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NOON states via a quantum walk of bound particles
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Tight-binding lattice models allow the creation of bound composite objects which, in the strong-interacting
regime, are protected against dissociation. We show that a local impurity in the lattice potential can generate a
coherent split of an incoming bound particle wave packet which consequently produces a NOON state between
the endpoints. This is nontrivial because, when finite lattices are involved, edge-localization effects render
challenging their use for nonclassical state generation and information transfer. We derive an effective model to
describe the propagation of bound particles in a Bose–Hubbard chain. We introduce local impurities in the lattice
potential to inhibit localization effects and to split the propagating bound particle, thus enabling the generation of
distant NOON states. We analyze how minimal engineering transfer schemes improve the transfer fidelity and we
quantify the robustness to typical decoherence effects in optical lattice implementations. Our scheme potentially
has an impact on quantum-enhanced atomic interferometry in a lattice.
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I. INTRODUCTION

The unprecedented ability to control and observe multipar-
ticle states in optical lattice systems with single-site resolution
[1–14] makes possible the investigation of new quantum inter-
ference effects. Indeed, the dynamics of quantum interacting
systems display many interesting features that go beyond the
regime traditionally studied in linear optics. From the funda-
mental perspective it is then important to understand how to
exploit the natural interactions to “engineer” the many-particle
dynamics in a lattice for creating nonclassical states, such as
multiparticle NOON states. Compared with classical setups,
and also to other schemes for atom interferometry [15,16], the
advantage of this approach is that nonclassical states (e.g.,
NOON and dual Fock states [17]) enhance the estimation
precision of the phase difference between the output arms
of an interferometer [18–21], making them highly attractive
for technological applications. Super-resolution for NOON
states with N = 2,3 has been recently shown experimentally
for microscopy purposes [22]. However, the generation of
nonclassical states with high fidelity is still a hard task. For
instance, in existing photonic realizations, NOON states with
N = 5 have been demonstrated, but with a limited 42% fringe
visibility [23–25]. Moreover, with those schemes, there is a
theoretical upper threshold for the state preparation fidelity
of 94.3% [23]. It is therefore important to develop alternative
schemes for high-fidelity NOON-state generation.

To sense spatial inhomogeneities and to probe external
fields localized over few sites, it is convenient for the
components of the NOON state to be spatially well separated.
In this context a quantum walk of interacting atoms in an
optical lattice might be very useful, as we shall explore. For a
lattice setup, this type of scheme is important because it enables
one to avoid the necessity of measurement based schemes
[26,27] (which are still challenging in current optical lattice
experiments with few particles), time-dependent external
potentials [28], engineered-bath-based schemes [29], or ring
lattices [30,31]. From the theoretical point of view, optical
lattice systems in a low filling limit are modeled by the
Bose–Hubbard Hamiltonian, which contains a hopping term

between neighboring sites and an onsite interaction. If more
than one particle is initially located in the same site and the
onsite interaction is sufficiently strong, this model favors the
creation of bound states, which are stable against dissociation
[2,32–36]. A natural question is then whether bound states
have some advantages for nonclassical state production tasks.
The key point here is that a bound state behaves like an
effective single particle for strong-enough interaction and
together with a balanced beam splitter it can be used to produce
a high-fidelity NOON state. When distant sites are involved,
a balanced beam splitter transformation can be obtained via
the particle dynamics by introducing suitable impurities in the
lattice potential. These impurities generate a coherent splitting
of the wave packet of propagating particles which enables
high-efficiency effective linear optical operations between
remote sites of finite lattices [37,38]. Even without the onsite
interaction, peculiar quantum interference effects enable the
production of nonclassical states; namely, two-particle NOON
states, via the celebrated Hong–Ou–Mandel effect [37,38].
Being a linear-optical effect, the efficiency of this protocol
is maximized when the atom-atom interaction is kept in the
weak-coupling regime.

On the other hand it is intriguing to investigate the strongly
interacting regime; namely, whether the role of the interatomic
interaction can be exploited as a resource to generate a wider
class of nonclassical states; for instance, high NOON states
(N > 2) between distant sites. However, as far as distant sites
are concerned, the realizability of this scheme is hindered by
the possibility to engender and control the tunneling dynamics
of a bound state initially located in one edge of the lattice.
The main obstacle is the presence of edge-locked states which
inhibit the hopping dynamics [39,40]. Edge-locking indeed
creates an effective energy barrier between edge and bulk sites,
which suppresses the bound-state propagation along the lattice.

In other words, it is still an open problem how to tune the
lattice potential to realize transformations between far sites
when strongly interacting particles are involved. Recently, in
the case of fermions, a long-range state transfer protocol for
a two-particle bound state has been studied in a one- and
two-dimensional lattices by using ac fields. In this scheme

2469-9926/2017/95(1)/012307(15) 012307-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.012307


COMPAGNO, BANCHI, GROSS, AND BOSE PHYSICAL REVIEW A 95, 012307 (2017)

FIG. 1. Scheme of the model: when a bound state is initially
in the site 1 of a finite lattice, a suitably introduced local impurity
(orange) in the chemical potential μj = −βδj,L/2+1 triggers a wave-
packet splitting in a reflected R and a transmitted T component. If
appropriately tuned it generates a NOON state between the endpoints
(site 1 and L) at the transfer time. The two green peaks are local
fields which realize a finite lattice model. The red arrow represents
the natural direction of propagation of the bound particle once lowered
the lattice depth at time t = 0. We also add local fields in the first and
last sites of the chain to inhibit the edge-localization effect and then
to delocalize the bound particle from the edges.

the state transfer takes place only between edge states, while
bulk sites remain empty during the dynamics of the system
[41,42]. On the other hand, for bosonic particles, the under-
barrier tunneling of a dimer has been analyzed in Refs. [43,44].
Nonetheless, the problem of how to transfer bound states with
high fidelity over arbitrarily long distances in engineered finite-
size chains has not been completely addressed yet, in particular
when more than two particle bound states are involved in the
dynamics.

In this paper we analyze the bound particle dynamics in
a finite lattice by mapping the Bose–Hubbard Hamiltonian
into an effective single-particle chain via a strong-coupling
expansion in the onsite interaction term (see Fig. 1). This
mapping is realized by applying the effective theory developed
in Ref. [45]. We study the conditions to prevent the dissociation
of the bound particle during the dynamics and we show
that, when these conditions are satisfied, the bound particle
evolution is perfectly described by our effective model. We
find the connection between the effective hopping rates, which
are interaction dependent, and the physical parameters of the
of the Bose–Hubbard model. We then show how to design
these parameters such that the effective evolution produces
a splitting transformation suitable for creating NOON states
between distant sites. Applications in quantum enhanced
metrology are thus discussed.

The first step towards the realization of our protocol
is to develop a method to delocalize a bound-state wave
packet from the edges of a finite chain. In the spin-chain
case the edge-locking effect for spin blocks is bypassed
using π pulses to flip the leftmost spin and then enable the
wave-packet delocalization [40,46]. On the other hand, in the
Bose–Hubbard model an operative method to unlock bound
particle states has not been proposed yet. Here we show that
the edge-locking effect can be eliminated by introducing static
impurities in the chemical potential localized at the endpoints.
These impurities, which can be generated by using external
local fields, compensates the energy gap between edge and

bulk sites and enable the dynamics. After “unlocking” the
dynamics, we study the state transfer efficiency for a uniform
chain and the robustness from typical environmental effects;
specifically decoherence effects due to spontaneous emission
in an optical lattice setup. Moreover we show how a minimal
engineering of the hopping rates can enhance the transfer
efficiency, specifically tuning the first and the last tunneling
couplings of the chain. We show then how to add an extra
impurity in the middle of the chain to generate a NOON
state between the edges of the lattice. We derive analytical
expressions for the optimal parameters to generate N = 2 and
N = 3 NOON states, and we show how our approach can be
straightforwardly generalized for producing larger “cat” states.
Finally, we show how to experimentally detect the generated
NOON state by using the technology available nowadays.

II. MAIN IDEA

We consider a one-dimensional chain of length L, described
by a Bose–Hubbard model with site dependent parameters
according to the following Hamiltonian [47]:

H = −
L−1∑
j=1

Jj

2
[aja

†
j+1 + H.c.]

+
L∑

j=1

Uj

2
nj (nj + 1) −

L∑
j=1

μjnj . (1)

Here aj (a†
j ) are the boson annihilation (creation) operators,

nj = a
†
j aj are the number operators and Jj , Uj , and μj are

respectively the hopping rate, the onsite interaction, and the
chemical potential. Because the Hamiltonian (1) preserves the
total number of excitations of the system, the dynamics can
be evaluated in a Hilbert subspace with a fixed number of
particles.

One characteristic feature of the Bose–Hubbard model is
that the onsite interaction enables the creation of “bound”
states when several particles are in the same site [2,32–36].
Here we are interested in a nonequilibrium configuration,
in the low-filling regime, where M particles are initially
located on a single site. In optical lattices the initialization
of the system in one of these states is obtained starting from
the Mott–Insulator regime and using single-atom addressing
techniques [1–4,6,11]. The key point here is that, provided
that the onsite interaction strength U is large enough, the
resulting state composed of M > 1 bounded particles on
the same site is stable against dissociation during the time
evolution [32,33,35,36,48,49] and behaves like an effective
single particle. Indeed, as explicitly discussed in Refs. [35,36]
for a few values of M , the bounded-particle states lie in an
energy band which is well separated (by an energy separation
∝U ) from other states, provided that U is suitably large. In the
following we introduce a general theory to model the effective
interactions between stable bounded particles.

In general when Uj � Jj ,μj the different Hilbert sub-
spaces HM spanned by the states with M bounded particles;
namely, HM = {|{M},j〉=(a†

j )M |0〉/√M! : j=1, . . . ,L}, are
energetically well separated. Because of this energy separation
between subspaces, if the initial state is composed of a
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bound M-particle states, then with a good approximation the
dynamics remains confined inside HM . The resulting effective
dynamics can be described with a Hamiltonian H eff

M which
describes the effective interactions inside HM . By exploiting
the theory presented in Ref. [45], which assumes that the
dynamical effective subspace is energetically separated by the
rest of the Hilbert space, we find that Eq. (1) generates in HM

the effective interaction

H eff
M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Beff
1 J eff

1

J eff
1 Beff

2 J eff
2

. . .
. . .

. . .

J eff
L−2 Beff

L−1 J eff
L−1

J eff
L−1 Beff

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

in the basis |{M},j〉, j=1, . . . ,L. The above Hamiltonian
describes a quantum walk of a one-dimensional bounded
particle. We mention that, recently, by using a different
approach, an effective spin-chain model has been obtained
to control and manipulate a one-dimensional (1D) strongly
interacting two-specie Bose–Hubbard for quantum communi-
cation and computation purposes [50]. Quantum walks have
been subject to intensive investigations over the past years,
both with single particles and multiparticles [2,48,49,51–54].
In particular, different schemes have been found to engineer
the couplings J eff

j and the energies Beff
j such that the dynamics

either produces a perfect state transfer [55–57] or a perfect
splitting and reconstruction of the initial wave packet; namely,
a fractional revival [38,58,59]. From our perspective, a perfect
state transfer in the effective subspace would give rise to a
perfect transmission of a bounded particle; namely, the state
|{M},1〉 ∝ (a†

1)M |0〉 is dynamically transferred to the opposite
end of the chain |{M},L〉 ∝ (a†

L)M |0〉. Another important
application is the perfect fractional revival, which effectively
generates a beam-splitting transformation between the ends of
the chain. The main reason for its importance is that, when
bound states are involved in the perfect splitting transfor-
mation |{M},1〉 → |{M},1〉 + eiφ|{M},L〉, then an M-particle
NOON state [(a†

1)M + eiφ(a†
L)M ]|0〉 is produced.

The main idea of our scheme is then to engineer the
couplings Jj and the chemical potentials μj in the Bose–
Hubbard (1), such that the effective couplings in Eq. (2)
have the suitable pattern for either state transfer or state
splitting (fractional revival). The timescale of the resulting
effective dynamical transformation is approximately given by
1/Jeff . However, since the effective hopping in HM involves
M − 1 “virtual” transitions through states which are outside
HM , then it is simple to realize that J eff

j ∝ JM
j /UM−1

j , so
J eff

j exponentially decreases with M for large U . For larger
M-particle bound states the effective evolution thus become
slow and the efficiency of the scheme may be severely affected
by environmental effects. Because of this, in the next sections
we thoroughly analyze the M = 2 and M = 3 cases which are
more feasible, given the current experimental capabilities. The
overall theoretical scheme is however fully general and can be
readily extended for larger values of M .

III. APPLICATIONS

A. Edge unlocking

Before focusing on the specific M = 2 and M = 3 cases,
we start by discussing some general properties of the quantum
walk of bounded particles, to clarify the differences with the
single-particle counterpart. We consider the uniform-coupling
regime; namely, Jj = J , Uj = U , μj = μ, in the initial state
|{M},1〉 ∝ (a†

1)M |0〉. The resulting effective interaction is

H eff
M =

(
J

U

)M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Beff
1 J eff

1

J eff Beff
2 J eff

. . .
. . .

. . .

J eff Beff
L−1 J eff

J eff Beff
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where J eff = O(J ), Beff
1 = Beff

L = O[J (U/J )M−2] while Beff
j

for j �= 1,L is much smaller than Beff
1 [boundary elements

may be of order O(J ) or less while in the bulk they are
even smaller]. The appearance of a larger effective field in
the boundaries gives rise to a phenomenon which is called
edge locking. Edge-locked states, which have been already
described in Refs. [39,40] for M � 3, can be understood by
using the theory of quasi-uniform tridiagonal matrices [60]. To
describe this phenomenon we consider an initial wave packet
localized in site 1 which evolves through the Hamiltonian (3)
to the wave packet |ψ(t)〉 = ∑

j (e−itH eff
M )j1|{M},j〉. Calling

H eff
M = V EV † the spectral decomposition of the effective

Hamiltonian, then |ψ(t)〉 = ∑
kj e−itEkV1kV

∗
jk|{M},j〉. Be-

cause of the mirror symmetry and for the properties of
quasi-uniform matrices [60] one finds that VLk = V1k(−1)k ≈
V1ke

iLk and Ek ∝ cos(k) where k is the quasimomentum,
k = kj + O(L−1), where kj = πj/(L + 1) and j = 1, . . . ,L.
Therefore, the quantum walk of the bounded particle displays
the standard expression of a wave-packet evolution [61],
because 〈{M},L|ψ(t)〉 = ∑

k e−i(tEk−Lk)|V1k|2 where |V1k|2
is the probability to excite the quasimomentum state k by
initializing the system in the first site. To simplify the
theoretical analysis we assume that Beff

j ≡ Beff
bulk is constant for

j �= 1,L so, without loss of generality, we can set Beff
bulk = 0.

Indeed, the Hamiltonian (3) and H eff
M − Beff

bulk1 give rise to
the same evolution aside from an irrelevant global phase.
Within this description it is now clear that edge-locking
appears when Beff

1 � Ek , since no quasimomentum state can
be excited by initializing the system in a state where the
bounded particle is in the first site (namely |V1k|2 ≈ 0 for
all the quasimomentum states). Indeed, in this regime this
initialization excites out-of-band modes which are localized
near the edges and do not propagate. As it is clear from
Eq. (3), since Beff

1 = Beff
L = O[J (U/J )M−2], the edge-locking

condition Beff
1 � Ek happens when M � 3, as obtained also

in Ref. [39]. However, there is another form of quasilocking
for M = 2 which is not described in Ref. [39]. Indeed, for
M = 2 we find that Beff

1 is of the same order of the energy
band Ek of the quasimomentum states and, as a consequence,
the quasimomentum states with energy Beff

1 ≈ Ek are the ones
involved by the dynamics. Since Ek ∝ cos(k) when Beff

1 ≈ 0
the relevant excitations consist mostly of quasimomentum
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states with almost-linear dispersion relation (Ek ≈ k around
k = π/2 where Eπ/2 � 0). These states propagate without
dispersion in the chain and therefore give rise to a high
transmission quality. On the other hand, if Beff

1 �= 0 other
states with nonlinear dispersion relation are involved, which
drastically lower the transmission quality. Because of this, we
find that the state |ψ〉 = (a†)2|0〉 has a long delocalization time
from the initial site during the relevant time t∗ ∼ LU/J 2.

Because edge localization is detrimental in quantum trans-
fer applications, we analyze the possibility to “unlock” the
states by compensating the energy gap between edge and bulk
sites introducing a local static potential both in the first and the
last site of the chain. Edge unlocking can be always obtained
for any value of M by adding suitable local chemical potentials
μj around the edges such that the effective fields Beff

n are
constant over the different sites n.

B. Two particles

In this section we analyze the dynamical behavior of a
two-particle bound state. We first start from the uniform case,
describe the edge unlocking, and then we consider how to
engineer the couplings to maximize the transfer of a bound
state and the generation of a NOON state.

1. Edge unlocking

For a uniform chain Jj = J , Uj = U , μj = μ we find
that the effective Hamiltonian Heff is the tridiagonal matrix
in Eq. (2), where

J eff
j = J 2

2U
, (4)

Beff
j =

{
J 2

2U
+ U for j = 1,L

J 2

U
+ U for j �= 1,L.

(5)

The effect of the inhomogeneities in Beff
j is shown in Fig. 2

(top), where we analyze the dynamics of a bound particle
initially in |ψ(0)〉 ∝ (a†

1)2|0〉 in a uniform chain with L = 5
and U/J = 5. We study the probability Pij (t) that after the
time t one particle is in the site i and the other is in the site j ;
namely, Pij = 1

1+δij
|〈0|aiaj |ψ(t)〉|2, where |ψ(t)〉 is the state

evolved for a time t . In particular, we plot as a function of the
time t the probability to have the bound particle in the first site
P11(t) and in the last site of the chain PLL(t). We observe that,
despite the bound particle reaching the last site of the chain at
the transfer time t∗ ∼ L/Jeff, the probability to be in the first
site P11(t∗) is still not zero; namely, the delocalization time
from the first site is slow compared with the transfer time t∗. As
described in the previous section, this is due to the difference
in effective energies Beff

j between the bulk and the edges which
favors nonlinear excitations which, in turn, leads to a dispersive
dynamics. This difference between the bulk and the edges
can be made zero by adding two local chemical potentials
at the endpoints, μj = −β ′(δj,1 + δj,L), where β ′ = J 2/4U .
As it can be seen in Fig. 2 (bottom), when the β ′ field is
added, the delocalization time from the first time P11(t∗)
[and consequently the transfer fidelity PLL(t∗)] is strongly
increased. We compare the results obtained for the transfer
of a bound state with the propagation of a single particle in

FIG. 2. Edge delocalization for a two-particle bound state: plot
of the probability to have a bound particle in the first P11(t) and in
the last PLL(t) site as a function of the time t , scaled for the transfer
time t∗ ∼ L/Jeff for a uniform chain with L = 5 and U/J = 5 in the
initial state |ψ(0)〉 ∝ (a†

1)2|0〉. We add a local field μj = −β ′(δj,1 +
δj,L) with strength β ′ = 0 (top), and β ′ = β ′

opt = J 2/4U (bottom).
To compare the results with the single-particle case we plot, with a
dashed black line, the probability PL(t) = |〈0|aL|ψ(t)|2 for a single
particle initially in a

†
1|0〉 (here t∗ ∼ L/J ).

the lattice, initially in a
†
1|0〉, by plotting in Fig. 2 (bottom)

the probability PL(t) = |〈0|aL|ψ(t)|2 (single-particle data are
scaled for their transfer time t∗ ∼ L/J ). The difference
between the single-particle and the bound-particle results
depends on the finite value of the interaction chosen (U/J = 5
in Fig. 2). Indeed the agreements with single-particle behavior
is very high as long as U/J is large enough.

Because the effective model in Eq. (2) is valid in the regime
U/J � 1, we analyze deviations from the theoretical value
of β ′ by evaluating the dynamics with exact diagonalization
techniques as in Refs. [37,38]. Once initialized the system
in |ψ(0)〉 ∝ (a†

1)2|0〉 we numerically find the value of β ′ that
maximizes the probability to find, at the transfer time t∗ ∼
L/Jeff , the bound particle in the last site of the chain PLL(t∗).
We numerically find that, for a two-particle bound state, the
optimal values of β ′ completely agree with the theoretical
model β ′ = J 2/4U independently of the length of the chain,
as long as U/J � 5.
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When the hopping term J and the onsite interaction U

have comparable amplitude, both the bound states and the
single-particle states contribute to the dynamics [2]. We expect
that, by increasing the onsite interaction, the effects of the
free-particle states are reduced while the state transfer fidelity
of a bound particle should converge to a constant value.

By analyzing PLL(t∗) we find that, when the optimal value
for the localized field β ′ = J 2/4U is added in a uniform chain,
values of the onsite interaction above U/J � 4 guarantee an
almost constant value of transfer fidelity for a two-particle
bound state.

2. Optimal state transfer of a two-particle bound state

The state transfer efficiency of a two-particle bound state
in a uniform chain can be improved by suitably tuning the
tunneling couplings in the model in Eq. (1). Because a
full engineering could be too demanding, here we consider
the effect of a minimal engineering scheme [61,62], which
consists of tuning the first and the last tunneling terms to
J1 = JL−1 = J0 while the rest of the chain has uniform
couplings Jj = J . In this case the effective Hamiltonian (2)
has effective interactions

J eff
j =

{
J 2

0
2U

for j = 1,L − 1
J 2

2U
for j �= 1,L − 1,

(6)

Beff
j =

⎧⎪⎪⎨
⎪⎪⎩

J 2
0

2U
+ U for j = 1,L

J 2
0

2U
+ J 2

2U
+ U for j = 2,L − 1

J 2

U
+ U for j = 3, . . . ,L − 2.

(7)

To maximize the transfer fidelity one has then to remove the
difference between the effective energies Beff

j and to optimize
the values of J eff

j to achieve an optimal ballistic dynamics.
Since the dynamics occurs in the effective subspace one can
use the analytical theory presented in Ref. [61] to find the

optimal value of J eff
0 ≡ J 2

0
2U

, given that the rest of the sites

are coupled with a hopping strength J eff ≡ J 2

2U
. Given the

simple relationship between J eff
0 and the strength J0 of the

Bose–Hubbard tunneling between the edges and the bulk, it is
then straightforward to obtain J0. Once J0 is found, one needs
to add local chemical potentials in both the first and the last
two sites to remove the local energy difference in Beff

j . By
using our effective Hamiltonian expansion, we find that the
state transfer is maximized by introducing two pairs of local
fields μj = −β1(δj,1 + δj,L) and μj = −β2(δj,2 + δj,L−1),
respectively, with strengths β1 = (J 2

0 − 2J 2)/2U and β2 =
(J 2

0 − J 2)/2U . In Fig. 3 (top) we show the results obtained
for the transfer fidelity PLL(t∗) as a function of U/J when
we use minimal engineering and the compensating fields β1

and β2. We observe a significant improvement of transfer
fidelity compared with the results for a uniform chain. In
Fig. 3 (bottom) we also highlight the difference between the
single-particle dynamics and the bound-particle case for finite
interaction U . As expected, for strong interparticle interaction
U , a bound state behaves as a single-particle state. To highlight
that minimal engineered schemes already have a significant
impact in reducing the dispersion in the system, in Fig. 3
(bottom) we show the dynamics of a bound state in a lattice.

FIG. 3. Optimal transfer of a two-particle bound state: (top)
Analysis of the transfer fidelity PLL(t∗) for the initial state |ψ(0)〉 ∝
(a†

1)2|0〉 as a function of the onsite interaction U/J when the
optimal transfer scheme J1 = JL = J0 and Jj = J for j �= (1,L)
is included in the model 1. Here we also add two local im-
purities μj = −β1(δj,1 + δj,L) and μj = −β2(δj,2 + δj,L−1) where
β1 = (J 2

0 − 2J 2)/2U and β2 = (J 2
0 − J 2)/2U to eliminate the edge-

locking effect. The J0 value is chosen by numerically maximizing
the transfer fidelity in a single-particle manifold [61]. To compare
the difference between a single particle and a bound state, we
plot (with a dashed line) also the single-particle transfer fidelity
PL(t∗) = |〈0|aL|ψ(t∗)〉|2 obtained for a system initially in a

†
1|0〉.

(bottom) Probability Pjj (t) to have a two-particle bound state in
site j at time t/t∗ for a minimal engineered chain with L = 21 and
U/J = 8.

Specifically, we plot the probability Pjj (t) = |〈0|a2
j |ψ(t)〉|2/2

to have a two-particle bound state in site j as a function of the
time t/t∗, for a minimal engineered chain with L = 21 and
U/J = 8.

In analogous fashion the Bose–Hubbard Hamiltonian cou-
plings can be tuned so that the effective Hamiltonian coincides
with that allowing perfect state transfer [55], although this is
much more demanding because it requires the engineering of
all tunneling rates Jj and all the chemical potentials μj .

3. Environmental effects

State transfer schemes are generally robust against static
imperfections in the couplings [63,64]. On the other hand,
we explicitly test the robustness of our scheme against
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FIG. 4. Decoherence effects for a two-particle bound state:
(top) Relative variation �PLL/PLL(t∗,� = 0) of the transfer fidelity
PLL(t∗) with respect to the case in absence of decoherence, for
a uniform chain with U/J = 3 and length L. Here �PLL =
|PLL(t∗,�) − PLL(t∗,� = 0)| and the dashed gray line is a threshold
of a relative variation of the 5%. Several chain lengths L are
considered. (bottom) Relative variation �PL/PL(t∗,� = 0) for a
single-particle state initially in a

†
1|0〉.

dynamical environmental effect; specifically, dephasing due
to spontaneous emission, which represents the main source of
decoherence in optical lattices. The dynamics of the system in
the lowest band is typically modeled as a master equation in
Lindblad form [65–67]:

ρ̇ = −i[HBH ,ρ] + �
∑

i

(
niρni − 1

2
niniρ − 1

2
ρnini

)
.

(8)

Here � is the effective scattering rate, and HBS is the Bose–
Hubbard Hamiltonian (1). We numerically solve Eq. (8) as
shown in detail in Appendix C.

No relevant edge field optimal strength β ′ deviations
are found when decoherence effects are introduced, for
�/Jeff < 0.1, where Jeff = J 2/2U . In Fig. 4 (top) we
show how the transfer fidelity PLL(t∗) is affected as
a function of the damping rate �/Jeff in Eq. (8) for
U/J = 3. To better evaluate the difference with the
zero-decoherence case, we show in Fig. 4 the relative variation
|�PLL(t∗)|/PLL(0) = |PLL(�) − PLL(� = 0)|/PLL(� = 0)

FIG. 5. Two-particle NOON state: plot of the probabilities Pij (t)
to have one particle in site i and the other in j , as a function of
time, in units of the transfer time t∗, for two particles initially in
|ψ(0)〉 ∝ (a†

1)|0〉. Here we consider a uniform chain with an impurity
μj = −βδj,L/2+1 where β = 0.789(J 2/2U ) in a chain with U/J = 5
and length L = 5. The absence of the P1L(t∗) term is evidence that the
output state at t = t∗ � UL/J 2 is the NOON state with two particles.
The gray dashed line represents the results for an ideal lossless NOON
state generation.

with respect to the no-decoherence case, as a function of
the damping parameter �/Jeff . We observe deviations of
less than the 5% for �/Jeff � 10−2 − 10−3 for chain lengths
between L ∈ {5, . . . ,21} which are typical values for blue
detuned optical lattices [66,67]. In Fig. 4 (bottom) we show
the effects of the decoherence in the state transfer fidelity for
a single-particle state, initially in a

†
1|0〉.

4. NOON state generation with a two-particle bound state

In this section we consider an imperfect fractional revival by
considering a uniform evolution, although the present results
can be extended with a further engineering to achieve perfect
fractional revivals.

We consider the simplest scheme where the wave-packet
splitting is achieved by using a local barrier in the middle of the
chain, as shown in Fig. 1 and discussed in Ref. [37]. We set the
value β ′ = J 2/4U for the edge fields μj = −β ′(δj,1 + δj,L)
to remove edge locking. Then we add a local field in the
middle of the chain μj = −βδj,L/2+1 to trigger a wave-packet
splitting [37]. Indeed, the extra barrier favors the splitting of
the propagating bound particle wave packet into a transmitted
and reflected component. It has been shown in Ref. [37] that,
for a single-particle quantum walk, the optimal 50-50 splitting
is obtained when the strength β of this extra barrier is equal
to the hopping rate. We expect that, when the bound particle
impinges the splitting field because it behaves like an effective
single particle, the output state, measured at the endpoints,
will be |ψ(t∗)〉1L = 1√

2
(|2,0〉 + i|0,2〉); namely, we generate

a NOON state with two particles [here |2〉 = (a†)2|0〉/√2].
On the other hand, if the two particles are noninteracting
U/J = 0, the effect of the splitting field is to produce also
a nonzero probability P1L(t∗) to have one particle in each end
[68]. We show for a L = 5 chain with U/J = 5 in Fig. 5 that,
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FIG. 6. Finite-size effects in the two-particle NOON state gener-
ation: analysis of the scaling factor α where β50-50 = αJ 2/U , as a
function of the chain length L for generating a two-particle NOON
state. The gray line represents the theoretical results from the effective
Hamiltonian theory, which holds for L � 1. (inset) Analysis of the
optimal value of β of the local field μj = −βδj,L/2+1 which produces
the NOON state with two particles as a function of U/J for L = 5.
The red line is the fit β = β50-50 = 0.395J 2/U .

for a bound particle, that term is suppressed at the transfer
time t∗, as expected from a bound-particle effective evolution.
Therefore, we can conclude that the output state is, when U

is large enough, the NOON state with two particles, apart
from a damping factor due to dispersion. By performing an
effective Hamiltonian expansion in the onsite interaction term
we show that to have a balanced splitting in the effective space,
the strength of the splitting field in the real chain must be
β = β50-50 = J 2/2U , in the limit L � 1.

Finite-length corrections are found numerically by finding
the β value for which the difference P11(t∗) − PLL(t∗) is zero.
As shown in the inset in Fig. 6, for a L = 5 uniform chain,
β50-50 scales as 1/U . The finite length factors, found from a
fit over the data for several chain lengths, are shown in Fig. 6.
By increasing the chain length L the β50-50 values are closer
to 0.5J 2/U , in agreement with the effective Hamiltonian
analysis. We underline that the NOON state creation efficiency
can be made arbitrarily close to 100% by tuning the couplings
in the effective bound particle subspace by using the techniques
for perfect splitting developed in Refs. [38,58] which require a
complete engineering of the couplings in the Hamiltonian (1).
In Sec. IV we propose two methods for detecting the NOON
state generated by measuring interference fringes.

5. Even chains

Here we clarify that our scheme is not limited to odd
length chains but also can be applied to even chains by
tuning both the middle tunneling coupling strength JL/2 and
adding two pairs of local fields μj = −β1(δj,1 + δj,L) and
μj = −β2(δj,2 + δj,L−1), respectively, in the Hamiltonian (1).
Using the results in Ref. [37] for the splitting of a single
particle we find, from the effective Hamiltonian model, that
the optimal coupling strengths to generate a two-particle
NOON state between the endpoints of a uniform chain are
JL/2 = J (

√
2 − 1)1/2, β1 = J/4U , and β2 = J (2 − √

2)/4U ,
respectively.

FIG. 7. Decoherence effects for a three-particle bound state: rela-
tive variation �PLL/PLL(t∗,� = 0) with respect to decoherence-free
case, for a uniform chain with U/J = 2. Here �PLL = |PLL(t∗,�) −
PLL(t∗,� = 0)| and the dashed gray line is a threshold of a relative
variation of the 5%. Several chain lengths L are considered.

C. Three particles

The extension of the previous scheme to more-than-two-
particle bound states enhances its nonclassical state generation
capabilities; namely, towards realizing small cat states between
remote sites. As before, the onsite interaction generates bound
states with three particles when initially located in the same
site. Similarly to the two-particle case, one would expect that
the results of the splitting process, when the onsite interaction
is strong enough, is to produce a NOON state with N = 3.

As for the two-particle case, for large onsite interactions the
effective evolution in the bound-particle subspace is described
by Eq. (2). We consider a uniform chain, while a minimally
engineered model is discussed in Appendix B. For a uniform
chain the effective hopping is Jeff = 3J 3/16U 2. Moreover, to
remove edge locking and compensate the energy gap between
the endpoint sites and the bulk of the chain we have to introduce
two local fields μj = −β ′(δj,1 + δj,L). From our expansion
we find for a uniform chain that β ′ = J 2/8U . To check for
finite-size correction to the above analytical prediction we
numerically analyze the value of β ′ for several chain lengths
L for the initial state |ψ(0)〉 ∝ (a†

1)3|0〉 as a function of the
onsite interaction U . We find that with high accuracy the
estimated field β ′ = J 2/8U is independent of L. We analyze
the probability PLLL(t∗) to have three particles in the site
L after time t∗ for a uniform chain as a function of the
onsite interaction. We find that values of the onsite interaction
above U/J � 4 guarantee an almost constant value of transfer
fidelity for chain lengths L ∈ {5, . . . ,21}.

In Fig. 7 we show the effect of decoherence due to
spontaneous emission, Eq. (8), for several chain lengths L

as a function of the decoherence rate �/Jeff where Jeff =
3J 3/16U 2. We observe relative variation of less than the 5%
with respect to the decoherence-free case, for �/Jeff � 1.3 ×
10−4 up to L = 7 sites. The state transmission fidelity of a
three-bound-particle state can be optimized by engineering the
end tunneling couplings of the chain, as shown in Appendix B.
In this case to bypass the edge-localization effects we also need
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FIG. 8. Three-particle NOON state: Joint probabilities Pijk(t) as
a function of the time, in units of the transfer time t∗, for three
particles initially in |ψ(0)〉 ∝ (a†

1)|0〉 for a uniform chain with an
impurity β = 0.099J 3/U 2 and β ′ = J 2/8U in the middle of the
chain with U/J = 5 and length L = 5. The absence of the P1LL(t)
term is evidence that the output state at t = t∗ is the NOON state
with two particles. The gray dashed line represents the results
for an ideal lossless NOON state generation. We found also that
P1LL(t) = P11L(t).

to add a local chemical-potential tuning in the first two and
last two sites of the chain.

1. NOON state generation for a three-particle bound state

In the noninteracting case U/J = 0 when three particles
are initially located in the first site |ψ(0)〉 ∝ (a†

1)3|0〉 an ideal
beam splitter transformation generates as output a state with
probabilities [68] P111 = PLLL = 1/8, P1LL = P11L = 3/8
where we define

Pjkl(t) = |〈0|aiajak|ψ(t)〉|2
1 + δij + δjk + δik + 2δij δjk

as the probability to have the three particles in the sites
i,j,k. We expect that, when the onsite interaction is strong
enough, the bound particle behaves as an effective single
bound particle, thus the terms P1LL, P11L are suppressed
and the output state at the endpoints effectively results in
the NOON state |ψ(t∗)〉1L = 1√

2
(|3,0〉 + i|0,3〉), where |3〉 =

(a†)3|0〉/√6. In Fig. 8 we plot, as a function of time (in
t∗ � L/Jeff units) the probability to have a three-particle
bound state, respectively, in the first site P111(t), in the last
PLLL(t), and one particle in the first site and two in the
last P1LL(t) in a uniform chain with U/J = 5 and L = 5.
Here we set the edge-field strength to β ′ = J 2/8U and we
find numerically that the splitting field to have a balanced
splitting is β = β50-50 = 0.099J 3/U 2. The absence of the term
P1LL(t∗) = P11L(t∗) is evidence that a NOON state with three
particles is generated between the edges of the chain. From
the effective Hamiltonian description we find that to generate
a balanced splitting of a bound three-particle wave packet,
we need to add a local field μj = −β50-50δj,L/2+1 whose
strength, when L � 1, is β50-50 = J 3/8U 2 (as explained in
Appendix B). However, finite-size corrections change the

FIG. 9. Finite-size effects in the three-particle NOON state
generation: Analysis of the scaling factor α as a function of chain
length L for a three-particle bound state, where β50-50 = αJ 3/U 2. The
dashed gray line represents the theoretical value from the effective
Hamiltonian description. (inset) Analysis of the optimal value of β

to produce the NOON state with three particles as a function of
U/J in a uniform chain with length L = 5. The red line is the fit
β50-50 = αJ 3/U 2 where α = 0.099.

value of β50-50 and, by performing a numerical fit over the
data for a uniform chain with L = 5 (whose results are shown
in the inset of Fig. 9), we find that β50-50 scales with the onsite
interaction as β50-50 = αJ 3/U 2 where α � 0.099. Deviations
from the theoretical value of β50-50 = J 3/8U 2, which are
shown in Fig. 9, have been found by analyzing the results
obtained for several chain lengths L. Here the dashed gray
line represents the theoretical value of the coefficient α of the
splitting field for L � 1.

IV. NOON STATE VERIFICATION

The creation and the detection of a NOON state can be
revealed by measuring the interference fringes in a Mach–
Zehnder setup. After initializing the bound particles in the
initial state |ψ(0)〉 ∝ (a†

1)N |0〉, the NOON state is generated
by the splitting field in the middle of the chain, as previously
discussed. By freezing the dynamics of the system at the
transfer time t∗, a controllable phase factor can be added by
using a local field in the last site of the chain. Finally, once
lowered the lattice potential, a second beam splitter operation
is performed by the splitting field, which produces interference
fringes at the endpoints of the chain at 2t∗.

For an ideal lossless transformation the state at the two
boundary sites of the chain at the transfer time t∗ would be

|ψ(t∗)〉1L = 1√
2

(|N0〉 + i|0N〉). (9)

Once we apply the phase transformation � = diag(1,eiφ)
(namely, a phase shift on site L), a second ideal beam-splitting
transformation would produce the output state at time 2t∗:

|ψ(2t∗)〉1L = 1
2 [(1 − eiNφ)|N0〉 + i(1 + eiNφ)|0N〉], (10)

where the phase accumulated is Nφ with N being the number
of particles in the NOON state. Therefore, the presence of
a NOON state is revealed by measuring the interference
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FIG. 10. NOON state detection with bound particles: Interference
fringes in a Mach–Zehnder scheme for a two-particle bound state for
a chain with L = 5 and U/J = 5. We plot the probability P11(t∗) to
have the bound-state particle in the first site after a time evolution
for t∗ � LU/J 2, when a phase factor φ is introduced in the system.
The line data represent the result for an ideal lossless Mach–Zehnder
transformation.

fringes (i.e., the probability to have N particles in the first
site as a function of φ). Although previous experimental
results measured just the parity of single sites (which would
exclude a direct observation of the N = 2 case discussed so
far), this detection issue in optical lattice has been recently
circumvented up to four particles in the same site [12].

We evaluate numerically the interference fringes for a two-
particle bound state in a uniform chain with length L = 5 and
U/J = 5. To introduce a controllable phase factor between
the endpoints of the chain we freeze the dynamics at time
t∗ � LU/J 2 by increasing the lattice potential depth, then we
apply a local field in the last site. The Hamiltonian (1) is then
quenched at t∗ to

H ′ =
L∑

j=1

Unj (nj − 1) − βLnL. (11)

We let the system evolve for a time t ′ and the phase difference
generated between site L and 1 is φ = βLt ′. Then, for t > t ′,
the lattice potential is lowered again and the dynamics is
described again by the Hamiltonian (1). Finally we let the
system evolve and we evaluate the probability P11 to have the
bound particle in the first site at the transfer time. An alternative
approach, discussed in Ref. [37] for the single-particle case,
is to add a further step-like potential on the right half of the
effective chain, which corresponds to a piecewise constant
potential in the Bose–Hubbard model.

In Fig. 10 we show the results for P11 as a function of the
phase factor φ. By comparing our data with the results of an
ideal lossless transformation (line in Fig. 10) we observe that
the interference fringes are in the same positions as in the
ideal transformation. The influence of the chain dispersion
reduces the height of the peaks compared with the ideal
case. However, the efficiency of this scheme can be pushed
up to 100% by engineering the chain couplings [37,38] in
the effective subspace of bound particles. This method can

FIG. 11. NOON state detection after quenched interparticle inter-
action: interference fringes after the quench to U/J = 0. The chain
has length L = 5 and we set U/J = 5 for generating the two-particle
NOON state in the edges at time t∗ � LU/J 2. Once the NOON state
is generated the dynamics is frozen by increasing the lattice depth,
then a controllable phase factor φ is added by tilting the lattice. Once
the interparticle interaction is quenched to U/J = 0 we let the system
evolve and we measure the probability P1L(t ′′) where t ′′ � L/J is the
transfer time of the free chain.

be easily extended to bound states with a higher number of
particles.

An alternative approach to detect the NOON state for N = 2
is to quench the interparticle interaction (U/J = 0, i.e., via
Feshbach resonances) just after the phase factor is added in the
system. In the lossless case the final state of the two boundary
sites is

|ψ(t ′′)〉1L ∝ [(1 − ieiNφ)|20〉 + (ieiNφ − 1)|02〉
+ 2i(1 + eiNφ)|11〉].

Here t ′′ is the transfer time of free particles in the lattice
t ′′ � L/J . The probability to find one particle in each end at
t ′′ is

P1L(t ′′) = 2(sin Nφ − 1)

sin Nφ − 3
. (12)

From the latter we see with a choice of φ = −5π/4 the output
state results in |ψ(t ′′)〉1L = |11〉, which can be measured
by using single-particle fluorescence techniques. The latter
scheme has two main advantages: first of all it circumvents
the parity projection measurement issue, because the fringes
measurement requires only single-atom detection. In second
place the decoherence influence is reduced because, after the
phase factor is added, it exploits free particle propagation,
which is faster compared with the bound-state case. In Fig. 11
we show the results obtained for the probability to observe one
particle in each end, in a chain with L = 5 and U/J = 5, at
time t ′′, compared with the lossless case in Eq. (12).

V. QUANTUM ENHANCED METROLOGY

As shown in Fig. 10 the interference fringes using a
M = 2 NOON state have half the spacing compared with
the single-particle case. This gives rise to a larger slope of
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the probabilities as a function of φ that, in turn, enables the
estimation of the phase φ from the measurements with higher
sensitivity [18].

This argument can be made more precise by computing
the quantum Fisher information FQ, which provides a lower
bound on the variance of an estimator φ̂ of the phase φ via the
Cramér–Rao bound (�φ̂)2 � 1/(νFQ), where ν is the number
of independent measurements. By the law of large numbers
�φ̂ decreases as 1/

√
ν for increasing ν. On the other hand,

NOON states with M particles provides a quantum enhanced
sensitivity for phase estimation with a variance that decreases
as M−1. This scaling is obtained from the evaluation of the
quantum Fisher information FQ that for pure states is [69,70]:

FQ = 4
[〈ψ ′(φ)|ψ ′(φ)〉 − |〈ψ ′(φ)|ψ(φ)〉|2], (13)

where |ψ ′(φ)〉 = ∂|ψ(φ)〉/∂φ. In our case the NOON state is
generated by letting the initial state |ψt=0〉 ∝ (a†

1)M |0〉 evolve
for t � LUM−1/JM . A relative phase factor between the
endpoints is then added, as described in the previous section,
by using a local field in the last site of the chain. After
these steps we get then the state |ψ(φ)〉 = exp(−inLφ)|ψt 〉
which, in the ideal case, would be a φ-dependent NOON
state (|M0〉1L + ie−iφM |0M〉1L)/

√
2 on sites 1,L. Therefore,

in general, from Eq. (13) we get

FQ = 4�n2
L = 4

(〈
n2

L

〉− 〈nL〉2
)
, (14)

which in the ideal case results in FQ = M2. In our scheme, the
ideal quantum limit can be achieved by using a fully engineered
chain [38] which enables the creation of the ideal NOON state.
This demonstrates the quantum enhanced sensitivity provided
by ideal NOON states.

We now show that even the imperfect NOON states obtained
with uniform chains are sufficient to achieve a quantum
enhanced sensitivity. We consider a uniform chain with length
L = 5 and a bound state with M = 2,3. In Fig. 12 we plot the
best achievable phase uncertainty �φ = 1/

√
FQ, in a single

measurement ν = 1, as a function of the onsite interaction U/J

for a two and a three bound state. The gray and the red lines

FIG. 12. Phase estimation precision �φ = 1/
√

FQ, where FQ is
the quantum Fisher information for the estimator nL in a uniform
chain with L = 5 respectively for a two-particle bound state and for a
three-particle bound state (inset) as a function of the onsite interaction
U/J . The red dashed (gray) dotted lines represent the ideal quantum
(classical) lower bound �φquant = 1/M (�φcl = 1/

√
M).

represent respectively the “classical” limit �φcl = 1/
√

M

(obtained, e.g., by using coherent states where M is the
average number of particles) and the ideal quantum limit
�φquant = 1/M . The black line on the other hand represents
Eq. (14). Both for two- and three-particle bound states we
observe an improvement in the phase estimation precision
compared with the classical case, which is quite close to the
ideal limit for an ideal NOON state and increases with the
onsite interaction U/J .

VI. CONCLUSION

In this paper we analyze the possibility to transfer states
of bound particles between the endpoints of finite lattice and
their use for small cat state (NOON state) generation, using a
minimal control setup.

We derive an effective single-particle theory for the dynam-
ics of a bound-particle state in a Bose–Hubbard model with
tunable couplings by using an accurate effective Hamiltonian
technique. By introducing suitable static local impurities in
the edges of the lattice potential we show how to inhibit edge-
localization effects and enable the bound-state dynamics. This
allows us to realize transformations between far sites, even
when strongly interacting particles are involved. Specifically,
we show how state transfer coupling schemes (in particular
minimal engineering schemes), developed for single-particle
states, can be introduced in our model to improve the efficiency.
We then show how to split the propagating bound-state wave
function to generate cat states (NOON states) between the
endpoints of finite lattices with high fidelity, in a minimal
control setup, by tuning a single local field in the middle
of the chain. We analyze also how environmental effects
affect our scheme; namely, taking into account decoher-
ence due spontaneous emission in an optical lattice setup,
finding the parameters’ regime in which our scheme is
robust.

Our model is of interest for state transfer application
with N � 2 strongly interacting particles and for metrology
applications. In particular, compared with other systems, it can
provide some advantages for sensing external local fields in a
Mach–Zehnder configuration. Indeed, we specifically show
that, even in a uniform chain, the obtained NOON states
give an improvement for the phase estimation between the
output arms of an interferometer. Moreover, our method can
be straightforwardly extended to fully engineered chains to
realize 100% fidelity operations between distant sites, such
as the perfect state transfer of bound-particle states or the
perfect NOON state generation in an arbitrary long chain. As
a future perspective, it will be interesting to adapt pumping
techniques [71] or tunneling modulation techniques [72] to
speed up the transfer time and thus enable the creation of
higher NOON states compatible with the coherence time of the
system.
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APPENDIX A: EFFECTIVE HAMILTONIAN

For the sake of clarity and self-consistency, here we describe
the effective Hamiltonian theory which has been derived and
successfully applied in Ref. [45].

We assume that the Hilbert space is divided into two
subspaces, the effective subspace and the irrelevant subspace,
which are well separated in energy when the interaction
strength U is much greater than the chemical potential
and the tunneling rates. We define a projection operator P
which projects the states to the relevant subspace and the
complementary operatorQ = 1 − P. BecauseP andQ operate
on disconnected subspaces we have

P + Q = 1,

PQ = QP = 0,

P2 = P,

Q2 = Q. (A1)

Once Eqs. (A1) are applied on the Schrödinger equation, one
obtains a system of two coupled equations for the dynamics in
the relevant and irrelevant subspaces:

i∂tP|ψ〉 = (PHP + PHQ)|ψ〉, (A2)

i∂tQ|ψ〉 = (QHP + QHQ)|ψ〉. (A3)

Finally, by using P2 = P and Q2 = Q, one obtains the system

i∂t

(|ψp〉
|ψq〉

)
=
(

Hp V

V † Hq

)(|ψp〉
|ψq〉

)
, (A4)

where

Hp = PHP, (A5)

Hq = QHQ, (A6)

V = PHQ, (A7)

|ψP 〉 = P |ψ〉, (A8)

|ψQ〉 = Q |ψ〉. (A9)

Here |ψp〉 and |ψq〉 are respectively the projection of the state
|ψ〉 in the relevant and irrelevant subspaces. In the interaction
picture,

|ψp〉 = e−iHpt |φ̂p〉, (A10)

|ψq〉 = e−iHq t |φ̂q〉, (A11)

the free evolution is eliminated:

i∂t |φ̂p〉 = e+iHptV e−iHq t |φ̂q〉 ≡ V̂ (t)|φ̂q〉, (A12)

i∂t |φ̂q〉 = e+iHq tV †e−iHpt |φ̂p〉 ≡ V̂ †(t)|φ̂p〉. (A13)

We introduce the operators Up and Uq that diagonalize Hp

and Hq :

Hp = UpλpU †
p, (A14)

Hq = UqλqU
†
q , (A15)

where λp = diag{λi
p} and λq = diag{λi

q}, and defining

|φ̃p〉 = U †
p|φ̂p〉, (A16)

|φ̃q〉 = U †
q |φ̂q〉, (A17)

we have

i∂t |φ̃p〉 = Ṽ (t)|φ̃q〉, (A18)

i∂t |φ̃q〉 = Ṽ †(t)|φ̃p〉, (A19)

and

Ṽ (t) = U †
pV̂ (t)Uq = eiλpt V̂ (t)e−iλq t . (A20)

Assuming that the population of the irrelevant space is initially
zero |φ̂q(0)〉 = |0〉, the formal solution of system (A4) is, in
components,

φ̃q,k(t) = −i
∑

j

∫ t

0
dt ′ V ∗

jke
i(λq,k−λp,j )t ′ φ̃p,j (t ′). (A21)

After partial integration one finds

φ̃q,k(t) = −i
∑

j

{
ei(λq,k−λp.j )t ′

i(λq,k − λp.j )
V ∗

jkφ̃p,j (t ′)
∣∣∣∣
t

0

−
∫ t

0
dt ′

ei(λq,k−λp.j )t ′

i(λq,k − λp.j )

d

dt ′
φ̃p,j (t ′)

}
. (A22)

The second integral can be neglected because, by carrying on
the partial integration procedure, the next term is of the order of
(λq,k − λp.j )−2. Indeed, for a large spectral separation between
the relevant and the irrelevant subspaces, |λk

Q − λ
j

P |�1, and
when the edge term is zero one has

φ̃q,k(t) = −
∑

j

W̃kj (t)φ̃p,j (t), (A23)

where

W̃kj (t) = V ∗
jk

exp
[
i
(
λk

Q − λ
j

P

)
t
]

λk
Q − λ

j

P

. (A24)

Finally one find that the effective Schrödinger equation for the
relevant space dynamics is

i∂t |ψp〉 � Heff|ψp〉, (A25)

where

Heff = Hp − V W, (A26)

and W satisfies

HqW − WHp = V †. (A27)
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When Hp consists of a degenerate levels with energy E0 the
above effective theory corresponds to the usual degenerate
perturbation theory [73]:

〈φ|Heff|φ′〉 � 〈φ|H |φ′〉 +
∑

m∈Hq

〈φ|V |m〉〈m|V |φ′〉
E0 − Em

+ · · · ,

(A28)

where Hp and Hq are the relevant and irrelevant Hilbert
subspaces and |φ〉,|φ′〉 ∈ Hp.

We derive explicitly the effective Hamiltonian for a Bose–
Hubbard model (1). The Hilbert space H with fixed number
of particle M in a chain with length L has size

dimH = (M + L − 1)!

M!(L − 1)!
. (A29)

The relevant space Hp ≡ HM is defined as

Hp = {∣∣ψb
m

〉 ∈ H :
∣∣ψb

m

〉 = |0, . . . ,0,Mm,0, . . . ,0〉},
(A30)

where Mm = M . Clearly dimHp = L. The irrelevant space
Hq = H \ Hp is

Hq =
{∣∣ψu

m

〉 ∈ H :
∣∣ψu

m

〉 = |n1, . . . ,nL〉,

where
∑

j

nj = M and nj �= M

}
. (A31)

Given the above definitions we rename the basis of the Hilbert
space as |m〉, m = 1, . . . ,dimH such that |m〉 = |ψb

m〉 for
m = 1, . . . ,L. The Hamiltonian then takes the following block
form:

H =
(

Hp V

V † Hq

)
, (A32)

where each block can be evaluated explicitly with the following
projection operators:

P =
L∑

m=1

|m〉〈ψb
m

∣∣, (A33)

Q =
dimHq∑
m=1

|L + m〉〈ψu
m

∣∣. (A34)

Clearly, dimHp = (L,L), dimHq = (dimH − L,dimH − L),
and dimV = (L,dimH − L).

The effective Hamiltonian (A26) can be computed explic-
itly by using a series expansion for large Uj = U . The relevant
Hamiltonian for the Bose–Hubbard model (1) takes the simple
form

Hp =
L∑

m=1

U

2
M(M − 1)|m〉〈m| −

L∑
m=1

μmM|m〉〈m|. (A35)

Similarly Hq and V can be computed explicitly. The effective
model can be obtained by solving Eqs. (A26) and (A27). To
find the W matrix we vectorize (see Appendix C) Eq. (A27)
as

Gvec(W ) = vec(V †), (A36)

where

G = (1dimHp
⊗ Hq) − (

Ht
p ⊗ 1dimHq

)
. (A37)

It it is convenient to write G = Glarge + Gsmall where

Glarge = 1dimHp
⊗ H large

q − (
H large

p

)t ⊗ 1dimHq
, (A38)

Gsmall = 1dimHp
⊗ H small

q − (
H small

p

)t ⊗ 1dimHp
, (A39)

and H large is the part of the Hamiltonian (1) that contains the
terms in U : H large = ∑L

j=1
U
2 nj (nj − 1) and H small = H −

H large. The system (A36) can be formally solved by taking
the inverse of the G matrix as

vec(W ) = 1

Glarge + Gsmall
vec(V †) (A40)

and using the following identity, valid for two operators A and
B:

1

A + B
= 1

A

(
1 − B

1

A + B

)
. (A41)

Indeed one can easily find that

1

A

(
1 − B

1

A + B

)
= A−1[1 − B(A + B)−1]

= A−1[(A + B)(A + B)−1

−B(A + B)−1]

= A−1[A(A + B)−1] = 1

A + B
.

(A42)

By using recursively Eq. (A41) one finds the Dyson expansion

1

Glarge + Gsmall
= (Glarge)−1

+∞∑
n=0

(−1)n[Gsmall(Glarge)−1]n,

(A43)

which corresponds to a series expansion in the onsite inter-
action parameter U (which is contained in Glarge). Moreover,

Glarge = −U

2

L∑
m=1

dimHq∑
n=1

g(n,m)|L+n,m〉〈L+n,m|, (A44)

where

g(n,m) =
∑

j

M(M − 1)δjm − nj (nj − 1) > 0,

since in Hq it is nj < M and
∑

j nj = M . Therefore, Glarge is
diagonal and nonsingular for each value of M . By truncating
the expansion (A43) at the relevant order n in U one obtains the
matrix W from Eq. (A40) and then the effective Hamiltonian
from Eq. (A26), valid to the nth order.

As an example of the general procedure outlined above we
consider explicitly the first-order solution where M = 2 and
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(A43) reduces to

(Glarge + Gsmall)−1 ≈ (Glarge)−1 (A45)

= −U−1
L∑

m=1

dimHq∑
n=1

|L+n,m〉〈L+n,m| (A46)

= −1q ⊗ 1p

U
. (A47)

Therefore, according to (A36), W = −V †/U , so

Heff � −
L∑

m=1

μmM|m〉〈m|

+
L∑

m,m′=1

|m〉
〈
ψb

m

∣∣VQV †∣∣ψb
m′
〉

U
〈m′|, (A48)

where we have explicitly omitted the terms proportional to
the identity. For the interaction term V between Hp and
Hq we observe that the only nonzero matrix elements are
〈ψb

m|aja
†
j+1|ψu

n 〉 (as well as their Hermitian conjugate) when∣∣ψb
m

〉 = |0, . . . ,Mj , . . . ,0〉, (A49)∣∣ψu
n

〉 = |0, . . . ,1j ,(M − 1)j+1, . . . ,0〉. (A50)

These can give rise to a hopping from |m〉 to |m + 1〉 only
for M = 2. Indeed, this is done with the following steps:
Starting from |m〉 = |0, . . . ,2m,0, . . .〉 the operator ama

†
m+1

in V maps this state to |0, . . . ,1m,1m+1,0, . . .〉 which is
in Hq . Then the operator ama

†
m+1 in V † maps that state

to |m + 1〉 = |0, . . . ,2m+1,0, . . .〉. By generalizing the above
argument, with simple calculations one finds then

HM=2
eff � −

L∑
m=1

μmM|m〉〈m| +
L−1∑
m

J 2
m

2U
(|m〉〈m + 1| + H.c.).

(A51)

The generalization to higher values of M proceeds along
the same lines. For instance, for M = 3 one has to consider
the second-order expansion in (A43) which depends also on
Gsmall. Indeed, an effective hopping can happen only via a
three step procedure

|m〉 = |0, . . . ,3m,0, . . .〉 → |0, . . . ,2m,1m+10, . . .〉 (A52)

→ |0, . . . ,1m,2m+10, . . .〉 (A53)

→ |0, . . . ,3m+10, . . .〉 ≡ |m + 1〉. (A54)

By doing explicit calculations we find the effective Hamilto-
nians mentioned in the main text.

APPENDIX B: MINIMAL ENGINEERING OF THE
THREE-PARTICLE BOUND-STATE PROPAGATION

The state transfer fidelity of the three-particle bound state
can be improved by introducing an optimal coupling scheme;
namely, tuning the first and the last tunneling coupling to
J1 = JL−1 = J0 and the rest of the chain to Jj = J . We
find that, in order to delocalize the bound state, two pairs of
localized fields in the endpoints are necessary, respectively

μj = −β1(δj,1 + δj,L) and μj = −β2(δj,2 + δj,L−1) where
β1 = (2J 2 − J 2

0 )/8U and β2 = (J 2 − J 2
0 )/8U . In this case the

beam-splitting condition for L � 1 is realized when a local
field μj = −βδj,L/2+1 with strength β = β̃J 3/8U 2 is added
in the middle of the chain. The effective Hamiltonian is it in
this case

HIII
opt

/
2J III

eff

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

UIII
opt

J 3
0

2J 3

J 3
0

2J 3

. . . 1/2

1/2 UIII
opt

. . .

. . . UIII
opt + β̃

. . .

. . . UIII
opt 1/2

1/2
. . . J 3

0
2J 3

J 3
0

2J 3 UIII
opt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where J III
eff = 3J 3/16U 2, and UIII

opt = 8(U/J )3 + 2U/J +
16(J/U )2. To have a perfectly balanced beam splitter in
this single-particle Hamiltonian, as shown in Ref. [37], one
needs β̃ = 1. Therefore, β50-50 = J 3/8U 2. Our method is
straightforwardly generalizable to bound states with a higher
number of particles.

APPENDIX C: NUMERICAL SOLUTION OF THE MASTER
EQUATION

To solve the master equation (8) we exploit a vectorization
procedure [74] which consists of representing a matrix as a
vector, by using its representation in the canonical basis with
a column ordering. For instance, for a generic 2 × 2 matrix A,
its vectorization vec(A) is

A =
(

A11 A12

A21 A22

)
= A11

(
1 0
0 0

)

+A21

(
0 0
1 0

)
+ · · · , (C1)

vec(A) = (A11, A21, A12, A22)t . (C2)

For a general size matrix ρ the latter procedure corresponds to
the mapping v(k−1)L+j = ρjk where v = vec(ρ). Once chosen
this base the action of an operator H on the left or the right of
the density matrix ρ can be written as

Hρ = (1L ⊗ H )vec(ρ), (C3)

ρH = (Ht ⊗ 1L)vec(ρ), (C4)

and for the dissipative part, by using the identities

vec(ABC) = (Ct ⊗ A)vec(B) = (1L ⊗ AB)vec(C)

= (CtBt ⊗ 1L)vec(A), (C5)

vec(AB) = (1L ⊗ A)vec(B) = (Bt ⊗ 1L)vec(A), (C6)
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we find that

niniρ = (1L ⊗ nini)vec(ρ), (C7)

ρnini = [(nini)
t ⊗ 1L]vec(ρ), (C8)

niρni = [(ni)
t ⊗ ni]vec(ρ), (C9)

hence if H and ρ describe a fixed particle number subspace
one obtains the vectorized version of the master equation (8);

namely,

vec(ρ̇) = Lvvec(ρ), (C10)

where the operator Lv is defined as

Lv = −i{(1L ⊗ H ) − (Ht ⊗ 1L)} − γ
∑

j

{(
nt

j ⊗ nj

)

− 1

2

(
1L ⊗ n2

j

)− 1

2

[(
n2

j

)t ⊗ 1L

]}
. (C11)
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[27] W. J. Mullin and F. Laloë, J. Low Temp. Phys. 162, 250 (2010).
[28] K. Stiebler, B. Gertjerenken, N. Teichmann, and C. Weiss,

J. Phys. B: At., Mol. Opt. Phys. 44, 055301 (2011).
[29] G. Kordas, S. Wimberger, and D. Witthaut, Europhys. Lett. 100,

30007 (2012).
[30] A. M. Leung, K. W. Mahmud, and W. P. Reinhardt, Mol. Phys.

110, 801 (2012).
[31] L. Dell’Anna, G. Mazzarella, V. Penna, and L. Salasnich,

Phys. Rev. A 87, 053620 (2013).
[32] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker

Denschlag, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller,
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