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Abstract—In this paper, we study the problem of projection
kernel design for the reconstruction of high-dimensional signals
from low-dimensional measurements in the presence of side
information, assuming that the signal of interest and the side
information signal are described by a joint Gaussian mixture
model (GMM). In particular, we consider the case where the
projection kernel for the signal of interest is random, whereas
the projection kernel associated to the side information is
designed. We then derive sufficient conditions on the number
of measurements needed to guarantee that the minimum mean-
squared error (MMSE) tends to zero in the low-noise regime.
Our results demonstrate that the use of a designed kernel to
capture side information can lead to substantial gains in relation
to a random one, in terms of the number of linear projections
required for reliable reconstruction.

Index Terms—Kernel design, side information, Gaussian mix-
ture model (GMM), minimum mean squared error (MMSE)

I. INTRODUCTION

Recently, compressive sensing (CS) has been established as
an efficient technique in the field of signal processing in order
to perform data acquisition and reconstruction, without any or
with minimal loss of information [1], [2]. In particular, CS
provides nearly perfect reconstruction with less measurements
than conventional schemes provided that the signal is sparse in
some orthonormal dictionary or frame [1], [2]. Reconstruction
is performed by using tractable `1 minimization methods [3]
or iterative methods, like greedy matching pursuit [4], [5].

The use of additional information – commonly known as
side information – can also be leveraged to enhance the
performance of compressive sensing [6]–[10] (see also related
work in the information-theoretic literature [11], [12]); this is
due to the fact that possible correlations between the signal of
interest and the side information can be efficiently exploited
both during the acquisition phase and the reconstruction phase
in order to boost performance. This opens up the possibility
to enhance various applications, e.g., video streams are often
accompanied with audio tracks, hyperspectral images can
often be complemented with standard RGB versions, and
high-resolution images can also be complemented with low-
resolution counterparts [13].

A number of authors have proposed frameworks for com-
pressive sensing with side information [6]–[10], [13]–[16].
In particular, in CS scenarios based on sparse models, side
information is offered in the form of partial information
on the support [6] or as a noisy version of the signal of
interest [7]–[10]. Such approaches are shown to require less

measurements than traditional CS scheme to guarantee reliable
reconstruction. More recently, the impact of side information
has also been studied in conjunction with structured signal
models, e.g., union-of-subspaces [13]–[15] and Bayesian dic-
tionary learning [16], where it has been shown to improve
reconstruction performance.

In particular, references [13]–[15] study conditions on the
number of measurements for reliable reconstruction in the
scenario where both the signal of interest and the side in-
formation obey a joint (correlated) Gaussian Mixture model
(GMM). References [13], [14] consider the scenario where the
measurements taken from the signal of interest and the side
information are random, whereas [15] considers the scenario
where the measurements taken from the signal of interest are
optimally designed and the side information is not compressed.
One of the insights offered by [13]–[15] relates to the fact that
optimal acquisition of the signal of interest – via the design
of the respective measurement kernel1 – does not result in
an improvement in the minimum number of measurements
needed to drive the reconstruction error to zero in the low-
noise regime.

These works then motivate the question:

Can we improve the reconstruction performance in compres-
sive sensing with side information applications by designing
the projection kernel associated to the side information?

This paper answers this question by considering sufficient
and (occasionally) necessary conditions on the number of
measurements for the reconstruction minimum mean-squared
error (MMSE) to approach zero in the low-noise regime. It also
provides the form of the kernel designs which are associated
with such conditions.

The paper is organized as follows: Section II defines the
signal and the system model. Section III provides the sufficient
conditions (and necessary conditions in some cases) on the
number of measurements for the reconstruction MMSE to
approach zero in the low-noise regime, for the scenario where
one designs the side information measurement kernel. Sec-
tion IV presents a number of numerical results that illustrate
how theory aligns with experiments. Conclusions are made in
Section V.

We adopt the notation: boldface upper-case letters denote
matrices (X) and boldface lower-case letters denote column

1Throughout the paper, we will use the terms linear projections, kernels
and measurements, interchangeably.
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Fig. 1. Compressive sensing model in the presence of side information.

vectors (x). The symbols In and 0m×n represent the identity
matrix of dimension n × n and the all-zero-entries matrix of
dimension m × n, respectively (subscripts will be dropped
when the dimensions are clear from the context). (·)T, rank(·)
and E[·] represent the transpose, rank, and expectation op-
erators, respectively. The Gaussian distribution with mean µ
and covariance matrix Σ is denoted by N (µ,Σ). The Moore-
Penrose pseudoinverse of a matrix is donated by (·)†. Im(·),
Null(·) and dim(·) denote the (column) image, null space of
a matrix and the dimension of a linear space, respectively.

For reasons of space, we relegate the mathematical proofs
of our results to an extended version of this work [17].

II. MODEL

Fig. 1 depicts the compressive measurement model under
consideration where x1 ∈ Rn1 is the signal of interest
and x2 ∈ Rn2 is the side information. Our objective is
to reconstruct the signal of interest both from noisy linear
measurements y1 ∈ Rm1 , with m1 ≤ n1, associated with x1

given by

y1 = Φ1x1 + w1, (1)

and noisy linear measurements y2 ∈ Rm2 , with m2 ≤ n2,
associated with x2 given by

y2 = Φ2x2 + w2, (2)

where Φ1 ∈ Rm1×n1 and Φ2 ∈ Rm2×n2 are linear projection
kernels and w1 ∼ N (0, I·σ2

1) and w2 ∼ N (0, I·σ2
2) represent

additive white Gaussian noise (AWGN) that models possible
distortion introduced by the sensing process.

We will be assuming that the signal of interest x1 and
the side information signal x2 are described by a joint
Gaussian mixture model. In particular, x1 and x2 are asso-
ciated with underlying class labels C1 ∈ {1, . . . ,K1} and
C2 ∈ {1, . . . ,K2}, respectively. The class labels obey the joint
probability mass function (pmf) PC1,C2

(i, k), and the signals
x1 and x2 conditioned on the underlying class labels C1 = i
and C2 = k obey the joint probability density function (pdf):

p(x1,x2|C1 = i, C2 = k) = N (µ(i,k)
x ,Σ(i,k)

x ), (3)

so that x1 and x2 follow the GMM given by

p(x1,x2) =

K1∑
i=1

K2∑
k=1

PC1,C2(i, k)p(x1,x2|C1 = i, C2 = k)

=

K1∑
i=1

K2∑
k=1

PC1,C2
(i, k)N (µ(i,k)

x ,Σ(i,k)
x ), (4)

Here,

µ(i,k)
x =

[
µ

(i,k)
x1

µ
(i,k)
x2

]
, Σ(i,k)

x =

[
Σ(i,k)

x1
Σ(i,k)

x12

Σ(i,k)
x21

Σ(i,k)
x2

]
. (5)

where µ
(i,k)
x1 and Σ(i,k)

x1
are the mean and covariance matrix of

x1, conditioned on class labels C1 = i, C2 = k, and likewise
µ

(i,k)
x2 and Σ(i,k)

x2
are the mean and covariance matrix of x2,

conditioned on class labels C1 = i, C2 = k, respectively. The
cross-covariance between x1 and x2 given the class labels
C1 = i and C2 = k is given by Σ(i,k)

x12
.

We will also be assuming that the linear spaces associated
to the images of the covariance matrices Σ

(i,k)
x , Σ

(i,k)
x1 and

Σ
(i,k)
x2 associated to different class labels C1 = i and C2 =

k are independently drawn from a continuous pdf over the
corresponding Grassmann manifold.2

The decoder produces an estimate x̂1 of the signal x1 given
the noisy linear measurements y1 and y2 by using the optimal
conditional mean estimator given by:

x̂1(y1,y2) = E[x1|y1,y2] =

∫ +∞

−∞
x1p(x1|y1,y2)dx1, (6)

where p(x1|y1,y2) is the a posteriori pdf of x1 given the
linear measurements y1 and y2. Therefore, the reconstruction
MMSE is given by:

MMSE(σ2
1 , σ

2
2 ,Φ1,Φ2) = E[||x1 − x̂1(y1,y2)||2], (7)

which is a function of the distribution of p(x1,x2), the noise
variances σ2

1 , σ
2
2 and projection kernels Φ1 and Φ2.

Our goal is to determine sufficient conditions on the number
of measurements taken both from the signal of interest and the
side information so that the reconstruction error tends to zero
in the low-noise regime, i.e.

lim
σ2
1 ,σ

2
2→0

MMSE(σ2
1 , σ

2
2 ,Φ1,Φ2) = 0, (8)

Such conditions will be shown both for the scenario where
the measurement matrices Φ1 and Φ2 are obtained randomly3

and for the scenario where the measurement matrix Φ1 is

2Note that this assumption on the linear spaces occupied by signals in
different classes reflects well the behavior of many real data ensembles for
various applications such as face recognition, video motion segmentation,
digits classification, etc. [18]. This assumption will enable us to simplify the
statement of some of our results.

3In this work, random Φ1 and Φ2 are drawn from left-rotationally invariant
distributions. A random matrix M ∈ Rm×n is said to be (left or right)
rotation-invariant if the joint pdf of its entries p(M) satisfies p(ΘM) =
p(M), or p(MΨ) = p(M), respectively, for any orthogonal matrix Θ or
Ψ. A special case of (left and right) rotation-invariant random matrices is
represented by matrices with independent identically distributed (i.i.d.), zero-
mean Gaussian entries with fixed variance.



random but the measurement matrix Φ2 is optimal. In partic-
ular, the optimal measurement matrix Φ?

2 corresponds to the
solution to the optimization problem

minimize
Φ2

MMSE(σ2
1 , σ

2
2 ,Φ1,Φ2)

subject to tr(Φ2Φ
T
2) ≤ m2,

(9)

where the trace constraint in (9) limits the average energy
corresponding to the projection kernel. We denote the MMSE
associated with a random measurement matrix Φ1 and an
optimal measurement matrix Φ?

2 by MMSE(σ2
1 , σ

2
2 ,Φ1,Φ

?
2).

The challenge associated with the characterization of such
sufficient conditions on the number of measurements for
reliable reconstruction (i.e., such that (8) holds) is due to the
fact that the (7) does not admit a closed form expression, even
though (6) does for GMMs (the problem is also compounded
in view of the fact that the solution to (9) cannot be analytically
characterized). Therefore, our ensuing analysis will rely on
bounds to the MMSE as a means to characterize conditions
for reliable classification.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
RELIABLE CLASSIFICATION

We focus now on determining sufficient conditions (and
necessary conditions in some cases) on the number of mea-
surements for reliable classification (i.e., such that (8) holds).
We consider both the simpler scenario where the signal of
interest and the side information obey a joint multivariate
Gaussian distribution as well as the more challenging scenario
where the signals obey a joint GMM.

A. Gaussian sources

We start by considering the simplified case when x1 and x2

are jointly Gaussian distributed with mean µx and covariance
matrix Σx, i.e., when K1 = K2 = 1 in (4).

Theorem 1: Consider the measurement model in (1) and
(2), where x1 and x2 obey a joint Gaussian distribution with
mean µx and covariance Σx such that rx = rank(Σx),
rx1

= rank(Σx1
) and rx2

= rank(Σx2
). Consider also that

the linear spaces associated to the images of the covariance
matrices Σx, Σx1 and Σx2 are independently drawn from a
continuous pdf over the corresponding Grassmann manifold.
Assume that Φ1 ∈ Rm1×n1 is random, drawn from a left-
rotationally invariant distribution, and Φ2 = Φ?

2 is the optimal
projection matrix corresponding to the solution of the opti-
mization problem in (9). Then, it holds

lim
σ2
1 ,σ

2
2→0

MMSE(σ2
1 , σ

2
2 ,Φ1,Φ

?
2) = 0⇔

{
m1 ≥ rx − rx2

m1 +m2 ≥ rx1

.

(10)

Proof: See [17].

Theorem 1 provides necessary and sufficient conditions on
the number of measurements m1 and m2 for the MMSE
to approach zero in the low-noise regime. In particular, the
sufficient conditions on the number of measurements for

reliable reconstruction follow from an upper bound to the
MMSE associated with the use of a suboptimal design for Φ2

in lieu of the optimal design Φ?
2 corresponding to the solutions

of (9) (See [17]).
This suboptimal design is obtained from the generalized

singular value decomposition (GSVD) [19] associated with
two matrices related to the covariance matrices of the sources,
A = (Σx2

)1/2 and B = (Σx2
− Σx21

Σ†x1
Σx12

)1/2. In
particular, these matrices can be written as follows:

A = UCXT , B = VSXT, (11)

where U ∈ Rn2×n2 , V ∈ Rn2×n2 are unitary matrices, X ∈
Rn2×n2 is non-singular, and C = [ΛA 0] and S = [ΛB 0] are
diagonal matrices with

ΛA =

[ rx1+rx2−rx rx−rx1

rx1+rx2−rx I
rx−rx1 DA

]
, (12)

ΛB =

[ rx1
+rx2

−rx rx−rx1

rx1
+rx2

−rx 0
rx−rx1

DB

]
. (13)

Then, the suboptimal design is given by

Φ2 =

[
Im′

2
0m′

2×(n2−m′
2)

0(m2−m′
2)×m′

2
0(m2−m′

2)×(n2−m′
2)

]
X−1. (14)

where m′2 = min{m2, rx1
+ rx2

− rx}.
In turn, the necessary conditions on the number of mea-

surements for reliable reconstruction follow by proving that
there exists no kernel design that can guarantee error free
reconstruction in the low-noise regime with a lower number
of measurements (See [17]).

This shows – in view of the sharpness of the necessary and
sufficient conditions in (10) – that an optimal matrix design
exhibits the following attribute: it captures the portion of the
linear space spanned by signals drawn from the distribution
p(x2) which is not occupied by signals drawn from the
conditional distribution p(x2|x1) in order to improve the
reconstruction performance.

The result in Theorem 1 together with the result in [13, The-
orem 3] also showcase the merit of an optimal measurement
matrix Φ?

2 in comparison to a random one, in terms of the
number of measurements necessary and sufficient for reliable
reconstruction.

Corollary 2: Consider the measurement and source model
in Theorem 1. Let MR

G be the set of pairs (m1,m2) such
that limσ2

1 ,σ
2
2→0 MMSE(σ2

1 , σ
2
2 ,Φ1,Φ2) = 0 for random Φ1

and Φ2, and let MD
G be the set of pairs (m1,m2) such that

limσ2
1 ,σ

2
2→0 MMSE(σ2

1 , σ
2
2 ,Φ1,Φ

?
2) = 0 for random Φ1 and

the optimal Φ?
2. Then, it holds

MR
G ⊆MD

G . (15)

Proof: See [17].



B. GMM sources

We now consider the scenario where x1 and x2 obey a
joint GMM. We only provide sufficient conditions rather than
sufficient and necessary conditions for reliable reconstruction.

Theorem 3: Consider the measurements model in (1) and
(2), where x1 and x2 conditioned on the underlying class
labels C1 = i, C2 = k obey a joint Gaussian distribution
with mean µ

(i,k)
x and covariance Σ

(i,k)
x such that r(i,k)x =

rank(Σ
(i,k)
x ), r(i,k)x1 = rank(Σ

(i,k)
x1 ) and r

(i,k)
x2 = rank(Σ

(i,k)
x2 )

∀i, k. Consider also that the linear spaces associated to the
images of the covariance matrices Σ

(i,k)
x , Σ

(i,k)
x1 and Σ

(i,k)
x2

are independently drawn from a continuous pdf over the cor-
responding Grassmann manifold. Assume that Φ1 ∈ Rm1×n1

is random, drawn from a left-rotationally invariant distribution,
and Φ2 = Φ?

2 is the optimal projection matrix corresponding
to the solution of the optimization problem in (9). Then, on
defining s

(i,k)
x1 = r

(i,k)
x − r

(i,k)
x1 , sufficient conditions on the

number of projections m1 and m2 for

lim
σ2
1 ,σ

2
2→0

MMSE(σ2
1 , σ

2
2 ,Φ1,Φ

?
2) = 0 (16)

are given by

m1 >
r
(i,k)
x1 −m(i,k)

2 , if m2 ≤ s(i,k)x1

min{r(i,k)x −m2, r
(i,k)
x1 −m(i,k)

2 } , if s(i,k)x1 < m2 ≤ r(i,k)x2

r
(i,k)
x − r(i,k)x2 , if m2 > r

(i,k)
x2

(17)
for i = 1, . . . .K1 and k = 1, . . . ,K2, where m(i,k)

2 ∈ N are
such that m(i,k)

2 ≤ r(i,k)x1 +r
(i,k)
x2 −r

(i,k)
x and

∑
i,km

(i,k)
2 = m2.

Proof: See [17].

The sufficient conditions for reliable reconstruction for
GMMs embodied in Theorem 3 are obtained by considering a
specific (suboptimal) design for Φ2 which is inspired by the
projection design which achieves the necessary and sufficient
conditions for reliable reconstruction for Gaussian sources.
This suboptimal design is obtained from the generalized
singular value decomposition (GSVD) associated the pair of
matrices

A(i,k) = (Σ(i,k)
x2

)1/2 (18)

B(i,k) = (Σ(i,k)
x2
−Σ(i,k)

x21
(Σ(i,k)

x1
)†Σ(i,k)

x12
)1/2, (19)

for all (i, k). In particular, we write these matrices as follows:

A(i,k) = U(i,k)C(i,k)(X(i,k))T (20)
B(i,k) = V(i,k)S(i,k)(X(i,k))T, (21)

where U(i,k) ∈ Rn2×n2 , V(i,k) ∈ Rn2×n2 are unitary matri-
ces, X(i,k) ∈ Rn2×n2 is non-singular, and C(i,k) = [Λ

(i,k)
A 0]

and S(i,k) = [Λ
(i,k)
B 0] are diagonal matrices with

Λ
(i,k)
A =

[ r(i,k)
x1

+r(i,k)
x2
−r(i,k)

x r(i,k)
x −r(i,k)

x1

I

D
(i,k)
A

]
, (22)

Λ
(i,k)
B =

[ r(i,k)
x1

+r(i,k)
x2
−r(i,k)

x r(i,k)
x −r(i,k)

x1

0

D
(i,k)
B

]
, (23)

where the diagonal blocks in Λ
(i,k)
A and Λ

(i,k)
B are all square.

We then define the matrix

Φ̄2 = [(Φ̄
(1,1)
2 )T, . . . , (Φ̄

(K1,K2)
2 )T]T (24)

and the matrices

Φ̄
(i,k)
2 =

[
I
r
(i,k)
x1

+r
(i,k)
x2
−r(i,k)

x
0
]

(X(i,k))−1. (25)

Finally, the suboptimal measurement matrix Φ2 is given
by picking any m2 rows from Φ̄2. More specifically, Φ2

is obtained by picking m
(i,k)
2 rows from Φ̄

(i,k)
2 so that∑

i,km
(i,k)
2 = m2.4

In fact, the m(i,k)
2 measurements picked from Φ̄

(i,k)
2 capture

the portion of the linear space space spanned by signals drawn
from the distribution p(x2|C1 = i, C2 = k) which is not
occupied by signals drawn from the distribution p(x2|x1, C1 =

i, C2 = k). The remaining m2 −m(i,k)
2 measurements act as

random measurements for signals in class C1 = i, C2 = k.
Via Theorem 3 and [13, Theorem 4] it is also possible to

showcase the merit of an optimal measurement matrix Φ?
2

in comparison to a random one, in terms of the number of
measurements that guarantee reliable reconstruction.

Corollary 4: Consider the measurement and source
model in Theorem 3. Let MR

GMM be the set of pairs
(m1,m2) that verify the sufficient conditions for
limσ2

1 ,σ
2
2→0 MMSE(σ2

1 , σ
2
2 ,Φ1,Φ2) = 0 in [13, Theorem

4] for random Φ1 and Φ2, and let MD
GMM be the set of

pairs (m1,m2) that verify the sufficient conditions for
limσ2

1 ,σ
2
2→0 MMSE(σ2

1 , σ
2
2 ,Φ1,Φ

?
2) = 0 in Theorem 3, for

random Φ1 and optimal Φ?
2. Then, it holds

MR
GMM ⊆MD

GMM. (26)

Proof: See [17].

We finally note that, for both cases of Gaussian and GMM
sources, designed projection kernels Φ2 allow to capture the
information contained in the side information x2 which is
mostly correlated with x1. In fact, designed kernels aim at
neglecting the information contained in the space spanned by
signals drawn from the distribution p(x2|x1), which can be
interpreted as the innovation component of x2 with respect
to x1.

IV. NUMERICAL RESULTS

We now provide numerical results that showcase the value
of using an optimal measurement matrix Φ?

2 in relation to a
random one. We set σ2

1 = σ2
2 = σ2.

4It is also possible to tighten further the sufficient conditions in Theorem 3
by choosing the values of m(i,k)

2 in order to minimize the value of the maxi-
mum among the right hand side of (17) for all (i, k), subject to the constraints
m

(i,k)
2 ≤ r(i,k)x1

+ r
(i,k)
x2

− r(i,k)x , ∀(i, k) and
∑

i,km
(i,k)
2 = m2.
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We consider the case that x1 and x2 are drawn from a joint
GMM, with dimensions n1 = 14 and n2 = 6, and K1 =
K2 = 2. The means associated with the various Gaussian
distributions are taken to be equal to zero, i.e., µ(i,k)

x = 0,
and the covariances of the Gaussian distributions are randomly
generated such that r(i,k)x = 5, r(i,k)x1 = 4 and r

(i,k)
x2 = 3,

i.e., the images of the input covariance matrices associated
to different classes are drawn uniformly at random from the
corresponding Grassmann manifold. We fix m2 = 2 and we
consider three different cases: i) the case when Φ2 is random;
ii) the case when Φ2 is obtained via numerical solution of
the problem (9); iii) the case when Φ2 is obtained via the
projection kernel design in (25).

Fig. 2 depicts the MMSE vs. 1/σ2. The results in [13] show
that the MMSE approaches zero in the low-noise regime when
m1 + m2 > r

(i,k)
x = 5 for the case of random projection

kernels. On the other hand, Theorem 3 shows that the MMSE
approaches zero in the low-noise regime when m1 > 2 and
m2 = 2. It is apparent that the number of projections that
guarantee reliable reconstruction is less for scenarios where
one uses designed measurements in comparison to scenarios
where one uses random measurements.

Fig. 2 also shows that the numerical results are very well
aligned with theoretical ones. In particular, it can be seen that
the design in (25) requires the same number of projections as
the optimal design in (9) in this case.

V. CONCLUSION

This work illustrates the impact on reconstruction perfor-
mance of side information projection kernel design when both
the signal of interest and side information are drawn from a
joint Gaussian mixture model (GMM).

We have provided sufficient conditions on the number of
linear projections that guarantee the reconstruction MMSE to
approach zero in the low-noise regime. We have also provided
the associated linear projection designs: these capture the

linear space associated to components in the side information
which are mostly correlated with the signal of interest.

It has been established that the optimization of the linear
projections used to capture the signal of interest in the presence
of side information does not lead to gains in relation to
standard random linear projections, in terms of the number
of measurements for the MMSE to approach zero in the low-
noise. One surprising element of this current work relates
to the fact that the acquisition of side information using
appropriate linear projection designs can lead to further gains
compared to random linear projections.
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