The protein has a molecular weight of 340kDa . It

can be converted into a fibrous mesh (Fibrin) by thrombin action.

Dextran

Dextran is a polysaccharide of polymerised glucose molecules made up to a

size of 2000 kDa. In this study, Dextran with an average molecular weight of

500kDa was used (Fisher Scientific, UK).

Poly(ethylene)glycol (PEG)

PEG is a polymer made of polyethylene oxide, and are found in molecules of

up to 8000 kDa (or more). PEG 400kDa and 1000kDa (both from Sigma, UK)

were used in this study.

Ficoll™

Ficoll is a branched polymer made from the co-polymerisation of sucrose and

epichlorohydrin. The molecules typically come in a size of either 70kDa or

400kDa. In this study, Ficoll™ 400kDa was used as a pore blocking agent.
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The hydrodynamic size of the above mentioned polymers ranged from ∼

11− 42nm, which are within the range of the interfibrillar space found between

collagen fibrils within the hydrogel. Therefore they were chosen for use as a

potential pore-clogging species.

5.2 Methods

Methods listed below are specific to this study. Further methods common to

studies throughout the thesis are listed in Chapter 2. All hydrogels (both con-

ventional acid-soluble collagen derived and polymeric collagen blended gels)

were set within 24-well plates, with each well containing a gel volume of 2.5ml

(except where specified). The rate of fluid efflux (i.e. compression rate) for all

samples were measured as detailed in chapter 2.5.

5.2.1 Pepsin treatment of tropocollagen to produce atelo-

collagen

Pepsin treatment was used to convert tropocollagen (conventional gelling acid-

soluble collagen) into atelocollagen, which is a potential source of mobile col-

lagen species. Collagen molecules without telopeptides associate less readily

with adjacent collagen molecules during fibrillogenesis (Snowden and Swann,

1979) (Brennan and Davison, 1981), and so potentially increases the propor-

tion of monomer/oligomer collagens which would remain mobile within the hy-

drogel at the time of compression.

Pepsin (porcine derived; Sigma-Aldrich) was dissolved in 0.5M acetic acid

(2.5mg.ml-1) and added in a ratio of 1:99 (w/w) to acid soluble type-I collagen

at 4 °c (on stirrer). At 0, 1.5, 3, 4.5, 24, 48 and 72 hours after pepsin treatment,

the collagen solution was neutralised and gelled following the method for acid
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soluble collagen derived hydrogels (detailed in chapter 2). Compression rates

for all gels were subsequently measured.

5.2.2 Macromolecules as clogging agents within the hydro-

gel

Macro-molecules (as mobile, clogging species) were incorporated into the hy-

drogels to increase blockage at the FLS. Fibrinogen (340kDa; Sigma-Aldrich)

in 0.9% saline, dextran (500kDa; Fisher Bioreagents) or poly(ethylene oxide)

(PEG; 400kDa or 1000kDa, Sigma-Aldrich) in deionised water, were made

to a concentration of 0, 2, 5, 10 or 20mg.ml-1. Ficoll™ 400 (Sigma-Aldrich)

was made to 10, 50 or 100mg.ml-1 in deionised water. 10% (v/v) of the poly-

mer solution was added to a neutralised collagen mixture containing 10% (v/v)

10xMEM and 80% (v/v) acid soluble collagen prior to incubation at 37 °c for 30

minutes. Compression rates of the hydrogels were subsequently measured.

5.2.3 Rate of fibrillogenesis

The rate of hydrogel formation (gelation), with or without the presence of large

macromolecules, was measured using the change in light scattering of the

hydrogel over time (gels became opaque as fibrillogenesis progresses).

3ml of the collagen solution, neutralised at 4°c, was transferred into a cu-

vette. It was immediately placed in a luminescence spectrometer (LS 50B,

PerkinElmer, UK), where the solution would begin to form a hydrogel as it was

exposed to room temperature. The absorbence of the solution was measured

at an excitation wavelength of 450nm, and an emission wavelength of 700nm,

every 30 seconds until no substantial changes in the values was observed.
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5.2.4 Additional fibrin mesh at the FLS

Since fibrinogen was successfully introduced into the hydrogel as a interfibrillar

‘pore’ clogging agent, it was hypothesised that the topical application of throm-

bin (Sigma, UK; in water), a protease which converts fibrinogen into fibrin, to

the FLS will result in a mesh-like structure which can contribute to the matrix’s

ability to retain water (i.e. increase matrix density at the FLS).

Fibrinogen containing hydrogels were produced as described above, where

5mg.ml-1 fibrinogen (in 0.9% saline) (10% v/v) was added to the neutralised

collagen solution. After gelation of the hydrogel, 50µl of 1mg.ml-1 thrombin

was applied to the hydrogel indirectly, by first applying the thrombin to a well-

sized paper disc, before transferring the disc onto the hydrogel. The thrombin

remained in contact with the hydrogel for 5 minutes prior to hydrogel compres-

sion. Compression rates of the resultant gels were measured and compared

to fibrinogen containing gels without thrombin application.

5.2.5 Cell viability test in gels containing additional macro-

molecule

The effectiveness of macro-molecule incorporation on slowing compression

rates, and consequently on preserving interstitial cells viability was tested within

conventional (acid soluble collagen derived slow-compressing) or polymeric

collagen blend (fast-compressing) hydrogels. Hydrogels were made from 10%

volume of 10mg.ml-1 PEG 400kDa (final concentration of 1mg.ml-1 within hy-

drogels), 10% (v/v) DMEM (Sigma-Aldrich) supplemented with 10% foetal calf

serum (First Link, UK) and 1% penicillin streptomycin (Gibco, Life Technolo-

gies) containing human dermal fibroblasts (HDF; passages 8-9), 10% 10 x

MEM and 70% (v/v) collagen solution.

After hydrogel formation (1.5ml gel; 15,000cells/gel) and compression, cell
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activity within the gels was measured by Alamar blue assays as described in

chapter 2.6.

5.2.6 Statistics

Statistical significance was determined by one-way ANOVA (LSD post-hoc) for

data on compression rates. For all other experiments, an independent sample

t-test was used. Confidence intervals were set at p ≤ 0.05.

5.3 Results

The purpose of the study was to decrease compression rates of fast compress-

ing hydrogels with the ultimate aim to preserve interstitial cell integrity. The

approach adopted here was to increase the blockage of interfibrillar space,

particularly at the FLS.

The typical compression profile of a hydrogel over time included a fast initial

rate of fluid loss (in the first 30 seconds of compression), followed by a period

of steady rate of fluid loss until it finally reached a plateau, when no further

water left the gel (i.e. compression was complete) (figure 5.3a). When results

from this compression profile was converted into rate of fluid loss from the hy-

drogel during compression (figure 5.3b), the initial time point (first 30 seconds)

represented the highest rate throughout the compression process (in this case

at more than double that of all other time points). Compression rates then

decreased exponentially over time.

For polymeric collagen blended gels, the initial compression rate could be

as high as 1.325 ± 0.152 ml/minute (as opposed to 0.691±0.083 ml/min in con-

ventional (cell-friendly slow compressing) acid-soluble collagen gels. Although

compression rates quickly dropped with the progression of the compression
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process, the short exposure of cells to high fluid flow rates was found (in the

previous chapter) to be sufficient to damage resident cells.

(a) Profile of fluid loss from hydrogel during plastic compression

(b) Rate of fluid loss from hydrogel

Figure 5.3: Example showing the compression profile of a 2.5ml hydrogel set
in a 24-well plate. a) Shows the cumulative amount of fluid loss (ml) from the
hydrogel over time. b) A derivative graph showing the results in terms of rate of
fluid loss (ml/minute) at each time point over the compression period. Note that
the rate of fluid loss (compression rate) was highest at the beginning of hydro-
gel compression, and decreases exponentially as compression progresses.
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5.3.1 Fluid flow rates after pepsin treatment

Pepsin treatment of collagen solutions did not result in decreased early stage

(initial) flow rates. Instead, the rate of collagen compression increased with

length of pepsin treatment, with a peak initial compression rates of 1.089 ±

0.152 ml/minute at 24 hours of pepsin treatment (p≤0.001) (figure 5.4; table

5.1). In addition, gels made from 24-48h pepsin digested collagen also pro-

duced increased outflow rates during later stages of compression (measured

at 5 minutes into the compression process), at 0.184± 0.046 and 0.230± 0.152

ml/minute respectively, as opposed to 0.135± 0.024 ml/minute when no pepsin

treatment was involved. With further pepsin treatment time, at 72 hours, the

compression rates appeared to fall slightly relative to the peak rates seen in

gels with 24-48 hours of pepsin treatment. These results suggest that any mo-

bile species generated by pepsin digestion of tropocollagen (i.e. atelocollagen

monomers/oligomers) did not block interfibrillar “pores” of the FLS, although it

clearly did alter filtration rates in a complex manner.

Since pepsin treatment of tropocollagen produced atelocollagen which as-

sociate less readily with adjacent collagen molecules, the pepsin treatment

may therefore have a greater effect on enlarging the “pores” within the hydro-

gel; potentially due to reduced fibril formation by the remaining tropocollagen

and reduced amount of collagen species that are sufficiently large to clog pores

(i.e. oligomers).
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Pepsin treatment

time (minutes)

n Compression

rate at 30

seconds

Compression

rate at 5 min-

utes

Time to

complete

com-

pression

(minutes)

No pepsin treatment 9 0.691 ± 0.083 0.135 ± 0.024 26

0 6 0.616 ± 0.148 0.148 ± 0.024 25

1.5 6 0.743 ± 0.077 0.160 ± 0.025 20

3 6 0.791 ± 0.081 0.168 ± 0.010 17

4.5 3 0.983 ± 0.248 0.115 ± 0.092 14

24 9 1.089 ± 0.152 0.184 ± 0.046 13

48 9 1.027 ± 0.160 0.230 ± 0.152 20

72 6 0.970 ± 0.173 0.146 ± 0.043 19

Table 5.1: Average compression rates of hydrogels derived from acid-soluble
collagen treated with pepsin for an increasing amount of time. Rates over
the first 30 seconds (initial rate) and 5 minutes of compression are quoted as
mean ml/minute ± standard deviation (SD). Time to complete compression are
noted as the time where compression rates reached zero. Compression rates
significantly different to non-pepsin treated gels are listed in bold font.
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Figure 5.4: Box-and-whisker plot of initial (first 30 seconds) compression rate
of hydrogels within increasing pepsin treatment time. Compression rate was
significantly increased relative to control from 4.5 hours of treatment onwards
(p ≤ 0.05*)
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5.3.2 Fluid flow rates with macromolecule incorporation

Macro-molecule incorporation was more effective in slowing initial compression

rates compared to the use of pepsin to produce mobile collagen monomer/oligomer

species within the hydrogel (table 5.1 and tabel 5.2).

Macromolecule/ con-

centration

n Compression

rate at 30

seconds

Compression

rate at 5 min-

utes

Time to

complete

com-

pression

(minutes)

No macromolecules 9 0.691 ± 0.083 0.135 ± 0.024 26

Fibrinogen 2mg.ml-1 15 0.660 ± 0.114 0.139 ± 0.026 28

Fibrinogen 5mg.ml-1 15 0.582 ± 0.119 0.141 ± 0.026 27

Fibrinogen

10mg.ml-1

9 0.698 ± 0.097 0.138 ± 0.034 26

Fibrinogen

20mg.ml-1

6 0.915 ± 0.107 0.177 ± 0.025

Dextran 2mg.ml-1 14 0.650 ± 0.085 0.124 ± 0.015 31

Dextran 5mg.ml-1 15 0.615 ± 0.090 0.131 ± 0.022 32

Dextran 10mg.ml-1 12 0.618 ± 0.075 0.115 ± 0.013 36

Dextran 20mg.ml-1 9 0.631 ± 0.053 0.125 ± 0.027 36

PEG 400kDa

2mg.ml-1

9 0.691 ± 0.085 0.144 ± 0.014 26

PEG 400kDa

5mg.ml-1

9 0.566 ± 0.080 0.123 ± 0.017 35

PEG 400kDa

10mg.ml-1

9 0.456 ± 0.121 0.107 ± 0.018 43
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PEG 400kDa

20mg.ml-1

6 0.636 ± 0.054 0.097 ± 0.005 50

PEG 1000kDa

10mg.ml-1

6 0.524 ± 0.028 0.103 ± 0.017 50

PEG 1000kDa

20mg.ml-1

6 0.564 ± 0.051 0.095 ± 0.019 71

Ficoll™ 400kDa

10mg.ml-1

6 0.846 ± 0.084 0.165 ± 0.038 20

Ficoll™ 400kDa

50mg.ml-1

6 0.908 ± 0.089 0.172 ± 0.024 16

Ficoll™ 400kDa

100mg.ml-1

9 0.665 ± 0.153 0.146 ± 0.022 31

Table 5.2: Average compression rates of hydrogels with increasing concentra-
tions of macromolecules. Rates over the first 30 seconds (initial rate) and 5
minutes of compression were quoted as mean ml/minute ± standard deviation
(SD). Time to complete compression was noted as the time where compres-
sion rates reached zero. Compression rates significantly different to gels with
no macromolecules are listed in bold font.
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Optimal initial compression rates (for each macromolecule type) was ob-

served at a polymer concentrations of 5mg.ml-1 for fibrinogen (0.582 ± 0.119

ml/min), 5mg.ml-1 or 10mg.ml-1 for dextran (0.615 ± 0.090 and 0.618 ± 0.075

ml/min) and 10mg.ml-1 for larger polymers such as PEG at 400kDa (0.456 ±

0.121 ml/min) and 1000kDa (0.524 ± 0.028 ml/min) compared to gels with no

macromolecules (0.691 ± 0.083 ml/min). Importantly, the effectiveness of the

blocking agent was generally found to be correlated with its Stokes radius (fig-

ure 5.5); and not the polymer molecular weight (figure 5.6). The hydrodynamic

radius for fibrinogen, dextran, PEG 400kDa, PEG 1000kDa and Ficoll™ 400

were 10.95, 15.9, 26.56, 41.63 (adapted from Armstrong et al. (2004)) and

10nm respectively; with PEG 400kDa (26.56nm) (at 10mg.ml-1) being most

effective, of the polymers tested, in slowing the initial compression rates of hy-

drogels ((p ≤ 0.001; figure 5.7). Note that polymers were added to the hydro-

gel at a concentration of 1:9 (macromolecule : neutralised collagen solution),

meaning a PEG concentration within the hydrogel of 1mg.ml-1.

Smaller polymers (hydrodynamic radius) were less able to slow the com-

pression rates due to the reduced blockage at the FLS. For example, PEG

400kDa (∼ 26nm) was able to slow initial compression rates more effectively

from a rate of 0.691 ± 0.083ml/min (where no macromolecules were present)

to 0.456 ± 0.121 ml/min. Whereas dextran, a smaller polymer (∼ 16nm), re-

sulted in a maximum decrease of initial compression rates to 0.615 ± 0.090ml/min.

Polymers larger than PEG 400kDa (i.e. PEG 1000kDa) did not further de-

crease the initial compression rate (p=0.147). Ficoll™ 400 was the only excep-

tion to the above observation, and increased compression rates when incorpo-

rated into the hydrogel (i.e. 10mg.ml-1; p=0.002).

The data correlated with the line of best fit (y = −0.007x + 0.764) with a

correlation coefficient of ρ2= 0.5372, suggesting a moderate correlation to the

line of best fit.
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Figure 5.5: Correlation between polymer hydrodynamic radii and their respec-
tive initial (first 30 seconds) compression rates. All polymer concentrations
were 10mg.ml-1.
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Figure 5.6: Initial compression rates (rate of fluid flow from the hydrogel)
against polymer molecular weight. Correlation between initial flow rates and
molecular weight of the macromolecule was weak.
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Figure 5.7: Compression profiles of hydrogels (2.5ml) containing 10mg.ml-1

polymers. Control gels with no macro-molecule additives are represented by
the solid line. The extent of fluid loss from hydrogels during compression was
measured as mass of fluid gained by the absorbent plungers (i.e. fluid loss
from hydrogels) over time.
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5.3.3 Gelation rates of hydrogels with macromolecules

Collagen hydrogels with no macromolecules showed first signs of fibrillogen-

esis after 2.5 minutes at room temperature. This was delayed until 3 minutes

in samples containing PEG 400kDa. However, by 7 minutes into the gelation

process for both samples, the absorbance reading (opacity of the gel) began

to plateau suggesting fibrillogenesis was mostly complete (figure 5.8). In sam-

ples containing Ficoll™ 400, fibrillogenesis began sooner (from 1.5 minutes),

and reached a higher absorbance reading compared to both plain and PEG

containing gels by 5.5 minutes.

Whilst the incorporation of PEG 400kDa appeared to only affect the rate

of hydrogel fibrillogenesis, Ficoll™ 400 may be altering the structure of the

hydrogel, and led to a gel with a slightly higher opacity.

Figure 5.8: Absorbency of collagen solution over time during fibrillogenesis.
Hydrogels either contained an overall concentration of 1mg.ml-1 PEG 400kDa
or Ficoll™ 400; or contains no macromolecules.
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5.3.4 Effect of additional fibrin at the FLS

The application of thrombin to the surface of the hydrogel (for the formation of

a fibrin mesh) did not result in reduced compression rates. Instead, initial com-

pression rates increased up to 0.943 ± 0.070 ml/minute compared to samples

containing only fibrinogen (in its macromolecular form; 0.582±0.119 ml/minute)

(figure 5.9).

Figure 5.9: Compression rates of collagen gels containing 10% (v/v) 5mg.ml-1

fibrinogen, with or without added thrombin treatment on the gel surface. Where
thrombin was use, 50µl of 1mg.ml-1 thrombin (in water) was added indirectly to
the FLS via paper discs soaked in thrombin.

5.3.5 Proof of principle - protecting cells from damage within

fast compressing hydrogels

10mg.ml-1 PEG (400kDa) (final concentration of 1mg.ml-1 within the hydrogel)

resulted in optimal decrease in the initial compression rate, and was tested for

its effectiveness in slowing compression rates within blended collagen gels (i.e.

containing pre-polymerised collagen) containing interstitially seeded cells. Ala-

mar blue readings of conventional (acid-soluble collagen) gels, with or without
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PEG were similar at 25.35 ± 3.33 and 23.77 ± 1.20. Cell activity within blended

(fast-compressing) gels was significantly reduced (as also seen previously in

chapter 4 and in Wong et al. (2014)) in the absence of PEG (Alamar blue read-

ing of 16.53 ± 1.98; p=0.017). However, interstitial cells were shielded from

damage with the addition of PEG, resulting in a cell metabolic activity reading

similar to conventional hydrogels after compression (figure 5.10). In effect, the

addition of the PEG protected the resident cells from flow-related damage.

Figure 5.10: Total cell activity in polymeric collagen blend gels 1 day after com-
pression. Cell activity within blend gels, with or without 10% PEG incorporation
was compared to conventional (no macromolecules) monomeric collagen hy-
drogels.

5.4 Discussion

Results from chapter 4 showed improved material strength after the incorpo-

ration of polymeric collagen (and potentially any stiff fibres, as suggested pre-

viously (Deng et al., 2014)) into the hydrogel. However, initial cell viability

was compromised within the compressed hydrogel by increased fluid shear

stresses during hydrogel compression of the novel blend gel (Wong et al.,
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2014). The aim of this study was therefore to reduce fluid shear stress on

resident cells, and improve initial cell viability within the compressed hydrogel

construct.

It was clear from the results of this study that some interventions were able

to reduce fluid flow, such that fluid shear stresses remained within a physiolog-

ical range. More specifically, this study found that compression rates can

be controlled through the utilization of the filtration effect at the FLS, to

prevent loss of initial cell viability.

Although simply increasing the density of collagen molecules within the hy-

drogel significantly reduced compression rates (i.e. by increasing the amount

of mobile collagen species, and reducing pores size), it also resulted in a con-

struct which was far more opaque compared to compressed hydrgels made

from a collagen density of 2mg.ml-1 tropocollagen molecules; and potentially

reduces the accessibility of in vitro assays to monitor cells within the hydrogel

over time. Additionally, the increase in collagen density would also make it diffi-

cult to recover cells from the hydrogel, and prolonged digestion of the construct

with a solution of 0.2% collagenase-I will be needed due to digest the collagen

substrate. These problems associated within a high density gel may potentially

hinder the use of a dense gel as an in vitro tissue model, and other methods

for reducing fluid flow will need to be considered.

The two methods used to increase mobile macromolecular species capable

of contributing to the clogging of the FLS within the hydrogel included the use

of pepsin, or large macromolecules (which do no associate with the collagen

matrix during fibrillogenesis. The former method involved the pepsin digestion

of acid-soluble collagen solutions converted tropocollagen into mobile atelo-

collagen species, which could travel towards the FLS and contribute to the

blockage.

It has been noted in the literature that loss of telopeptides from tropocolla-
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gen (i.e. by pepsin action) impedes the rate of collagen self-assembly (Snow-

den and Swann, 1979), so an increasing amount of collagen molecules, in

theory, remained as mobile monomers within the hydrogel at the time of com-

pression. Since atelocollagen associates less readily with adjacent collagen

molecules, the less extensive interfibrillar branching of the collagen oligomers

(Whittington et al., 2013) may therefore explain the decreased efficiency in

clogging the FLS; as the molecules are less likely to be trapped between

interfibrillar spaces. As a result, even with the increase in mobile atelocol-

lagen molecules, compression rates did not decrease as expected, but in-

creased with pepsin treatment time (at least up to 24 hours; table 5.1). This

increase in compression rates may be exacerbated by the reduction in gel-

forming tropocollagen species (as it is converted into atelocollagen), leading to

a looser fibril network.

Interestingly, the rate of initial compression did not increase linearly with

pepsin treatment time. Instead, a slight fall in initial compression rates was

observed with further pepsin treatment beyond 48 hours (figure 5.4). A study

in 1970 by Leibovich and Weiss has shown that fibril morphology changes with

pepsin digestion, where prolonged treatment resulted in increased symmetri-

cal tactoidal fibrils/aggregates (Leibovich and Weiss, 1970) (Bard and Chap-

man, 1968). This suggests the time dependent change of pepsin treatment

on hydrogel compression rates may also be due to fundamental change in

collagen fibril assembly, instead of purely changing the amount of mobile col-

lagen species within the hydrogel. However, since the use of pepsin treatment

to produce interfibrillar space clogging species was not effective as a method

to control fluid flow rates within the hydrogel, the use of other ‘pore’ clogging

species was considered.

Artificially introduced pore-blocking macromolecules, such as PEG or dex-

tran, were added to hydrogels to contribute to the ultrafiltration membrane at
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the FLS.

In terms of the effectiveness of artificially introduced macromolecules in

controlling initial compression rates, the size and concentration of the blocking

agent influenced the extent of reduction in compression rates. More specifi-

cally, the polymer Stokes radius (hydrodynamic size), rather than its molecular

weight, was generally found to correlate with the initial compression rates.

Small molecules, such as water and oxygen, are known to be able to dif-

fuse freely through the thin compressed hydrogel layers (Cheema et al., 2008),

whilst larger molecules (in the micrometre scale; including cells) can be caught,

and entirely retained, by the collagen fibril network (Hadjipanayi et al., 2011a).

Hence the size of the optimal FLS clogging species will likely be within this

range (i.e. large macromolecules that can be trapped within the collagen ma-

trix) - with some consideration on the balance between fluid flow rates and the

time required by the hydrogel for complete compression.

From figure 5.4, it appears that the range in which the macromolecule af-

fects compression rates was between ∼ 11 − 27 nm. This was within the esti-

mated size range of interfibrillar space from Serpooshan et al. (2011). In this

study, polymers with stokes radius less than ∼ 11nm (fibrinogen) did not effec-

tively contribute to the accumulation of molecules at the FLS, so only moderate

effects on initial hydrogel compression rates was observed (rates were similar

to samples with no added macromolecules). Increasing the macromolecule

size between ∼ 11nm and ∼ 27nm appeared to linearly reduce initial com-

pression rates of hydrogels. PEG 400kDa (Stokes radius 26.56nm) resulted

in optimal rates, but further increases in polymer size beyond ∼ 27nm did not

yield further reduction in compression rates, potentially because these species

are generally less mobile and are trapped in the interfibrillar space of the ma-

trix, far from the FLS (as demonstrated in larger molecules (Hadjipanayi et al.,

2011a)).
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Late stage compression rate results do suggest some influence of macro-

molecule size, on its mobility within the hydrogel during compression. For ex-

ample, it was observed that the rate of fluid flow was higher at initial compres-

sion stages (first 30 seconds) for gels with PEG 1000 kDa (at 0.524 ± 0.028

ml/min instead of 0.456 ± 0.121 ml/min observed with 400 kDa PEG); despite

its larger size. This would mean that more fluid was leaving through the FLS

in the first 30 seconds of compression when 1000kDa PEG was present within

the hydrogel. However, by 5 minutes into the compression process, samples

with either PEG 400kDa and 1000kDa had almost identical compression rates

(i.e. the blockage at the FLS have reached a similar level). This suggests that

the PEG1000kDa may be beyond the size at which polymers were freely mo-

bile through the collagen network (i.e. slower to move through the hydrogel),

and so was less efficiently accumulated at the FLS. The effects of larger poly-

mers was still observed further downstream of the compression process (i.e.

at 5 minutes), suggesting a longer travel time for PEG 1000kDa to reach the

FLS.

Note that the total compression of a sample containing PEG 1000kDa was

longer (50 minutes instead of 43 minutes when PEG 400kDa was present);

and suggests that overall, the larger macromolecules may eventually offer a

more complete blockage of interfibrillar space at the FLS. However, the delay

in the macromolecules traveling towards the FLS meant that fluid flow rates at

the initial time point remained high, and so was not useful for the purposes of

decreasing exposure of cells to high fluid flow rates.

Although the results did suggest an increased molecular size generally re-

sulted in the decrease in initial compression rates, it was not possible to rule

out whether the presence of macromolecules may affect the structure of the

collagen matrix (i.e. by occupying space within the collagen solution) during

fibillogenesis. The presence of PEG 400kDa appeared to only increase the
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lag time prior to fibrillogenesis, but other macromolecules such as Ficoll™ 400

appear to change the hydrogel structure at a more fundamental level, as the

gelation time and resultant opacity after filbrillogenesis differed in comparison

to plain samples (without macromolecules).

Since the macromolecules were essentially providing physical blockage of

the interfibillar space to fluid flow, the effectiveness of each macromolecule can

be measured in terms of the hydraulic resistance of the FLS to fluid outflow

(RFLS; i.e. caused by the blockage of interfibrillar space at the FLS). (RFLS) of

samples, containing interfibrillar space clogging species, was mathematically

modeled based on Darcy’s law (Hadjipanayi et al., 2011a) (Tan, 2015). The

calculations for RFLS was carried out with the help of Dr. Noah Tan.

RFLS =
A.TMP

µ.Q

The hydraulic resistance (RFLS), measured as FLS surface area (A) and

transmembrane pressure (TMP) over the dynamic viscosity (µ) of water at 20°c

(1.001x10−3Pa) and Q, rate of flow in millilitre per second. Here, the change in

mass of the fluid absorbing plunger is assumed to be very close to the TMP,

and so the increase in plunger mass is substituted for the TMP function.

Figure 5.11: Average RFLS during plastic compression of hydrogels containing
artificially introduced macro-molecules over the first 5 minutes of compression.
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Resistance to fluid outflow generally increased with hydrogel compression

time, as more and more macromolecules (or other pore-clogging species) were

caught at the ultrafiltration membrane (FLS). During initial stages of compres-

sion (first 30 seconds), RFLS was highest in gels containing 10mg.ml-1 400kDa

PEG, although the difference did not reach significance compared to plain gels

(p=0.090) (figure 5.11). However, when RFLS was modeled in terms of rate

of change, PEG 400 (P≤0.001) and PEG 1000 (P=0.013) had significantly in-

creased RFLS gradients compared to plain hydrogels at 0 - 1 minute (figure

5.12). The high RFLS for PEG 400kDa containing samples corresponded to a

optimal decrease in initial compression rates.

Hydraulic resistance to fluid leaving the hydrogel continued to increase 4.5

- 7 fold between 30 seconds and 5 minutes of compression for all samples

(p ≤ 0.001), with RFLS at 5 minutes being highest in samples containing PEG

400kDa (p=0.002) and 1000kDa (p=0.009) compared to plain gels. Only hydro-

gels containing PEG 400 maintained an increased RFLS rate of change com-

pared to plain hydrogels between 2.5 - 4 minutes (P=0.026). The high initial

rate of RFLS was thought to be due to the low baseline for change in the FLS at

the start of the compression process, where there was no increased density of

collagen molecules at the beginning. It was only after the start of the compres-

sion process, and throughout the early stages of compression, that previously

mobile macromolecules have traveled with the fluid flow, and collected at the

FLS - causing an increase in resistance to fluid outflow.

The modelled rate of change in RFLS within the first 4 minutes of compres-

sion for all samples suggest blockage at the FLS was built up at different rates,

with the fastest being at the FLS of PEG400 and PEG1000 containing hydro-

gels in the first stages of hydrogel compression (figure 5.12). Importantly, this

increase in resistance to fluid outflow corresponded to a decrease in compres-

sion rate as expected.



CHAPTER 5. RESULTS: CONTROLLED COMPRESSION RATES 159

Figure 5.12: Comparisons of RFLS rate of change at 0-0.5, 1-2.5 and 2.5-4
minutes in samples containing different macromolecules.

Figure 5.13: Box and whisker plot showing the time required for RFLS to reach
500,000m−1 at later stages of compression, in the presence of different macro-
molecules. Samples were compared against RFLS of hydrogels within no addi-
tion of macromolecules.
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Figure 5.14: Time required for RFLS to reach 500,000m−1 in the presence of
macromolecules with different hydrodynamic size. This high RFLS reflects later
stage compression of the hydrogel.
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The time for resistance to fluid flow to reach 500,000m−1 (nominal RFLS

value all samples reached towards the end of compression) was measured

as an indication of the RFLS response at late stages of compression. Within

a plain hydrogel, the time for RFLS to reach 500,000m−1 was 24.2±3.6 min-

utes. The presence of dextran, PEG 400 and PEG 1000 increased the time

to 34.5±3.9, 41.3±4.7 and 43.2±4.3 minutes respectively; which meant that

the time for the FLS to acquire the same level of blockage was longer in the

presence of these macromolecules. This corresponded with the size of the

macromolecules, suggesting the mobility of the molecules within the hydrogel

affected the time it requires for RFLS build-up at the FLS (figure 5.14). Only

hydrogels containing Ficoll™ 400 decreased the time it took for RFLS to reach

the nominal end value to 18.0 ± 3.9 minutes (i.e. Ficoll containing gels were

completely compressed much sooner; figure 5.13). This may be a result of

ficoll effects on collagen fibrillogenesis described as molecular crowding agent

(Dewavrin et al., 2014) (Lareu et al., 2007)

Overall, the incorporation of large polymers were therefore found to be ef-

fective in slowing compression rates of blended gels, apparently by replac-

ing the mobile collagen molecules initially present within the standard, non-

blended hydrogels. Artificially added polymers (i.e. PEG) replaced the absent

monomer/oligomer collagen, and contributed to the blockage of the FLS. The

resultant filtration through the clogged FLS slowed compression rates (to cell

compatible levels) and shielded cells from damage during plastic compression

(figure 5.10).

It was found that compressive load was the primary determinant of fluid

efflux during initial stages of compression (Hadjipanayi et al., 2011a). However,

with further compression, FLS collagen density was linearly correlated with

RFLS where increases in hydraulic resistance resulted in decreased fluid efflux

rates.
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Anomalies within the trend for compression rates, against macromolecu-

lar size (hydrodynamic radius) was Ficoll™ 400. Due to its relatively small

hydrodynamic radius (∼ 10nm), it was predicted to have little or no effect on

compression rates. However, Ficoll™ 400 in fact caused an increase in com-

pression rates, compared to (control) gels without macromolecules, when in-

corporated into hydrogels. This was surprising because if it simply did not

contribute to the clogging effect at the FLS, the compression profile of the Fi-

coll™ containing gels should be similar to that of the plain collagen gel. The

increase in compression rates was therefore thought to be caused by a change

in the fibrillogenesis of the hydrogel (Dewavrin et al., 2014). Indeed, alteration

of fibrillogenesis by the added polymers was a possible factor in many cases,

especially where they are present at high levels.

This highlights the point that changes to the matrix will likely alter the re-

quirements, in terms of blocking agent size, for efficient FLS blockage (i.e. as

seen by the contradictory behaviour of Ficoll™ as a blocking agent, and the

highest levels of added polymers (20mg.ml-1)). Therefore there will be a need

to consider, and control, factors which alters fibril diameter; and consequently

interfibrillar spacing. Other factors discussed in chapter 1.4.3, including tem-

perature, ionic strength and pH during fibrillogenesis, are some of the factors

known to affect collagen matrix structure, and will need to be controlled for

constant matrix structures.

Since the aim of the study was to improve initial cell viability within fast

compressing hydrogels (i.e. to protect cells from damaging fluid shear stress),

PEG 400kDa was introduced into cellular fast-compressing hydrogel (blend

gel) for optimal reduction in initial compression rates. It was found that in the

absence of PEG 400kDa, a significant amount of cell death was observed

immediately following compression (reflected in the reduced total cell metabolic

activity detected from the samples). However, when PEG 400kDa was added
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to the blend hydrogel, cell viability remained close to 100%, similar to that of

the conventional hydrogels as observed through the level of total cell metabolic

activity detected from the gels after plastic compression.

This was the most important finding from this study, where it was found

that it was possible to reverse the effects of high initial compression

rates/fluid flow rates (as seen in polymeric collagen blend gels) by in-

corporating FLS clogging large macromolecules; and such interventions

was sufficient to protect interstitial cells from damage by reducing fluid

shear stress. This enabled the fabrication of tissue models, with increased

stiffness (provided by the pre-crosslinked polymeric collagen) and interstitial

cells (which will remain viable through the compression process).

This finding is significant in that it may also be applicable to other materials

based on a fibrous matrix as the sensitivity to cell damage under rapid fluid flow

is likely to be common to many protein materials with interstitial cell seeding.



Chapter 6

Results: Model of cell response to

drug delivery in nanoparticle cargo

6.1 Introduction

Targeted delivery of drugs are increasingly studied to improve efficacy (i.e.

lower drug dose and improve tissue response) of drug treatment, and reduce

systemic effects on non-target tissues/organs.

Nanoparticle drug carriers (and other carrier materials i.e. liposomes, poly-

meric micelles) can offer advantages such as:

• Targeted delivery (i.e. by selective attachment to cells, or by an enhanced

permeability and retention (EPR) effect)

• Time-controlled delivery

• Drug dosage control

• Minimise required dose for effect (reduce undesirable side-effects)

Nanoparticles used in cancer treatment, for example, are gaining popularity

due to the ‘enhanced permeability and retention effect (EPR)’ in highly vascu-

164
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larised tissues (i.e. tumors), which enhances nanoparticle-drug specificity to

cancerous tissues. Drug carrier can also often be produced with time-release

properties for a regulated and constant delivery of drugs to the tissue over time

(see (Vllasaliu and Singh, 2014) for a review of the characteristics of nanopar-

ticles used in drug delivery systems).

Here, compressed collagen hydrogel is used as a 3D in vitro model to study

the effects of drug delivery (as a nanoparticle cargo) on cells; more specifically,

the stimulation of growth factor production. This model will test hyaluronic acid

nanoparticles (HA-NP) as a biomaterial carrier for the delivery of drugs.

The objective is to study the delivery of the nanoparticle cargo into the

model tissue, and later to study cell response (i.e. growth factor production) to

drug (i.e. simvastatin) delivered to the tissue in hyaluronan nanoparticles (HA-

NP). The study will include information on the retention of the nanoparticle in

the model tissue, the effect of the NP biomaterial, and drug-cargo on local cells.

Subsequently the amount of BMP2 produced in the presence of Simvastatin

was measured using ELISA assays to quantify BMP2 protein in the cell matrix

and culture media.

6.1.1 Hyaluronan-nanoparticles (HA-NP) for drug delivery

Hyaluronic acid (HA; or hyaluronan) is a linear, high molecular weight polysac-

charide made of repeating units of N-acetyl-D-glucosamine and D-glucuronic

acid. This glucosaminoglycan is a major component of the ECM, and is impor-

tant in cell adhesion to the ECM amongst other cell functions. Cell receptors

such as CD44 recognises and interacts with HA (Kim et al., 2008); which is

incidentally over-expressed in some cancer cells, making HA an attractive ma-

terial for targeted drug-delivery.

Cross-linked HA has been shown to be good carrier of drugs and proteins
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(such as growth factors) in different tissue models (i.e. bone (Bae et al., 2011),

cartilage (Ramesh et al., 2014)). Cross-linking of HA is often necessary to

reduce its rate of dissociation/degradation and resorption because their natural

turn-over rate can be very short (hours to days; depending on the tissue type).

Here, a fluorescent hyaluronan-nanoparticle (HA-NP) drug carrier material

is tested for drug-delivery efficacy, and cell response (triggered by these drugs)

within plastically compressed collagen hydrogels (i.e. the tissue model). These

HA-NP carriers are developed and supplied by a group in Uppsala university;

with the HA-NP particles without the drug cargo (i.e. empty HA-NP particles;

average of 485.3nm diameter) supplied by D. Ossipov; and HA-NP containing

9% (w/w) simvastatin cargo supplied by O. Varghese (average 680nm diame-

ter).

The HA-NP material is formed by functionalising the HA molecule with thiol

and hydrazide groups. Cross-linking between the hydrazide functional group,

and an aldehyde group in an adjacent HA molecule, led to the formation of a

hydrozone network/hydrogel (Varghese et al., 2009). This hydrogel (with a 2%

solid content) can be formed within 30 seconds. A hydrophobic cargo (which

is necessary for later stages of nanoparticle assembly), such as the fluores-

cent marker (fluorescein isothiocyanate; FITC) or pyrene (an aromatic hydro-

carbon), is cross-linked to the hydrogel via thiol groups (Ossipov et al., 2010)

(Yang et al., 2011). For the material to form nanoparticles, the hydrogel must

be enzymatically digested into smaller units by hyaluronidase. Nanoparticles

then form by hydrophobic interaction, with the cargo now on the interior of the

nanoparticle surrounded by a HA shell (which can be cross-linked to improve

stability). Previous reports have shown that aromatic durgs (i.e. doxirubicin)

can be incorporated into the HA-NP by electrostatic or hydrophobic associa-

tion/aromatic stacking of the nanoparticle pyrene cores (process depending on

the electrostatic charge on the drug) (Yang et al., 2011). The resultant HA-
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NP is then sized by dynamic light scattering (DLS) or SEM imaging, and are

lyophilised for storage.

6.1.2 Simvastatin HA-NP and BMP2 production

Simvastatin is a drug (prodrug) currently used to lower blood concentrations

of low-density lipoproteins (bad cholesterol) and triglycerides. When hydrol-

ysed into its active form (β-hydroxuacid/simvastatin acid) (Aarthy et al., 2014),

it functions by inhibiting the enzyme 3-hydroxy-3-methylglutaryl Coenzyme A

(HMG-CoA) reductase (Garrett and Mundy, 2002).

Interestingly though, the drug also appeared to increase bone mineral den-

sity and turnover (among other side-effects such as muscle myopathy) in pa-

tients (Montagnani et al., 2003) (Maritz et al., 2001), through the production of

BMP-2 (Mundy et al., 1999) (Garrett and Mundy, 2002).

The growth factor, Bone morphogenic protein (BMP)-2, is known to be os-

teoinductive and enhances bone formation and repair. Prolonged exposure

to BMP-2 led to bone-like structure formation with associated increase in os-

teoblast differentiation and improved mineralisation of constructs (Kisiel et al.,

2013). However, in systems where BMP-2 are not natrually produced (or are

in insufficient quantities), the growth factor must be administered frequently for

optimal bone-like formations. This mode of administration (i.e. directly via the

culture media (in vitro), or systemically (in vivo)) is less efficient, meaning ex-

cess growth factors are needed for therapeutic concentrations of BMP-2 within

the scaffold. Potential issues for the above method are:

• Cost

• High dosage

• Potentially uneven exposure of in vitro scaffolds to BMP-2 if construct not
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permeable

• Scaffolds potentially exposed to cyclical BMP-2 concentrations over time

(peak at each administration, with BMP-2 subsequently used up/degraded

before next dose)

New methods of nanoparticle (NP) preparation (mentioned in section 6.1.1

above; Uppsala University) means that aromatic drugs, such as Simvastatin,

can be loaded within nanoparticles made from the natural protein - hyaluronic

acid. These HA-NP can then be incorporated into the bone-like scaffold for

slow and sustained release of drugs; in effect, used as an indirect method of

BMP-2 delivery within the scaffold (i.e. BMP-2 produced when simvastatin is

gradually released as the HA-NP degrades).

Local administration of the drug (in NP format) potentially lowers the dose

required to generate significant osteogenic properties. Additionally, the sus-

tained levels of BMP-2 contact with bone-scaffolds may be more represen-

tative of the in vivo environmental BMP-2. This may provide a better model

for testing the efficiency of bone scaffold materials as an in vitro model. The

osteogenic cells can then mineralise the scaffold to generate a bone-like struc-

ture. It is postulated that extended and sustained BMP-2 contact with cells

will improve speed, and extent of mineralisation (and eventually calcification),

of bone-scaffolds compared to manually administering BMP-2 growth factors.

However, this is outside the scope of this study, as the NP are tested as a po-

tential delivery method for drugs. The aim here is to monitor cell activity via the

level of growth factor produced within these model tissues.

It is hypothesised that HA-NP will be retained by the tissue model during

plastic compression (based on previous work by Tan (2015); which found a

19% retention of HA-NP after plastic compression), which can be improved

by alterations of the compression process/hydrogel; also that the HA-NP-S
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(with simvastatin cargo) will lead to BMP-2 production by resident bone-derived

cells. Importantly, it is hypothesised that the ‘single-dose’ of HA-NP-S will grad-

ually and sustainably release simvastatin within the scaffold, which will stimu-

late a steady level of BMP-2 production over time.

6.2 Methods

Methods listed below are specific to this study. Further methods common to

studies throughout the thesis are listed in Chapter 2.

6.2.1 HA-NP preparation for use

Two different hyaluronan-nanoparticle (HA-NP) formulations were used. For

initial studies, lyophilised HA-NP (485.3nm diameter) was prepared and pro-

vided by D.Ossipov from Uppsala University. Subsequent functional studies of

NP within compressed collagen hydrogels was carried out using HA-NP con-

taining a ‘cargo’ of simvastatin drug (HA-NP-S) (9% (w/w) of material mass;

680nm diameter), which was provided by O.Podiyan of Uppsala University. All

NP were conjugated with fluorescein isothiocyante (FITC), which enabled de-

tection through their fluorescence.

Lyophilised HA-NP material were stored at 4 °c in the dark (within a dissica-

tor). Prior to use, HA-NP were re-suspended in sterile filtered deionised water,

to give a concentration of 1mg.ml-1. A rolling machine (at 37°c; dry incubator)

was used to disperse NP evenly in solution (for 30 minutes). Immediately prior

to use, the NP solution was mixed gently by inverting the container.
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6.2.2 Cells

Human osteosarcoma cell-line (MG63 cells) were cultured in 1000mg glucose

Dulbecco’s modified Eagle’s medium (DMEM; Sigma, UK), supplemented with

10% (v/v) fetal calf serum (FCS; First Link, UK) and 1% penicillin streptomycin

(Gibco Life Technologies, UK).

To transfer cells into collagen hydrogels (for the creation of cellular tissue

models), detached cells were counted and suspended in a known amount of

supplemented DMEM, and incorporated into neutralised (HA-NP containing)

collagen solution as described below.

6.2.3 Collagen constructs containing HA-NP

Methods for incorporating HA-NP into collagen hydrogels was based on that

described by Tan (2015).

Acellular collagen hydrogels were produced by neutralising 80% (v/v) acid

soluble collagen (2mg.ml-1) and 10% 10xMEM using 5M and 1M NaOH. 10%

(v/v) 1mg.ml-1 HA-NP particles in sterile deionised water were added to the

neutralised collagen solution. The final concentration of HA-NP within the col-

lagen solution was 0.1mg.ml-1.

1ml samples of the HA-NP-collagen solution were set in 24-well plates by

incubation in 37 °c, 5% CO2 for 30 minutes.

Cellular gels were produced similarly with a further 10% of the acid-soluble

collagen being substituted for cells (500,000 cells.ml-1 of hydrogel) suspended

in DMEM.

The resultant hydrogels were plastically compressed within their wells using

upward flow compression described in section 2.4.



CHAPTER 6. RESULTS: DRUG DELIVERY MODEL 171

6.2.4 Detection of HA-NP from gels

Readings of fluorescence intensity have previously been found to reliably quan-

tify concentrations of HA-NP (Tan, 2015, p.80).

Collagen samples were digested with 0.2% collagenase-I (Gibco, USA) at

37 °c for 20-40 minutes to release fluorescent HA-NP nanoparticles from the

collagen matrix. Samples were either measured for fluorescence (fitc conju-

gated to the HA-NP nanoparticles) on a fluorescence spectrometer (Perkin-

Elmer LS50B; 3ml samples in a cuvette) at an excitation and emission wave-

length of 495nm and 520nm respectively; or when specified, on a microplate

reader (Infinite M200Pro; Tecan) at excitation and emission wavelengths of

485nm and 535nm.

6.2.5 Improving HA-NP retention within compressed hydro-

gel constructs

Nanoparticle retention in the ‘porous’ hydrogels during plastic compression

had been previously found to be at 19% (Tan, 2015). This was thought to

be due to their small size relative to interfibrillar pores, allowing outflow of

nanoparticles from the hydrogel.

In order to improve retention of HA-NP nanoparticles, and hence efficiency

of nanoparticle delivery into the tissue model, changes to the collagen matrix,

nanoparticle solution (non-chemical changes) or the plastic compression pro-

cess were studied for their effectiveness in improving NP retention. Details of

the test variables are listed below.
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Changes to the collagen hydrogel

• Gelling temperature of 4°c (instead of 37°c) was likely to result in a

collagen matrix made of thicker fibrils (Christiansen et al., 2000). It was

hypothesised that the matrix formed at 4°c will decrease the extent of

nanoparticle outflow by providing an improved filter for small particles

(i.e. HA-NP) during plastic compression.

For this study, HA-NP containing hydrogels were produced as described

in the methods section above, except hydrogels were incubated for 24

hours in 4°c.

• Incubation environment can potentially affect fibrillogenesis and matrix

architecture due to pH changes (although buffers are found in the MEM

solution). Hydrogels were routinely incubated in 5% CO2 during fibril-

logenesis. CO2 solubilisation can lead to a slight reduction in pH as it

dissociates in solution into H+ and HCO3
-. To test if this change in pH

within the hydrogel will affect hydrogel matrix structure (and hence HA-

NP retention), samples were incubated at atmosphereic CO2 levels at

37°c.

• Density of the collagen solution used in standard hydrogels was origi-

nally 2mg.ml-1. 6mg.ml-1 (type-I atelocollagen; Collagen Solutions) was

used in this test to increase collagen density, and reduce interfibrillar

space between fibrils. It was hypothesised that the increased collagen

matrix density will produce a greater filtration effect at the FLS during

plastic compression, and lead to a greater proportion of HA-NP retention

within the compressed gel.

• Presence of macromolecules was found in chapter 5 to control plastic

compression rates of hydrogels by increasing the filtration effect at the
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FLS. 400kDa poly(ethylene) glycol (PEG) dispersed in water was added

(10% of the total hydrogel volume; final concentration of PEG at 1mg.ml-1)

to a neutralised solution of type-I collagen (70% (v/v)), 10% (v/v) 10xMEM

and 10% (v/v) HA-NP solution. For direct comparisons, control hydrogels

were produced by substituting the PEG solution with deionised water.

Changes to the compression process

• Plunger material with different densities and fluid absorption rates was

tested to see if this affected nanoparticle retention. Plant fibre plungers

(TAP Biosystems, UK) were cut to 4 cm cylinders, and used in place

of the paper plungers from the standard compression protocol (made of

Whatman grade-I chromatography paper).

• 0.22µm filter discs (Millipore, UK) were used in place of Whatman paper

to separate the hydrogel and the plunger. Paper discs in the compression

setup was in direct contact with the hydrogel during compression, so the

addition of a fine filter layer between the hydrogel and the plunger was

thought to potentially contribute to the filtration effect (on top of the effect

observed at the FLS).

Changes to the HA-NP solution

• Nanoparticle size of HA-NP-S (with simvastatin cargo) was compacted

during treatment in a basic solution. Briefly, lyophylised HA-NP-S was

suspended in a solution of PBS (1mg.ml-1) already brought to pH12 by

addition of NaOH. After 30 minutes on a rolling machine, 0.2M HCl was

used to neutralised the solution. The 30 minute treatment in a pH12

buffer altered the nanoparticle diameter, and compacted the nanoparti-

cle to ∼200-250 nm. Samples containing the larger non-pH12 treated
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HA-NP-S (680nm diameter) were used as direct comparisons. Reten-

tion of the nanoparticles was thought to be affected by the nanoparticle

diameter, and larger nanoparticles was hypothesised to have improved

nanoparticle retention within the compressed gel.

6.2.6 Cellular HA-NP-S drug cargo containing constructs

Constructs containing HA-NP-S nanoparticles, with simvastatin drug cargo,

were produced as described for cellular hydrogels above. Each 1ml construct

contained 500,000 MG63 cells (passage 9-14). Construct were cultured in

1ml supplimented DMEM at 37 °c and 5% CO2 for up to 14 days. The cul-

ture media were collected (snap frozen in liquid nitrogen and stored at -80°c)

and replaced every 2 days. For studies of BMP2 trapping within the tissue-like

constructs, collagen gel samples were snap frozen separately from the cul-

ture media samples and were stored at -80°c. Prior to the ELISA assay, the

compressed collagen samples were homogenised and suspended in 1ml PBS.

6.2.7 ELISA assays for BMP2

A sandwich ELISA assay (Quantikine BMP2 assay; R&D Systems) was used

to detect and quantify the levels of BMP2 proteins trapped within the collagen

construct, or released into the surrounding culture media over time. The assay

was carried out as per the manufacturer’s instructions. All additional materials

required for the ELISA assay were obtained from the DuoSet ELISA ancillary

reagent kit (R&D Systems). All steps were carried out at room temperature

with a washing step between each reagent (3 washes with a wash buffer made

of 0.05 % Tween®20 diluted in water).

Briefly, 96-well plates were prepared by coating the wells with 100µl BMP2

capture antibody (1µg/ml; in PBS) overnight. All wells were then emptied and
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washed before 300µl of 1% bovine serum albumin (BSA) was added to each

well as a blocking reagent.

Samples (culture media or homogenised collagen construct in PBS; 100 µl

per well) were added to the wells for 2 hours. The wells were washed before

100µl BMP2 detection antibody (1µg/ml in 1% BSA) was added to each wells

for incubation (2 hours).

In the dark, working concentrations of streptavidin-HRP (100µl; diluted in

1% BSA) was added to each washed well for 20 minutes. Wells were then

washed and treated with equal volumes of hydrogen peroxide and tetramethyl-

bezidine (total volume of 100µl per well) for 20 minutes to develop colour (which

can be detected on a plate reader) in reaction to the horse radish peroxidase

(HRP) molecule from the previous step. Finally, without emptying and washing

the wells, an additional 50µl of stop solution (sulphuric acid) was added to stop

further colour development.

Plates were immediately measured on a microplate reader (Infinite M200Pro,

Tecan) at a wavelength of 450nm (with wavelength correction at 540nm).

BMP-2 standard curves were produced using serial dilutions of the BMP-2

protein from initial concentrations of 3000pg/ml (in 1% BSA). The BMP-2 solu-

tions (at 3000, 1500, 750, 375, 188, 93.8, 46.9 and 0 pg/ml) were plated in the

extreme right and left columns on each plate together with the samples. Each

well is subsequently processed and measured as described above. The read-

ings were plotted against BMP-2 concentration in order to obtain a standard

curve for each plate.

6.2.8 Statistics

One-way ANOVA was used to compare data on HA-NP retention using different

interventions. For all other experiments, an independent sample t-test was
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used to test for statistical significance. Confidence intervals were set at p ≤

0.05.

6.3 Results

Preparation of HA-NP and HA-NP-S involved dissolving lyophilised pellets of

the nanoparticles in deionised water to form a bright yellow solution of known

concentrations (i.e. 1mg.ml-1). Hydrogels were produced as described sec-

tion 6.2 above. The resultant hydrogels were visibly yellow-orange in colour

(instead of fuchsia pink), which gelled within 30 minutes when incubated at

37°c.

6.3.1 Retention of HA-NP within constructs after plastic com-

pression

The first step in producing the tissue model with nanoparticles is to establish

the presence and retention of HA-NP nanoparticles within the hydrogels during

plastic compression.

As an example, in one set of experiment quantifying the retention of HA-NP

after compression, the uncompressed hydrogel was found to have an average

fluorescence intensity of 154.64 ± 26.54 arbitrary units (a.u.) in solution after

the hydrogel was digested in collagenase. As seen in figure 6.1, this dropped

to 17.70 ± 1.01 a.u. after plastic compression (p= 0.001).

The average percentage of HA-NP retention within the hydrogel after the

plastic compression process was therefore:
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% HA-NP retained within gel =
fluorescence within compressed gel

fluorescence within uncompressed gel
x 100

=
17.70

154.64
x 100

= 11.4 %

Repeats of this experiment set showed that HA-NP retention ranged be-

tween 10.1 ± 1.7 and 16.6 ± 1.2 % after plastic compression. The overall

average percentage retention of HA-NP nanoparticles was 13.5 ± 1.5%, which

was used as the baseline retention of HA-NP to asses the effectiveness of in-

terventions used to increase nanoparticle retention within the hydrogel (unless

otherwise stated).

Figure 6.1: Average fluorescence intensity of fitc conjugated HA-NP within
hydrogels, before and after plastic compression. Prior to fluorescence mea-
surement, all hydrogels were digested in 1ml type-I collagenase. Volume of
digested compressed gels were adjusted prior to measurements to account
for the water lost during compression.
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6.3.2 Attempts to improve HA-NP retention within compressed

gels

Plastic compression was a key process in producing collagen constructs with

physiological ECM density. However, the high rate of HA-NP loss from the

hydrogel during compression was not desirable, especially when materials dif-

ficult to synthesise or isolate were used. To improve HA-NP retention within the

compressed collagen hydrogel, various adaptations of the methods regarding

the compression process, the hydrogel composition (structural and chemical)

and the HA-NP solution were tested.

Changes to compression setting

Changes to the plunger material did not result in any changes to HA-NP re-

tention within the compressed hydrogel (p= 0.549). However the replacement

of paper discs with 0.22µm filter discs between the hydrogel and plunger ap-

peared to have a small, but significant (p= 0.027) effect on HA-NP retention

during plastic compression; which increased from 13.5 ± 1.5 % to 20.1 ± 2.8

% (figure 6.2).

Figure 6.2: Average percentage retention of HA-NP after plastic compres-
sion of hydrogels with changes to the compression process. The use of fibre
plungers did not affect the amount of HA-NP trapped within the gel. But placing
0.22µm filter discs between the hydrogel and plunger successfully increased
HA-NP retention by about 7% (p=0.027).
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Changes to hydrogel

Changes in gelling conditions such as temperature and environmental CO2

concentrations did not result in a significant increase in HA-NP retention (p=

0.269 and p= 0.211 respectively; figure 6.3). However, a 2.5-fold increased

HA-NP retention (from 13.5 ± 1.5 % to 33.5 ± 12.7 %) was observed when the

density of the starting collagen material was increased from 2mg to 6mg (p ≤

0.001).

Figure 6.3: Average percentage retention of HA-NP after plastic compression
with variables in the collagen hydrogel or fibrillogenesis conditions. Hydrogels
set in atmospheric CO2 and 4 °c did not improve HA-NP retention. However,
increased collagen density improved HA-NP retention (p≤0.001).
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Figure 6.4: Average percentage retention of HA-NP within the compressed
hydrogel, with or without PEG 400kDa incorporation. No significant differences
were observed between either sample group (p=0.448).

Contrary to expectation, the incorporation of PEG 400kDa did not signifi-

cantly increase nanoparticle retention within hydrogels during plastic compres-

sion (p=0.448). The variability within the sample group was high, with HA-NP

retention averaging 14.4 ± 7.6 % in samples without PEG,and 16.7 ± 13.3 %

in samples with PEG incorporation (figure 6.4).

Changes to HA-NP solution

HA-NP size also had an effect on the retention within the compressed gel. HA-

NP-S (with simvastatin cargo; 680nm diameter) had improved retention rates

(41.6%) compared to ‘empty’ HA-NP particles (p≤ 0.001). The trapping rates

of HA-NP-S were also significantly higher, compared to their smaller, pH12

treated HA-NP-S counterparts at 35.4% (200-250nm diameter; p=0.005; figure

6.5).
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Figure 6.5: Average percentage retention of HA-NP-S, dissolved in pH7 or
pH12 solutions, after plastic compression. pH12 treatment for 30 minutes led
to alterations in the nanoparticle diameter and reduced retention of the com-
pacted HA-NP-S within the hydrogel.

6.3.3 BMP2 production within tissue model

Measurements from the ELISA assay was converted into BMP2 protein con-

centration using a standard curve with a line of best fit across, where recombi-

nant BMP2 of known concentration were plotted against spectrometer readings

(separate for each plate) (for an example see figure 6.6a).
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(a) BMP2 standard graph against
spectrometer readings

(b) Samples tested for BMP2 protein using the ELISA assay

Figure 6.6: Samples with or without HA-NP-S biomaterial were tested for
BMP2 protein levels within the collagen tissue model construct, and the sur-
rounding culture media using an ELISA assay. a) an example of the standard
graph of BMP2 concentration against readings on the plate reader, b) amount
of BMP2 detected from samples over 9 days in culture.
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Initial studies have found that no BMP2 was detected in either the media

or constructs of control samples only containing MG63 cells (figure 6.6b). Im-

portantly, a steady amount of BMP2 was detected from within the HA-NP-S

containing constructs, and culture media from days 5 and 9 respectively. Since

simvastatin and BMP2 were known to have a very short half-lives (2 hours;

(Aarthy et al., 2014)), the presence of the protein suggests the BMP2 was

produced as the simvastatin was being slowly being released by the HA-NP.

However further repeats of the experiment did not yield consistent results,

with some BMP2 protein detected from samples containing HA-NP-S, or con-

trol samples with MG63 cells only (figure 6.7).

Figure 6.7: ELISA assay results for the BMP2 protein over 14 days in cul-
ture. This set of experiment was a repeat of that seen in figure 6.6. Results
were however, not reproducible, with an extremely low amount of BMP2 pro-
tein detected from the culture media of both control and HA-NP-S containing
samples.
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6.4 Discussion

The efficiency of HA-NP entrapment within the hydrogel after plastic compres-

sion varied between 10.1 and 16.6%, with on average 13.5 ± 1.5 % HA-NP

remaining within the collagen construct after plastic compression. This was a

few percentage less than the average observed by Tan (2015) (19% HA-NP

retention).

Attempts to improve the low retention rates of HA-NP in this study included

changes to the collagen hydrogel fibrillogenesis conditions (i.e. pH (via CO2),

temperature), and therefore the collagen matrix architecture, to create hydro-

gels with an increased capacity to physically increase blockage to fluid and

small particle (i.e. HA-NP) outflow. Both the lowered gelation temperature,

and changes in environmental CO2 levels did not results in changes to the

hydrogel HA-NP trapping efficiency.

The incorporation of large mobile macromolecules (i.e. molecules that do

not bind to the collagen matrix) was previously found (in chapter 5) to increase

the filtration effect on fluids attempting to leave the hydrogel through the FLS.

Although the incorporation of PEG 400kDa was hypothesised to increased HA-

NP entrapment within the hydrogel, this was not found to be the case, as sam-

ples with, or without, PEG resulted in a similar HA-NP retention of 14.4 ± 7.6

% and 16.7 ± 13.3% respectively (p=0.448). However, note that the variation

(standard deviation) within the results in PEG containing samples was high,

which suggests that the incorporation of PEG may be efficient in increasing

retention of HA-NP in at least some samples. However, why this result did not

extent to all samples was unclear. Perhaps, the sensitivity of the hydrogel to

gelling conditions, affected the matrix architecture in some samples, altering

the extent of interfibrillar ‘pore’ blockage by the PEG 400kDa, allowing HA-NP

escape in some cases.
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The increase in initial collagen density from 2mg.ml-1 to 6mg.ml-1 improved

HA-NP retention. This effect was likely due to an increased blockage at the

FLS by tightly packing fibrils, and resulted in limited fluid and molecule outflow

rates. In this case, HA-NP retention increased from 13.5% to 33.5% with the

increase in collagen density of the hydrogel. Other factors (other than colla-

gen density of the solution) may also contribute to this increased NP retention.

For example, here the 6mg.ml-1 collagen solution was made up of atelocolla-

gen (instead of tropocollagen used in the 2mg.ml-1). The difference between

both types of collagen molecules lie in the presence (or absence) of a short

protein segment (telopeptide) on both terminals of the collagen molecule. Col-

lagens without this telopeptide will aggregate less readily with adjacent colla-

gen molecules (Brennan and Davison, 1981), meaning more collagen will be

mobile, and available to clog the FLS at the time of compression - potentially

enhancing HA-NP retention. The hydrogels made from 6mg.ml-1 also had an

increased overall thickness, suggesting that a proportion of the HA-NP may

be retained ‘passively’ through the increase in overall volume, and not solely

through physical entrapment between the interfibrillar space. A combination

of the above factors has likely contributed to the increased HA-NP retention

observed in samples containing increased collagen density.

Interventions with a positive effect on HA-NP retention also included the

alteration of the HA-NP biomaterial size, where HA-NP with a diameter of 680

nm or ∼200-250 nm were retained at a rate of 41.6% and 35.4% respectively

(p=0.005); showing that significantly more large HA-NP material was retained.

The changes in NP size was brought about by incorporating a drug (simvas-

tatin) cargo, or by chemical rearrangement and compaction of the HA-NP par-

ticles at pH12.

The effect of particle size and mobility within the collagen hydrogel has

previously been discussed in chapter 5, where it was concluded that small
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molecules below a critical size, measured according to the amount of space

between collagen fibrils within the matrix, were freely mobile (until it reached

the FLS). Larger particles however may become trapped in between the col-

lagen fibrils, and remain within the hydrogel; as demonstrated by (Hadjipanayi

et al., 2011a).

All HA-NP biomaterials were within the range of 200-680nm, which was

at least 10 times larger in size than the macromolecule hydrodynamic radius

discussed in chapter 5, meaning in theory, most HA-NP should remain trapped

within the collagen matrix during plastic compression. However contrary to this

expectation, most HA-NP were lost to fluid flow during plastic compression.

Potential reasons for this discrepancy include erroneous estimation of in-

terfibrillar pore size, or nanoparticle size. The collagen matrix pore size have

previously been estimated to be ∼30nm through imaging (visual estimation);

additionally, macromolecules at this size range affected plastic compression

rates, and so at least some blockage of the interfibrillar ‘pores’ was achieved

using macromolecule measuring ∼25nm (hydrodynamic radius). HA-NP size,

on the other hand, was measured using either dynamic light scattering or vi-

sually through the scanning electron microscope, both being reliable methods

to size nanoparticles. Therefore other reasons are more likely to be behind

the low retention rates of the nanoparticles, and may lie in the nanoparticle

surface charge and surface chemistry (Vllasaliu and Singh, 2014); although

further tests will be necessary to determine HA-NP surface charge and sur-

face chemistry characteristics.

Another paradox observed in this study, which may be attributed to the HA-

NP chemistry was the improved trapping efficientcy of the compacted (pH12

treated; ∼200-250nm diameter) HA-NP-S compared to ‘empty’ HA-NP carriers

(486nm diameter).

Nevertheless, HA-NP was highly mobile within the hydrogel model, and
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escaped the construct with the fluid flow. The implication of this high mobility

identified using this model suggest a high potential for the biomaterial to travel

through the systemic system when implanted in vivo. The systemic effects of

nanoparticles will therefore be especially important, and require further study

to determine safety and biomaterial fate of the biomaterial over time in vivo.

Especially when the HA material can be taken up by binding to cell-surface

receptors, such as CD44 (Xian Xu, 2012). Other responses in vivo to HA also

included the mediation of inflammatory responses (i.e. inhibit macrophage

migration and aggregation (Laurent and Fraser, 1992)), to name a few.

The concentration of HA-NP-S within the hydrogel was 0.1mg.ml-1, with 9%

(w/w) of the particle composed of the simvastatin drug cargo; therefore:

Concentration of simvastatin within the hydrogel =
0.1

100
x 9

= 0.009

= 0.009mg.ml-1

This concentration of simvastatin in comparison with other systems for sim-

vastatin delivery was comparitively low. For example, a study also using HA

material (hydrogel) to delivery simvastatin found that 1mg (rather than 0.1mg)

simvastatin resulted in osteogenesis in vivo when bone defects were studied

using x-ray radiography (Bae et al., 2011). However, the release rates of the

simvastatin should also be taken into consideration as about 30% of the drug

carried with in the hydrogel was released as an initial burst leaving less drug for

subsequent sustained release in culture. However, targeted delivery systems,

in theory, should require less drugs-dose for the required therapeutic effect,

therefore an initial concentration of 0.009mg.ml-1 was a good starting point for

screening effects of drug-doses. In vitro tissue models can eventually be used
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to look at dosing of drug for optimum BMP-2 production and eventual bone

production.

The main hypothesis this model was set out to test was the delivery of

simvastatin, via HA-NP-S particles, to induce a sustained level of BMP2 protein

production. BMP2 protein was detected from HA-NP-S containing constructs

in initial ELISA studies. The first sign of BMP2 production was observed at day

5, at an average concentration of 24pg.ml-1 (figure 6.6). This level of BMP2

within the construct was maintained until the end of the experiment at day 9.

By this time, BMP2 was also detected from the surrounding culture media at

a concentration of 36 pg.ml-1. It was important to note that BMP2 was only

detected in samples containing HA-NP-S particles; and not control hydrogels.

Results suggest that BMP2 protein detected at day 5 was triggered by the

release of the simvastatin drug cargo from the HA-NP-S within the construct.

MG63 cells were then stimulated to produce BMP2, which diffuses out of the

construct (into the culture media) with time. The fact that a BMP2 was con-

tinuously detected within the construct between days 5 and 9 suggests that

the simvastatin was released gradually over time from their HA-NP carrier, be-

cause simvastatin has a half-life of ∼2 hours (Aarthy et al., 2014).

However, subsequent repeats of the experiment were not able to reproduce

results; for example BMP2 was detected within the HA-NP-S constructs at day

6 and 14, but only at extremely small quantities, suggesting the BMP2 detected

may be background ‘noise’ from the ELISA assay.

Nevertheless, the differences between experiments meant that the results

of growth factor production in response to the delivery of drug was inconclu-

sive; and the hypothesis cannot be proven at this stage. It was not possible to

rule out batch variances of the HA-NP-S material as the cause of the variable

results. However other possibilities for the lack of BMP2 production in sub-

sequent experiments include variation in cell activity, variation in simvastatin
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availability (i.e. amount of simvastatin delivered within the HA-NP, or released

by the nanoparticle over time); or the interaction between the BMP2 and col-

lagen proteins which may render it unavailable to the sandwich-ELISA assay.

This model may also be over simplified (environment may need more bone-like

features i.e. hydroxyapatite, increased stiffness, topography, etc.), and so did

not efficiently stimulate MG63 cell production of BMP2.

A review of the delivery methods of simvastatin and BMP2 protein can be

found by Aarthy et al. (2014) and Anderson and Shive (1997). Durg delivery

using fitc-containing silk NP (further trapped within a silk based hydrogel) had

demonstrated a similar constant release of drugs over several days (at ear-

lier time points) (Numata et al., 2012) (Numata and Kaplan, 2010). Although

degradation of the hydrogel led to an initial burst release of the trapped mate-

rial within the first hour, the NP was then released gradually, and constantly,

over 5 days. In the study involving HA-NP here, a burst release of the delivery

drugs was not likely (although not conclusive),as no initial BMP2 was detected

from either the hydrogel and surrounding culture media.

In vivo, the action of statins appear to promote osteogenesis (osteoblast

differentiation), inhibit osteoblast apoptosis and suppress osteoclastgenesis

via molecules such as farnesyl pyrophosphate (FPP), which affects expression

of BMP2 and Runx2 downstream (Ruan et al., 2012).

Further studies will be necessary to test whether this model was able to

elicit a response representative of the in vivo environment, when simvastatin

was administered locally. The development of a ‘non-invasive/non-end-point’

imaging method to track nanoparticle distribution in vitro will be beneficial for

studying drug delivery and their localised therapeutic effects (Ricketts et al.,

2014).



Chapter 7

Results: In vitro tissue model for

biomaterial fate

7.1 Introduction

Biomaterials implanted into the body are usually remodeled (natural materi-

als) or replaced by cell-produced ECM (synthetic biomaterials) over time. As

discussed in section 1.3.3, synthetic biomaterials are commonly used as im-

plant materials due to the ease of manipulation of the construct mechanical

properties and physical features. However, since these implant materials are

not natural to the human body, the effect of the biomaterial or its degradation

products at the implant site may not be completely clear, and may influence

the eventual implant success; particularly when the effect of the biomaterial on

cells resident at the implant site is not always fully understood.

The role of an implanted biomaterial can range from a supporting scaffold

for cell culture, to the delivery of drugs or other bioactive molecules. The rate

of material degradation therefore affects the functional aspects of the material

(i.e. material integrity, release rates of the bioactive molecules). This makes

the understanding of material degradation rate a main target (especially in the

190
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long-term) in biomaterial testing.

The ability to define and control biomaterial degradation rate is especially

important, when the success of the tissue replacement depend on closely

matched biomaterial degradation and cell-produced ECM deposition rates within

the construct. 2D in vitro assays are commonly used to assess biomaterial

degradation rates, but as previously discussed (see section 1.3.2), they may

not always reflect in vivo conditions. Animal models on the other hand often

only provide the partial picture of material degradation, owing to the lack of

material (and surrounding tissue) accessibility during the culture period. An

accessible model tissue is therefore required for real-time biomaterial assays

within a physiological tissue-like environment.

Here, a dense ECM-like structure (plastically compressed collagen hydro-

gel) is formed with encased cells and biomaterials; used to assess the material

in an in vitro tissue-like model. Cell involvement in the fate/destination of the

biomaterial over time will also be studied. A fluorescent PLGA biomaterial (fur-

ther discussed below) is used in conjunction within the compressed hydrogel

model to track biomaterial degradation rates, and biomaterial fate with culture.

7.1.1 Degradation of biomaterials

Degradation of biomaterials can be defined as the “molecular change due

to chemical chain scission within a polymer chain” (Yildirimer and Seifalian,

2014).

One of the current challenges is to precisely measure and control bioma-

terial degradation within a tissue environment. Cells within the scaffold need

to remain physically supported to encourage cell-matrix interactions leading to

the biosynthesis of the ‘new’ ECM (ideally with associated ECM components

and tissue response in the correct sequence i.e. collagen synthesis, inflam-



CHAPTER 7. RESULTS: TISSUE MODEL FOR BIOMATERIAL FATE 192

mation, angiogenesis and innervation). It is also essential to evaluate each

component/degradation product of the biomaterial to ensure safety on cells

and tissues.

Degradation rates of biomaterials can be affected by external conditions

such as temperature, pH and fluid dynamics around the biomaterial; but also

the intrinsic properties of the material, such as the surface area of the construct

exposed to degradation (directly influenced by construct dimensions, pore size,

porosity and overall design). Additionally, the chemistry of the biomaterial (i.e.

hydrophilicity/hydrophobicity, mode of degradation (erosion, enzymatic, hydrol-

ysis, etc.) also have a major role in determining material degradation rates.

Therefore, biomaterial degradation rates can vary from hours (e.g. hyaluronic

acid (Laurent and Fraser, 1992)) to years (e.g. silk (Cao and Wang, 2009)).

Many biomaterials are designed with multi-functionality to support both tis-

sue structure, and to deliver cells and biologically active molecules (such as

drugs, growth factors, cytokines, genes) within a biodegradable matrix. The

ability to modulate the release kinetics of these bioactive factors is important

for the tissue to adapt to their new environment and gain function over time

(Chen et al., 2011).

Changes to implanted biomaterials and surrounding tissue with time may

include:

• Degradation of material

• ECM production and remodeling of existing tissue matrix by resident cells

• Changes to material physical properties (i.e. dimensions, porosity)

• Fate/destination of degraded products (i.e. uptake by cells, resorption or

remain in surrounding tissue)

In the current tissue model of material degradation, a simple reductionist
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matrix made of collagen (type-I) with physiological density and interstitial cells,

is used to study biomaterial degradation rates.

7.1.2 Biomaterial tested in current model: what is PLGA?

Poly(lactic-co-glycolic acid) (PLGA) is a type of thermoplastic aliphatic poly(ester)

that has been approved for drug delivery use by the FDA. The material is

a polymer of poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) as seen

schematically in figure 7.1 below. They have good biocompatibility, material

strength and can be made into any shape or size; ranging from nanoparticles

to 3D constructs capable of bridging large tissue gaps. The range of PLGA

manufacturing techniques (using different types of solvents) also means that

drugs, proteins or cells with very different properties can be incorporated into

the material (reviewed by (Jain, 2000)).

Figure 7.1: Chemical formula of the PLGA polymer adapted from (Yildirimer
and Seifalian, 2014). The polymer chain can involve different proportions of
poly(lactic acid) and poly(glycolic acid).

PLGA degradation

Degradation of PLGA occurs via hydrolysis by cleaving ester linkages in the

polymer backbone. Whether enzymatic degradation is involved in PLGA degra-

dation (due to the differences in vivo and in vitro degradation rates (Lu et al.,

2000)) is controversial.

In the review by Jain (2000), the three phases of PLGA degradation was

summarised as:
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1. Random chain cleavage, where the molecular weight of polymers de-

creased with no overall loss of mass

2. Further cleavage of polymer with rapid loss of mass as soluble oligomeric

and monomeric products are formed (i.e. degradation products small

enough to be mobile)

3. Soluble monomers are formed from the smaller fragments until polymer

is completely solubilised

Once degradation begins, more water soluble carboxylic end groups will

be exposed, further catalysing biodegradation (Schliecker et al., 2003) (Oh

et al., 2006). As hydrogen ions dissociate from these end groups, the pH in

the surrounding solution/tissue drops, and further catalyses the degradation

of PLGA. The end products of the degradation process are lactic and glycolic

acids which are eventually metabolised, in vivo, into carbon dioxide and water.

Since PLGA degrades (at least primarily) by hydrolysis, water permeability

of the construct (i.e. its porosity, size/shape, surface-to-volume ratio) will affect

the rate of PLGA degradation. Large constructs >300µm were found to have

heterogenous degradation rates where the core of the construct will degrade at

a higher rate compared to the surface (Anderson and Shive, 1997). However,

small particles under 300µm degrades at a homogeneous rate throughout the

particle.

Additionally, PLGA has a glass transition temperature (Tg) above body tem-

perature, and so has a glassy appearance and high mechanical strength at

physiological conditions. This Tg, and their polymer degradation rates is highly

dependent, and predictable, based on the composition of the polymer (i.e.

proportion of lactic and glycolic acids; among other factors discussed below).

Generally, increases in PGA content will decrease the crystallinity of the PLGA

polymer. Crystallinity can affect the material strength, swelling properties and
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degradation rates; with a highly crystallised polymer degrading over a longer

period of time. Additionally, glycolic acid is more hydrophilic than lactic acid,

and so a PLGA construct with high amounts of PGA which will absorb more

water, and encourage its diffusion through the scaffold (Xu et al., 2013); result-

ing in a material with increased degradation rates. The exception is a polymer

made of a ratio of 50:50 PLA and PGA, which has the highest degradation

rates.

Fluorescent PLGA

Fluorescent poly(lactic-co-glycolic acid)(PLGA) tagged with rhodamine B isoth-

iocyanate was provided by Ms K.Barnsley of Keele University, UK. The material

consisted of equal proportions of lactic and glycolic acid which are known to

have high degradation rates. The fluorescent rhodamine is evenly and cova-

lently bound to the PLGA, so degradation products can be traced by measuring

fluorescence within the construct or in the surrounding ECM-like structure or

culture media.

The ability to track the biomaterial is fundamental in assessing its long term

consequence in a tissue-like environment. The aim of this study is to test and

track biomaterials as they degrade within an in vitro 3D tissue model. The

model tissue is based on the rapid fabrication of cellular compressed hydro-

gels, which can be formed around a biomaterial. Fluorescent PLGA µ-particles

(50-150µm diameter) were tested in this system.

Since PLGA materials are known to undergo hydrolysis and form smaller

mobile units, it is hypothesised that with time, these degradation products will

diffuse away from their implant site, and can be found in the tissue construct

and culture media. Additionally, the reports of cell uptake of PLGA nanoparti-

cles (Cartiera et al., 2009) led to the hypothesis that smaller degraded PLGA

will be taken up by resident cells with culture.
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7.2 Methods

Methods listed below are specific to this study. Further methods common to

studies throughout the thesis are listed in Chapter 2.

7.2.1 Preparing fluorescent PLGA materials for use

The rhodamine B isothiocyanate-tagged PLGA were supplied in two formats,

namely µ-particles (50-150 µm) and 2mm porous discs (pore size 100-200µm).

All PLGA material were stored at 4°c in a desiccator and wrapped in foil to

prevent the hydrolysis of the material and blanching of the fluorescence during

storage.

Rhodamine-tagged PLGA was sterilised by treatment with isopropanol for

15 minutes and subsequently washed in sterile PBS three times. PLGA in its µ-

particle form were recovered by centrifugation at 12000rpm for 2 minutes after

isopropanol treatment and each of the 3 washes. Finally the PLGA particles

were suspended in PBS at a concentration of 1mg.ml-1. The suspension was

sonicated for 10 minutes to obtain a homogenous suspension.

7.2.2 Detection of rhodamine-tagged PLGA

Fluorescence of rhodamine-tagged PLGA were measured from the PBS (in

2D assays) or the culture media surrounding the 3D model. Unless otherwise

specified, samples were measured in 24-well plates at room temperature with

excitation and emission wavelengths set at 530nm and 590nm respectively

(Infinite M200Pro microplate reader, Tecan).
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7.2.3 PLGA degradation rate in PBS (2D system)

PLGA samples used within the model were first tested in 2D to ensure the

degradation products can be detected in the surrounding media, and to test

the material degradation rates in solution. 2mm rhodamine-tagged PLGA discs

were weighed and submerged in in 4ml PBS for incubation at 37°c. The

amount of fluorescence (degradation products) was measured from the PBS

over 34 days (at 0 and 1 hours; 1, 7, 8, 12, 21 and 34 days). For the measure-

ments, PBS samples were was transferred into a cuvette, and measured on

a fluorescence spectrometer (LS 50B; Perkin-Elmer) at 530nm excitation and

590nm emission wavelengths. The same PBS solution was returned to the

respective PLGA sample for continuous incubation. Therefore, fluorescence

detected from the PBS was cumulative for each sample.

7.2.4 Trapping efficiency of PLGA µ-particles within the hy-

drogel

The ability of the collagen hydrogel to retain PLGA µ-particles after compres-

sion was measured by comparing the amount of fluorescence (from the PLGA

material) in gels, pre- and post-compression.

Hydrogels for this study were produced by adding 10% (v/v) 1mg.ml-1 PLGA

µ-particle solution to ice-cold neutralised collagen solution, consisting of 80%

(v/v) type-I acid-soluble collagen and 10% (v/v) 10xMEM (neutralised using 5M

and 1M NaOH). 1ml of this PLGA collagen solution was transferred to each

well of a 24-well plate, and incubated at 37°c, 5% CO2 for 30 minutes for hy-

drogels to set. Gels either remained uncompressed, or were fully compressed

as described in section 2.4. All gels (both compressed and non-compressed)

were subjected to collagenase-I digestion (0.2% solution in PBS; Gibco, USA)

for 20-30 minutes at 37°c (on a shaker) until the gels were fully digested. Sam-
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ples were then measured for fluorescence as described in section 7.2.2.

7.2.5 PLGA µ-particle degradation rates in 3D (with or with-

out cells)

Compressed collagen hydrogels were formed around the PLGA biomaterial,

and incubated for up to 21 days to study biomaterial degradation over time.

The main variable in this test was the incorporation of cells (human der-

mal fibroblasts (HDF)), to see if their presence will affect the kinetics of PLGA

degradation and release from their implant site. A two-layered compressed col-

lagen hydrogel model was used to place cells and fluorescent PLGA µ-particles

in separate, but adjacent, layers (figure 7.2). In the first layer, 1ml collagen hy-

drogel containing either no cells, or 500,000 HDFs were set within each well of

a 24-well plate (produced as described in 2.2). Once the hydrogel has gelled

after 30 minutes of incubation (37°c, 5% CO2), a second layer containing 10%

1mg.ml-1 sterile PLGA µ-particles (added to the neutralised collagen solution

instead of cells) was gelled above the first layer. After another 30 minutes of

incubation, both super-hydrated layers were compressed together using up-

ward flow plastic compression, until compression was complete (please see

section 2.4 for detailed method). 1.5ml DMEM (supplemented with 10% fetal

calf serum and 1% penicillin steptomycin) was added to each well to prevent

the dehydration of the compressed gel. All resultant compressed gels were

detached from the base of the well (i.e. so that it is free-floating), and were

incubated at 37°c, 5% CO2 for up to 21 days. At days 0, 3, 7, 11, 14 and

21, the media surrounding the construct was collected and frozen at -20°c for

subsequent fluorescence detection.
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Figure 7.2: Schematic representation of the 2-layered model used in bioma-
terial testing. PLGA microparticles were set in collagen hydrogels containing
fibroblasts (A) or a plain hydrogel (B; as a control). Layers 1 and 2 were com-
pressed together to ensure good contract between both layers.
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7.2.6 Histological analysis of model

Samples were fixed, histologically processed and embedded in paraffin wax

for sectioning. 8 µm sections were collected and viewed under a Olympus

(BH2-RFCA) microscope with a corresponding filter to detect red rhodamine

fluorescence within the construct. Images were captured in black and white on

a digital camera (C4742-95, Hamamatsu) attached to the microscope. ImageJ

was used to superimpose colour, onto the black-and-white images captured

on the camera. Samples were fixed, histologically processed and embedded

in paraffin wax for sectioning. 8 µm sections were collected and viewed under

a Olympus (BH2-RFCA) microscope with a corresponding filter to detect red

rhodamine fluorescence within the construct. Images were captured in black

and white on a digital camera (C4742-95, Hamamatsu) attached to the mi-

croscope. ImageJ was used to superimpose colour, onto the black-and-white

images captured on the camera. Samples were fixed, histologically processed

and embedded in paraffin wax for sectioning. 8 µm sections were collected

and viewed under a Olympus (BH2-RFCA) microscope with a corresponding

filter to detect red rhodamine fluorescence within the construct. Images were

captured in black and white on a digital camera (C4742-95, Hamamatsu) at-

tached to the microscope. ImageJ was used to superimpose colour, onto the

black-and-white images captured on the camera.

7.2.7 Cell uptake of PLGA degradation products in the 3D

environment

In order to study the effects of biomaterial degradation products on surrounding

tissues, it is necessary to establish the fate/destination of these molecules. It

was clear some PLGA degradation product was released into the surrounding

matrix and culture media due to the fluorescence detected spectrophotometri-
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cally, and visually (from histological samples).

Cell uptake of fluorescent material with prolonged culture was tested in a

3D, plastically compressed hydrogel, environment.

Collagen solutions were prepared similarly to methods described in 2.2,

with slight alterations in volumes of solutes were used to account for the in-

corporation of both cells and PLGA µ-particles. Briefly, 75% type-I acid sol-

uble collagen and 10% 10xMEM were neutralised with 5M and 1M NaOH.

Once neutralised, 5% DMEM suspending 500,000 HDF/well and 10% PLGA

µ-particles were added to the collagen solution. 1ml/well of the suspension

was placed in a 24-well plate and gelled at 37°c, 5% CO2 for 30 minutes. Gels

were compressed and incubated with 1ml DMEM.

Cells were recovered at days 0 and 10. The hydrogels were digested with

0.2% type-I collagenase (Gibco, USA; in PBS) at 37°c and with constant agi-

tation for 30 minutes. Cells from the samples were then recovered by centrifu-

gation (2000rpm, 5 minutes) and supernatant were discarded. The recovered

cells were then washed twice by re-suspension in PBS. Finally the HDF were

re-suspended in 1ml PBS and transferred to a 24-well plate for 24 hours until

cells were attached onto a flat surface for imaging. Fluorescence from PLGA

was measured as described above.

Control gels containing only HDF (and no PLGA) were set up in parallel to

the above samples.

7.2.8 Statistics

Statistical significance was determined by an independent sample t-test for

data on PLGA trapping efficiency within the hydrogel. For all other experi-

ments, one-way ANOVA (LSD post-hoc) was used. Confidence intervals were

set at p ≤ 0.05.
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7.3 Results

7.3.1 PLGA degradation in PBS (2D)

Sample size of the 2mm PLGA discs averaged between 1.7 - 3.4 mg. Since

the samples varied in mass, the results were reported in fluorescence (a.u.)

per mg of sample material. Also, to account for burst release (if any) of the

fluorescently tagged particles, all results were subtracted from the average

baseline of 0.093 ± 0.013 a.u., detected at 0 hours (i.e. as soon as the PLGA

was added to the PBS). Almost no fluorescent material was detected in the

PBS at 0 and 1 hour after submerging the samples in PBS, suggesting the

fluorescent rhodamine molecules were bound covalently to the PLGA material.

Some fluorescence was detected in the PBS by 24 hours in culture (figure

7.3). Significant cumulative increases in the fluorescent material was detected

by day 21 of incubation (p=0.038). Degradation of the material continued until

the end of the study period at day 34. By the end of the experiment, samples

were visibly swollen and disintegrated in solution.

The degradation rates appear to be influenced by the physical size of the

sample, as samples with a high surface area-to-volume ratio (sample 2) de-

graded at an increased rate compared to other samples - which progressed at

an exponentially increasing rate (figure 7.4).
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Figure 7.3: PLGA degradation rates in PBS (2D assay) over 34 days. PLGA
degradation was determined by the fluorescent intensity of rhodamine tagged
degradation products of PLGA material, found in the PBS solution, over time.

Figure 7.4: Fluorescence readings from individual PLGA 2mm disc samples
submerged in PBS over 34 days with respective sample mass.
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7.3.2 Trapping efficiency of PLGA µ-particles within hydro-

gels

Next stages in developing the material degradation model involved the incor-

poration of the biomaterial (in µ-particle form) within the compressed collagen

hydrogel to form in vitro tissue-like models for the assay of material degradation

rates and material fate.

The trapping efficiency of PLGA micro-particles within the collagen hydro-

gel was measured by comparing the amount of fluorescent PLGA particles

within (otherwise identical) hydrogels, before and after plastic compression.

Gels (both compressed and non-compressed) were digested in collagenase-I

to re-suspend the µ-particles in solution prior to spectrometric measurement

of the solution. The amount of fluorescent signal detected from uncompressed

and compressed gels were almost identical, at 2814 ± 300.1 and 2848 ± 86.6

respectively (p=0.860). This suggests that most, if not all, of the fluorescent

micro-particles have been retained within the hydrogel after plastic compres-

sion.

7.3.3 The effect of cells on material release from tissue mod-

els

Since µ-particles were retained within the compressed hydrogel after plastic

compression, the next step was to track and quantify the amount of PLGA

degradation products released from the 3D tissue model over time.

The cumulative amount of fluorescence detected in the media (subtracted

from the baseline media-only readings) from cellular and acellular gels over 21

days have been plotted in figure 7.5.

Fluorescence was detected in the culture media surrounding both cellular (p
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≤ 0.001) and acellular (p=0.004) matrices from day 7 of culture. However, the

cumulative level of fluorescence detected from cellular gels was approximately

2.5 times more than that of the acellular gel, at 23166.5 a.u. and 8601.5 a.u (p

≤ 0.001) respectively. At all time points, except day 21 (p=0.244), a significant

difference between cellular and acellular samples was observed.

The cumulative results show that fluorescent material was continuously re-

leased into the surrounding media in both sample types between days 7 and

21. However, the rate of release was highest between days 7 and 14 (at 2856.8

a.u. and 5883.1 a.u. per day respectively for acellular and cellular samples),

which subsequently lowered to 1120.3 a.u. and 1628.5 a.u. per day respec-

tively beyond 14 days in culture.

Figure 7.5: Cumulative average release of fluorescent material into the me-
dia surrounding the PLGA containing compressed hydrogel over 21 days. The
amount of fluorescence detected from the media in cellular and a cellular con-
structs were compared to study cell influence over biomaterial degradation
product release kinetics.
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7.3.4 Histological analysis of two-layered model

Histological images of the cellular and acellular model at days 0 and 14 of

culture also support the difference in material release rates from cellular and

acellular gels (figure 7.5). Note the loosened construct structure of the cellular

hydrogel layer in cellular samples at 14 days.

Both acellular and cellular samples at day 0 (figure 7.6) show the concen-

trated red fluorescence of µ-particles within one of the auto-fluorescing colla-

gen layers. By day 14, the fluorescence from these µ-particles had diffused

into the surrounding collagen construct in both acellular and cellular samples.

This was most pronounced an visible in cellular samples (figure 7.6). Vacuoles

(with a fluorescent outline) which appears to be the remnants of the PLGA µ-

particle were observed in the biomaterial containing layer of the cellular bi-layer

construct. Within the adjacent cellular layer, pockets of highly fluorescent clus-

ters, which coincides with the shape and size of the interstitial cells (HDFs),

suggests that cells may be able to take-up the degradation products of PLGA.

These pockets of intensely fluorescent particles, away from the micro-particles,

were not observed within the acellular samples.
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Figure 7.6: Histological sections of the bi-layer model, where cellular or acel-
lular gels were compressed with a separate hydrogel containing PLGA micro-
particles. Samples cultured for 0 and 14 days were compared.
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Cell uptake of PLGA degradation products

To test whether cells take-up PLGA degradation products, cellular compressed

hydrogels (with or without PLGA) were incubated for 10 days, and subse-

quently digested to extract cells. Cells were recovered, washed and seeded

on tissue culture plastic to enable visualisation on the microscope. Due to the

faint fluorescence from the degraded PLGA material, it was not possible to

visualise the particles using the camera during fluorescence imaging. The ma-

terial could however, be observed in white light (as dark coloured dots; which

were not present in samples without PLGA).

Particles were clearly visible within the cells in samples cultured with PLGA

after 10 days (figure 7.7a). As expected, cells not cultured with PLGA material

did not exhibit the clusters of material (figure 7.7b).
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(a) Cells incubated with PLGA

(b) Cells incubated without PLGA

Figure 7.7: Human dermal fibroblasts extracted from collagen gel model after
10 days in culture a) with or b) without PLGA, were subsequently seeded on
tissue culture plastic for imaging.
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7.4 Discussion

The ability to predict and detect the rate of material degradation within a tissue-

like environment can have implications on the design and use of degradable

biomaterials (Artzi et al., 2011). This was achieved in vitro within an op-

tically permeable (plastically compressed) collagen matrix with the help of

fluorescently-tagged PLGA material.

Degradation rates of rhodamine loaded PLGA material made of a 50:50

polymer of PLA:PGA was high as expected, with evidence of this degradation

observed within 24 hours in the 2D model, and 7 days in 3D. This continued

for the 34 and 21 days in 2D and 3D cultures respectively.

In the literature, the half-life of 50:50 PLGA scaffolds have been quoted as

∼15 days (Anderson and Shive, 1997), or ∼2 weeks and ∼3 weeks in vivo

and in vitro respectively (Lu et al., 2000). The degradation rates of the PLGA

used in this experiment appear to fit into this time frame. However the release

rates of degraded fluorescent material in the 2D and 3D model occurred with

different patterns. PLGA material in the 2D model was released steadily into

the PBS between 1 and 21 days in culture, with further increases in degra-

dation rates at later time points between 21 and 34 days. This degradation

pattern was more clearly observed from individual samples (figure 7.4), where

rate of fluorescent material deposition into the PBS increased exponentially

at later stages of incubation. This was not completely unexpected, since the

accumulation of PLGA degradation products in the PBS can decrease local

pH levels, which then further encourages hydrolysis of the material (Yildirimer

and Seifalian, 2014). The fact that the same solution was used to incubate

the PLGA samples during the experiment may explain the late-stage increase

in degradation rates through pH changes, observed in the 2D model. Also as

hydrolysis progressed within the sample, it was natural for the PLGA material
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to have an increased exposure of carboxylic end groups, further increasing

degradation rates (Schliecker et al., 2003) (Oh et al., 2006). Note also that

by the end of the 34 days in culture, the samples were swollen (and mostly

dissolved), meaning the surface area available for hydrolysis increased with

time.

Release of fluorescent degradation products in the 3D model, however, was

not observed until later in time (at day 7). PLGA µ-particle in the 3D sample

were surrounded by a dense matrix which may explain the delayed release of

the fluorescent particles into the surrounding culture media. The compressed

collagen matrix was known to retain large particles (in relation to the “pore-

size”, or interfibrillar space between collagen fibrils) (Hadjipanayi et al., 2011a),

so it was perhaps not surprising that the fluorescent particles were not detected

immediately in the surrounding culture media. Since PLGA degradation began

with the random cleavage of ester linkages within the material; loss of mass

only occurs at later stages as smaller, soluble monomeric/oligomeric products

were formed (Jain, 2000). So, further degradation of PLGA into smaller mobile

particles was likely necessary before the degradation products can diffuse out

of the hydrogel.

The difference in degradation rate could also potentially be due to the differ-

ences in size and shape of PLGA used in the 2D (2mm discs) and 3D models

(µ-particles); more specifically, a larger surface area-to-volume ratio was likely

to lead to an increased rate of PLGA degradation i.e. increase in surface ex-

posed to surrounding fluid, and therefore hydrolysis.

One notable finding from the model was that a significantly higher amount of

fluorescent PLGA particles was released into the surrounding culture medium

from the cellular model (figure 7.5). If PLGA exclusively degraded by hydrolysis

(and not by enzymatic activity as some report suggested (Lu et al., 2000)), the

difference between the cellular and acellular models in the release profile of flu-
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orescent degradation products will have been mediate by cell-induced changes

to the extracellular matrix (i.e. remodeling); especially when fibroblasts were

known to be capable at this task. Another sign that remodeling had taken place

in the cellular construct was found in the histological studies, where the colla-

gen matrix was transformed into a ‘lacy’ structure, with an increase in overall

hydrogel thickness observed by 14 days (as seen in figure 7.6 and figure 7.8).

Figure 7.8: Cross section of the bi-layered 3D model at 14 days in culture.
Layers either contained PLGA microparticles or cells (HDFs). Note that the
thickness of the cellular layer was approximately 2.5 times that of their adjacent
acellular (PLGA) layer.

In terms of the total amount of PLGA µ-particle within each hydrogel sam-

ple, a brief calculation showed that 0.1mg of the PLGA material was in each

1ml hydrogel (i.e. 10% volume of the hydrogel was made up of 1mg.ml-1 PLGA

µ-particles). The overall mass of the samples used in the 3D assay was there-

fore much lower than those of the 2D assay (i.e. a smaller initial depot of 0.1mg,

instead of ∼2mg of the material). Histological sections also revealed partially

empty vacuoles in the PLGA layer (especially prominent in the cellular sam-

ples) by day 14 in culture (figure 7.6). Since the PLGA µ-particles had a size of

∼50-150µm, the degradation rates was expected to be uniform throughout the

µ-particle (Anderson and Shive, 1997). However, the vacuoles with a brightly
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fluorescent edge suggest degradation may have occurred starting from within

the µ-particle.

Both the immobility of the large degradation products, and the small initial

depot of fluorescent PLGA, may explain the pattern of degradation product re-

leased within the 3D model (i.e. delay in PLGA detection from the surrounding

media and subsequent decrease in fluorescence detected beyond 14 days in

the 3D samples (i.e. used up PLGA material)). There was a possibility that the

µ-particles (considering their small size and high surface-to-volume ratio) were

mostly degraded by the later stages of the culture period, before the degra-

dation products had a chance to diffuse out of the hydrogel with subsequent

culture. If indeed this was the case, it would be interesting to see if the incorpo-

ration of a bioreactor to induce fluid flow surrounding the construct will create

a constant diffusion gradient for the PLGA degradation products, and improve

the estimation of biodegradation rates compared to in vivo conditions.

Another variable studied was the fate of the degraded product. Cell uptake

of the degraded particles was evident from images of cells isolated from the

3D constructs after incubation with PLGA material. In their nanoparticle form,

PLGA have been shown to be taken up by endocytosis into endosomes, golgi

apparatus and sometime the endoplasmic reticulum (in epithelial (2D) cell-lines

(Cartiera et al., 2009)); but the destination of the NP, and the rate/extent of

the uptake was dependent on the cell type. In the 3D model, involvement of

cells was likely two folds. Cells firstly remodeled the matrix to encourage the

dissipation of degradation products from the biomaterial implant site; and also

(in the case of PLGA) internalised small degradation products.

The mode of PLGA uptake were previously studied in cell types such as

epithelial cells (Cartiera et al., 2009) and macrophages (Tabata and Ikada,

1988). Cell-uptake of PLGA particles via phagocytosis was found to be size-

sensitive, where particles over 10 µm (in macrophages) were not internalised
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until further hydrolysed. When internalised, the phagocytosed microsphere

degraded within the cell over time; and this degradation rate was controlled by

the chemical composition of the PLGA material (i.e. the fast-degrading 50:50

PLGA was found to be completely degraded within the macrophage by 7 days)

(Tabata and Ikada, 1988) (Tabata and Ikada, 1989) (Tabata et al., 2000).

Here, cell uptake of the degraded PLGA was also likely by phagocytosis as

fibroblasts are phagocytic cells (Lee et al., 1996). However, the distribution of

the PLGA particles within cells was not uniform (figure 7.7), with clusters of the

material found in some cells. This may be because of the spatial arrangement

of the cells and PLGA material in 3D, such that some cells will be in closer

proximity to the PLGA material, and so experience a higher concentration of

degradation material for their uptake. Alternatively, this difference in PLGA

up-take between cells may be due to natural variances in cell activity.

Other considerations of PLGA degradation include the effect of decreased

local pH levels on resident cells; especially when PLGA material have also

been reported to cause the formation of local aseptic sinuses and can result

in osteolytic changes and intermittent joint swelling when implanted (Athana-

siou et al., 1996). Razaq et al. (2003) found that slight acidic conditions (at

pH6.4) reduced cell matrix turnover and production of some essential proteins.

Other studies have shown a similar effect of acidic extracellular pH on fibroblast

growth, and gene expression of related proteins (Bumke et al., 2003). Acidic

pH may even cause cell death, as observed in tumor-derived cells by 96 hours

in pH6-7.5, and even sooner at pH5.5 (Lan et al., 2007). However, further

studies into the difference between 2D and 3D will be needed to see if acidic

conditions affect cells to the same extent in 3D, as the ECM may provides

some shielding from acidic conditions or potentially harmful degradation prod-

ucts (Dobaczewski et al., 2010).

Potential systemic effects of mobile degradation products has also been a
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source of concern in material development. Although systemic effects have

been traditionally tested in vivo (i.e. toxicity of PLGA particle build-up in liv-

ers and kidneys). In vitro 3D models can potentially be used to study the

effect of the biomaterial on individual cell types isolated from the target tissue

(in separate models). For example, in the case of a full skin model of bio-

material degradation, 3D models containing HDFs (i.e. the present model),

keratinocytes, macrophages, adipocites, etc. can be carried out in parallel

(and co-culture systems) for a fully comprehensive study of the biomaterial in

a target tissue. Although this will not completely replace the need for in vivo

assays for material degradation, this will allow for improved accessibility, and

ability to test individual cell types for a more comprehensive understanding of

cell-biomaterial interaction.



Chapter 8

General discussions and

conclusions

For the development of tissue models, it is essential to identify key functional

variables that can influence the target cell behaviour; and subsequently refine

the model until it is representative of tissue/cell response in the natural tissue

(Brown, 2012, p.38).

To justify the effort in producing in vitro tissues models, it is important to

obtain usable data from the model, which correlates with, and can represent

the natural responses of human tissues to an external stimuli. The model

will also need to be simple enough to isolate test variables; and accessible

to evaluate tissue response to biomaterials (or other stimulus).

For example, important questions during biomaterial development may in-

clude:

• Is the biomaterial toxic to cells (both within the biomaterial and the sur-

rounding tissue)?

• Do cells migrate between the biomaterial and the surrounding tissue (and

other cell-biomaterial interactions)?

216
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• Do cells synthesise new ECM within the biomaterial, and/or remodel ex-

isting natural matrix material?

• How long does the biomaterial persist within a tissue-like environment

with culture?

• What is the optimum cell seeding density (if any) within the biomaterial for

improved material-tissue integration? (and for optimum ECM deposition

rates)

3D in vitro biomaterial testing platforms (i.e. plastically compressed colla-

gen gel) has the advantage of suspending biomaterials in a tissue-like matrix

(with relevant cell-matrix and cell-cell interactions), and enables real-time as-

sessment of the accessible construct. Although there are limitations to these

testing platforms, such as the relative simplicity of the model, and lack informa-

tion on systemic effects; they can be useful as pre-clinical tests of biomaterials,

for toxicity and localised tissue effects, over time.

However, even with the range of in vitro and in vivo test systems available

to test biomaterials, the precise effects of implant materials on human tissues

are often only fully understood in retrospect. An example of this can be seen

in the case of joint replacement implants where previously unexplained tissue

inflammation surrounding joint tissue implants was only later understood (from

recovered implants/tissues) to be caused by material erosion and wear parti-

cles (Cuckler, 2012) (Knight et al., 2011).

In vitro 3D model tissues (developed here and elsewhere) can be used to

improve our understanding of cell responses to these eroded/degraded bio-

materials by isolating and simplifying test variables, and to study their effect on

local cells. Ultimately, this can help improve material safety, and understand

the underlying causes of material success, or failure, over time.
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In order for cells to behave physiologically in this reductionist ECM-like scaf-

fold, it is important to identify and reproduce the key cell-directing feature(s) of

the target tissue within this in vitro model. This is because it is increasingly

recognised that tissue models of the future have at least some reliance on

cell activity to achieve functional tissue recovery; which is influenced by cell

perception of their surrounding matrix.

In most natural tissue environments, type-I collagen is the main structural

protein of the ECM. Therefore the in vitro tissue model used here was based

on type-I collagen hydrogels; which has for many decades been used to study

cell-matrix interactions (Grinnell, 2003) (Grinnell et al., 2005). The collagen

material was derived from xenogenic sources, but the protein, including cell

recognition sites are highly conserved throughout evolution (Boot-Handford

and Tuckwell, 2003) (Garrone, 1999), and so can be recognised by human

cells.

The ability to incorporate cells and chemical factors into the tissue model

(i.e. drugs, growth factors) improved the versatility of the model platform for the

production of tissue specific models. Plastic compression was used to increase

collagen hydrogel density cell/biomaterial containing construct to increase the

physiological relevance of the hydrogel for local cells.

In this study, all gels were compressed using the upward flow method (for

details please see chapter 1.5) within culture well-plates, and therefore have

good reproducibility, and the potential to be up-scaled for high throughput tests.

The main aim/goal of this study is to create next generation 3D in vitro

model systems, based on a type-I collagen hydrogels, with particular focus

on increasing matrix mechanical properties; and to investigate the use of 3D

compressed collagen hydrogel soft tissue models in the testing of biomaterials.

This was done in two distinct sections, by:

1. Developing a hydrogel with increased mechanical stiffness, also capable
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of encapsulating live cells from time-zero of construct fabrication

2. Testing biomaterials in soft tissue models to study their degradation rates

or drug-delivery propensities

The overarching hypothesis throughout this study was that models made

from plastically compressed hydrogels, with cells and other cell-behaviour di-

recting tissue features, will be able to predict and monitor (at least better than

standard 2D in vitro cell-monolayer models) biomaterial behaviour and cell re-

sponses to biomaterials/drugs.

Part 1:

One of the issues next generation collagen hydrogel modeling platforms should

address is their lack of mechanical properties; such that instant, live cell popu-

lations can be introduced into a stiff scaffold.

In the first part of the study (chapters 3 and 4), a novel collagen hydrogel

with increased mechanical properties - which can encapsulate live cells as it

is formed - was developed and tested for its cell compatibility and mechanical

properties. The key characteristic of this novel material is that it is both stiffer

than existing plastically compressed collagen hydrogels, and can encapsulate

cells within the hydrogel from time-zero. Most previous approaches will have

had to sacrifice either hydrogel mechanical properties (Brown et al., 2005) or

interstitial cells (Wong et al., 2013) during construct fabrication.

This was achieved by using pre-crosslinked type-I collagen (polymeric col-

lagen) as a starting material for hydrogel production. A critical finding dur-

ing material development was that although polymeric collagen sponta-

neously aggregated in solution at physiological pH, this can be delayed

by blending acid-soluble collagen monomers into the polymeric collagen

solution; possibly by steric hinderance.
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This delay allowed sufficient time for cell incorporation at physiological pH,

prior to fibrillogensis. The resultant compressed polymeric collagen blend hy-

drogel had a 3-fold increase in material stiffness (compared to traditional plas-

tically compressed collagen hydrogels).

There was, however, a problem associated with this compressed blend col-

lagen hydrogel. A proportion of cells was damaged (extent dependent on the

proportion of polymeric collagen within the hydrogel) during the plastic com-

pression process. This result can be explained by the increased compres-

sion rates seen in polymeric collagen hydrogels, where a higher proportion of

polymeric collagen corresponded to an increase in compression rates. High

compression rates meant that fluid flow rates within the hydrogel (and so fluid

shear stress on cells) was high, leading to cell damage. The increased in fluid

flow rates in polymeric collagen containing samples was thought to be due to

the reduced proportion of acid-soluble collagen, and so reduced mobile col-

lagen monomers/oligomers which can contribute to the filtration effect at the

FLS during plastic compression. This theory was supported by the finding that

incorporation of mobile macromolecules into the hydrogel (i.e. to replace said

monomers/oligomers, added to the collagen solution prior to fibrillogenesis)

resulted in a reduced fluid flow rate within the hydrogel. The hydrodynamic

size and concentration of the macromolecules were found to affect their abil-

ity in controlling compression rates. Optimum reduction in compression rates,

and protection from cell damage was achieved by incorporation of 10mg.ml-1

poly(ethylene glycol) 400kDa into the hydrogel.

The methods for the production of this blended cellular hydrogel is sum-

marised in the standard operating procedure (SOP) that can be found at the

end of this chapter.

All-in-all, it was possible to create cellular hydrogels with increased me-

chanical properties using pre-crosslinked polymeric collagen as a starting ma-
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terial as hypothesised; however there were slight deviations from the hypoth-

esis in that although cells were encapsulated within the hydrogel, some cell

damage was sustained in the subsequent plastic compression process (extent

of damage depended on proportion of polymeric collagen within the hydrogel).

This cell damage can be prevented by reducing compression rates by incorpo-

rating large, mobile macromolecules, into the hydrogel.

However, batch variation was high in these blend constructs, and since

polymeric collagen blend hydrogels were too variable for use as a model tis-

sue (where reproducibility between each sample is important), well-established

plastically compressed hydrogels, made from acid-soluble tropocollagen, was

used instead of the blend gels for studies in biomaterial degradation and drug-

delivery.

Part 2:

The second part involved testing biomaterials (developed by other groups)

within the tissue model to study their effect on local cells/matrix with culture.

Fast-degrading, fluorescently tagged, PLGA material was used to study bio-

material degradation in a tissue-like environment, and the subsequent destina-

tion of the degraded material. The hypothesis under test was that the PLGA

material will diffuse away from their implant site, into the surrounding construct

and culture medium; and that cells in the surrounding matrix will engulf small,

partially degraded PLGA materials. This was investigated by incubating PLGA

within the tissue model for the study of cell influence on the release rate of

the fluorescent degradation products into the surrounding culture media. The

results suggest that these degraded products traveled at a higher rate from the

model tissue when cells were present within the tissue model, as cells were

thought to ‘loosen’ the construct structure by remodeling the collagen matrix.

On a different note, imaging studies found evidence of cell-uptake of the
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PLGA biomaterial. This was expected due to the known use of PLGA as a

nanoparticle carrier which relies on cell-uptake for its function (Cartiera et al.,

2009). Both results combine to support the hypothesis that PLGA degraded,

and that its degradation products were mobile within the tissue model; ulti-

mately detected in the surrounding culture media, and within cells.

For the modelling of drug delivery in tissues using HA-NP as a carrier, the

first step was to increase nanoparticle retention within the model tissue fol-

lowing plastic compression. It was hypothesised that HA-NP retention can be

improved by alterations to the compression process or the hydrogel. Also, that

HA-NP-S can stimulate BMP-2 protein production in MG63 cells, where the

‘single-dose’ of simvastatin will be gradually released into the cell environment

to stimulate a constant level of BMP-2 production. Results here found that the

low HA-NP retention efficiency was improved by increasing collagen density

within the hydrogel, and by introducing a filter layer between the hydrogel and

plunger during plastic compression. This was thought to be potentially due to

increase in the filtration effect at the FLS for fluids leaving the hydrogel during

plastic compression.

Growth factor production (BMP-2) in response to the simvastatin drug cargo,

however, was not reproducible between experiments, meaning no conclusions

can be drawn at this stage, apart from the fact that growth factors can be de-

tected using ELISA assays when the protein was present within the model.

Finally, note also that the efficiency of biomaterial encapsulation within

the plastically compressed collagen hydrogel varied depending on biomaterial

size; where the µ-particular PLGA had almost complete biomaterial retention,

whilst the smaller nanoparticle HA-NP had a retention of between 10.1 ± 1.7

and 16.6 ± 1.2 % (again depending on size). This size dependence for re-

tention of particles within the hydrogel was also previously demonstrated and

discussed by Hadjipanayi et al. (2011a).
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Enabling the recovery of lost tissue function was one of the main motiva-

tors in regenerative medicine. Although tissue engineering is not the only way

to achieve this; i.e. with bionic prosthesis a successful alternative in recover-

ing gross limb functions (with promises to recover some complicated biological

senses such as sight (Lewis et al., 2015) and tactile senses (Saal and Bens-

maia, 2015) in the future); true tissue regeneration with the capability to con-

trol/remodel/regulate tissue function over time, will be ideal in the long run (i.e.

no need for maintenance or immunosuppression). However, the current extent

of tissue function restoration using TE implants is only partial (or with caveats)

at best, and genuine tissue regeneration complete with a vasculature, nervous

system, function and seamless integration with the existing tissue (as seen in

some amphibians (Brown, 2012)), is still a goal for the future. 3D in vitro tissue

models, such as those developed here will be important to further our under-

standing of cell processes, and biomaterial interaction with the surrounding

tissue over time.

8.1 Conclusions

The aim of this study was to develop next-generation 3D soft tissue models for

the in vitro testing of biomaterials. Plastically compressed collagen hydrogels

have been used here as a model tissue to study biomaterial degradation rates,

their fate within a tissue-like environment and the delivery of drug-carrying

nanoparticles.

The first part of the study demonstrated that it was possible to generate a

cellular hydrogel with increased mechanical properties (at time-zero) using pre-

crosslinked collagen extracted from natural sources. Although these hydrogels

were less stable, and can collapse quickly during compression, it was found

that the presence of mobile macromolecules (i.e. PEG) prevented cell damage
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by reducing compression rates, and fluid shear stress on cells.

The second part of the study tested biomaterials in soft tissue models made

from the conventional (acid-soluble collagen derived) compressed gels. It was

found that the extent of PLGA degradation product diffusion from the tissue-like

model depended on the presence of local cells which can remodel the matrix.

These cells were also able to take-up degradation products.

The delivery of drugs using HA-NP particles into the tissue model was found

to be improved by increased collagen density within the hydrogel, and the in-

corporation of a fine filter layer between the hydrogel and plunger. The simvas-

tatin drug cargo stimulated the production of a low amount of BMP2 protein.

However the overall effectiveness of the drug carrier, and indeed the tissue

model, require further study.

8.2 Further work

The findings of this study have furthered understanding of hydrogel plastic

compression processes. The ability to control the physical characterisics of

the construct was key to direct cell behaviour within the model. One of the

main purposes of the tissue model is to improve the efficiency and reliability of

in vitro biomaterial testing; and in doing so, reduce reliance on in vivo models

(which can be complex, variable and have limited accessibility).

Further increasing the reproducibility of polymeric collagen containing con-

structs will be necessary before the can potentially be used as a biomaterial

testing platform. As shown in the findings of this study, pre-crosslinked type-

I collagen extracted from natural tissue sources can be used in hydrogels to

increased their mechanical properties, without resorting to cytotoxic chemical

crosslinking treatment. Further studies will need to look at of the composi-

tion/impurities in the initial collagen source which can potentially affect the ag-
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gregation of collagen, and cause the variation between batches observed in

the current study.

With regards to the study of implantable biomaterials, models have studied

both the degradation, and drug-delivery potentials, of biomaterials. For future

studies, particularly for degradation models, the incorporation of microfluidics

(i.e. bioreactors) into the model during in vitro culture will likely affect release

rates of biomaterial (or their degradation products) from the hydrogel. Other

potential tests include assays to monitor cell and tissue response to the de-

graded product. For example, the PLGA material have been known to cause

the production of fibrous capsules around the implant material. A model tis-

sue may improve the understanding of underlying cell mechanisms, and rate

of fibrosis in response to different concentrations and formulation of the bioma-

terial (e.g. change in hydrogel opacity with changes to the matrix density over

time).

Furthermore, since cell uptake of the degradation products have been evi-

dent, it will be important to test for its effect on cell activity in the long run.

Since plastically compressed constructs can be built into more complex

models, through layering and co-culturing with different cell types, it is possible

to test for complex cell-cell interactions which was not currently possible in

2D cell models, or in vivo. Further tests may include temporal changes in

protein/growth factor production in response to drugs or biomaterials within a

complex model.

However, ultimately the results gained from the in vitro 3D models will need

to be correlated with in vivo data, to establish the effectiveness of the cur-

rent model in predicting natural cell responses to biomaterial (or other external

stimuli). The results from in vivo assays will be able to feedback into the model

for further refinement (with chemical/physical cues), in order to encourage res-

ident cells to behave in a physiological manner.
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8.3 Standard operating procedure (SOP) -

Polymeric collagen containing hydrogels as

tissue models

Standard operating procedure (SOP) for the production of a tissue model based

on compressed polymeric collagen blended hydrogels for biomaterial testing.

8.3.1 Purpose

To describe the procedure for producing hydrogels with a blend of polymeric

and monomeric collagens, to create cell-compatible hydrogels with pre-existing

collagen cross-links (traditionally only obtainable by cytotoxic cross-linking meth-

ods).

8.3.2 Supplies

For the polymeric collagen solution:

A stock solution of polymeric collagen, diluted to 2mg.ml-1 in 0.5M acetic

acid(or to match concentration of monomeric collagen used) (procedure further

described in section 3.2.1), and will require:

• Tendon granules (i.e. potential sources are calf tendon and other young/growing

tendons)

• EDTA

• 0.5M acetic acid

• Magnetic stirrer

• Beaker
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• Distilled water

• Chloroform

Other materials:

• Acid soluble collagen

• 10X minimum essential media (MEM) (containing phenol red)

• Sodium hydroxide (NaOH; 1M and 5M) (in 1ml syringes with fine needles)

• Cell culture media

• 400kDa polyethylene glycol (PEG) (20mg.ml-1 in distilled water)

• Ice

• Plastic compression kit (with sterile well sized absorbent plungers and

tweezers

• Flat-based container (i.e. 100ml and 500ml beakers)

• 24-well plate

• Sterile pipettes

• Test biomaterials

Note. Biomaterials can be in nano- or micro-particle form, or larger discs

(up to a diameter of 1cm (to ensure a comfortable fit in 24 well plates)

and a depth of ∼2mm (to ensure a good level of plastic compression of

the surrounding hydrogel)
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The proportion of each reagent within the hydrogel solution:

Proportion of

reagent in solution

(%)

Reagent

80
Blended collagen solution (upto 50% polymeric

collagen)

10 10xMEM

5 400kDa PEG solution

5 Cell culture media (with or without cells)

- Sodium hydroxide

Table 8.1: The proportion of each reagent used to produce blended collagen
hydrogels. The amount of sodium hydroxide required to neutralise the collagen
solution (i.e. until a colour change is observed in the solution) varies between
batches, and so is not specified here.

8.3.3 Scope

This procedure applies to cellular and acellular hydrogel soft tissue models

made from a blend of polymeric and monomeric collagens.

8.3.4 Procedure

Note. All procedure must be prepared in a sterile environment, on ice, unless

otherwise stated.

1. Chill a flat-based container on ice

2. Pipette equal volumes of polymeric collagen (2mg.ml-1; in 0.5M acetic
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acid) and acid-soluble (monomeric) collagen (2mg.ml-1) (for a 1:1 ratio

blend) into the chilled container, with a sterile magnetic stirrer

3. Seal container and transfer onto a stirrer, at 4°c, for at least 3 hours - until

the solution is visually homogeneous

Note. It is recommended that the proportion of polymeric collagen within

the solution to not exceed 50% for stability of the hydrogel

4. Add required volume of blended collagen (from step 3), 10xMEM and

PEG solutions (for proportions of each reagent, see table 8.1) into a sep-

arate chilled wide-based container

5. Gently swirl to mix the solution, and neutralise using 5M and 1M NaOH

(dropwise) until the point is reached where a colour change from yellow to

fushia pink is observed (due to the phenol red indicator contained within

the 10xMEM solution)

Note. Take care to avoid excess NaOH incorporation, as this will prevent

proper gellation of the hydrogel

6. Add cell culture media (with or without cells) to the neutralised collagen

solution, and swirl to mix

7. Pipette 1ml of the solution into each well of a 24-well plate whilst taking

care to minimise air bubbles within the solution

Note. Each well of a 24 well plate can take up to 2ml of the neutralised

collagen solution (for a thicker hydrogel)

8. Seal and transfer to a 37°c, 5% CO2, incubator for 30 minutes

9. (Optional. Place biomaterial onto the surface of the hydrogel (produced in

step 8), and repeat steps 7 and 8, to ’sandwich’ the biomaterial between

two layers of collagen hydrogel)
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10. Compress the hydrogel layer(s) with a sterilised absorbent plunger until

fully compressed (typically ∼ 20 − 40 minutes for gels containing PEG

solutions - depending on the thickness of the hydrogel and the proportion

of polymeric collagen within the blend)

11. Immediately add 1ml of cell culture media (pre-warmed) to each well to

prevent the dehydration of the compressed hydrogels

12. Detach hydrogels from the base of the wells using sterilsed tweezers

13. Seal and incubate at 37°c and 5% CO2 for required length of time

Incorporation of biomaterials into the model can be carried out at step 4, 6

or 8, depending on the chemical and physical structure of the biomaterial, and

on the required distribution of biomaterial within the model.

• Nano- and micro-particles can be incorporated into the hydrogel directly

as the hydrogel is formed. This can be done by adding the biomate-

rial suspension to the collagen solution before (step 4) or after (step 6;

providing the biomaterial is suspended in a solution of neutral pH) neu-

tralisation of the collagen solution

• Larger 3D biomaterials can be incorporated into the model by ”sandwich-

ing” the material between two layers of collagen hydrogel (step 9) which

are then compressed together

Note. Some nanoparticles or small microparticles can be lost during plastic

compression, and this loss will need to be taken into account - the extent of

particle loss will depend on biomaterial size and the extent of blockage at the

fluid leaving surface of the collagen matrix (see section 5.1.1 for further infor-

mation).
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8.3.5 Troubleshooting

Problem Possible cause Cause solution

Polymeric collagen

aggregates into vis-

ible clumps during

neutralisation

Insufficient blending to-

gether of polymeric and

monomeric collagen so-

lutions.

Discard the partially neu-

tralised solution. Stir the

collagen blend for longer

period of time prior to

neutralisation.

Polymeric collagen did

not ’dissolve’ sufficiently

into acetic acid - possibly

a problem with the ten-

don source with exces-

sive cross-linking of the

tendon collagen matrix.

Source tendons from

younger and/or growing

tissues.

A hydrogel does

not form after 30

minutes at 37°c

Solution not at a neutral

pH (possibly too much

NaOH added during neu-

tralisation).

Discard and start again.

Use 1M NaOH for bet-

ter control of neutralisa-

tion, as soon as hints of

pink/orange (from the pH

indicator) is observed in

the collagen solution.

Table 8.2: Common problems and solutions encountered during the production
of blended, polymeric collagen containing hydrogels.

Note: Commercial compression kits (RAFT 3D Cell Culture System; in 24-

well plate or 96-well plate formats) are available from TAP Biosystems. Other-
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wise refer to section 2.4 and figure 1.3 of this thesis for details on the compres-

sion process.
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