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Abstract:  

Intracranial EEG (iEEG) recordings are widely used for the work up of 

pharmacoresistant epilepsy. Different iEEG recording techniques namely subdural 

grids, strips, depth electrodes and stereoencephalography (SEEG) are available with 

distinct limitations and advantages. Epilepsy centres mastering multiple techniques 

apply them in an individualised patient approach. These tools are used to map the 

seizure onset zone which is pivotal in approximating the epileptogenic zone, i.e. the 

zone which is indispensable for the generation of seizures and when resected will 

render the patient seizure free. Besides, the implanted electrodes can be used to 

define eloquent cortex through direct cortical stimulation.  

Different clinical scenarios exist which favour one iEEG recording technique over the 

other. Proximity of the presumed epileptogenic zone to eloquent cortex, for example, 

is a clinical scenario which may favour grid electrodes over SEEG.     

We here review the indication for iEEG for the work-up of patients suffering from 

pharmacoresistant epilepsy. In addition, we provide a description of the recording 

techniques focussing on the main techniques used: grid electrodes, depth electrodes 

and stereoencephalography. We then outline different clinical scenarios and the 

preferred technical approach for intracranial recordings in these scenarios. Finally, 

we highlight which advances have been made in the field of iEEG and which 

advances are in the pipeline waiting to be established for clinical use.  

This review provides the clinician with an update on the diagnostic use of intracranial 

EEG for epilepsy surgery and thus aids in understanding patient selection for this 

technique which may ultimately improve referral patterns. 
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1 Introduction 

Intracranial EEG recordings (iEEG) date back to the days of Berger, who recorded 

electrical activity from the cortex using silver-chlorided needle electrodes [1]. Förster 

and Altenburger extended Berger´s work and performed intracranial recordings in 

the operating theatre showing focal slowing in EEG produced by tumours [2,3]. 

Subsequently many attempts at recording brain activity have been made, most 

notably by Delgado, who showed that recordings could be performed over an 

extended period of time with electrodes implanted in various animal species and 

subsequently also in humans [4,5]. Delgado’s work in humans however was aimed 

at treating psychotic patients. The first approach at continuously recording iEEG in 

patients with epilepsy was made by Penfield and Jasper at the Montreal Neurological 

Institute. Besides their seminal study of human brain function through cortical 

stimulation, which led to the description of somatotopic organization of the cortex 

and the first schematic drawings of the homunculus, they also instigated the first 

iEEG recording in 1938 [6]. In this first recording Penfield’s goal was to lateralize 

seizure onset by implanting bilateral electrodes on the dura overlying the temporal 

lobes. Further advance in iEEG recording came from the Mayo clinic advocating the 

use of depth recordings and discussing the interpretation of data derived by 

intracerebral electrography [7]. Around the same time in France, Bancaud and 

Talairach proposed the technique of stereoencephalography in the work-up of 

pharmacoresistant epilepsy which since has been widely used [8] (for a review about 

the history of invasive EEG see [3]).  Nowadays iEEG recordings are performed in 

epilepsy centres all over the world. These recordings are aimed at approximating the 

epileptogenic zone (EZ) which is the region of cortex that needs to be removed to 

render the patient seizure free [9]. In addition direct cortical stimulation (CSM) 
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through the same electrodes provides information on eloquent cortex which needs to 

be spared during resection.  

The percentage of patients considered for epilepsy surgery in need for iEEG ranges 

approximately between 30 and 40% in tertiary epilepsy centres. Certain clinical 

scenarios which necessitate iEEG recordings are common and recurring. Different 

iEEG recording techniques, namely subdural grids, strips and depth electrodes and 

stereoencephalography (SEEG) are in use, each with different limitations and 

advantages. Large epilepsy centres with experience in both approaches employ 

these techniques in an individualized patient approach, drawing on strengths and 

weaknesses of both methodologies.  

 

Here we provide a comprehensive review of the indication for intracranial recordings 

in patients suffering from pharmacoresistant epilepsy, defined as having failed two or 

more antiepileptic drugs [10]. Intracranial recordings are performed to establish 

surgical candidacy by delineating cortical areas presumably necessary to generate 

the seizures and eloquent cortex using CSM. We focus on the different recording 

techniques using subdural grids, strips, depth recordings, combinations of all the 

former, and stereoencephalography (SEEG), including strategies underlying the 

planning of such investigations. We will highlight how subdural grid recordings, 

combination recordings of grids, strips and depth and SEEG recordings differ, and 

how individual cases can be approached. This will also illustrate limitations, 

advantages and disadvantages of subdural grid recordings and SEEG and inform 

clinicians on patient selection for iEEG recordings and the different types of 

recording.  
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Intraoperative EEG recording (ECoG) to capture interictal activity, through subdural 

strip/grid and depth electrodes, is also widely used. Continuous epileptiform 

discharges are considered a reliable marker of the epileptogenic zone and those 

discharges are often seen in focal cortical dysplasias, where ECoG has been shown 

to be beneficial in tailoring the extent of resection [11,12]. However, continuous 

epileptiform discharges are not always present on recordings and many centres rely 

more on ictal recordings and thus chronically implanted electrodes are needed. 

Although of some interest in iEEG evaluation in selected cases, acute intraoperative 

ECoG recordings are not in the scope of this review. Foramen ovale electrodes and 

epidural electrodes will also not be covered in this review due to their more limited 

use.  

 

2 Who should undergo iEEG monitoring? 

2.1 The definition of the epileptogenic zone 

The overall aims of iEEG are 1. To aid defining the epileptogenic zone (EZ) and 2. 

To determine the location and extent of eloquent cortex in relation to the EZ to define 

safety margins for epilepsy surgery via CSM. The EZ has been defined as the 

minimum cortical area that needs to be removed to render the patient seizure free 

[9]. The definition of the EZ hence is a theoretical concept, and no single test or 

combination of tests describes it accurately. In fact, even after resection we can only 

conclude that the EZ was included in the area of resection if the patient became 

seizure free, but it is not known whether a smaller resection may also have achieved 

the same result. To propose surgical margins however, the EZ is approximated from 

all presurgical information delineating all zones described in table 1, including iEEG, 

if performed. The diagnostic modalities available and knowledge of and criteria for 
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interpretation of advanced tests have of course changed over the years, with our 

ability of identifying underlying lesions majorly benefiting from the wide availability of 

MRI from the 80s. Refinement of video EEG recording equipment allows the analysis 

of EEG both at very low and very high frequency spectra, constantly giving rise to 

new insights in the dynamics of seizures, even at single cell level. Analysis of 

structural, functional and effective connectivity measures using neurophysiological 

and imaging modalities have only begun recently to add to the armamentarium. 

The concept of the epileptogenic zone underlying the planning and implementation 

of SEEG studies was proposed during the sixties by Talairach and Bancaud [13,14], 

with a slightly different emphasis. Its starting point derived primarily from a working 

hypothesis to establish the region of cortex generating the epileptic seizures that had 

to be determined electrophysiologically, and then translated into anatomical terms 

[14]. This has been phrased as “the ictal electroencephalographic changes must be 

recorded at the very point where they occur (anatomo-electrical relationships), and 

that their initial or secondary reverberations on the clinical picture (electro-clinical 

relationships) must be evaluated as the discharge spreads” [15]. It is important to 

note that the EZ in this definition does not equate to the region of cortex that needs 

to be removed [14]. These two approaches have shaped the strategies for 

implantation in many centres, with the latter being virtually universally adapted in 

centres traditionally only performing SEEG, the former in centres performing 

traditionally exclusively or more commonly subdural grids or combinations of depths, 

strips and grids.  
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2.2  Practical considerations for the implementation of iEEG 

IEEG is considered a further diagnostic step necessary in a number of patients to 

establish surgical candidacy and delineate surgical margins. It is often needed to 

complement or resolve contradictory findings obtained by non-invasive tests. It adds 

cost and risk to epilepsy surgery and outcome studies consistently find that surgical 

outcome is inferior if iEEG was necessary [16]. Therefore, physicians may be 

reluctant to offer the procedure, and decide that patients are not a surgical 

candidate. However, a recent study showed that intracranial monitoring is favoured 

over VNS and medical management as it is a strategy which increases quality-

adjusted life years over a broad range of variables such as the chance to localize the 

seizure focus and surgical morbidity [17]. In this challenging group, good outcomes 

in the range of 61% at one and 47% at 3 years can be achieved in a substantial 

number of well selected patients [18].  

Decision on surgical candidacy and whether iEEG recordings are needed is typically 

made in a multidisciplinary team meeting after patients have undergone a number of 

non-invasive investigations, which typically include careful history and analysis of 

seizure semiology, scalp video EEG, neuropsychological and neuropsychiatric 

testing, structural and often also functional imaging such as PET and ictal SPECT. 

The latter is mostly only needed if MRI is normal or if other confounding factors exist 

regarding the formulation of a clear hypothesis of the EZ. Advanced 

neurophysiological options include MEG or high density EEG. Recent surveys have 

highlighted the variability of use of diagnostic modalities [19]. For paediatric 

candidates of epilepsy surgery, guidelines and recommendations regarding 

diagnostic test utilization have recently been made [20,21]; no such clear guidance 
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exists for the adult population although health technology assessments have been 

published [22].   

 

Over time, most epilepsy centres report fluctuations in volume of iEEG recordings, 

and many experience more recently a resurgence in iEEG recording numbers. No 

study has specifically looked into the reasons for this, but changing trends in referral 

patterns, definitions of pharmaco-resistance, improved understanding of outcomes 

following epilepsy surgery as well as better understanding of risks of ongoing 

seizures such as SUDEP most certainly play a role. In addition, improved non-

invasive diagnostics such as structural MR imaging and functional imaging 

techniques, advanced neurophysiological methods have all contributed to allow more 

complex epilepsies to be brought forward to establish surgical candidacy. Other 

considered classic surgical substrates such as temporal lobe epilepsy due to 

hippocampal sclerosis are in decline [23]. Furthermore, centres have inherent biases 

towards iEEG modalities, often due to varied availability of equipment and training 

background of the teams in question.  

 

In the early days of iEEG recordings, iEEG recordings were performed in the 

operating theatre and due to time constrains these were aimed at recording interictal 

activity. However, the ultimate goal of epilepsy surgery is to remove the EZ, which is 

an area that is indispensable for generating seizure activity. Nowadays it is well 

accepted that the seizure onset zone is contained in the EZ and thus is a better 

approximate of the EZ than interictal activity. Interictal activity represents the irritative 

zone and can extend beyond the EZ [24]. There are, however, certain pathologies 

such as focal cortical dysplasia Type II where the presence of continuous or frequent 



 9 

rhythmic epileptogenic discharges may be a very good approximation of the seizure 

onset zone [12], and some centres may rely solely on intraoperative ECoG in these 

cases. IEEG recordings with chronically implanted electrodes are performed to 

record seizures to define the seizure onset zone. Not every patient undergoing 

presurgical investigations for epilepsy surgery needs to undergo invasive recordings. 

If there is a clear lesion on imaging such as in hippocampal sclerosis with EEG scalp 

recordings of seizures and interictal findings together with other non-invasive tests 

supporting epilepsy arising from this lesion, then epilepsy surgery can be performed 

without further invasive recordings, given that the lesion is remote from eloquent 

cortex. Using closely spaced electrodes according to the international 10-10 system, 

in contrast to the conventional 10-20 system of electrode placement during video 

EEG monitoring may improve localization of the ictal onset zone and thus obviate the 

need for iEEG monitoring [25]. High density scalp EG coverage may also be used for 

advanced EEG reviewing tools such as source localization where additional 

electrodes may improve localization of the irritative and seizure onset zones [26,27].  

 

Relative indications for iEEG recordings have been defined as normal imaging, 

presumably extratemporal epileptogenic zone, discordant findings in non-invasive 

tests, proximity of the presumed epileptogenic zone to eloquent cortex and certain 

imaging findings and syndromes with a tendency to multiple lesions such as 

tuberous sclerosis or lesions that may only be partially visible and where the 

epileptogenic zone may involve areas surrounding the lesion as well, as may be the 

case in focal cortical dysplasia [20] or some developmental tumours associated with 

dysplasia [28]. Table 2 outlines typical clinical scenarios with and without the need 

for iEEG recording. Invasive EEG recording may also be needed in patients with a 
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lesion on MRI, if data obtained from EEG and/or semiology are discordant to the site 

of the lesion.   

Particularly difficult to localise or lateralize seizure patterns on scalp EEG are a 

challenge in the work up of patients suffering from pharmacoresistant epilepsy. Such 

EEG patterns are often seen in frontal lobe epilepsy where in addition scalp EEG is 

often obscured by artefacts [29]. If non-invasive data allows to formulate a 

hypothesis about the epileptogenic zone, iEEG monitoring might confirm this and aid 

in delineating extent of resection and to proceed to successful surgery. The major 

advantage of all iEEG recording is the high spatial resolution compared to scalp 

EEG. This is due to the fact that the recording electrodes in iEEG are very close to 

the generator thus obtaining more precise information. Spikes in scalp EEG are 

detected if a considerable area of cortex is excited synchronously. Simultaneous 

recordings of scalp EEG and iEEG showed that an area of 10cm2 needs to be 

excited in order to be recorded by scalp EEG and discharges which were confined to 

an area of less than 6cm2, as determined by intracranial recordings, were not 

detected on scalp EEG [30,31]. It is important to understand that some seizures 

occur in deep structures of the brain or in the depth of sulci. Such seizures might not 

be recorded on the gyral surface as they may behave as closed current circuits and 

thus may only be picked up with depth recording. These issues highlight the 

importance of a clear hypothesis prior to implanting iEEG. In the case of subdural 

EEG, implantation is usually limited to one hemisphere, although some centres 

perform bihemispheric strip implantations. In SEEG, implantations can be made 

bilaterally. Regardless, a clear hypothesis of the EZ is needed to inform the 

implantation strategy, as otherwise the iEEG is likely to fail due to the limited 
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sampling volume of the iEEG electrodes, not allowing to go forward to resection, or 

worse, iEEG results may be misleading and inappropriate resections are performed.  

Another important advantage of iEEG compared to scalp EEG is that the frequency 

range of brain signals which can be detected by iEEG is much larger than that 

recorded by scalp EEG. In addition, iEEG is devoid of muscle artefacts and baseline 

drift due to impedance changes of the skin, and does not suffer from the signal 

attenuation by skull [32]. Focal high frequency activity is often observed at the 

seizure onset recorded by intracranial EEG and is a reliable sign of the seizure onset 

zone. Removal of the cortex overlying contacts with high frequency activity at seizure 

onset correlates with a good outcome [33]. In addition, removal of cortex underlying 

electrodes which display high frequency oscillations (HFOs) has been shown to be 

an independent predictor for a good outcome after epilepsy surgery [34–36].  

 

Another reason to perform iEEG recording is the need for cortical mapping of 

eloquent areas via direct CSM prior to epilepsy surgery [37,38]. Many eloquent areas 

are contained in the frontal, parietal or parieto-temporal lobes, thus epilepsy surgery 

in proximity to eloquent cortex in those areas can only be performed after these 

eloquent areas have been defined to allow for safe resection margins. Non-invasive 

tools such as motor and language fMRI, diffusion MRI and tractography are all 

techniques which allow mapping of eloquent cortex [39], but direct CSM still remains 

the gold standard. In particular, fMRI highlights networks involved in a task, allowing 

lateralisation of language for example, but does not allow inferences on the result of 

resection of a cortical area and how essential this area may be for function.  Thus it 

does not allow decisions on safe resection margins for epilepsy surgery by itself, 

particularly not when mapping complex functions. When  localisation of complex 
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functions such as language is needed, most centres still rely on CSM, although this 

remains a matter of debate [40]. 

 

3 Methods used to record iEEG 

3.1 Subdural electrodes 

Subdural electrodes are 4-5 mm disc shaped contacts usually made of nickel-

chromium or platinum-iridium composite, a material which is nonmagnetic and thus 

compatible with MRI scanning after local safety measures have been carried out. 

The electrodes are arranged in several rows on a piece of silicone, typically with an 

inter-electrode distance of 1 cm, although higher density grids with typically 5 mm 

centre to centre inter-electrode distance are also available.  Subdural electrodes are 

usually inserted through a large craniotomy. Often depth electrodes are inserted in 

addition to the subdural grids or strips through small holes which can be made in the 

silicone bedding. This allows sampling of deep brain structures in addition to gaining 

a more three dimensional representation of the seizure onset and early propagation 

paths. Compared to SEEG, a volume is sampled with a greater density of cortical 

electrode contact points. This may theoretically allow for smaller resection volumes 

compared to SEEG, although this has never been researched, and will be difficult to 

ascertain in the absence of a carefully designed prospective trial. Relatively less 

information is known of more remote propagation pathways when compared to 

SEEG.  

 

The advantage of subdural electrodes is that it can cover large continuous cortical 

areas, sampling from the crown of the gyrus, thus allowing to trace seizure spread 

across the cortex, and to delineate extent of resection based on the distribution of 
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onset and the rapidly engaging network on the cortical surface. Subdural grids are 

advantageous when eloquent cortex is close to the presumed EZ to allow for extra-

operative direct CSM, as well as evoked potentials to delineate central sulcus for 

example. In addition compared to depth electrodes, subdural grids and strip 

electrodes usually cover cortical surfaces and do not have contact with white matter. 

Areas which are not directly exposed after a craniotomy, such as the basal frontal 

area, the basal temporal area and the mesial frontal cortices are more difficult to 

implant with subdural grid electrodes, and may carry a higher risk of bleeding due to 

the presence of draining veins, which may be difficult to directly visualise 

intraoperatively. However, with careful inspection the surgeon can slide strips in 

place, allowing for excellent sampling from areas like the SMA, basal temporal 

regions and temporo-occipital junction, orbitofrontal cortex. Unlike with SEEG, 

subdural grids are difficult to implant bilaterally, thus largely restricting use to 

unilateral implantations, although some centres use them to sample bilaterally with a 

multiple burr hole technique.   

Figure 1 shows a case of a histologically proven left inferior frontal focal cortical 

dysplasia Type IIB, which was visible on MR imaging in the left posterior middle and 

inferior frontal gyri, with an area of cortical thickening and FLAIR signal 

hyperintensity extending towards the ventricle. Language fMRI using word fluency 

and verb generation paradigms revealed left> right language dominance, with 

activation clusters surrounding and inferior and anterior to the lesion. Careful 

mapping of the ictal onset zone and language and motor mapping using a combined 

grid and depth electrode approach allowed for separation of the anterior language 

area and the seizure onset zone. The resection led to seizure freedom. The figure 

demonstrates how this approach allows for definition of resection margins, with 
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meticulous language mapping by electrical CSM showing reorganisation of Broca’s 

area into the posterior inferior aspect of the frontal operculum (contact GA56), where 

extraoperative CSM revealed speech arrest in the absence of negative or positive 

mouth motor findings. This location is distinct from areas highlighted by fMRI 

language mapping, revealing the limitations of fMRI for precise language localisation. 

The resection was guided by ictal onset mapping taking into account interictal 

spiking, and limited to a region in middle and inferior frontal gyri, just anterior to 

precentral sulcus. Absence of language function in the resection area was verified 

using cortical stimulation intraoperatively. The patient did not suffer any speech 

difficulties after resection, and has remained seizure free for 4 years. Figure 2 allows 

for comparison of this technique to the results of an exploration of the right frontal 

lobe using SEEG. In this patient the pathological substrate was MRI negative cortical 

dysplasia; the EZ was felt to be more anterior in the frontal lobe based on semiology, 

scalp EEG and non-invasive functional imaging data.  

A recent meta-analysis reviewed complication rates and types of complications in 

patients undergoing subdural grid implantation for seizure mapping [41]. The most 

common complication which was reported was intracranial haemorrhage with a 

mean rate of 4% closely followed by other complications such as neurologic 

infections, superficial infections and elevated intracranial pressure. They also found 

that an increased number of electrodes (>67 electrodes) was independently 

associated with complications.  

Recent data from the prospective Swedish National Epilepsy Surgery Register 

examining complication rates of patients undergoing subdural strips or grids, 

intracerebral depth electrodes, foramen ovale electrodes or epidural electrodes 

reported similar rates of haematomas, whereas infection rates were much lower. The 
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authors hypothesized that this is due to shorter surgical times due to the practice of 

implanting fewer electrodes when compared to other series. In addition patients who 

had valproate in their treatment regimen had higher odds to suffer from haematoma 

during invasive monitoring when compared to patients who were not treated with 

valproate [42].  Large numbers of electrodes and bilateral implantations - if 

performed - also raise the concern regarding risk of elevated intracranial pressure.  

 

3.2 Stereoelectroencephalography (SEEG) 

Stereoelectroencephalography uses depth electrodes which typically have 4-18 

contacts arranged 2-10 mm apart. The electrodes are either semi-rigid or flexible 

with a rigid stylet which can be removed upon insertion. The implantation strategy for 

the multiple depth electrodes used in the SEEG approach is different from the above 

described depth electrode sampling in addition to grids. The few depth electrodes 

inserted through the grid into the cortex and beyond in a subdural EEG study are 

meant to supplement the information by obtaining a more 3 dimensional volumetric 

view of the seizure onset zone and not to miss deep onsets for example from 

dysplasias at the bottom of a sulcus or deep within a dysplasia. In SEEG the depth 

electrodes are the only electrodes used and supply all information, giving typically 

less volumetric information of the seizure onset, as the next depth electrode with 

multiple contacts will be typically several cm away. However, seizure propagation 

along known anatomico-functional connections can be much better studied, as 

typically a hypothesis of the seizure onset zones is supplemented by exploring the 

most likely spread pathways. This strategy estimates the EZ according to the 

“anatomical-electrical-clinical correlation”, as conceptualised by Bancaud and 

Talairach. The method relies on interpreting a seizure network by looking at both 
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semiology and intracranial SEEG recordings [14]. Seizures which are stimulated by 

CSM are also taken into account if certain criteria are met and are used to define the 

epileptogenic network [43].  

Compared to subdural grid studies, more detailed imaging of the cerebral 

vasculature is required to make the procedure safe, and this includes digital 

subtraction angiography in most centres. The planning of individual electrode 

trajectories requires a multidisciplinary approach keeping in mind the targets for best 

sampling of the anatomo-clinical hypothesis brought forward ahead of the study.  

 

After stereotactic insertion of the electrodes, the position of the electrodes needs to 

be confirmed via CT superimposed on MRI or in MRI compatible electrodes with MRI 

only. SEEG recordings were traditionally performed in France, Italy and Canada, 

whereas in the USA mainly subdural grids, strips or a mix with depth electrodes were 

used as iEEG tools. Given these preferences and geographic separation of practices 

in iEEG, it is not surprising that the concept and approach of interpreting SEEG 

studies has been different (see above), although most recently many centres using 

grids mainly now have gained experience with both techniques. 

 

The main advantage of SEEG over subdural grid recording is that there is no need 

for a large craniotomy which adds to the patient´s morbidity. The SEEG electrodes 

can be inserted via burr holes and do not require a second operation for removal of 

the electrode as is the case in subdural EEG. In subdural EEG recordings, the 

removal of the electrodes is sometimes combined with the resection of the presumed 

epileptogenic zone. This approach necessitates quick interpretation of the iEEG 

data, which is sometimes difficult in epilepsies presenting with frequent seizures and 
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different seizure types. SEEG approaches are difficult if there is a need for detailed 

extraoperative CSM. Due to the nature of the techniques, there will be only limited 

often non-contiguous contacts with gray matter; many electrode contacts will have 

only contact with white matter. This in turn can be used to track corticospinal tracts 

via white matter stimulation.  

A particular strength of SEEG is the ability to sample from deep cortex, such as 

insular cortex, cingulate gyrus, medial temporal structures or the medial frontal or 

parietal walls. The insula in particular is not possible to access safely with grids or 

strips, and most experience has been gained using a traditional SEEG approach, 

although some centres also use a mix of depth electrodes to cover the insular depth 

and strips to cover the perisylvian cortex following craniotomy [44]. On the other 

hand, certain locations such as basal temporal regions are more difficult to sample 

extensively using SEEG compared to strips or subdural grids.  

Reoperations requiring implantations are safer with SEEG methodology, and SEEG 

is clearly favoured if bilateral explorations are necessary. 

It is noted that a large number of EEG electrode contacts are not in contact with 

cortex, but come to lie in white matter. Considering the average number of SEEG 

electrodes implanted [45], there may be only 30-40 electrode contacts in cortex. This 

is significantly less than the typical sampling using grids. At the end of the study, 

SEEG electrodes are removed, and resections are performed typically several 

months later. 

 

Figure 2 shows a patient with MRI negative histology proven focal cortical dysplasia 

Type IIB. Scalp EEG findings, semiology, PET and ictal SPECT (shown co-

registered into the T1 MRI-based 3 dimensional representation in Figure 2) 
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supported a hypothesis of a mid to anterior medial or orbitofrontal focal epilepsy, and 

an SEEG approach was chosen to delineate electroclinical correlation with EEG and 

clinical seizure onset. The demarcation line to the SMA was successfully drawn; 

SMA was functionally confirmed in the single contact pairs in this region, although 

precise mapping of extent of the SMA particularly anteriorly was not possible due to 

the more limited coverage. Based on ictal onset patterns, SMA was spared and 

resection limits laterally and anteriorly had to be chosen using anatomical criteria 

due to the sparser sampling. This patient has remained seizure free for one year to 

date.  

 

A recent meta-analysis summarizing 30 studies about the safety of SEEG, 

concluded that complications occurred with a pooled prevalence of 1.3%. This is a 

much lower overall complication rate when compared to subdural EEG. The main 

complications in SEEG were haemorrhages (pooled prevalence 1.0%) and infections 

(pooled prevalence 0.8%) [46].   

 

4 Direct cortical stimulation 

IEEG electrodes can both record cortical activity, but can also be used to stimulate 

the cortex underlying the electrode in subdural EEG recording or surrounding the 

electrode in depth electrode recording or SEEG. Direct CSM dates back to the 

pioneering work of Penfield and Jasper who elicited clinical signs via intraoperative 

cortical electrical stimulation [47]. In iEEG CSM is used to map eloquent cortex 

[38,48]. The advantage of extraoperative compared to intraoperative, CSM is that 

there are less time constraints outside the operating theatre. CSM is used to map 

language, motor and sensory function. Particularly language function can be difficult 
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to map and extraoperative CSM is the preferred choice, although intraoperative CSM 

can complement extraoperative CSM in difficult cases [49]. Cortical stimulation for 

mapping is typically performed using up to 5s trains of 50-Hz unipolar bi-phasic 

square wave pulses of an AC-current with a pulse width of 500µs [48]. Either two 

adjacent electrodes are stimulated in bipolar stimulation mode or an electrode 

remote from eloquent cortex is referenced to an electrode overlying presumed 

eloquent cortex in so called ‘monopolar stimulation mode’. Both methods yield 

similar results with regards to mapping of eloquent function, but monopolar 

stimulation is associated with less afterdischarges which can evolve into stimulation 

induced seizures [48]. CSM overall, although considered the best standard for 

functional mapping, is not standardised, and a large variability exists across centers. 

Primary motor cortex and anterior and posterior language areas are most widely 

investigated; other cortical regions are much less studied, and little is known which 

active tasks should be performed for various brain regions to yield best insight in the 

underlying function, allowing for deficit prediction.  

Stimulation induced seizures can have habitual or non-habitual semiology. Seizures 

with a non-habitual semiology are an unwanted side-effect of CSM [50].  

Habitual seizures induced via CSM, in contrast, have been used to define the 

epileptogenic network. The value of such stimulation induced seizures in defining the 

epileptogenic zone and network has been highlighted some investigators who 

traditionally have performed SEEG investigations where this technique is routinely 

used for the work-up of patients undergoing invasive recordings [43,51], although the 

evidence supporting such practice is sparse. 
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5 Future directions of iEEG 

Although iEEG recordings have been utilised for a long time and the technical 

aspects have been improved over the years, there are still areas that warrant further 

improvement. The goal of epilepsy surgery is to achieve seizure freedom with 

minimal surgical morbidity. This can only be achieved by optimising all aspects of the 

process: 1. The candidate selection for intracranial EEG, with a clear hypothesis of 

the presumed EZ and choice of the best approach to the investigation based on the 

criteria listed in table 1; 2. Optimized implementation of the invasive investigation of 

choice with maximum safety and precision; 3. Analysis of data obtained including 

advanced neurophysiological analysis; 4. Optimised mapping of eloquent cortex and 

lastly 5. Clear communication with the Neurosurgeon regarding margins of resection.  

Innovation and novel health technologies have influenced points 1-3. Computational 

power has fuelled more sophisticated techniques such as multimodal image 

integration which allows more detailed planning of the implantation strategy and 

particularly more precise placement of depth electrodes [52,53]. Multimodal image 

integration allows reconstruction of vessel, gyral and sulcal anatomy and thus aids to 

improve the safety of the implantation procedure. Robot-assisted stereotactic 

placement of depth electrodes is another means of implementing safety measures in 

the implantation process [54]. Taken together, this means that exploration of more 

complex epilepsies has become possible, requiring more extensive sampling and 

implantation of riskier structures such as insular cortex.  

Whilst safety and feasibility of various iEEG sampling procedures and strategies 

have been widely demonstrated, and their strengths and weaknesses have become 

clearer, the efficacy to delineate the EZ and cure epilepsy has been less 

systematically investigated, and a prospective study has not been conducted 
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comparing different approaches. It is currently not understood how various sampling 

strategies affect size of the resection and seizure and cognitive outcome.  Both may 

be related to each other in a complex manner; larger resections may increase odds 

of seizure freedom, at the expense of poorer cognitive outcomes, depending on 

premorbid functioning, anatomical location of the resection, presence, extent and 

nature of a lesion and its pathological substrate. Such data should ideally be 

acquired as part of a prospective trial, although it will be very difficult to account for 

the significant biological variability. In the meantime, thoughtful multicentre 

retrospective analysis of such data could perhaps start to shed some light on those 

issues.  

 

Not only does the implantation of electrodes feature new methods, but analysis of 

iEEG data has been expanded to include more objective measures of EEG review 

when compared to standard visual EEG analysis. Tools like the epileptogenicity 

index and other semi-quantitative iEEG analysis tools have been explored [55–58]. 

Even if such tools are not able to replace traditional EEG review, these tools help to 

formulate a hypothesis about the EZ. Similarly, high frequency oscillations (HFOs) 

have been found to help in defining the EZ and thus may in the future be used 

routinely alongside traditional EEG review [34,36]. Another exciting field of research 

is automated seizure detection. Compared to scalp EEG, iEEG is less prone to 

artefacts and thus seizure detection algorithms are likely to be more successful. 

Several studies have proposed different seizure detections systems in iEEG. Some 

of these systems could be used in a therapeutic approach via close loop systems, 

which detect seizures and then stimulate the cortex to prevent seizure spread [59–

61]. The type of implantation most certainly influences our appreciation of the 
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localised onset of seizures and their spread behaviour. SEEG may be biased 

towards distant spread, due to its ability to sample from widely dispersed regions. On 

the other end of spectrum, sampling via micro- electrodes increasingly allows to gain 

insights at the neuronal level. Improved understanding of the epileptic networks may 

hold promise to better therapeutic surgical strategies to cure focal epilepsy. This will 

in some selected cases include very focal interventions via laser lesioning for 

example. 

 

6 Conclusion 

With the beginnings of iEEG dating back to the pioneering work of Penfield and 

Jasper, iEEG has now evolved into a tool which is used in many epilepsy centres all 

over the world. Subdural grids and strips with depth electrodes are used as are 

SEEG electrodes. The advantages and disadvantages of both modalities has 

prompted many epilepsy centres to use both approaches in an individualized patient 

approach. Often the advantages of both techniques can be combined with the 

combination of subdural strips and depth electrodes through burr holes employing a 

hybrid (HEEG) of fluoroscopy and stereotaxy [62]. Particularly the low morbidity of 

the SEEG procedure has led to its dissemination outside of countries who have 

traditionally chosen this approach. 

 

 

LEGENDS OF TABLES/FIGURES: 

Table 1: Definition of different zones in Epilepsy 

Table 2: Clinical constellations in the presurgical work-up for pharmacoresistant 

seizures and the need for iEEG recordings. 

Fig.1: Case study with subdural and depth electrodes: 
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A 27 year old, left handed man with seizure onset at 14 years, presented with 

pharmacoresistant multiple daily seizures with vocalisations, automatisms and right 

arm posturing.  

His MRI showed a lesion in the left inferior frontal gyrus suggestive of focal cortical 

dysplasia. (A) Coronal FLAIR MRI images show a hyperintensity in the crown of the 

left inferior frontal gyrus extending towards the ventricle. (B) 3 –D MRI reconstruction 

image with the lesion (red), veins (blue), fMRI of verb fluency and verb generation 

(yellow and orange) and lip/hand motor activation (green) paradigms. Non-invasive 

EEG monitoring recorded multiple seizures which were in keeping with seizures 

arising from the left dorsolateral aspect of the frontal lobe. Due to the proximity of 

eloquent cortex and in order to delineate the area of cortex that needs to be 

resected, an invasive study with subdural electrodes and depth electrodes was 

planned. (C) 3-D MRI reconstruction image showing the lesion (red) and the grid 

electrodes (yellow dots) and site of depth electrode insertion (orange and blue dots). 

The electrodes involved in the seizure onset zone are within the red circle. (D) 

Intraoperative photograph showing the electrodes embedded in silicone (electrode 

grid) overlying frontal lobe cortex. The white arrow highlights Broca’s area (electrode 

GA56) based on extraoperative electrical stimulation mapping, and central sulcus. 

(E) Habitual seizure recorded with intracranial electrodes (F) Visualization of the 

Epileptogenicity index (EI; [63]). The normalised EI ranges from 0 to1 (1 indicating 

highest epileptogenicity), colour coded according to the colour coding legend. Note: 

not all channels are displayed. (G and H) Intraoperative photographs: (G) craniotomy 

with the cortex exposed. (H) Cortex after resection of the presumed epileptogenic 

zone. The dotted line outlines the central sulcus and the asterisk marks the hand 

knob, the primary motor hand representation (D, G and H).  
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Fig.2: Streoelectroencephalgraphy (SEEG) case study: 

A 19 year old right handed man with seizure onset at age 5 presented with 

pharmacoresistant epilepsy with daily seizures with hypermotor phenomena 

including whole body turning, screaming and rhythmic upper and lower limb 

movements. His MRI was non-lesional. Scalp video-EEG telemetry recorded multiple 

habitual seizures with a frontocentral seizure pattern, but failed to lateralize the 

seizure onset. (A,B,D) Ictal SPECT highlighted the right frontal lobe as a focus of 

hyperperfusion (crosshairs reveal the maximum hyperperfusion determined by ISAS, 

Interictal Ictal SPECT analysed by Statstical Parametric Mapping; [64]; the same 

area is marked in rose colour in C and F). Interictal PET showed hypometabolism in 

the right antero-medial frontal lobe (area highlighted in dark purple in C and F). He 

underwent SEEG implantation targeting right orbitofrontal and mesial frontal regions 

and cingulum. MRI (E) and 3-D MRI reconstruction images (C,F) visualizing the 

SEEG implantation and the integrated SPECT and PET findings. The seizure onset 

was focal and mapped to electrode contacts MF 3 and 4 (white arrow). (E) coronal 

T1 MRI image showing the electrode contacts involved at seizure onset. The area 

highlighted in red represents the seizure onset. (G) Habitual seizure as recorded by 

intracranial EEG. (H and I) 3-D MRI reconstruction showing the electrode positions 

and the area which was resected (highlighted in green). The anterior and lateral 

borders of resection were informed by interpolation of most involved EEG electrodes 

and anatomical borders. He has remained seizure free for over 1 year and pathology 

showed focal cortical dysplasia Type IIB. 
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Zone Definition  Tools to define the area 

Epileptogenic zone (EZ) Area of cortex that is 

necessary and sufficient for 

initiating seizures and whose 

removal (or disconnection) is 

necessary for complete 

abolition of seizures 1,2 

The area can only be 

approximated post hoc after 

successful epilepsy surgery  

Seizure onset zone 

(SOZ) 

Cortical area that initiates 

clinical seizures 1,2 

 EEG (non-invasive, 

invasive) 

 Ictal SPECT 

Irritative zone Cortical area which generates 

interictal spikes 1,2 

 EEG (non-invasive, 

invasive) 

 Magnetoencephalography 

(MEG) 

Functional deficit zone Area of cortex that has no 

normal function interictally 1,2 

 Neurologic examination 

 Neuropsychiatry 

 PET 

 Interictal SPECT 

 EEG (slowing) 

Epileptogenic lesion Macroscopic lesion causing the 

seizures: 

 epileptogenic lesion 

 secondary hyperexcitability 

of adjacent cortex 1,2 

MRI 

Symptomatogenic zone Cortical area which produces 

the initial ictal symptoms or 

signs, when activated 1,2 

Analysis of seizure 

semiology and correlation 

with functional neuroanatomy 

Eloquent cortex (EC) Area of cortex that if removed 

will result in loss of motor, 

sensory or language function 
1,2 

 fMRI 

 Neuropsychiatry 

 

 
1. Lüders, H. O., Engel, J. & Munari, C. Non invasive preoperative evaluation: general principles in Surgical 

Treatment of the Epilepsies 137–53 (Raven Press, 1993). 
2. Rosenow, F. & Lüders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001). 
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Clinical scenario 

(Lesion/EEG/semiolog

y) 

 

Additional 

information: 

Neuropsychometr

y **; functional 

imaging such as 

PET, ictal SPECT, 

EEG fMRI, fMRI, 

ESI*** 

Location of 

the 

presumed 

epileptogeni

c zone 

Invasive 

EEG 

Subdural 

grid 

electrode

s 

Added 

depth 

electrode

s 

SEE

G 

A1 Clear Lesion 

EEG and 

semiology 

concordant 

Rarely indicated to 

perform all (except 

Neuropsychometry

).  

If performed and all 

or mostly 

concordant  

Away from 

eloquent cortex 

Invasive 

recording 

almost 

never 

needed 

N/A N/A N/A 

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recording 

often not 

needed 

N/A N/A ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

May require 

invasive 

recordings 

++ - - 

Close to 

eloquent cortex, 

deep structures  

involved 

May require 

invasive 

recordings 

++ ++ + 

If performed, and 

most information is 

discordant 

Away from 

eloquent cortex, 

deep structures 

not involved 

Likely 

requires 

invasive 

recordings 

++ + ++ 

Away from 

eloquent cortex, 

deep structures 

involved 

Likely 

requires 

invasive 

recordings 

+ + ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

Will require 

invasive 

recordings 

++ - - 

Close to 

eloquent cortex, 

deep structures  

involved 

Will require 

invasive 

recordings 

++ ++ + 

A2 Clear Lesion 

EEG and/or 

semiology 

discordant 

All or mostly 

concordant 

Away from 

eloquent cortex, 

deep structures 

not involved 

May require 

invasive 

recordings 

+ + ++ 

Away from 

eloquent cortex, 

deep structures 

involved 

May require 

invasive 

recordings 

+ + ++ 
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Close to 

eloquent cortex, 

deep structures 

not involved 

Likely 

requires 

invasive 

recordings 

++ - + 

Close to 

eloquent cortex, 

deep structures 

involved 

Likely 

requires 

invasive 

recordings 

++ ++ + 

Mostly discordant Away from 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

almost 

always 

needed 

+ + ++ 

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

almost 

always 

needed 

+ + ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

Will require 

invasive 

recordings 

++ - + 

Close to 

eloquent cortex, 

deep structures 

involved 

Will require 

invasive 

recordings 

++ ++ + 

B1 No Lesion 

EEG and 

semiology 

concordant 

All or mostly 

concordant 

 

 

Away from 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

almost 

always 

needed 

+ - ++ 

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

almost 

always 

needed 

+ + ++ 

Close to 

eloquent cortex, 

Invasive 

recordings 

almost 

always 

++ - (+) 
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deep structures 

not involved 

needed 

Close to 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

almost 

always 

needed 

++ ++ (+) 

Mostly discordant  

 

Away from 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

+  - ++  

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

- - ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

++ - ++ 

Close to 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

++ ++ ++ 

B2 No Lesion 

EEG and 

semiology 

discordant 

All or mostly 

concordant  

Away from 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

- - ++  

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

- - ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

+ - ++ 
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Close to 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

may still be 

appropriate 

and will be 

needed 

+ ++ ++ 

Mostly discordant  Away or close to 

eloquent cortex, 

with or without 

involvement of 

deep structures 

Patients 

likely are not 

candidates 

for epilepsy 

surgery 

N/A N/A  N/A 

C1 Two lesions/ 

subtle or large 

lesions  

EEG and 

semiology 

concordant 

 

 

 

 

 

 

All or mostly 

concordant with a 

single likely 

epileptogenic 

lesion 

Away from 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

almost 

always 

needed 

+ (subtle 

small 

lesions) 

- ++ 

(large 

lesions

, two 

lesions

) 

Away from 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

almost 

always 

needed 

+ + ++ 

Close to 

eloquent cortex, 

deep structures 

not involved 

Invasive 

recordings 

almost 

always 

needed 

++ - (+) 

Close to 

eloquent cortex, 

deep structures 

involved 

Invasive 

recordings 

almost 

always 

needed 

++ ++ (+) 

Mostly discordant, 

concern of multiple 

epileptogenic 

lesions  remote 

from each other or 

inability to resect 

entire lesion 

Close to or away 

from eloquent 

cortex, with or 

without 

involvement of 

deep structures 

Patient may 

not be a 

surgical 

candidate.  

In selected 

cases, 

invasive 

recordings 

may still be 

worth while 

pursuing, 

according to 

strategy 

algorithm 

above 

   

C2 Two lesions/ All or many data Often difficult to Invasive N/A N/A N/A 
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subtle or large 

lesions  

EEG and/or 

semiology 

discordant 

points discordant 

or uninformative 

define, multifocal recordings 

are likely not 

indicated 

due to poor 

hypothesis 

about 

presumed 

epileptogeni

c zone 

 D Failed invasive 

recordings with 

subdural grid 

electrodes 

All or mostly 

concordant, 

Any location Invasive 

recordings 

almost 

always 

needed 

- - ++ 

Mostly discordant Any location Likely not a 

surgical 

candidate 

- - - 

E Multilobar 

epilepsy or 

presumed 

bilateral 

epileptogenic 

zones 

All or mostly 

concordant, 

favouring a 

contiguous 

epileptogenic zone 

which could be 

resectable 

Any location Invasive 

recordings 

may 

occasionally 

still be 

appropriate 

and will be 

needed. 

May be 

leading to a 

palliative 

procedure. 

- - ++ 

N/A: not applicable; ** needed in all cases; *** not always needed, ++: likely method of choice; + can be used as 

additional/alternative method; (+) possibly used as an alternative method; - likely not used method 

Definitions for purpose of this table:  

Deep structures:  insula, mesial temporal lobes, cingulate gyrus, interhemispheric regions, posterior orbitofrontal gyrus and 

depth of a sulcus. Please note: if deep structures are only the medial temporal structures, insertion of depth electrodes is 

technically feasible and may be a good choice. 

Eloquent cortex: anatomically delineated cortex considered indispensable for a function (for example motor cortex, primary 

visual cortex, anterior or posterior language areas) , resection of which leads to significant largely irreversible impairment or 

potentially causing a significant deficit in short to median term with potential to good recovery (SSMA, basal temporal language 

cortex) 
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Figure 1 
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Figure 2 

 

 


