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Abstract. In this paper we prove a version of Deligne’s conjecture for potentially auto-
morphic motives, twisted by certain algebraic Hecke characters. The Hecke characters are
chosen in such a way that we can use automorphic methods in the context of totally definite
unitary groups.

1. Introduction

The goal of this paper is to prove results on Deligne’s conjecture for potentially
automorphic motives, twisted by certain algebraic Hecke characters. Let K be a
totally real number field and L/K be a CM extension. We refer the reader to
Sect. 2 for an overview of motives and realizations. For a realization M over K
and an algebraic Hecke character χ of L , we let M(χ) denote the tensor product
M ⊗ResL/K [χ ], where [χ ] is the CM motive over L attached to χ . A realizations
M is automorphic of unitary type if it looks like the conjectural motive attached to a
self-dual, cohomological, cuspidal automorphic representation� of GLn(AK ); for
more details, see Sect. 4.1. A realization M is potentially automorphic of unitary
type if there exists a finite, Galois, totally real extension K ′/K such that MK ′ is
automorphic. Ourmain result (see Theorem4.4.1) is the following. In the statement,
L̃ is a certain finite Galois extension of L , which equals the Galois closure of L if
M is automorphic. We refer the reader to the main text for more details and for any
unexplained notation.

Theorem. Let M be a potentially automorphic realization of unitary type over K ,
with coefficients in E, of rank n, satisfying condition (3) in Theorem 4.4.1. Let ψ

be a critical algebraic Hecke character of L of infinity type (mτ )τ∈Hom(L ,C) and
weight w. Assume that:
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(1) either n is even, or n is odd and Hypothesis 4.3.1 is satisfied for M, and
(2) | mτ − mτ |> max {n − pn(σ, 1)}σ∈Hom(K ,C) for any τ ∈ Hom(L ,C).

Then for all critical integers k > w + n of M(χ), we have

L(M(χ), k)1
c+(M(χ)(k))1

∈ (EQ(ψ)L̃)×.

Here p1(σ, 1) > · · · > pn(σ, 1) are the Hodge numbers of M (see Sect. 2.2) and
χ is an algebraic Hecke character constructed from ψ as follows: there exists a
finite order character ψ0 of A×

K /K× such that ψ |
A

×
K

= ψ0‖ · ‖−w, and we put

χ = ψ2(ψ0 ◦ NL/K )−1. We stress that, given M , there always exists algebraic
Hecke characters and integers k > w + n critical for M(χ) as in the statement.

The proof of our theorem works as follows. First, suppose that M is automor-
phic. Hypothesis (2) in the theorem allows us, using the results proved by one of
the authors [14] generalizing earlier results of Harris [17] to totally real fields, to
write the value of the L-function of M(χ) at k in terms of a CM period attached to
χ . The way this works is by using descent to a totally definite unitary group G and
expressing this L-function as that of a cohomological automorphic representation
on G. The corresponding critical value is expressed in terms of a CM period and a
Petersson norm, which in our case turns out to be algebraic. On the other hand, the
motivic computations of [14] and Hypothesis (2) allow us to express the Deligne
period of M(χ)(k) in terms of a CM period, which turns out to match the previous
one. Thus, we prove in this way that the value L(M(χ), k)1 at any critical integer
k of M(χ) which satisfies k > w + n equals the Deligne period c+(M(χ)(k))1,
up to multiplication by an element of EQ(ψ)L̃ . The requirement that k > w + n
is necessary for the automorphic methods to work. In the same vein, automorphic
methods only allow us to consider multiples by EQ(ψ)L̃ . This consideration is
included in Conjecture 2.2.1, which is a weak form of Deligne’s conjecture.

WhenM is a potentially automorphic realization over K , we useBrauer’s induc-
tion and solvable base change for GLn , as developed in the theory of Arthur–Clozel
[1]. We prove the theorem for M by using the previous automorphic case and fur-
ther compatibilities between the CM periods that appear, which are a consequence
of Deligne’s conjecture for algebraic Hecke characters, proved in this case by
Blasius [4].

Let us say a few words about the hypotheses of the theorem. As we mentioned
before, a potentially automorphic realization of unitary type M is one such that it
becomes automorphic of unitary type after extension of scalars to a totally real,
Galois extension K ′/K . A number of techniques is available to prove that certain
motives, or Galois representations, are potentially automorphic.We refer the reader
to [2] for some general results in this direction. From now on, for simplicity, assume
that M is already automorphic. In the statement of the theorem, we require ψ to be
critical. This means that mτ �= m τ̄ for any τ ∈ Hom(L ,C). This is needed for the
motivic computations in [14]. Regarding Hypothesis (1) in the theorem, it is needed
to express the full period δ(M) in a convenient way. This period appears in the
motivic computations that give rise to the expression of c+(M(χ)(k)).Automorphic
realizations of unitary type are endowed with a polarization, which can be used to
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show that δ(M) can be replaced by (2π i)−[K :Q]n(n−1)/2 when n is even. Hypothesis
(1) says that that when n is odd, we can also replace δ(M) by the same power of
2π i . This can be shown to be true if one assumes themuch stronger Tate conjecture.
Hypothesis (2), as we explained above, is made so that M(χ) has critical values
and so that they can be expressed essentially as a CM period (in the terminology
of [17], χ belongs to the n-th critical interval of M). It is essential to the method,
and a modification of it, still assuming that M(χ) has critical values, would entail
the appearance of additional quadratic periods in the formulas, which are harder to
relate to critical values of L-functions. Hypothesis (3) says that� has a descent to a
totally definite unitary group satisfying a number of conditions. This is expected to
hold in our setting, and many, if not most, cases have been already proved [22–24].
Combined with Hypothesis (2), this implies that we can express the L-function as
that of a cohomological automorphic representation on a totally definite unitary
group.

While doing the motivic computations behind the expression of c+(M(χ)(k)),
we draw some consequences of the general formula proved in [14] for the case of
arbitrary critical intervals. More precisely, if M is a regular, polarized realization,
then after fixing embeddings of the coefficient fields into C, we construct certain
algebraic Hecke characters χ with the property that M(χ) has critical values which
can be expressed in terms of CM periods and additional quadratic periods Q j (M)

attached to M . The set of quadratic periods appearing in the expression depends
on the critical interval of χ , which can be arbitrarily prescribed. Combining the
formulas for different characters χ gives an expression of the quadratic periods in
terms of quotients of Deligne periods of various twists M(χ) and CM periods (see
Proposition 2.4.1 and Corollary 2.4.1). Assuming Deligne’s conjecture for these
motives, we can then express the quadratic periods in terms of critical values of
L-functions and certain Gauss sums (Proposition 5.1.1). These expressions should
be helpful in certain applications, and we plan to exploit this in a future work in
relation to p-adic interpolation and p-adic L-functions.

To finish this introduction we would like to say a few words about the back-
ground and motivation for this work. The study of values of L-functions at integers
is a subject with a long history starting with Euler. Based on experimental results,
in 1979 Deligne proposed a general conjecture relating the values of motivic L-
functions at certain integer points to periods of integrals. Arguably the most useful
way to approach this and other conjectures on critical values of L-functions is by
using automorphic methods. In this direction, let us mention Blasius’s result [4],
which proves the conjecture for the motives attached to algebraic Hecke charac-
ters of CM fields (see also [15]). Let us also mention Shimura’s works on critical
values of L-functions in the case of modular forms and Hilbert modular forms
(see for instance [28] and [29]), based on the classical Rankin–Selberg theory of
L-functions and an analysis of the arithmetic properties of ratios of Petersson inner
products. Following these works, Harris in [17] treated the case of the polarized
regular motives over Q coming from automorphic representations of GLn(AQ).
One of the main ingredients in this work is the doubling method. Finally, in [14],
the author generalized Harris’s results over arbitrary totally real number fields. The
present work is based on [14].
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1.1. Organization of the paper

Here is the outline of the paper. Section 2 is devoted to the motivic considerations
of this work. The main result of this section is a formula for the Deligne period
of M(χ)(k) in terms of CM periods and powers of 2π i , based on [14] (Proposi-
tion 2.5.1). As mentioned above, with an eye towards future applications, we also
include a formula for the quadratic periods of a regular, polarized realization in
terms of quotients of various twists of M and CM periods (Proposition 2.4.1 and its
corollary). In Sect. 3 we specialize to the case of totally definite unitary groups the
results of [14] on critical values of automorphic L-functions (Proposition 3.3.1). In
Sect. 4 we combine the previous sections and prove the main result of this paper
(Theorems 4.3.1 and 4.4.1 for automorphic and potentially automorphic realiza-
tions respectively). Finally, in Sect. 5, which is more speculative, we write down
an expression of the quadratic periods in terms of critical values of L-functions
(Proposition 5.1.1), which follows from assuming Deligne’s conjecture for the cor-
responding motives.

Notation and conventions. We fix an algebraic closure C of R, a choice of i =√−1, and we let Q̄ denote the algebraic closure of Q in C. We let c ∈ Gal(C/R)

denote complex conjugation onC, andwe use the same letter to denote its restriction
to Q̄. We write c(z) = z̄ for z ∈ C.

For a number field K , we let AK and AK , f denote the rings of adèles and finite
adèles of K respectively. When K = Q, we write A = AQ and A f = AQ, f . After
fixing an algebraic closure K̄ of K , we denote 	K = Gal(K̄/K ).

ACMfield L is a totally imaginaryquadratic extensionof a totally real field K .A
CM type 
 for L/K is a subset
 ⊂ Hom(L ,C) such that Hom(L ,C) = 


∐
c


(equivalently, a choice of one of the two possible extensions to L of each embedding
of K in C).

All vector spaces over fields will be finite-dimensional except otherwise stated.
A tensor product without a subscript between Q-vector spaces will always mean
tensor product over Q. For any number field K , we denote by JK = Hom(K ,C).
For σ ∈ JK , we let σ̄ = cσ . Let E and K be number fields, and σ ∈ JK . If
α, β ∈ E ⊗ C, we write α ∼E⊗K ,σ β if either β = 0 or if β ∈ (E ⊗ C)× and
α/β ∈ (E ⊗ σ(K ))×. There is a natural isomorphism E ⊗ C � ∏

ϕ∈JE C given
by e⊗ z �→ (ϕ(e)z)ϕ for e ∈ E and z ∈ C. Under this identification, we denote an
element α ∈ E ⊗ C by (αϕ)ϕ∈JE . When K is given from the context as a subfield
of C, we write ∼E⊗K for ∼E⊗K ,1, where 1 : K ↪→ C is the given embedding.

Suppose that r = (rϕ)ϕ∈JE is a tuple of nonnegative integers.Given Q1, . . . , Qn

in E ⊗ C (with n ≥ rϕ for all ϕ), we denote by

r∏

j=1

Q j ∈ E ⊗ C

the element whose ϕ-th coordinate is
∏rϕ

j=1 Q j,ϕ
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2. Motives and periods

2.1. Algebraic Hecke characters

Let L be a number field. For a place v of L , we denote by Lv the corresponding
completion, and by (L×

v )+ the connected component of the identity in L×
v . An

algebraic Hecke character of L is a continuous character χ : L×\A×
L → C

×, with
the property that for each embedding τ ∈ JL , there exists an integer nτ such that if
v is the archimedean place of L induced by τ , then for every x ∈ (L×

v )+,

χ(x) =
{

τ(x)−nτ if v is real,
τ (x)−nτ τ̄ (x)−nτ̄ if v is complex.

The integer nτ + nτ̄ is independent of τ , and it’s called the weight w(χ) of χ . The
tuple (nτ )τ∈JL is called the infinity type of χ . LetQ(χ) ⊂ C be the field generated
by the values of χ on the finite idèles A×

L , f . Then Q(χ) is either Q or a CM field.
From now on, assume that L is a CM field, which is the case that we will be

interested in. Let K denote the maximal totally real subfield of L . The restriction
of χ to K must necessarily be of the form

χ |
A

×
K

= χ0‖ · ‖−w(χ),

where ‖ · ‖ is the idèlic norm on A×
K , and χ0 is of finite order (see [27], Chapter 0).

Let 
 be a CM type for L/K , that is, 
 ⊂ JL consists of a choice of one of the
two possible extensions of each σ ∈ JK to L .

Proposition 2.1.1. Let (aτ )τ∈
 be a tuple of integers such that

aτ ≡ aτ ′(2)

for every τ, τ ′ ∈ 
. Then there exists an algebraic Hecke character χ of L of
infinity type (nτ )τ∈JL such that

nτ − nτ̄ = aτ (τ ∈ 
).

Moreover, if w0 ∈ Z satisfies that w0 ≡ aτ (2) for one (or every) τ ∈ JL , then χ

can be taken to have weight w0.

Proof. As in [27], Chaper 0, any tuple of integers (nτ )τ∈JL with the property that
nτ + nτ̄ is independent of τ is the infinity type of an algebraic Hecke character χ

of L . To arrive at the conditions of the proposition, choose an arbitrary w0, with
the same parity as the aτ , and take the tuple (nτ )τ∈
 as

nτ = w0 + aτ

2
, τ ∈ 
,

nτ = w0 − aτ̄

2
, τ /∈ 
.

��
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2.2. Polarized regular motives

In this subsection, we recall the main result of [14], Sect. 2. Let K be a totally
real number field, L/K a CM extension and E any number field. We are fixing
throughout an algebraic closure K̄ of K , and we take L inside K̄ . Let M be a
realization over K of rank n with coefficients in E , pure of weight w(M). We
refer to [14] for a basic overview of realizations. Here we stress that M consists of
a collection of vector spaces and comparison isomorphisms, the interesting cases
being given by collections of realizations coming frommotives for absolute Hodge
cycles over K , as in Deligne’s article [12]. For each σ ∈ JK , we can define the
period δσ (M). These are elements of (E ⊗ C)×, well defined up to multiplication
by an element of (E ⊗σ(K ))×. We let δ(M) = δ1(ResK/Q M), with 1 ∈ JQ being
the unique embedding of Q.

We say that M is special if, for every σ ∈ JK , the action of the Frobenius
automorphism Fσ on the Hodge component Mw(M)/2,w(M)/2

σ is given by a scalar
ε = ±1 (independent of σ ). Here the E-vector space Mσ is the Betti realization of
M attached to the embeddingσ . Under the condition thatM is special, we can define
the Deligne σ -periods c±

σ (M), again elements of (E ⊗ C)× well defined modulo
(E ⊗ σ(K ))×. We let c±(M) = c±(ResK/Q M). We define n± = dimE M±

σ ,
where

M±
σ = {x ∈ Mσ : Fσ (x) = ±x}.

This is independent of σ . The following factorization formula is proved in [32] or
[25] (we also include a similar formula for the δ’s):

c±(M) ∼E Dn±/2
K

∏

σ

c±
σ (M), (2.2.1)

δ(M) ∼E Dn/2
K

∏

σ

δσ (M). (2.2.2)

Here DK is the discriminant of K . Note that DK is a positive integer such that
D1/2

K ∈ KGal, where KGal ⊂ Q̄ is the Galois closure of K in Q̄.
Under the assumption that the system of λ-adic representations (Mλ)λ is strictly

compatible, we can define the L-function of M , L∗(M, s) = (L(M, s)ϕ)ϕ∈JE ∈
E ⊗ C (see [12]). We will always assume this to be the case. We also refer the
reader to op. cit. for the definition of critical integers. Deligne’s conjecture is the
statement saying that if M is critical, meaning that 0 is a critical integer, then

L∗(M, 0)

c+(M)
∈ E .

We will later prove, for certain realizations M , a weaker version of this conjecture
which we state as follows. Note that if k is a critical integer for M , then the k-
th Tate twist M(k) is critical, and L∗(M(k), 0) = L∗(M, k). Also, c+(M(k)) ∼
(2π i)[K :Q]n±kc±(M), where ± = (−1)k .
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Conjecture 2.2.1. Let F ⊂ C be a number field and ϕ ∈ JE . Let k be a critical
integer of M. Then

L(M, k)ϕ
c+(M(k))ϕ

∈ Fϕ(E).

Wewill usually refer to the above as Conjecture 2.2.1 for M and the critical integer
k, over F (for the embedding ϕ).

We say that the realization M is regular if, for every σ ∈ JK and ϕ ∈ JE , the
spaces Mpq

σ (ϕ) have dimension at most 1 over C. Associated to the pair (σ, ϕ),
there is a sequence of integers

p1(σ, ϕ) > · · · > pn(σ, ϕ)

with the property that Mpq
σ (ϕ) �= 0 if and only if p = pi (σ, ϕ) for some i =

1, . . . , n. We let qi (σ, ϕ) = w(M) − pi (σ, ϕ), which in fact equals pn+1−i (σ, ϕ).
We let p0(σ, ϕ) = +∞ and pn+1(σ, ϕ) = −∞. Note that if n = 2k − 1 is odd,
then pk(σ, ϕ) = pn+1−k(σ, ϕ), which implies that w(M) is even. In particular,
w(M)n is even in all cases.

Let χ : L×\A×
L → C

× be an algebraic Hecke character of L of infinity type
(nτ )τ∈JL . Attached to χ is a CM motive over L with coefficients in Q(χ), which
we denote by [χ ] (this is denoted by M(χ) in [14]). See [27] for the construction
of [χ ]. We let ResL/K [χ ] be the motive over K obtained by restriction of scalars
from L to K of [χ ]. We say that χ is critical if nτ �= nτ̄ for every τ ∈ JL . In this
case, ResL/K [χ ], a realization of rank 2, is regular in the sense defined above, and
we denote the corresponding Hodge numbers by

pχ
1 (σ, ρ) > pχ

2 (σ, ρ),

where ρ ∈ JQ(χ). If we let n(τ, ρ) = nρ̃−1τ , where ρ̃ : C → C is an extension of
ρ to C, then

{pχ
1 (σ, ρ), pχ

2 (σ, ρ)} = {n(τ, ρ), n(τ̄ , ρ)},
where τ and τ̄ are the two embeddings of L extending σ . For χ critical, we define

tσ,ρ(χ) = pχ
1 (σ, ρ) − pχ

2 (σ, ρ).

We let c±
σ (χ) = c±

σ (ResL/K [χ ]). For any τ ∈ JL , let eτ = (eτ,ρ)ρ∈JQ(χ)
∈ (Q(χ)⊗

C)× be the element whose ρ-coordinate is eτ,ρ = 1 if n(τ, ρ) > n(τ̄ , ρ) and
eτ,ρ = −1 if n(τ, ρ) < n(τ̄ , ρ). Recall that the restriction of χ to A

×
K can be

written as

χ |
A

×
K

= χ0‖ · ‖−w(χ),

where χ0 is a finite order character. We let εL denote the finite order character
of K× \ A

×
K corresponding under class field theory to the quadratic character of

Gal(K̄/K ) associated with the extension L/K . We let [χ0εL ] denote the Artin
motive of rank 1 over K , with coefficients in Q(χ), attached to the finite order
character χ0εL . For each σ ∈ JK , we let

Gσ (χ) = δσ [χ0εL ].
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Remark 2.2.1. When K = Q, such elements are classically given by Gauss sums
(see [12], 6.4). There is no such simple relation with Gauss sums when K �= Q

(see [27], 3.4).

We let M(χ) = M ⊗ ResL/K [χ ] be the tensor product of the realizations M
and ResL/K [χ ]. This tensor product is over Q, meaning that it has coefficients in
E(χ) = E ⊗ Q(χ). To be more precise, E(χ) is a product of number fields, and
M(χ) is a collection of realizations with coefficients in each of these fields. For
simplicity in most of what follows, we will simply assume that E(χ) is a field.
Suppose that M is regular and χ is critical. It’s shown in [14] (Proposition 2.5.1)
that M(χ) has critical values if and only if, for every σ ∈ JK and every ρ ∈ JQ(χ),

tσ,ρ(χ) �= w(M) − 2pi (σ, ϕ)

for any i = 1, . . . , n and any ϕ ∈ JE . Assuming this is the case, we can find
integers rσ,ϕ,ρ(χ) ∈ {0, . . . , n} such that

w(M) − 2prσ,ϕ,ρ (χ)(σ, ϕ) < tσ,ρ(χ) < w(M) − 2prσ,ϕ,ρ (χ)+1(σ, ϕ).

We stress here that if K �= Q, the numbers pi (σ, ϕ) depend in general on the choice
of the embeddings. Moreover, the integers rσ,ϕ,ρ(χ) also depend on the choice of
the three embeddings σ , ϕ and ρ.

We say that M is polarized if there exists a non-degenerate morphism of real-
izations

〈, 〉 : M ⊗E M → E(−w(M)).

We also impose the condition that 〈, 〉 is symmetric if w(M) is even, and alternated
if w(M) is odd. We refer to Sect. 2.3 of [14] for the definition of the quadratic
periods Q j,σ ∈ (E ⊗C)× attached to a polarized realization M . Assume from now
on that M is a regular, polarized, special realization, pure of weightw(M) and rank
n.

Let χ be an critical algebraic Hecke character of infinity type (nτ )τ∈JL and
weight w(χ). We suppose that M(χ) has critical values, and we let sσ,ϕ,ρ(χ) =
n − rσ,ϕ,ρ(χ), rσ = (rσ,ϕ,ρ(χ))ϕ,ρ and sσ = (sσ,ϕ,ρ(χ))ϕ,ρ . We let

a±
σ (χ) = (2π i)w(χ)Gσ (χ)−1c∓

σ (χ)

and

Qσ (χ) = (2π i)w(χ)Gσ (χ)−2eτ c
+
σ (χ)2.

Here τ is any of the two embeddings of L extending σ . Since eτ = −eτ̄ , this
definition makes sense in (Q(χ) ⊗ C)× modulo (Q(χ) ⊗ σ(K ))×.

Remark 2.2.2. These quantities are definedmore conceptually in [14]. The formulas
above are obtained (up to multiples in (Q(χ)⊗σ(K ))×) in (2.4.3) and Proposition
2.5.2 of op. cit.
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Theorem 2.5.1 of [14] (see also Proposition 1.7.6 of [17] when K = Q, and
[33]) says that

c+
σ (M(χ)) ∼ (2π i)−�n/2�w(χ)Gσ (χ)rσ δσ (M)a∗

σ (χ)Qσ (χ)rσ −�n/2�
sσ∏

j=1

Q j,σ ,

(2.2.3)

where a∗
σ (χ) = 1 if n is even, and a∗

σ (χ) = a±
σ (χ) if n is odd, with ± = −

if n+ > n− and ± = + if n− > n+. In the formula, ∼ means ∼E(χ)⊗K ,σ .
In particular, if we look at the coordinates of the elements corresponding to an
embedding ϕ ∈ JE and the embedding 1 ∈ JQ(χ), we get

c+σ (M(χ))ϕ,1 ∼

(2π i)−�n/2�w(χ)Gσ (χ)
rσ,ϕ,1(χ)

1 δσ (M)ϕa
∗
σ (χ)1Qσ (χ)

rσ,ϕ,1(χ)−�n/2�
1

sσ,ϕ,1(χ)∏

j=1

Q j,σ,ϕ,

(2.2.4)

where now both sides are complex numbers and∼ stands for∼ϕ(E)Q(χ)σ (K ). When
E is given as a subfield ofCwith a given embedding 1 ∈ JE , we write c+(M(χ))1
for c+(M(χ))1,1, and similarly for any other element of E(χ) ⊗ C.

2.3. Twists with prescribed critical intervals

In this subsection, we consider twists of M by certain algebraic Hecke characters
with prescribed r . Let M be a polarized, regular, special realization over K with
coefficients in E . We let n be the rank of M , and assume that M is pure of weight
w(M). Fix a CM type 
 for L/K , ϕ ∈ JE and r ∈ {0, . . . , n}. If r > 0, let
(a(r,ϕ)

τ )τ∈
 be the tuple of integers defined by

a(r,ϕ)
τ = w(M) − 2pr (σ, ϕ) + 1, (2.3.1)

where σ is the restriction of τ to K . For r = 0, let a(0) be any integer such that

a(0) < min{w(M) − 2p1(σ, ϕ)}σ∈JK ,ϕ∈JE ,

a(0) ≡ w(M) + 1(2). (2.3.2)

For any τ andϕ, we let a(0,ϕ)
τ = a(0). Note thatw(M)−2p1(σ, ϕ) = pn(σ, ϕ)−

p1(σ, ϕ) ≤ 0, and hence a(0,ϕ)
τ < 0. In all cases, we have that

a(r,ϕ)
τ ≡ a(r,ϕ)

τ ′ (2) (τ, τ ′ ∈ 
),

and thus by Proposition 2.1.1, there exists an algebraic Hecke character χ(r,ϕ) of
L , of infinity type (n(r,ϕ)

τ )τ∈
, such that

n(r,ϕ)
τ − n(r,ϕ)

τ̄ = a(r,ϕ)
τ (τ ∈ 
).
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Lemma 2.3.1. (i) The algebraic Hecke characters χ(r,ϕ) are all critical, except
for r = n/2 when n is even. In this case, χ(n/2,ϕ) is critical if and only if
p n

2
(σ, ϕ) �= p n

2+1(σ, ϕ) + 1 for any σ ∈ JK .

(ii) The infinity type satisfies that n(r,ϕ)
τ > n(r,ϕ)

τ̄ for one (or every) τ ∈ 
 if and
only if r ∈ {� n

2 � + 1, . . . , n}.

Proof. If r = 0, then a(0,ϕ)
τ < 0, which implies that n(0,ϕ)

τ �= n(0,ϕ)
τ̄ for every

τ ∈ 
, so χ(0,ϕ) is critical. From now on assume that r > 0. Then n(r,ϕ)
τ −n(r,ϕ)

τ̄ =
w(M) − 2pr (σ, ϕ) + 1 for τ ∈ 
. Suppose that χ(r,ϕ) is not critical, so that
n(r,ϕ)

τ = n(r,ϕ)
τ̄ for some τ ∈ 
. Then

w(M) = 2pr (σ, ϕ) − 1.

Since w(M) = pn+1−r (σ, ϕ) + pr (σ, ϕ), this amounts to say that

pn+1−r (σ, ϕ) = pr (σ, ϕ) − 1. (2.3.3)

This necessarily implies that r �= n and

pn+1−r (σ, ϕ) = pr+1(σ, ϕ).

This in turn implies that n + 1 − r = r + 1, so that n is even and r = n/2. Then
(2.3.3) implies that p n

2
(σ, ϕ) = p n

2+1(σ, ϕ) + 1. This proves part (i).

For part (ii), the condition is equivalent to a(r,ϕ)
τ > 0 for every τ ∈ 
, which

means that r �= 0 and

pn+1−r (σ, ϕ) − pr (σ, ϕ) ≥ 0

for every σ ∈ JK . This means that r ≥ n+1
2 , or, what is the same, r ≥ � n

2 � + 1. ��
Lemma 2.3.2. Let r ∈ {0, . . . , n}. If n is even and r = n/2, assume that
p n

2
(σ, ϕ) �= p n

2+1(σ, ϕ) + 1. Then the realization M(χ(r,ϕ)) has critical values,
and for every σ ∈ JK ,

rσ,ϕ,1(χ
(r,ϕ)) =

{
n − r if 0 ≤ r ≤ � n

2 �
r if � n

2 � < r ≤ n,

where 1 ∈ JQ(χ(r,ϕ)) denotes the given embedding of Q(χ(r,ϕ)).

Proof. First we need to check the condition that guarantees that M(χ(r,ϕ)) has
critical values. Thus, we need to see that for any σ ∈ JK , ψ ∈ JE , ρ ∈ JQ(χ(r,ϕ))

and i = 1, . . . , n, tσ,ρ(χ(r,ϕ)) �= w(M) − 2pi (σ, ψ). But

tσ,ρ(χ(r,ϕ)) = ±(n(r,ϕ)(τ, ρ) − n(r,ϕ)(τ̄ , ρ)),

where τ ∈ 
 extends σ . Suppose first that r �= 0. Then

n(r,ϕ)(τ, ρ) − n(r,ϕ)(τ̄ , ρ) = n(r,ϕ)

ρ̃−1τ
− n(r,ϕ)

ρ̃−1 τ̄
= w(M) − 2pr (σ

′, ϕ) + 1,
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where σ ′ ∈ JK is the restriction of ρ̃−1σ to K . Thus, using that pr (σ ′, ϕ) +
pn+1−r (σ

′, ϕ) = w(M),

tσ,ρ(χ(r,ϕ)) = ±(w(M) − 2pr (σ
′, ϕ) + 1) = w(M) − 2pr ′(σ ′, ϕ) ± 1,

where r ′ is either r or n + 1 − r , according to whether the sign is + or −. This
differs fromw(M) by an odd integer, so it can never be equal tow(M)−2pi (σ, ψ).

If r = 0, then

tσ,ρ(χ(r,ϕ)) = −a(0),

which by our choices is never equal to any of the w(M) − 2pi (σ, ϕ). This shows
that M(χ(r,ϕ)) has critical values.

Now, if τ ∈ 
 extends σ then, by part (ii) of Lemma 2.3.1,

tσ,1(χ) =
{
n(r,ϕ)

τ − n(r,ϕ)
τ̄ if � n

2 � < r ≤ n

n(r,ϕ)
τ̄ − n(r,ϕ)

τ if 0 ≤ r ≤ � n
2 �.

If � n
2 � < r ≤ n, then tσ,1(χ

(r,ϕ)) = w(M)−2pr (σ, ϕ)+1. Since pr+1(σ, ϕ)+ 1
2 <

pr (σ, ϕ), it follows that

w(M) − 2pr (σ, ϕ) < tσ,1(χ
(r,ϕ)) < w(M) − 2pr+1(σ, ϕ),

so that rσ,ϕ,1(χ
(r,ϕ)) = r . If 0 ≤ r ≤ � n

2 �, then tσ,1(χ
(r,ϕ)) = −w(M) +

2pr (σ, ϕ) − 1 = w(M) − 2pn+1−r (σ, ϕ) − 1, and by a similar reasoning we
get that

w(M) − 2pn−r (σ, ϕ) < tσ,1(χ
(r,ϕ)) < w(M) − 2pn−r+1(σ, ϕ),

so that rσ,ϕ,1(χ
(r,ϕ)) = n − r . ��

2.4. Formulas for quadratic periods

In this subsection,we combine the results above to obtain a formula for the quadratic
periods Q j,σ in terms of quotients of Deligne σ -periods of various twists M(χ),
with an eye towards future applications. We first introduce some notation. For any
r = 0, . . . , n, and ϕ ∈ JE , we fix χ(r,ϕ) as above. Given our choices in (2.3.1) and
(2.3.2), we can assume by Proposition 2.1.1 that all the characters χ(r,ϕ) have the
same weight w0 ≡ w(M) + 1(2). We let

Pσ (χ(r,ϕ)) = (2π i)−� n
2 �w0Gσ (χ(r,ϕ))r a∗

σ (χ(r,ϕ))Qσ (χ(r,ϕ))r−� n
2 �. (2.4.1)

Implicit here is the integer n and its decomposition as n = n+ + n−, depending on
M . This is an element of (Q(χ) ⊗ C)×, well defined up to multiples in (Q(χ) ⊗
σ(K ))×. Note that if 1 ≤ j < � n

2 �, then � n
2 � < n − j ≤ n − 1.
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Proposition 2.4.1. Let ϕ ∈ JE and j ∈ Z be an integer with 1 ≤ j < � n
2 �. Then,

for any σ ∈ JK , we have that

Q j,σ,ϕ ∼ϕ(E)Q(χ)σ (K )

⎧
⎪⎪⎨

⎪⎪⎩

c+
σ (M(χ(n−1,ϕ)))ϕ,1

Pσ (χ(n−1,ϕ))1
δσ (M)−1

ϕ if j = 1

c+
σ (M(χ(n− j,ϕ))ϕ,1

c+
σ (M(χ(n− j+1,ϕ)ϕ,1

Pσ (χ(n− j+1,ϕ))1

Pσ (χ(n− j,ϕ))1
if j �= 1.

Proof. Let r = n − j ∈ {� n
2 � + 1, . . . , n − 1}. We apply the formula (2.2.4) to

χ(r,ϕ). By Lemma 2.3.2, the formula in this case, looking at the coordinate given
by the embeddings ϕ ∈ JE and 1 ∈ JQ(χ), says that

c+
σ (M(χ(r,ϕ)))ϕ,1 ∼ δσ (M)ϕPσ (χ(r,ϕ))1

j∏

i=1

Qi,σ,ϕ. (2.4.2)

Thus the formula for j = 1 in the proposition is clear. If j ≥ 2, then we also have

c+
σ (M(χ(r+1,ϕ)))ϕ,1 ∼ δσ (M)ϕPσ (χ(r+1,ϕ))1

j−1∏

i=1

Qi,σ,ϕ. (2.4.3)

Hence, the result follows by dividing (2.4.2) by (2.4.3) (note that all the relevant
elements belong to C×). ��

We define

Q j =
∏

σ∈JK

Q j,σ ∈ (E ⊗ C)×/(E ⊗ KGal)×

and

P(χ(r,ϕ)) =
∏

σ∈JK

Pσ (χ(r,ϕ)) ∈ (Q(χ) ⊗ C)×/(Q(χ) ⊗ KGal)×. (2.4.4)

Using formulas (2.2.1) and (2.2.2), we obtain the following corollary of Propo-
sition 2.4.1.

Corollary 2.4.1. Let the notation and assumptions be as above. Then, for each
ϕ ∈ JE , we have that

Q j,ϕ ∼ϕ(E)Q(χ)KGal

⎧
⎪⎪⎨

⎪⎪⎩

c+(M(χ(n−1,ϕ)))ϕ,1

P(χ(n−1,ϕ))1
δ(M)−1

ϕ if j = 1

c+(M(χ(n− j,ϕ))ϕ,1

c+(M(χ(n− j+1,ϕ)ϕ,1

P(χ(n− j+1,ϕ))1

P(χ(n− j,ϕ))1
if j �= 1.

Fix ϕ ∈ JE and r ∈ {0, . . . , n}. Let s = n − r . For the rest of this subsection,
we let χ = χ(r,ϕ). Recall thatw0 is the weight of χ . The period P(χ) of (2.4.4) can
be interpreted in terms of CM periods, as in Sect. 2.6 of [14]. We are only interested
in the case r > � n

2 �, and we assume that this is the case from now. In particular,
nτ > nτ̄ for τ ∈ 
. Moreover, we will only write down the formulas after fixing
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the embedding 1 ∈ JQ(χ), since P(χ)1 is what appears in Corollary 2.4.1. In [21]
(see also [16]), a family of CM periods attached to χ is defined. As a particular
case, there is a period

p(χ;
) ∈ C
×,

well defined up to multiples inQ(χ)×. For each embedding ρ ∈ JQ(χ), let ρ̃ be an
extension of ρ toC. We can define an algebraic Hecke character χρ , of infinity type
(nρ̃−1τ )τ∈JL , obtained by applying ρ to the values of χ onA×

L , f . We can also define
a CM type ρ̃
 = {ρ̃τ : τ ∈ 
}. All of these are independent of the extension ρ̃,
and thus we get a well defined CM period p(χρ; ρ
) ∈ C

×. We let

p(χ;
) = (p(χρ; ρ
))ρ∈JQ(χ)
∈ (Q(χ) ⊗ C)×.

The following formula is a theorem of Blasius, and we use the formulation that
appears as Proposition 1.8.1 of [16], corrected as in the Introduction to [17]. Com-
bined with Deligne’s conjecture for the motive [χ ], proved by Blasius ([4]), we get
that if m is a critical integer for [χ ], then

c+([χ ](m)) ∼Q(χ) D
1/2
K (2π i)[K :Q]mp(χ̌;
), (2.4.5)

where χ̌ = χι,−1. Here ι ∈ Gal(L/K ) is the non-trivial element.
The following lemma allows us to relate the quadratic periods Q j,ϕ to quotients

of Deligne periods and CM periods, via Corollay 2.4.1. Let

G(χ) =
∏

σ∈JK

Gσ (χ) ∈ (Q(χ) ⊗ C)× .

Lemma 2.4.1. Let the notation and assumptions be as above. Let t = 0 if there
exist even critical integers m for [χ ], and let t = 1 otherwise. Then

P(χ) ∼Q(χ)⊗KGal (2π i)−[K :Q]w0sG(χ)sp(χ̌;
)r−s

(
∏

τ∈


er−n++t
τ

)

.

In particular,

P(χ)1 ∼Q(χ)KGal (2π i)−[K :Q]w0sG(χ)s1 p(χ̌;
)r−s .

Proof. Throughout, we write ∼ for ∼Q(χ)⊗KGal . By definition, we have that

P(χ) ∼ (2π i)−� n
2 �w0[K :Q]G(χ)r

⎛

⎝
∏

σ∈JK

a∗
σ (χ)

⎞

⎠

⎛

⎝
∏

σ∈JK

Qσ (χ)r−� n
2 �

⎞

⎠ ,

(2.4.6)

where a∗
σ (χ) = 1 if n is even and a∗

σ (χ) = a±
σ (χ) if n is odd, where ± = − if

n+ > n− and ± = + if n+ < n−.
By Lemma 2.4.1 of [14], we have that

c−
σ (χ) ∼Q(χ)⊗K ,σ eτ c

+
σ (χ), (2.4.7)
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for τ any extension of σ . It follows from (2.2.1) that

∏

σ∈JK

a±
σ (χ) ∼ (2π i)[K :Q]w0D−1/2

K G(χ)−1c+(χ)

(
∏

τ∈


e?τ

)

, (2.4.8)

where ? = 1 if ± = +, and ? = 0 if ± = −. The factor D−1/2
K belongs to KGal, so

it can be ignored in the formula. Similarly,

∏

σ∈JK

Qσ (χ) ∼ (2π i)[K :Q]w0G(χ)−2c+(χ)2

(
∏

τ∈


eτ

)

. (2.4.9)

Since c+([χ ](m)) ∼ (2π i)[K :Q]mc(−1)m (χ), we get from (2.4.5) and (2.4.7) that

c+(χ) ∼Q(χ) D
1/2
K p(χ̌;
)

∏

τ∈


etτ . (2.4.10)

The lemma follows by combining (2.4.6), (2.4.7), (2.4.8), (2.4.9) and (2.4.10). ��
Remark 2.4.1. The last lemma is true for any criticalχ such that nτ > nτ̄ for τ ∈ 
,
as long as the definition (2.4.1) of P(χ) uses the same r , s and n+.

2.5. Deligne periods when r = n

In this subsection, we obtain a formula for theDeligne period ofM(χ)(k)whenever
χ has r = n and k is a critical integer. We can use the above formulas for χ(n,ϕ),
but it will be more useful to allow more general characters. Thus, suppose that χ

is an algebraic Hecke character, critical of infinity type (nτ )τ∈JL . Suppose that the
CM type 
 and the infinity type of χ are related by the condition

nτ > nτ̄ (τ ∈ 
).

Moreover, fix ϕ ∈ JE , and suppose that

nτ − nτ̄ > max{w(M) − 2pn(σ, ϕ)}σ∈JK (2.5.1)

for all τ ∈ 
.

Remark 2.5.1. If (2.5.1) holds for the embedding ϕ ∈ JE , then it holds for any
other ψ ∈ JE as well. This follows from the following more general fact. Let N be
a realization over K , with coefficients in E , pure of weight w(N ). For ϕ ∈ JE , let

T (ϕ) =
⋃

σ∈JK

{p ∈ Z : N pq
σ (ϕ) �= 0}.

ThenT (ϕ) = T (ψ) forϕ,ψ ∈ JE . Indeed, let p ∈ T (ϕ). Thengr p(NdR)⊗E⊗K ,ϕ⊗σ

C �= 0. There exists an element h ∈ Aut(C) such that ψ = hϕ, and then

0 �= gr p(NdR) ⊗E⊗K ,ϕ⊗σ C ⊗C,h C = gr p(NdR)⊗E⊗K ,ψ⊗hσ ,

so p ∈ T (ψ). Then, (2.5.1) can be stated as

nτ − nτ̄ > max{w(M) − 2p}p∈T (ϕ),

which is independent of ϕ.
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We then have, just as in the proof of Lemma 2.3.2, that M(χ) has critical values
and

rσ,ϕ,1(χ) = n (2.5.2)

for all σ ∈ JK and ϕ ∈ JE . As in (2.4.1) and (2.4.4), we let

Pσ (χ) = (2π i)−� n
2 �w(χ)Gσ (χ)na∗

σ (χ)Qσ (χ)�
n
2 �

and

P(χ) =
∏

σ∈JK

Pσ (χ),

where again n = n+ + n− is implicit in the notation.
Taking into account (2.5.2), formula (2.2.3) applied to the case of χ says that

c+
σ (M(χ))ϕ,1 ∼ϕ(E)Q(χ)σ (K ) δσ (M)ϕPσ (χ)1.

Using formulas (2.2.1) and (2.2.2), we get

c+(M(χ))ϕ,1 ∼ϕ(E)Q(χ)KGal δ(M)ϕP(χ)1. (2.5.3)

The set of critical integers for M(χ) is computed in (2.5.2) of [14]. In this case,
this set consist of those integers k such that

p1(σ, ϕ) + nτ̄ < k ≤ pn(σ, ϕ) + nτ (2.5.4)

for every τ ∈ 
 (with σ = τ |K ) and a fixed ϕ ∈ JE .

Remark 2.5.2. ByRemark 2.5.1, these inequalities are independent of the chosen ϕ.
For this we need to assume, as we do, that E(χ) is a field. In the general case, M(χ)

is a collection of realizations with coefficients in the fields appearing in E(χ), and
a critical integer is defined to be one which is critical for each of these realizations.

Let k be an integer satisfying (2.5.4). By Lemma 2.4.1 of [14],

c+
σ (M(χ)(k)) ∼E(χ)⊗K ,σ (2π i)knc+

σ (M(χ))e(−1)k
τ

with τ ∈ 
 extending σ . Using (2.2.1), we get that

c+(M(χ)(k)) ∼E(χ)⊗KGal (2π i)[K :Q]knc+(M(χ))
∏

τ∈


e(−1)k
τ .

Combining this with (2.5.3), we obtain that

c+(M(χ)(k))ϕ,1 ∼ϕ(E)Q(χ)KGal (2π i)[K :Q]knδ(M)ϕP(χ)1.

Finally, the following result follows from this and Lemma 2.4.1 (see also (2.6.2) of
[14]). For clarity, we recall all the relevant hypotheses.
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Proposition 2.5.1. Let M be a regular, special, polarized realization over K with
coefficients in E, pure of weight w(M) and rank n. Let 
 be a CM type for L/K,
and let χ be a critical algebraic Hecke character of L of infinity type (nτ )τ∈JL .
Suppose that nτ > nτ̄ for τ ∈ 
, and that (2.5.1) holds. Let k be an integer
satisfying (2.5.4). Then

c+(M(χ)(k))ϕ,1 ∼ϕ(E)Q(χ)KGal (2π i)[K :Q]knδ(M)ϕ p(χ̌;
)n

for any ϕ ∈ JE .

Remark 2.5.3. The factor δ(M)ϕ in the previous proposition needs to be dealt with.
It can easily be replaced with a suitable power of 2π i ifw(M) is odd (and hence n is
even and the polarization is alternated).More precisely, it can be shown (see Lemma
1.4.12 of [17] or Remark 2.3.1 of [14]) that δσ (M) ∼E⊗K ,σ (2π i)−w(M)n/2. Thus,
(2.2.2) implies that

δ(M) ∼E⊗KGal (2π i)−w(M)[K :Q]n/2

in this case.Whenw(M) is even, there is apparently no simpleway to obtain such an
expression. When comparing with automorphic motives in the following sections,
we will deal with this case assuming an extra conjecture.

3. Critical values of automorphic L-functions

In this section we recall the main results of [14] regarding the critical values of
L-functions of cohomological automorphic forms on unitary groups. In this paper,
we will only care about totally definite unitary groups.

3.1. Totally definite unitary groups

Let L/K be aCMextension and
 aCMtype for L/K . LetV be afinite-dimensional
L-vector space, and h : V × V → L be a non-degenerate hermitian form, relative
to the non-trivial automorphism ι ∈ Gal(L/K ). Let n = dimL V . We let G be the
similitude unitary group, with similitude factors inQ, attached to (V, h). Thus, for
a Q-algebra R, the points of G with values in R are given by

G(R) = {g ∈ AutL⊗R(V ⊗ R) : hR(gu, gv) = ν(g)hR(u, v) ∀u, v ∈ V ⊗ R},
where ν(g) ∈ R×. Here hR : V⊗R×V⊗R → L⊗R is given by hR(u⊗a, v⊗b) =
h(u, v) ⊗ ab. For each τ ∈ JL , let Vτ = V ⊗L ,τ C. This is equipped with a
hermitian form hτ relative to complex conjugation on C/R. In particular, there is
a well-defined signature (rτ , sτ ). We will assume throughout the paper that V is
totally definite. This means that for any τ ∈ 
, the signature is (rτ , sτ ) = (n, 0).
We also fix an L-basis β = {v1, . . . , vn} of V , orthogonal for h. As in (3.1.1) of
[14], we can write

GR
∼=

(
∏

τ∈


GU (n, 0)

)′
, GC

∼=
(

∏

τ∈


GLn,C

)

× GL1,C,
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where the symbol ′ means that we are looking at tuples where all the elements have
the same multiplier ν. Here, the group GU (n, 0) is the usual similitude unitary
group over R of the identity matrix In . There is a maximal torus T ⊂ G, namely
the subgroup of automorphism which are diagonal with respect to the basis β,
such that TC corresponds to the subgroup of diagonal matrices under the second
isomorphism above. We let B ⊂ GC be the Borel subgroup corresponding to(∏

τ∈
 Bn,C

) × GL1,C, where Bn,C is the group of upper triangular matrices in
GLn,C.

Weuse the notation ofSect. 3.3 of [14] regarding roots andweights. In particular,
we identify the group � = X∗(T ) with the group of tuples

μ = (
(aτ,1, . . . , aτ,n)τ∈
; a0

) ∈
(

∏

τ∈


Z
n

)

× Z.

The set of dominant weights �+, with respect to the Borel subgroup B, are those
μ for which aτ,1 ≥ · · · ≥ aτ,n for all τ ∈ 
. In the notation of op. cit., the group
Kx is the whole group GR, �+

x,c = �+ and w1
0 = 1.

3.2. Automorphic forms

A Shimura datum (G, X) is constructed in Sect. 3.2 of [14], assuming that V is not
totally definite. In our case, we can still define zero-dimensional varieties SU for a
compact open subgroup U ⊂ G(A f ). These are algebraic varieties over the reflex
field E , which is the field generated overQ by the elements

∑
τ∈
 τ(b), for b ∈ L .

In particular, E ⊂ LGal, the Galois closure of L in Q̄. The set of complex points of
SU is the finite set

SU (C) = G(Q)\G(A f )/U.

Most of what is contained in Sect. 3 of [14] also applies to these zero-dimensional
varieties. We denote by S the projective limit of the SU .

From now on, fixμ ∈ �+ such that the corresponding representationW = Wμ

of GC is defined over Q. This implies that

aτ,i = −aτ,n+1−i

for every τ ∈ 
 and i = 1, . . . , n. Let ξ = 2a0. We let CohG,μ be the set of
cuspidal automorphic representations π of G(A) which are essentially tempered
and cohomological of type μ. The last condition means that

(π∞ ⊗C Wμ)G(R) �= 0.

Let π ∈ CohG,μ. The motivic normalization of the standard L-function is given
by

Lmot,S(s, π,St) = LS
(

s − n − 1

2
, π,St

)

,
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where St stands for the L-function corresponding to the standard representation of
the L-group of G, and S is a big enough finite set of places of L , included to ensure
that the local base change from G (rather, the unitary group) to GLn is defined at
places outside S. We let E(π) be a CM field containig LGal over which π f can be
realized. Such a CM field always exist (see [5], Theorem 4.4.1, and [17], 2.6). We
let π f,0 be a model of π f over E(π). We will assume from now on the following
list of hypotheses.

Hypotheses 3.2.1. The representation π ∈ CohG,μ satisfies:

1. π∨ ∼= π ⊗ ‖ν‖ξ ,
2. for any σ ∈ JE(π), πσ

f = π f,0 ⊗E(π),σ C is essentially tempered, and

3. dimC HomC[G(A f )](πσ
f , H

0(SC, Eμ)) ≤ 1.

Hypothesis 3.2.1, (1), is assumed for simplifying purposes, and it will be satisfied
in the applications of Sect. 4. In (3), Eμ is the automorphic vector bundle over the
Shimura variety S defined by the representation Wμ.

Remark 3.2.1. Hypotheses 3.2.1, (2) and (3) are expected to be satisfied in most
cases in our applications. Conjugation of automorphic representations as in (2) is
discussed in several sources. See for instance [5,13] and [18]. Hypothesis (3) is part
of Arthur’s multiplicity conjectures, a proof of which is expected to appear soon
(see [22] and their forthcoming sequels).

Automorphic quadratic periods for π are defined in Sect. 3.10 of [14]. Under
our running hypotheses, we can define a holomorphic quadratic period

Qhol(π) ∈ E(π) ⊗ C.

We don’t need to recall the precise definition of it, but rather its interpretation as a
Petersson norm. As in Remarks 3.9.2 and 3.10.1 of [14],

Qhol(π) ∼E(π)⊗LGal

∫

G(Q)Z(A)\G(A)

f (g) f̄ (g)‖ν(g)‖ξdg,

where f is an automorphic form on G(A), contributing to π rationally in the sense
of the canonical model of Eμ over LGal.

3.3. The main formula for critical values

Here we recall the main result (Theorem 4.5.1) of [14] in the case of totally definite
unitary grops. As above, we let π ∈ CohG,μ, with Wμ defined over Q, be an
automorphic representation satisfying Hypotheses 3.2.1. Let ψ be an algebraic
Hecke character of L , of infinity type (mτ )τ∈JL , and let m > n be an integer
satisfying

m ≤ aτ,n + mτ − m τ̄ (3.3.1)

for every τ ∈ 
 (this is inequality (4.2.1) of [14]). Note that n needs to satisfy
the same inequality for such an integer m to exist, which poses the condition that
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mτ −m τ̄ > n − aτ,n for every τ ∈ 
. For the time being, let m > n be any integer
satisfying (3.3.1). The representation π ⊗ (ψ ◦ det) will be denoted by π ⊗ ψ . We
let

ψ̃ = ψ

ψι
.

In the context of the present paper (totally definite unitary groups) Theorem 4.5.1
of [14] is basically the following result.

Proposition 3.3.1. Let the notation and assumptions be as above. Then

LS,mot(m, π ⊗ ψ,St) ∼E(π)Q(ψ) (2π i)
[K :Q]

(
mn− n(n−1)

2

)
−ξ

p(ψ̃;
)n .

Proof. We apply the statement of the main theorem of [14] given as formula (4.5.2)
of op. cit., and ignoring Dn/2

K , since it already belongs to KGal ⊂ LGal ⊂ E(π).
We also fix the embeddings 1 ∈ JE(π) and 1 ∈ JQ(ψ). The formula then is

LS,mot(m, π ⊗ ψ, St) ∼E(π)Q(ψ) (2π i)
[K :Q]

(
mn− n(n−1)

2

)
−ξ

Qhol(π)1 p(ψ; h)p(ψ−1, h̄).

(3.3.2)

Here S = ResC/RGm,C, where Gm is the multiplicative group, and h : S →
(ResL/QGm,L)R ∼= ∏

τ∈
 S is given as h = (hτ )τ∈
, with hτ : S → S defined
by hτ (z) = zn (see [14], 3.10). The map h̄ is given by h̄(z) = h(z̄). The elements
p(ψ; h) and p(ψ−1; h̄) are CM periods satisfying

p(ψ; h) ∼Q(ψ)LGal

∏

τ∈


p(ψn; {τ })

and

p(ψ−1; h̄) ∼Q(ψ)LGal

∏

τ∈


p(ψι,−n; {τ })

(see op. cit., (3.10.3)). By Proposition 1.4 and Corollary 1.5 of [16], we can write

p(ψ; h)p(ψ−1; h̄) ∼Q(ψ)LGal p(ψ̃;
)n . (3.3.3)

Finally, since the hermitian space V is totally definite, the quadratic period
Qhol(π) can be taken to be in E(π) (see for instance [20], Section 5). Thus, it can
taken to be 1 in (3.3.2), which, together with (3.3.3), proves the formula in the
statement of the theorem. ��
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4. The main theorems

In this section, we prove a version of Deligne’s conjecture for certain twists M(χ)

of realizations M which are potentially automorphic of unitary type, in the sense
that, after extending the scalars to a totally real Galois extension K ′/K , they look
like the motives (conjecturally) attached to self-dual automorphic representations
of GLn(AK ). We relate this, via base change and descent, to automorphic repre-
sentations of unitary groups, and apply the results of Sect. 3 to express the critical
values of the corresponding L-functions. We then compare this expression with
the one obtained in Sect. 2 to deduce Deligne’s conjecture for automorphic real-
izations (Theorem 4.3.1), after working over the Galois closure LGal and fixing
embeddings of the coefficient fields. We then prove the theorem for potentially
automorphic realizations (Theorem 4.4.1) by means of Brauer’s induction and the
previous case.

4.1. Automorphic representations of GLn(AK )

Fix a totally real field K . Let � be a cuspidal automorphic representation of
GLn(AK ), satisfying the following properties:

• �∨ ∼= � (self-duality), and
• � is cohomological.

The second condition can be expressed by saying that�∞ has the same infinitesimal
character as an irreducible representation of (ResK/Q GLn,K )C � ∏

σ∈JK GLn,C.
Such an irreducible representation can be parametrized, in the standard way, by
a collection of integers (aσ,1, . . . , aσ,n)σ∈JK , called the weight of �, with aσ,1 ≥
· · · ≥ aσ,n for every σ ∈ JK .

We letQ(� f ) be the field of definition of � f . By Theorem 3.13 of [8],Q(� f )

is a number field, and � f can be defined over Q(� f ). We expect the existence of
a motive M = M(�) over K , with coefficients in a finite extension E(�) ⊂ Q̄

of Q(� f ), attached to � (the reason we need to allow non-trivial extensions of
Q(� f ) is that the associated Galois representations may not be defined over the
λ-adic completions ofQ(� f ); see 1.1 of [19]). The motive M should have rank n,
weight w(M) = n − 1, and it should have the property that, for v outside a finite
set of places S,

Lv

(

s − n − 1

2
,�ϕ

)

= Lv(M, s)ϕ, (4.1.1)

where ϕ ∈ JE(�). The λ-adic realizations of M have been constructed by a number
of people ([6,10,30,31]). Moreover, M should be polarized (see for instance [3]
regarding the sign of the polarization) and regular, and the Hodge numbers are
recovered from the weight of � by the following recipe. We fix 1 ∈ JE(�), and we
have that

pi (σ, 1) = aσ,i + n − i (4.1.2)
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for every σ ∈ JK , i = 1, . . . , n. The other Hodge numbers pi (σ, ϕ) are obtained by
a similar recipe by conjugating the weight of �. We stress that the motives M(�)

are conjectural.

Definition 4.1.1. Let M be a realization of rank n over K with coefficients in E .
We say that M is automorphic of unitary type if it is regular, polarized, pure of
weight n − 1, and there exists a self-dual, cohomological, cuspidal automorphic
representation � of GLn(AK ) such that (4.1.1) holds for ϕ = 1 and v outside a
finite set of places S, and (4.1.2) holds. In this case we also say that M is associated
with �.

We say that M is potentially automorphic of unitary type if it is polarized and
there exists a finite, totally real Galois extension K ′/K such that MK ′ = M ×K K ′
is automorphic of unitary type.

Remark 4.1.1. There exist cohomological cuspidal representations of GLn(AK )

which are not self-dual, and not even essentially self-dual (see [26]). The general
philosophy of the Langlands program predicts the existence of motives attached
to such representations as well. These motives do not fit into the framework of
this paper since they are not of unitary type, in the sense that their automorphic
representations do not come from unitary groups as in the self-dual case.

4.2. Transfer

Let � be a self-dual, cohomological, cuspidal automorphic representation of
GLn(AK ). For a totally imaginary quadratic extension L/K , let �L denote the
base change of � from GLn(AK ) to GLn(AL) (see Theorems 4.2 and 5.1 of [1]).
If � �∼= � ⊗ εL/K , then �L is cuspidal. This is always the case if n is odd, for
instance. In any case, there always exists a totally imaginary quadratic extension L
of the form L = K F for a quadratic imaginary field F , such that �L is cuspidal
(see Section 1 of [9]). From now on, we will fix an L such that �L is cuspidal. We
also have that �L is a cohomological and �∨

L
∼= �ι

L
∼= �L .

LetG be a unitary group attached to an n-dimensional totally definite hermitian
space V over L/K , as in Sect. 3.We expect the existence of a descentπ of�L , from
GLn(AL) to G(A). Actually, �L should descent to an L-packet of representations
of G(A), but for our purposes, we will just pick one of its members. In a significant
number of cases, this has already been proved ([23]; see also [24] and [22]). For
any τ ∈ JL , let

aτ,i = aσ,i ,

where σ = τ |K , and let

μ = ((aτ,1, . . . , aτ,n)τ∈
; 0).
We say that π is a good descent of �L (or of �) if it is cuspidal, cohomological
of type μ, and satisfies Hypotheses 3.2.1 (with Wμ defined over Q). The first
hypothesis, 3.2.1 (1), is easy to verify in this case (see [14], Remark 5.2.1). The
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other two hypotheses are expected to hold, so that good descents are expected to
exist. The condition that Wμ is defined over Q is included in [14] for simplicity of
notation, and it shouldn’t be hard to remove.

Let ψ be an algebraic Hecke character of L , of infinity type (mτ )τ∈JL and
weight w = w(ψ). Write

ψ |
A

×
K

= ψ0‖ · ‖−w

as before, with ψ0 of finite order. Define

χ = ψ2(ψ0 ◦ NL/K )−1.

Suppose that π is a descent of � to G, and that M is an automorphic realization of
unitary type associated with �. Then, for a certain finite set of places S, we have
that

Lmot,S(s − w,π ⊗ ψ,St) = LS(M(χ), s)1,

where 1 ∈ JE stands for the given embedding of E = E(�) into C (see [17],
(3.5.2)).

4.3. Deligne’s conjecture: the automorphic case

Keep the assumptions and notation of the last subsections. In particular, M is an
automorphic realization of unitary type associatedwith�. Assume thatψ is critical,
and let 
 be the CM type defined by the condition

mτ > m τ̄ (τ ∈ 
).

Furthermore, assume that

mτ − m τ̄ > max{n − pn(σ, 1)}σ∈JK (4.3.1)

for any τ ∈ 
. Let (nτ )τ∈
 be the infinity type of χ . Then nτ = 2mτ , and thus it
satisfies Eq. (2.5.1) for M . Then, M(χ) has critical values, and the critical integers
are determined by the inequalities (2.5.4), which become

aσ,1 + n − 1 + 2m τ̄ < k ≤ aσ,n + 2mτ . (4.3.2)

Note that the condition (4.3.1) imlpies that there always exists at least one k satis-
fying (4.3.2) and k > w + n.

At some point we need to deal with the factor δ(M). This is relatively easy to
do when n is even (see Remark 2.5.3), but for the moment we need the conclusion
of this remark as a hypothesis when n is odd. It can be proved assuming a much
stronger hypothesis, namely Tate’s conjecture for the realization M (see [14], 5.4).

Hypothesis 4.3.1. If n is odd, then δ(M)1 ∼EKGal (2π i)−[K :Q] n(n−1)
2 .
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The following theorem is our main result in the case of automorphic realiza-
tions. We recall all the relevant hypotheses. We stress that assumption (3) below is
expected to be satisfied in general, and most of what it involves is already proved
in many cases (see [22] and its sequels). We also stress that given M , there always
exist algebraic Hecke charactersψ and integers k as in the statement of the theorem.

Theorem 4.3.1. Let M be an automorphic realization of unitary type. Let ψ be a
critical algebraic Hecke character of L, of infinity type (mτ )τ∈JL and weight w, let

 be the CM type defined by the condition mτ > m τ̄ for τ ∈ 
, and let

χ = ψ2(ψ0 ◦ NL/K )−1.

Assume that

1. either n is even, or n is odd and Hypothesis 4.3.1 is satisfied,
2. mτ − m τ̄ > max{n − pn(σ, 1)}σ∈JK for any τ ∈ 
, and
3. the automorphic representation � giving rise to M has a good descent to a

totally definite unitary group over L/K.

Then Conjecture 2.2.1 is true for M(χ) and all critical integers k > w + n, over
Q(ψ)LGal (for the embedding 1 ∈ JE(χ)). That is, for such integers k, we have

L(M(χ), k)1
c+(M(χ)(k))1

∈ (EQ(ψ)LGal)×.

Proof. Recall that we defined

χ̌ = χι,−1, ψ̃ = ψ

ψι
,

where ι ∈ Gal(L/K ) is the non-trivial element. Let G be a totally definite unitary
group as in the hypotheses, and let π be a good descent of � to G, so that

Lmot,S(s − w,π ⊗ ψ,St) = LS(M(χ), s)1,

wherew = mτ +m τ̄ . The remaining (finite) Euler factors, evaluated at k ∈ Z, only
affect this equation up to a multiple in the compositum (EQ(χ))× ⊂ (EQ(ψ))×,
so we may write

L(M(χ), k)1 ∼EQ(ψ) L
mot,S(m, π ⊗ ψ,St),

where m = k − w. Our hypotheses imply that m > n and

m ≤ aτ,n + mτ − m τ̄

for any τ ∈ 
. This follows directly from the fact that k is a critical integer of
M(χ) and w = mτ + m τ̄ , so that

k ≤ aσ,n + 2mτ
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by (4.3.2). Thus, all the hypotheses of Proposition 3.3.1 are satisfiedwith the integer
m, and we can write

Lmot,S(m, π ⊗ ψ,St) ∼EQ(ψ)LGal (2π i)
[K :Q]

(
(k−w)n− n(n−1)

2

)

p(ψ̃;
)n

(4.3.3)

(note that a0 = 0 and thus ξ = 2a0 = 0 in this situation, and E(π) was taken to
contain LGal in Proposition 3.3.1).

Now, note that (2.5.1) is satisfied for χ , and hence, by Proposition 2.5.1, we
have that

c+(M(χ)(k))1 ∼EQ(χ)KGal (2π i)[K :Q]knδ(M)1 p(χ̌;
)n . (4.3.4)

By Remark 2.5.3 in the case n even, or by Hypothesis 4.3.1 in the case n odd, we
can write

δ(M)1 ∼EKGal (2π i)−[K :Q] n(n−1)
2 . (4.3.5)

Now, note that χ̌ = ψ̃‖ · ‖w. Using Proposition 1.4 and Lemma 1.8.3 of [16], we
obtain that

p(χ̌;
) ∼Q(ψ) p(ψ̃;
)(2π i)−[K :Q]w. (4.3.6)

It follows by combining (4.3.4), (4.3.5) and (4.3.6), that

c+(M(χ)(k))1 ∼EQ(ψ)KGal (2π i)
[K :Q]

(
nk−nw− n(n−1)

2

)

p(ψ̃;
)n . (4.3.7)

This is exactly the right-hand side of (4.3.3), which proves the theorem. ��

4.4. Deligne’s conjecture: the potentially automorphic case

Suppose that M is a realization over K , which becomes automorphic of unitary
type over K ′, where K ′/K is a Galois, totally real extension contained in K̄ . Let
M ′ = MK ′ , and let pM

′
i (σ ′, ϕ) for σ ′ ∈ JK ′ , ϕ ∈ JE and i = 1, . . . , n, be the

Hodge numbers of M ′. Then

pM
′

i (σ ′, ϕ) = pi (σ
′|K , ϕ). (4.4.1)

Let �′ be the automorphic representation of GLn(AK ′) such that M ′ is associated
with �′. Then �′ is cohomological of weight (aσ ′,1, . . . , aσ ′,n)σ ′∈JK ′ , where

aσ ′,i = pi (σ |K , 1) + i − n.

This follows from (4.1.2) and (4.4.1).
By Brauer-Salomon’s Theorem (see [11], 15.10), there exists a finite family of

intermediate fields K ⊂ K j ⊂ K ′ and integers n j ∈ Z such that

• each Gal(K ′/K j ) is solvable, and



Critical values of L-functions of potentially automorphic motives

• we have an isomorphism

1Gal(K ′/K ) �
⊕

j

n j Ind
Gal(K ′/K )

Gal(K ′/K j )
1Gal(K ′/K j ). (4.4.2)

Let Mj = MK j . Using the Arthur–Clozel theory of base change developed in [1],
we can show that Mj is automorphic of unitary type, associated with a certain
cuspidal automorphic representation � j of GLn(AK j ). The proof of this fact uses
cyclic base change, strong multiplicity one, and an argument of Harris (a nice
explanation of this is given in [7], 1). The representation � j is a descent of �′,
meaning that its base change � j,K ′ to K ′ is isomorphic to �′. Moreover, � j is

cohomological of weight (a
� j
σ j ,1

, . . . , a
� j
σ j ,n)σ j∈JK j

, where

a
� j
σ j ,i

= pi (σ j |K , 1) + i − n.

For L/K a totally imaginary quadratic extension, we let L j = LK j and L ′ =
LK ′. Then each of the extensions L j/K j and L ′/K ′ is a CM extension. We fix
from now on L with the property that �′

L ′ is cuspidal. We let L̃ be the compositum
of the Galois closures LGal

j . We claim that each base change � j,L j is also cuspidal.
Indeed,we can suppose that K ′/K is cyclic of prime degree. If� j,L j is not cuspidal,
then� j ∼= � j ⊗εL j /K j , by Theorem 4.2 of [1]. Since the base change of� j (resp.
εL j /K j ) to K ′ is �′ (resp. εL ′/K ′ ), this would imply that �′ ∼= �′ ⊗ εL ′/K ′ , which
would in turn imply by the same theorem that �′

L ′ is not cuspidal.
We now come to the main result of this paper. Hypothesis (3) below is assumed

in order to apply Theorem 4.3.1 to Mj . We again stress that this is expected to hold,
and it has been proved in many cases (see [22] and its sequels).

Theorem 4.4.1. Let M be a potentially automorphic realization of unitary type over
K . Let ψ be a critical algebraic Hecke character of L of infinity type (mτ )τ∈JL , let

 be the CM type defined by mτ > mτ for τ ∈ 
, and let

χ = ψ2(ψ0 ◦ NL/K )−1.

Assume that:

1. either n is even, or n is odd and Hypothesis 4.3.1 is satisfied for M,
2. mτ − mτ > max {n − pn(σ, 1)}σ∈JK for any τ ∈ 
, and
3. for each j the automorphic representation � j has a good descent to a totally

definite unitary group over L j/K j .

Then Conjecture 2.2.1 is true for M(χ) and all critical integers k > w + n, over
Q(ψ)L̃ (for the embedding 1 ∈ JE(χ)). That is, for such integers k, we have

L(M(χ), k)1
c+(M(χ)(k))1

∈ (EQ(ψ)L̃)×.
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Proof. From (4.4.2) we deduce a formal equality between the λ-realizations
of M(χ) and ResK j /K (M(χ)K j ), which implies the following equality of L-
functions:

L(M(χ), s)1 =
∏

j

L(M(χ)K j , s)
n j
1 . (4.4.3)

We denote by ψ j the Hecke character of L j obtained from ψ by base change.
Thus,

ψ j = ψ ◦ NL j /L .

We define χ j in the same way as χ was constructed fromψ . Then χ j = χ ◦NL j /L .
Before continuing with the proof of the theorem, we need a lemma. Recall that
we use the notation M(χ) = M ⊗ ResL/K [χ ], Mj = MK j , and Mj (χ j ) =
Mj ⊗ ResL j /K j [χ j ].
Lemma 4.4.1. We have an equality of L-functions

L(M(χ)K j , s)1 = L(Mj (χ j ), s)1.

Proof. First note that M(χ)K j = Mj ⊗ (ResL/K [χ ])K j . Then it is enough to verify
that (ResL/K [χ ])K j and ResL j /K j [χ j ] have the same λ-adic realizations for each
finite place λ of Q(χ). Denote by χλ and χ j,λ the λ-adic realizations of χ and χ j

respectively. By definition,
(
(ResL/K [χ ])K j

)
λ

= Ind	K
	L

(χλ) |	K j

and

(
ResL j /K j [χ j ]

)
λ

= Ind
	K j
	L j

(χ j,λ).

The proof of the lemma finishes by considering the following 	K j -equivariant
isomorphism:

Ind	K
	L

(χλ) |	K j
−→ Ind

	K j
	L j

(χ j,λ) , f �−→ f |	K j
.

��
Returning to the proof of the theorem, we claim now that the hypotheses of

Theorem4.3.1 are satisfied for themotiveMj , associatedwith� j , theCMextension
L j/K j , the character ψ j and the integer k.

Note that ψ j has infinity type (m
ψ j
τ )τ∈JL j

, where m
ψ j
τ = mτ |L . In particular,

ψ j is critical. If we let 
 j be the CM type of L j/K j determined by m
ψ j
τ > m

ψ j
τ̄

for τ ∈ 
 j , then 
 j consists of those embeddings τ ∈ JL j such that τ |L ∈ 
.
Concerninghypothesis (1) ofTheorem4.3.1, note thatResK j /K Mj ∼= M [K j :K ],

as can be easily checked. It then follows that

δ(Mj )1 ∼ δ(M)
[K j :K ]
1 .
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Thus, hypothesis (1) is satisfied for Mj if n is odd.

For hypothesis (2), note that if τ ∈ 
 j , then m
ψ j
τ −m

ψ j
τ̄ = mτ |L −m τ̄ |L . Since

τ |L , assumption (2) for M and ψ says that this is strictly larger than max{n −
pn(σ, 1)}σ∈JK . Then, using relation (4.4.1) with K j instead of K ′, we have that

m
ψ j
τ − m

ψ j
τ̄ > max{n − p

Mj
n (σ, 1)}σ∈JK j

, (τ ∈ 
 j ),

where we are denoting the Hodge numbers of Mj by p
Mj
i (σ, 1).

Hypothesis (3) of Theorem 4.3.1 for � j is already within our assumptions.
Finally, suppose that k > w + n is a critical integer for M(χ). Recall from (2.5.4)
that being critical means that

p1(σ, 1) + 2m τ̄ < k ≤ pn(σ, 1) + 2mτ

for every τ ∈ 
. Then, by (4.4.1) and the fact that m
ψ j
τ = mτ |L , we have that

p
Mj
1 (σ, 1) + 2m

ψ j
τ̄ < k ≤ p

Mj
n (σ, 1) + 2m

ψ j
τ

for every τ ∈ 
 j . Thus, we are under the conditions of Theorem 4.3.1, and using
Lemma 4.4.1, we obtain that

L(M(χ)K j , k)1 = L(Mj (χ j ), k)1 ∼EQ(ψ)LGal
j

c+(Mj (χ j )(k))1. (4.4.4)

Now, the triple (Mj , χ j , k) satisfies the hypotheses of Proposition 2.5.1. Thus,

c+(Mj (χ j )(k))1 ∼EQ(ψ)KGal
j

(2π i)[K j :Q]knδ(Mj )1 p(χ̌ j ;
 j )
n . (4.4.5)

From (4.4.3), (4.4.4) and (4.4.5) we obtain:

L(M(χ), k)1 ∼EQ(ψ)L̃ (2π i)
∑

j n j [K j :Q]kn ∏

j

δ(Mj )
n j
1

⎛

⎝
∏

j

p(χ̌ j ;
 j )
n j

⎞

⎠

n

.

(4.4.6)

From (4.4.2) we deduce that [K : Q] = ∑
j n j [K j : Q], so we obtain that

(2π i)
∑

j n j [K j :Q]kn = (2π i)[K :Q]kn (4.4.7)

As we noted above, δ(Mj )1 ∼ δ(M)
[K j :K ]
1 . Then, from the formula 1 =∑

j n j [K j : K ], we deduce that
∏

j

δ(Mj )
n j
1 ∼E L̃ δ(M)1. (4.4.8)

Finally, we claim that
⎛

⎝
∏

j

p(χ̌ j ;
 j )
n j

⎞

⎠ ∼
Q(χ)L̃ p(χ̌;
). (4.4.9)
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Indeed, all the characters χ j and χ are critical, and the set of critical integers is the
same for all (this follows for example from (2.5.4) taking M = Q(0)). Fix m ∈ Z

such an integer. Then the results of Blasius ([4]) ((2.4.5) and Deligne’s conjecture
for the motives [χ ] and [χ j ]) imply that

L(χ,m)1 ∼
Q(ψ)L̃ (2π i)[K :Q]m p(χ̌;
)

and

L(χ j ,m)1 ∼
Q(ψ)L̃ (2π i)[K j :Q]m p(χ̌ j ;
 j ).

Then (4.4.9) follows from formula (4.4.3) and Lemma 4.4.1 for M = Q(0).
From (4.4.6), (4.4.7), (4.4.8), (4.4.9) and Proposition 2.5.1 for the triple

(M, χ, k), we obtain that

L(M(χ), k)1 ∼EQ(ψ)L̃ (2π i)[K :Q]knδ(M)1 p(χ̌;
) ∼EQ(ψ)L ′ c+(M(χ)(k))1,

which ends the proof of the theorem. ��

5. Remarks about quadratic periods

5.1. Quadratic periods and critical values

In this subsection, we draw some final remarks about quadratic periods. We plan
to apply these ideas in a future project involving p-adic interpolation and p-adic
L-functions. Let M be an automorphic realization of unitary type of rank n over
K with coefficients in E . In this section we suppose that n is even. We will use the
same notation as in Sect. 4. Let r ∈ { n

2 + 1, . . . , n − 1
}
and suppose that:

aσ,r ≡ aσ ′,r (2), for all σ, σ ′ ∈ JK . (5.1.1)

This hypothesis is equivalent to pr (σ, 1) ≡ pr (σ, 1)(2) for all σ, σ ′ ∈ JK . As n
is even and the weight of M is n − 1, using Proposition 2.1.1 we can construct an
algebraic Hecke character ψ(r,1) of L of infinity type (mτ )τ∈JL , such that

mτ − m τ̄ = n

2
− pr (σ, 1) = n

2
− aσ,r − s (τ ∈ 
).

As before, we let

χ(r,1) = (ψ(r,1))2(ψ
(r,1)
0 ◦ NL/K ),

so that its infinity type is (nτ )τ∈JL , with nτ = 2mτ and

nτ − nτ̄ = n − 2pr (σ, 1) = n − 2s − 2aσ,r (τ ∈ 
).

Let σ ∈ JK and suppose that

aσ,r+1 ≡ aσ,r + 1(2), for all r ∈
{n

2
+ 1, . . . , n − 1

}
. (5.1.2)

This condition allows us to choose ψ( n2+1,1), . . . , ψ(n−1,1) such that each χ(r,1),
for r = n

2 + 1, . . . , n − 1, has weight w0, independent of r , and satisfying:
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(a) w0 ≡ n(2),
(b) 2r − n is a divisor of w0 for any r ∈ { n

2 + 1, . . . , n − 1
}
, and

(c) 4 is a divisor of w0 + n.

Lemma 5.1.1. Let r ∈ { n
2 + 1, . . . , n − 1

}
. Then the only integer m ∈ Z which is

critical for M(χ(r,1)) is m = n+w0
2 .

Proof. Recall that in this case we have pr (σ, 1) = aσ,r + n − r for each σ ∈ JK .
Now we apply the formulas obtained in Sect. 5.3 of [14] which determine the set
of critical integers, considering the following facts: (i) aσ,1 ≥ . . . ≥ aσ,n , (ii)
aσ,r + aσ,n−r+1 = 0 and (iii) m(r,1)

τ − m(r,1)
τ = n−2pr (σ,1)

2 . ��
Let F be the number field generated by the image of χ(r,1) on the finite adèles

A
×
L , f for r = n

2 + 1, . . . , n − 1 (that is, we take the compositum of the Q(χ(r,1))

for r = n
2 + 1, . . . , n − 1).

Proposition 5.1.1. Let j ∈ {
2, . . . , n

2 − 1
}
. Suppose that Conjecture 2.2.1 is true

for M(χ(n− j,1)) and M(χ(n− j+1,1)) for the critical integer n+w0
2 , over FKGal (for

the embedding 1). Then

Q j,1 ∼EFKGal

L(M(χ(n− j,1)), n+w0
2 )1

L(M(χ(n− j+1,1)), n+w0
2 )1

L(χ(n− j+1,1), − w0( j−1)
n−2( j−1) )

n−2( j−1)

L(χ(n− j,1), − w0 j
n−2 j )

n−2 j

G(χ(n− j+1,1))
j−1
1

G(χ(n− j,1))
j
1

Proof. First note that for each r = 0, . . . , n, by Deligne’s conjecture for algebraic
Hecke characters (proved by Blasius in [4]) and Lemma 2.4.1, we obtain that

P(χ(r,1))1 ∼Q(χ(r,1))LGal L

(

χ(r,1),
−w0(n − r)

2r − n

)2r−n

G(χ)n−r
1 .

Then the proof finishes by using this formula, Corollary 2.4.1 and the hypothesis.
��

Remark 5.1.1. When j = 1, we deduce an analogous formula to that of Proposi-
tion 5.1.1.

Remark 5.1.2. In Sect. 3.10 of [14], the author defines automorphic quadratic peri-
ods. A particular case of this is the period denoted by Qhol(π) in Sect. 3 above,
but in arbitrary signatures they can be defined for automorphic forms contribut-
ing in coherent cohomology to other non-holomorphic degrees. Proposition 5.1.1,
combined with the comparisons in 5.4 of op. cit., suggests an expression for these
periods in terms of critical values of automorphic L-functions. This formula should
be useful, for example, in questions on p-adic interpolation related with automor-
phic quadratic periods.
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