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1 Statistical methods

1.1 Multilevel modelling

The nested nature of the sets of measurements obtained for each fetus and pairs of
twins within each pregnancy means that the analysis of fetal growth in twin pregnan-
cies is particularly suited to the application of multilevel modelling. The term ‘mul-
tilevel modelling’ describes a mixed effects approach in which sets of measurements
within each individual and/or individuals within groups form a nested structure. Mul-
tilevel modelling is therefore an extension of the general linear regression framework
that involves the fitting of a combination of ‘fixed effects’ and ‘random effects’ to dif-
ferent hierarchical levels1;2. The fixed effects provide the expected mean value for any
given combination of predictive variables, whilst the random effects are used to model
the random variation associated with each level of the analysis and the covariance be-
tween different measurements obtained from the same individual or between individ-
uals within the same group. Analysis of this nature is required in order to create ade-
quate statistical models that take account of the dependency within data that results
from obtaining serial measurements from individuals or the clustering of individuals
within distinct groups.

The simplest example of a multilevel model is a two-level ‘random intercept’ model.
In the context of analysis of longitudinal data, this could result when serial measure-
ments are obtained from individuals and the measurement at each time point is de-
pendent on age, with an overall mean intercept (β0) and slope (β1) for the relationship
between the measurement and age and random components associated with both
each separate measurement occasion (εi j ) and each individual overall (u0 j ). For the
value (yi j ) of the ith measurement occasion within the jth individual at age (ti j ), this
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can be written:

yi j =β0 +u0 j +β1ti j +εi j

In the standard multilevel model, the random components are normally distributed
and independent between levels and so:

Yi j =β0 +U0 j +β1ti j +Ei j

U0 j ∼ N (0,τ2)

Ei j ∼ N (0,σ2)

The randomly distributed values of u0 j shift the intercept for the relationship be-
tween measurements and age for each individual, hence the term ‘random intercept’
model. The realizations of U0 j specific to each individual are not estimated in the pro-
cess of fitting a multilevel model, but the variance of this term (τ2) is estimated and the
resultant dependency between measurements within each individual is accounted for.

The next logical extension of the ‘random intercept’ model is a ‘random slope’
model, in which the relationship between the predictive and outcome variables is also
allowed to randomly vary between individuals and/or groups. In the example outlined
above, this would introduce a new random term (u1 j ) representing variation between
individuals in the relationship between the measurement and age:

yi j =β0 +u0 j + (β1 +u1 j )ti j +εi j

The random terms at any given level of the model are not assumed to be indepen-
dent as, for example, smaller initial size may be associated with greater subsequent
growth. The possible correlation between the random slope term and the random
intercept term for each individual means that they are modelled as following a multi-
variate normal (MVN) distribution, with covariance parameter τ01:

Yi j =β0 +U0 j + (β1 +U1 j )ti j +Ei j(
U0 j

U1 j

)
∼ MV N (0,Ωu), whereΩu =

(
τ00 τ01

τ01 τ11

)
Ei j ∼ N (0,σ2)

Similar models can be constructed using higher order polynomial functions for the
relationship between the dependent variable and age, or that take into account fixed
and/or random effects associated with other variables, with a resultant increase in the
number of parameters associated with the fixed and random parts of the model3. A
greater number of hierarchical levels can also be included. In the context of modelling
growth in twin pregnancies, the ‘fetus’ level (level 2) of the model can be considered
to be nested within a ‘pregnancy’ level (level 3); this higher level is associated with
random effects shared by the two fetuses within the pregnancy, which follow a MVN
distribution independent of the other levels. This structure is illustrated in Figure 1a.
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A model for the ith measurement occasion of the jth fetus within the kth pregnancy
(Yi j k ) could be expressed as:

Yi j k =β0 +U0 j k +V0k + (β1 +U1 j k +V1k )ti j k +Ei j k (1)(
V0k

V1k

)
∼ MV N (0,Ωv ), whereΩv =

(
ϕ00 ϕ01

ϕ01 ϕ11

)
(
U0 j k

U1 j k

)
∼ MV N (0,Ωu), whereΩu =

(
τ00 τ01

τ01 τ11

)
Ei j k ∼ N (0,σ2)

Here, V0k and V1k represent the random variation in slope and intercept common
to the two twins in each pregnancy, and U0 j k and U1 j k represent that specific to each
individual fetus. The level 1 error term (εi j k ) is modelled as independent between
measurement occasions and between the two twins assessed at any one examination.
The variance of this term can be attributed to some combination of measurement er-
ror and short-term variation of the growth trajectory of each fetus from that modelled
by the polynomial growth function (including random variations in the coefficients
specific to that fetus). For both of these explanations for the level 1 variance, it seems
reasonable to think that the variation for the two twins at any one measurement oc-
casion might in fact be correlated rather than independent. Within the framework of
multilevel modelling, this can be investigated by considering the measurements for
the two twins in each pregnancy as a multivariate response at each examination. This
involves replacing level 1 with a response indicator for which twin a measurement re-
lates to and defining level 2 instead as the measurement occasion (Figure 1b)4.

This ‘multivariate multilevel model’ for growth in twin pregnancies requires the
measurements obtained from ‘Twin A’ (y A j k ) and ‘Twin B’ (yB j k ) to be modelled as
distinct outcome variables. Again considering only a linear growth function with ran-
dom intercepts and slopes for simplicity, the measurements obtained at the jth mea-
surement occasion of the kth pregnancy can be expressed as:

YA j k =β0 +U0Ak + (β1 +U1Ak )t j k +E A j k (2)

YB j k =β0 +U0Bk + (β1 +U1Bk )t j k +EB j k
U0Ak

U1Ak

U0Bk

U1Bk

∼ MV N (0,Ψ), whereΨ=
(
Ωu +Ωv Ωv

Ωv Ωu +Ωv

)
(
E A j k

EB j k

)
∼ MV N (0,Σ), where Σ=

(
σ2 σAB

σAB σ2

)
The structure for Ψ in this model (2) is that same as that implied by the ‘nested

model’ (1) for the random coefficients of the polynomial growth functions for the two
twins within each pregnancy5. However, the covariance of the residual error for the
two fetuses at each examination is now included as σAB . In this model, fetus-level
random effects (represented by Ωu +Ωv , inclusive of pregnancy-level variation) and
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Figure 1. Diagrams showing possible ordering of hierarchy for multilevel modelling of serial
measurements in twins: (a) measurement occasions are nested within individual fetuses, which
are in turn nested within pregnancies; (b) measurements for the two twins in each pregnancy
can instead be modelled as a multivariate response at each measurement occasion, in this
situation ‘level 1’ is a response indicator for which twin a measurement relates to and the
random variation at each examination is modelled at ‘level 2’.

the within-pregnancy covariance for these (i.e. Ωv ) are both included at level 3, relat-
ing to variation in the growth trajectory for each fetus. The residual variance specific
to each examination is modelled at level 2. As for any such model, the random effects
defined serve to create the structure and parameterization of the marginal covariance
matrix for the vector of the dependent variable as a whole.

1.2 Unbalanced and missing data

An advantage of using the multilevel modelling approach (or mixed effects models in
general) to analyze longitudinal data is that it is capable of handling datasets in which
the number and timing of measurement occasions vary between individuals. This is
clearly important with regards to the present analysis, in which the measurements
have been recorded at irregular points between 14 and 40 weeks of gestation and the
number of examinations recorded per pregnancy ranges between 1 and 14. There is
therefore no clear definition of what a complete set of data for any individual preg-
nancy should be.

The discussion of missing data in statistical modelling generally follows the ter-
minology defined by Rubin6, with three types of ‘missingness’: missing completely
at random, where missingness is independent of the complete data; missing at ran-
dom, where missingness is conditionally independent of the unobserved data given
the observed data; and missing not at random, for which the missingness, condition-
ally given the observed data, is dependent on the unobserved data. In the present
analysis, it is not safe to assume that data at later gestational ages in some pregnancies
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are missing completely at random. However, missing at random is a more reasonable
assumption, under which inferences will be correct if maximum likelihood estimation
is carried out using all available data and a correctly specified model.

1.3 Statistical software

There are numerous statistical software programs available that are capable of fitting
‘mixed effects’ or multilevel models; these differ in the estimation procedures em-
ployed, the model structures available and the range of additional features for assess-
ing model fit and interpretation. MLwiN (Version 2.28; Centre for Multilevel Mod-
elling, University of Bristol, Bristol, UK), which has been specifically developed for the
purpose of multilevel modelling, was used in this analysis. This software has a number
of advantageous features, including the generation of residual plots at each level of a
fitted model, tools for investigating outlying data points and excluding them from fur-
ther analysis, and the estimation of confidence intervals for fitted means with respect
to a continuous variable (i.e. time/age).

MLwiN has been developed particularly for hierarchically structured data, and as
such fitting a model with nested levels as illustrated by Figure 1a (Page 4) is relatively
straightforward. Accounting for the potential for correlation between the lowest level
random terms for each fetus at each measurement occasion is more problematic, but
can be achieved by defining a multivariate multilevel model as shown by Figure 1b.
The way in which this modelling approach requires a restructuring of the dataset,
largely performed automatically by the MLwiN software. For this scenario, as two
distinct outcome variables are effectively being defined, it is necessary to apply pa-
rameter constraints to specify that the fixed effects for ‘Twin A’ are equal to those for
‘Twin B’ in each pregnancy and that, for the random effects (as described on Page 3),
‘Ωu+Ωv ’ is equal for the two twins in each pregnancy andΩv is symmetric. Parameter
constraints are included in the estimation procedure, including adjustment of stan-
dard errors, as described by Goldstein7. Although we have chosen to use the notation
‘Ωu +Ωv ’ for the covariance matrix of fetus-level random effects, because conceptu-
ally this is inclusive of pregnancy-level variation, the components of this matrix are
estimated directly in the model described.

To ensure that any possible systematic difference would not interfere with the es-
timation procedure, the labelling of ‘Twin A’ and ‘Twin B’ in each pregnancy was ran-
domized using the ‘experiment’ package in R (R Foundation, Vienna, Austria). It would
also be possible to include the desired covariance term specific to each measurement
occasion through the use of a cross-classified (with respect to the nested structure)
random effect, but this is not readily implemented in MLwiN.

Unlike standard linear regression models, the parameter estimates when fitting
multilevel models do not have a ‘closed form’ solution that can be easily calculated.
Instead, an iterative procedure is required that attempts to find the optimal solution
through repetition of an algorithm until convergence is achieved. It is important to
note that convergence is not always reached, particularly if a model is misspecified or
too complex for the data available. In MLwiN, the procedure used is iterative general-
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ized least squares (IGLS) estimation1, which provides maximum likelihood estimates
for normal response models.

Maximum likelihood estimates for mixed effects models can be seriously biased
for small sample sizes, but this is not a problem in the present analysis given the large
size of the dataset. For smaller datasets the use of restricted maximum likelihood
(REML) procedures provides less biased estimates, and this can be implemented in
MLwiN using restricted iterative generalized least squares (RIGLS) estimation. How-
ever, for REML procedures estimation is based on a likelihood function that is inde-
pendent of the fixed effects in the model, meaning that likelihood ratio tests cannot
be used to compare models that differ with respect to the fixed effects included. Be-
cause of this, IGLS estimation will be used to allow statistical comparison of models
with differences in both the random and fixed effects components.

All statistical graphics were generated using the ‘ggplot2’ package in R.

1.4 Model fitting procedure

For each model, the polynomial growth function in terms of gestational age was de-
termined first. Gestational age was expressed in weeks and was centred at 14 weeks,
meaning that intercept terms can be interpreted as representing variation at this point
in pregnancy. The process began with a ‘random intercept’ model for linear growth,
with fetus-level random terms for the intercept that were correlated within each preg-
nancy, and a ‘random slopes’ model was fitted next with additional random effect
terms for the slope of the relationship between the variable under consideration and
gestational age. Following this, additional fixed effect and fetus-level random effects
terms (with the latter again correlated within each pregnancy) were added simultane-
ously to the model to create incrementally higher order polynomial growth functions.
It would have been possible to add higher order terms only to the fixed effects part of
the model, but this would constrain the curvature to be identical across individuals,
which has been described as “... a constraint that seems antithetical to the model-
building exercise..."8.

A maximum likelihood-based estimation procedure (i.e. IGLS) was used in order
to allow likelihood ratio tests of statistical significance for the simultaneous addition
of fixed effect and random effects terms to a model. The likelihood ratio statistic is
twice the difference in log-likelihood (∆2`) between the models being compared, and
is compared to a χ2 distribution with degrees of freedom equal to the difference in
the number of parameters (∆p) between the two models. Following the parameter-
ization for a ‘multivariate multilevel model’ for twins (as described on Page 3), and
with parameter constraints used to achieve this, extending a model to the nth level of
a polynomial growth function involves the addition of a single fixed effect parameter
and 2(n+1) variance and covariance parameters for the random effects at each stage.

For tests of additional random effects terms involving covariance parameters, it
can be shown that the likelihood ratio test is conservative as it does not take account
of the bounded parameter space of any covariance terms. An adjustment to the stan-
dard likelihood ratio test to ensure optimal power is available when only random ef-
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fects terms are being considered9, but it is not possible to apply this when also consid-
ering an additional fixed effect term in the same comparison. However, in the present
analysis this minor loss of power to identify more complex models could be safely ac-
cepted as, given the large dataset, any terms of borderline statistical significance are
likely to be of no practical importance.

Once an optimal polynomial growth model had been fitted, the fit of the model
was assessed through diagnostic standardized residual plots for each level. A function
for the measurement occasion-specific variance in terms of gestational age was con-
sidered if this appeared to be non-constant. Following this, residual plots were again
reviewed and for any extreme outlying points (i.e. z ≥ |6|) the data for that pregnancy
were excluded before refitting the model.

2 Structure of fitted models

In both DCDA and MCDA twin pregnancies, following the initial ‘random intercept’
model, highly statistically significant improvements in model fit were achieved by a
‘random slope’ model and subsequently a quadratic model for the relationship with
gestational age. The latter model included both a quadratic ‘fixed effects’ function
for the mean and quadratic fetus-level ‘random effects’ in terms of gestational age
in each case, with these correlated between Twin A and Twin B in each pregnancy.
Model-fitting was attempted including cubic components for both the fixed and ran-
dom effects, but convergence was not achieved.

For fitted quadratic models, plotting of the examination-specific standardized resid-
uals against the fixed part prediction (wholly dependent on gestational age) revealed
a clear increase in the absolute magnitude of the residuals with increasing predicted
mean. As such, the examination-specific variance was modelled as a linear function
of gestational age, achieving a significant improvement in model fit.

The structure of the fitted model can be expressed in the following form, in which
YA j k andYB j k represent the measurements for ‘Twin A’ and ‘Twin B’ in the kth preg-
nancy at jth time point t j k (in weeks centred at 14), the β-coefficients represent the
fixed effects estimates for the overall relationship with gestational age,Ωu +Ωv repre-
sents the fetus-level covariance matrix of random effects (inclusive of pregnancy-level
variation),Ωv represents the between-twin covariance matrix (interpretable as equiv-
alent to a pregnancy-level random effects matrix) and Σt is the covariance matrix for
examination-specific random effects:

YA j k =β0 +U0Ak + (β1 +U1Ak )t j k + (β2 +U2Ak )t 2
j k +E A j k (3)

YB j k =β0 +U0Bk + (β1 +U1Bk )t j k + (β2 +U2Bk )t 2
j k +EB j k
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

U0Ak

U1Ak

U2Ak

U0Bk

U1Bk

U2Bk


∼ MV N (0,Ψ), whereΨ=

(
Ωu +Ωv Ωv

Ωv Ωu +Ωv

)

(
E A j k

EB j k

)
∼ MV N (0,Σt ), where Σt =

(
σ2

t σAB_t

σAB_t σ2
t

)

3 Parameter estimates for fitted models

The table below give a summary of parameter estimates for the final fitted models for
DCDA and MCDA pregnancies. Following earlier notation:

Ωv =

ϕ00 ϕ01 ϕ02

ϕ01 ϕ11 ϕ12

ϕ02 ϕ12 ϕ22

 Ωu +Ωv =

τ00 +ϕ00 τ01 +ϕ01 τ02 +ϕ02

τ01 +ϕ01 τ11 +ϕ11 τ12 +ϕ12

τ02 +ϕ02 τ12 +ϕ12 τ22 +ϕ22


σ2

t =σ00 +2∗σ01 ∗ t σAB_t =σAB_00 +2∗σAB_01 ∗ t

Although we have retained the notationΩu +Ωv , because conceptually this repre-
sents the sum of fetus-level and pregnancy-level variation, the terms that comprise
this matrix have been estimated directly by MLwiN. Estimated standard errors are
given in parentheses.
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3.1 AC model parameters

DCDA MCDA

Fixed
β0 77.025 (0.286) 76.661 (0.438)
β1 12.562 (0.054) 12.191 (0.098)
β2 -0.093 (0.002) -0.081 (0.005)

Random
Level 3
τ00+ϕ00 29.911 (4.438) 41.044 (5.896)
τ01+ϕ01 -2.039 (0.776) -2.958 (1.085)
τ11+ϕ11 1.058 (0.171) 1.324 (0.265)
τ02+ϕ02 0.095 (0.032) 0.173 (0.050)
τ12+ϕ12 -0.040 (0.007) -0.056 (0.012)
τ22+ϕ22 0.002 (0.000) 0.003 (0.001)

ϕ00 8.670 (4.124) 6.638 (5.675)
ϕ01 -0.119 (0.751) -0.328 (1.062)
ϕ11 0.405 (0.17) 0.610 (0.264)
ϕ02 0.029 (0.032) 0.007 (0.050)
ϕ12 -0.018 (0.007) -0.024 (0.012)
ϕ22 0.001 (0.000) 0.001 (0.001)

Level 2
σ00 11.575 (1.385) 14.648 (1.858)

σAB_00 9.625 (0.731) 7.424 (1.085)
σ01 1.359 (0.056) 1.102 (0.093)

σAB_01 0 (0) 0 (0)
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