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A B S T R A C T

Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the
use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize
their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon
black. However, carbon supports present disadvantages including corrosion in the operating fuel cell
environment and loss of catalyst activity. Here we review recent work examining the potential of
different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits,
as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-
carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems
and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The increasing demand for, but reducing supply of, traditional
fossil fuels has driven efforts to develop cheap, abundant and
environmentally friendly technologies for energy production,
conversion and storage [1,121]. This has, in turn, led to dramatic
improvements in the performance of hydrogen or methanol fuel
cells and also in hydrogen-producing water electrolyzers. Despite
these advances, current ‘state-of-the-art’ systems are still largely
dependent on metals with low abundancies in the earth’s crust,
such as Pt, to provide the active catalyst components that can
amount to as much as 42% of the total system cost [2,3]. A long-
term goal is to reduce the use of these scarce metal catalysts, while
simultaneously improving the lifetime and efficiency of the energy
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conversion devices. Most operating fuel cells incorporate a
polymer electrolyte membrane (PEM) and operate in acidic
electrolyte media. Using an alkaline electrolyte is one option for
achieving cost reduction; as the oxygen reduction reaction (ORR)
occurs more readily in alkaline media, it permits the use of non-
precious metal cathode catalysts such as Ni, or lower Pt loading [4].
However, a commercial alkaline anion exchange membrane with
comparable performance and durability to Nafion1 (the leading
acid-based PEM material), has not yet been developed. Currently,
intense research efforts are being directed at (i) lowering the Pt
loading in PEM fuel cell (PEMFC) electrodes and improving their
efficiency and durability, and (ii) seeking alternative catalyst
systems. It has been shown that carbon nitride materials can play a
key role in both of these target areas.

The catalysts used in fuel cells and electrolyzers are typically in
the form of high surface area nanoparticles (NPs) with a narrow
size distribution, which are deposited and dispersed uniformly on
a high surface area support (�200–1000 m2g�1), usually commer-
cially available carbon black. The effect NP size and shape has on
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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catalytic activity has been well documented in the literature, with
studies reporting an ideal particle size of �3 nm for maximum
activity. This particle size has been shown to provide an optimal
adsorption energy between the catalyst and reactants [5–7].
Making supported NP catalyst structures maximizes the electro-
chemically active surface area (ECSA) of the NPs while the amount
of metal used is minimized, for greater efficiency at lower cost.
Incorporation of a proton-conducting ionomer into this catalyst
layer facilitates the formation of three-phase boundary regions,
where electrochemical reactions occur in contact with the catalyst,
fuel and electrolyte [8].

Although most research has focused on development of the
electrocatalysts (ECs), the nature of the support material and its
interaction with the NPs are also crucial for effective electrode
operation. The catalyst support determines the porosity, tortuosity
and wettability of the electrode. It also influences the size
distribution and stability of the deposited NPs, the ability to
produce and infiltrate inks for deposition in membrane electrode
assemblies (MEA), and the capacity to control the efficiency of
electronic and chemical catalyst-support interactions [9–11]. An
ideal catalyst support should (i) allow an even distribution of NPs
across its surface for maximum ESCA to volume ratio; (ii) have a
high electronic conductivity to contribute to the electrochemical
functioning of the electrode; (iii) have a porous network structure
over multiple length scales that enhances reactant access; (iv)
exhibit high stability under both the operating and transient
conditions of the specific application, which can periodically lead
to potential excursions as high as 1.5 V, causing severe carbon
corrosion on the electrode; (v) require minimal processing via
chemical or thermal activation; (vi) be compatible with a range of
catalyst fabrication processes and (vii) be manufactured by a low-
cost process that is environmentally benign. These are a stringent
set of conditions which must be met simultaneously.

Carbon black is used as the catalyst support material of choice
in PEMFCs due to its ready availability, low cost, minimal
environmental impact and favorable physical properties. However,
carbon is well known to undergo electrochemical oxidation under
fuel cell operating conditions and loss of catalytic activity during
repeated cycling is known to occur [12,13]. This is because at the
cathode the cell voltage typically changes from 0.55 to 0.90 V
during transient operating conditions [14] and a PEMFC system
goes through an estimated 38,500 start-stop cycles over its lifetime
[14]. Additionally, during the shutdown and start-up steps, a H2/air
front is created at the anode, which drives the potential at the
cathode above 1 V. Conversely, during operation, fuel starvation
may occur in a localized area of the anode, leading to an increase in
anode potential until water electrolysis occurs in order to sustain
the cell current [15]. Loss of catalyst activity can take place through
several mechanisms, including particle aggregation (Ostwald
ripening), crystal migration, dissolution/precipitation, and carbon
corrosion [16,17]. The catalyst/support interaction plays a major
role in determining the extent of these processes. For example, Pt is
known to act as a catalyst for carbon corrosion [18–21]. This means
that Pt particles are more likely to become detached or ‘orphaned’
from the support because corrosion is enhanced at the interface
between the two. The support is also responsible for determining
the agglomerate structure and microstructure of the catalyst layer.
An effective microstructure will create a well-connected, highly
active ECSA and ensure efficient mass transport of reactants to the
triple phase boundary (TPB) where the electrolyte, catalyst and
fuel meet at a reactive site. Degradation of the support not only
leads to a reduction in the ECSA, but also to a lowering of the rate of
mass transport, by blocking pores and modifying the surface
roughness. Because of these issues there has been a drive to find a
next generation of catalyst supports that exhibit high stability to
corrosion and that interact beneficially with the catalyst particles.
Alternative support materials should also offer the potential for
improved intrinsic catalyst stability, but few materials simulta-
neously meet these requirements. For example, certain metal
alloys that possess high catalytic activity, exhibit poor stability on
conventional carbon supports. However, these metal-alloy cata-
lysts may be feasible on an alternative support which “anchors” the
NPs more effectively, or that results in an electronically stabilizing
effect.

A wide range of alternative catalyst supports have been tested,
including advanced carbon materials such as carbon nanotubes,
aerogels and graphene [22,23], non-carbon supports including
tantalum oxyphosphate, titania, tin or indium oxides, tungsten
carbide [24,25], as well as carbon doped with boron [26–29],
sulphur [30,31], or phosphorous [32–34]. However, N-doped
carbon supports are by far the most widely researched, particularly
as spatial correlations have been shown to exist between regions of
high N content and stabilized NPs [35,36]. N-doping is usually
carried out post-synthesis, via treatment with NH3 at elevated
temperatures, resulting in N-doped carbons containing a few
atomic percent N, randomly located throughout the material [35].
This approach provides little or no control over the nitrogen
functionalities being introduced, which can be problematic as
certain functionalities contribute in specific ways to the enhance-
ment of catalytic effects [37]. For example, pyridinic N is suggested
to form charge-transfer complexes with Pt [37], enhancing the
kinetics of the ORR and methanol oxidation reaction (MOR) and
preventing metal agglomeration during NP formation [36].
However the mechanistic details of these processes are yet to
be fully understood. Furthermore, a strong NP attachment to the
catalyst support is of little use if the surrounding, purely
carbonaceous, matrix still suffers from corrosion [13]. To this
end, there has been a move towards the development of more
stable supports, including graphitic carbon nitrides (gCNs) that, in
contrast with N-doped carbons, usually consist of a backbone of
C��N bonds and contain a high concentration of N sites, located at
defined positions within the layers [38–40]. Here we present a
summary of recent results and future perspectives for using gCNs
as catalyst support materials for fuel cells and water electrolyzers.

2. Graphitic carbon nitrides: material types and structures

Graphitic carbon nitride is a generic term applied to a large
family of materials with different chemical and structural
characteristics. In recent publications these have been increasingly
referred to as “g-C3N4” compounds, but that is a misnomer: almost
none of the materials concerned occur with a 3:4 C:N ratio, they
generally contain substantial concentrations of H and other
elements (especially O), the “graphitic” layers are likely to be far
from complete, and the sheet-like domains are unlikely to be
planar [41,42]. Several separate classes of gCN materials have been
identified. The first concerns graphitic carbon, graphene-like
carbons or carbon nanotubes prepared with a degree of N
incorporation which extends up to a few atomic per cent
[43,44] and possess metallic properties [44,45]. They are most
usefully termed N-doped carbons rather than gCNs. The use of this
type of material as EC supports began in the 1980s [46,47], where
carbonaceous materials pyrolyzed together with nitrogen-con-
taining precursors were utilized. Since then, various other
synthesis approaches have been shown to provide support
materials that were found to improve the performance of the
transition metal catalyst-support combinations [35,36,48–50].

The largest class of true carbon nitride compounds include a
range of “graphitic” or polymeric structures with compositions
extending along, or near, a tie-line between C2N3H and C3N4 in a
ternary C��N��H phase diagram [42]. They are formed by
condensation reactions from readily available precursors such as
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dicyandiamide, melamine or urea following thermal treatments in
the 500–700 �C range [51]. These are most accurately termed gCNH
compounds and their structures are usually based on linked
heptazine (tri-s-triazine, C6N7) units. At lower synthetic temper-
atures, these polyheptazines (PHs) form poorly organized ribbon-
like structures, such as those found in Liebig's melon [52], which
are terminated laterally by -NH- and -NH2 groups (Fig. 1a). As the
processing temperature is raised, the degree of condensation
increases with loss of NH3 components, and sheet-like units begin
to form “graphitic” structures. Theoretically, this process can be
extended to the g-C3N4 composition (Fig. 1b), but this has not been
observed in practice [41,51]. Instead, the limiting stoichiometries
recorded so far among gCNH materials have been close to the
C2N3H composition. A further class of carbon nitride structures is
based on independent triazine (C3N3) rings linked together by
-N= or -NH- groups. These polytriazine imide (PTI) layers provide
an alternative solution to forming infinite graphitic sheets with the
C3N4 composition (Fig. 1c,d). The first of these was prepared in
nanocrystalline form using chemical vapor deposition (CVD)
techniques [53,54]. Later, a crystalline triazine-based graphitic
carbon nitride (TGCN, Fig. 1c) was discovered during a molten salt
synthesis, deposited on the walls of the reaction vessel or at the
surface of the melt phase [55]. In this material the layers are
reported to contain C6N6 voids that are stacked according to an AB
or ABC pattern [55]. The bandgap of this material was estimated to
be 2.7 eV, although this does not explain the dark color of the
synthesized material. The PTI family of crystalline gCN materials is
Fig. 1. Structural motifs found in graphitic carbon nitrides. (a) Liebig's melon ([C6N7(NH2

nitrogens and decorated on their edges by N-H groups, (b) fully condensed C3N4 layer bas
backbone based on triazine ring units, linked by N-H bridges and e) Side elevation of 
extended by inclusion of heteroatoms such as H, Li, Br and Cl within
the structure, which are introduced during the synthesis in a
molten salt (e.g., LiCl:KBr) or by high pressure-high temperature
routes [56–60]. These materials contain larger (C12N12) ring voids
within the layers, with Cl� or Br� ions residing in the interlayer
spaces or occupying the void sites. The triazine units are linked by
-NH- groups that decorate the interior of the void sites, and the
hydrogens can be fully or partially replaced by Li+ cations.
Additional Li+ species can occur between the layers [58,59]
(Fig. 1d, e).

3. gCN, gCNH and PTI materials as PEM fuel cell catalyst
supports

gCNH and PTI materials are reported to be semiconductors with
bandgaps in the 2.5–2.8 eV range [57]. That property leads to
visible light absorption and their yellow to brown coloration. gCN
compounds alone, or materials decorated with Pt, RuO2 or related
metal/metal oxide NPs as co-catalysts, have been reported to act as
photocatalysts capable of splitting water into H2 and O2, as well as
driving other redox reactions under simulated solar irradiation
[61–63]. In their pure and doped form they have also been shown
to exhibit redox catalytic behavior [64] and they have been tested
for energy storage applications and as Li+ battery anodes [65,66].
As these highly nitrided materials also have excellent mechanical,
chemical and thermal resistance [61,63] they have the ability to
survive even the harshest PEM fuel cell operating conditions. In
)(NH)]n) contains zig-zag chains of heptazine (tri-s-triazine) units linked by bridging
ed on heptazine units, (c) fully condensed C3N4 layer based on triazine units, (d) PTI
fully occupied PTI.LiCl.
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addition, their structures typically contain a high concentration of
N��H functional groups, as well as lone pairs present on the N
atoms of the triazine or heptazine units, providing Brønsted acid
and Lewis base sites and an abundance of tethering sites for the
metal NPs. Combined, their intrinsic catalytic activity, their high
stability, their unique termination chemistry and high surface area
[63], has led to gCNH and PTI materials being developed as
components in EC systems.

Insights into the improved chemical resistance of gCNH and PTI
materials to corrosion, compared to carbon, can be obtained from
simple band structure considerations (Fig. 2). The allowed energy
states in conductive carbons span across the H+/H2 and O2/H2O
potentials, and thus provide competitive redox sites accessible
under both hydrolysis and fuel cell conditions. In contrast, the C
atoms in gCN, gCNH and PTI compounds are bonded to N atoms
with fully satisfied valence states and are thus fully oxidized. This
chemistry opens a band gap that brackets the H+/H2 and O2/H2O
potentials and thus corrosion of the C��N backbone is thermody-
namically unfavorable under electrochemical operation. It should,
however, be remembered that most fuel cell electrode processes
occur at potentials that do not match the theoretical thermody-
namic values and that activation overpotentials play a significant
role in the real-world fuel cell processes.

An early study of a gCNH material relevant to its behavior as a
fuel cell EC, was carried out by Lyth et al., who investigated its
intrinsic catalytic activity for the ORR [67]. Using material
Fig. 2. Calculated electronic density of states for conductive C (graphene) and a selection o
and polytriazine (PT) varieties of C2N3H, and one PT layer of g-C3N4. The calculations wer
boundary conditions. Vertical lines indicate the standard H+/H2 and O2/H2O potentials.
synthesized from cyanuric chloride, they demonstrated that the
electrochemical ORR was efficiently catalyzed on gCNH when
compared to carbon black. Unfortunately, the current density
achieved was too low for use in practical applications. This was
attributed to the low surface area and wide band gap of the
material, which limited the activity of the electrode-reactant-
electrolyte TPB. Upon blending with high surface area carbon, the
performance improved as a result of the increased surface area and
electronic conductivity. Aside from this intrinsic catalytic activity
and enhanced durability, the abundant pyridinic sites within gCNH
have been shown to provide anchoring sites for metal NPs,
reducing aggregation and potentially enhancing the catalytic
activity. Kim et al. showed that in a direct methanol fuel cell
(DMFC), PtRu supported on gCNH exhibited 78–83% higher power
density than the same catalyst deposited on carbon black [40]. In
another study, Mansor et al. investigated gCNH and PTI materials as
supports for chemically deposited Pt NPs [38]. Both materials
displayed greater electrochemical stability than carbon black
during accelerated corrosion testing. In particular, Pt supported on
the highly crystalline PTI.LiCl showed excellent durability, as
defined by changes in the ECSA under potential cycling, and this
catalyst-support combination was found to have superior intrinsic
methanol oxidation activity [38]. It is not yet known if the Li and Cl
incorporated within the PTI materials played an active role in the
EC, similar to that played by boron, which acts as a Lewis acid in B-
doped carbon nitrides by reducing the electron density on C atoms
f three representative layered gCN or gCNH structures including polyheptazine (PH)
e carried out using density functional theory and the PBE functional under periodic
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[68]. It is possible their role was entirely passive and the increased
crystallinity of the PTI was purely responsible for the observed
improvement in durability.

A major obstacle to the use of metal-free gCNs as EC catalysts or
as catalyst supports for metal NPs, is their poor conductivity. As
discussed above, these gCN materials are semiconductors with
band gaps up to 2.8 eV [57], which severely limits their intrinsic
electrical conductivity and can negatively impact their practical
application. For example, Miller et al. showed that in gCNH based
lithium-ion battery anodes, increased resistivity negatively im-
pacted Li storage capacities [65]. However, when these materials
are employed as an anodic catalyst support it has been found that
the fast reaction kinetics of the hydrogen evolution reaction (HOR)
compensate for the limitations of reduced conductivity (vide infra).
On the other hand, the cathodic ORR is a slow process and ECs
supported purely on gCN materials exhibit poor ORR performance.
It is only when the gCNs are closely contacted with conductive
materials (e.g. graphene) that efficient oxygen reduction is
observed. As shown in the study by Kim et al. [40], gCN materials
can be combined in a composite or hybrid electrode system along
with conductive forms of carbon.

4. gCN/C composite/hybrid electrocatalysts and catalyst
supports

4.1. Mixed gCN/C hybrid electrocatalysts and catalyst supports

First-principles theoretical studies using pure melem units
(C6N10H6,) as a model for the behavior of gCNH, have shown that
these materials have poor electron-transfer efficiency for the ORR,
preferring the 2-electron over the direct 4-electron pathway and
therefore producing an accumulation of poisoning intermediates,
Fig. 3. (a) Free energy plots of ORR and geometry optimized configurations of adsorbed 

(path III) participations. Grey, blue, red and white represent C, N, O, H atoms, respectiv
electron participation, and gCNH – conductive support composite with four electron par
and modified with permission from [69]. Copyright 2011 American Chemical Society.
such as H2O2 [69]. The addition of a conductive substrate increases
the number of electrons accumulated on the melem surface, and
hence participating in the reaction, thereby facilitating the 4-
electron ORR process (Fig. 3). Thusly, several studies have focused
on testing the performance of gCN-carbon composite materials as
metal-free catalysts and catalyst supports for fuel cell electrodes
[70,71].

Graphene and the related material reduced graphene oxide
(rGO) are popular choices of conducting substrate for gCNHs, due
to their high surface area and electrical conductivity [72–74].
Furthermore, density functional theory (DFT) calculations for a PH
model of a g-C3N4 material reveal strong electronic coupling and
charge transfer at the interface with graphene, resulting in
enhanced electronic conductivity of the gCN [75]. Early experi-
mental reports on metal-free gCNH-graphene composite ECs show
excellent ORR performance, especially in alkaline electrolytes
[70,76,77]. It was also documented that metals such as Pd and PtRu
supported on gCNH/rGO exhibited very high electrocatalytic
activity for formic acid, methanol and ethanol oxidation reactions,
as well as enhanced durability and alcohol tolerance [78,79]. These
studies highlighted the importance of optimizing the gCN to
graphene ratio in the composites to maintain the catalytic activity
while improving the conductivity.

In our own recent work we have been examinining the
performance of carbon nitride-rGO composites as an EC support
for the ORR and HOR [80]. Here hybrid gCNH-rGO materials were
synthesized from melamine and dicyandiamide dissolved in a GO
solution, which was pyrolyzed under N2 following water removal
by freeze-drying (Fig. 4). From relative peak intensities in the X-ray
photoelectron spectrum (Fig. 4a) we determined that the
composite only contained <30% graphene (rGO), with the
remainder gCNH. Examination by scanning electron microscopy
species on a model gCNH surface with zero (path I), two (path II), and four electron
ely. (b–d) Schematic pathway of ORR on gCNH with zero electron, gCNH with two
ticipation, respectively. Red areas represent the catalytically active sites. Reprinted



Fig. 4. gCNH-rGO composite structures (a) XPS spectrum of the C1s region of a gCNH-rGO composite prepared via simultaneous rGO reduction and gCNH formation reactions.
(b) SEM image of gCNH-rGO composite synthesized by simultaneous rGO reduction and gCNH formation. (c) TEM image of Pt dispersion on gCNH-rGO composite. (d) Average
particle size and size distribution of Pt nanoparticles. (e) ECSA of Pt on supports obtained from cyclic voltammetry in deoxygenated 0.1 M HClO4.
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(SEM. Fig. 4b) showed a well-integrated composite structure, with
rGO layers closely associated with gCNH to provide the necessary
conductive backbone. Pt was subsequently deposited via a
modified NaBH4 assisted ethylene glycol reduction method,
resulting in an excellent dispersion of Pt NPs on the support,
with average particle size �2.8 nm (Fig. 4d), as shown by
transmission electron microscopy (TEM) images (Fig. 4c). The
ECSA of Pt supported on the gCNH/rGO remained lower than
commercial Pt/C, but it was three times higher than Pt on gCNH
alone (Fig. 4e), indicating that the incorporation of rGO improves
the electronic conductivity of the support and allowed electrical
contact to a greater number of NPs.

Fig. 5 shows the ORR polarization curves, specific activity (SA)
and mass activity (MA) of the material described above, other gCN
supports and a commercial Pt/C at 0.90 V. These data were
obtained from ex situ rotating disk electrode tests, where the SA
and MA values for commercial Pt/C were comparable to those
reported in the literature [81]. It was found that Pt on the gCNH-
rGO composite had improved ORR activity over Pt/gCNH or Pt/rGO,
despite the higher ECSA of the latter (Fig. 4e). The gCN containing



Fig. 5. (a) The ORR polarization curves of Pt/gCNH, Pt/rGO, Pt/C (Alfa Aesar), and Pt/gCNH-rGO at 1600 rpm in 0.1 M HClO4. (b) Detail of the ORR polarization curves
highlighting the overpotential region. (c) Specific activity and (d) Mass activity of the materials obtained at 0.90 V.
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materials also demonstrated SA at 0.90 V comparable to that of
commercial Pt/C (�500 mA cm�2). Although the overall MA was
lower than commercial Pt/C, due to the lowered ECSA, these
systems have considerable scope for optimization.

Although the incorporation of rGO into the composite resulted
in an improvement in the electronic conductivity, the layered
Fig. 6. (a) Fuel cell polarization curves of the Pt/C, Pt/gCNH-rGO and Pt/rGO as anode in H
cycling (1.0–1.6 V) in 0.1 M HClO4 at room temperature.
morphology of the graphene component limited the number of
active sites and mass transport access for reactants, negatively
affecting the ORR performance. The HOR performance of Pt/gCNH-
rGO measured in situ was, however, comparable to commercial Pt/
C, as demonstrated in the fuel cell polarization curve in Fig. 6a. As
2/O2 cell at 80 �C. (d) Change in electrochemical surface area with respect to potential
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the HOR is a very fast reaction [82], the lowered ECSA has less
impact on the catalytic performance here.

As discussed above, fuel cell anodes often suffer from durability
issues that result from normal fuel cell operation, which over time,
corrode the electrode. However, long-term potential cycling
durability tests show that our Pt/gCNH-rGO had improved stability
over commercial Pt/C, as shown in Fig. 6b. This work therefore
shows that gCNH-rGO hybrid materials are attractive as alterna-
tive, durable, anode catalyst support for PEM fuel cells. Further
investigations are ongoing to further test the performance
parameters, including electrode durability, in a real fuel cell
configuration.

4.2. Three-dimensional (3D) gCN/C hybrid electrocatalysts and
catalyst supports

Several routes for the fabrication of ordered 3D architectures of
gCNH with a robust porous structure, high surface area, abundant
N active sites and good electrical conductivity have been
investigated. For example, 3D gCNH materials have been produced
by thermal polycondensation of precursors deposited on a
framework structure made from commercial melamine sponge
[83] (Fig. 7). The resultant microporous structure exhibited a 3D
interconnected network composed of 2D gCNH nanosheets with
hierarchical pores ranging from 30–170 nm. The BET surface area
was, however, low (40 m2g�1). Other 3D frameworks incorporat-
ing gCNH, rGO or carbon nanotubes have been obtained via
hydrothermal synthesis, followed by freeze-drying/supercritical
drying [84,85], or by chemical crosslinking approaches [86].
Generally, in these methods, exfoliated gCNH nanosheets are
homogeneously distributed in solution by mixing with GO and a
3D network is formed during a hydrothermal process, due to the
partial removal of oxygen-containing groups from GO and
restoration of van der Waals forces [85–88]. The dispersed gCNH
nanosheets adhere onto the rGO surfaces and are thus incorporat-
ed in the 3D porous network [85,88]. One such 3D hybrid monolith
produced by Huang et al. showed a BET surface area of up to
376 m2g�1, with a hierarchical pore distribution ranging from sub-
micrometer to several micrometers, along with a homogeneous
dispersion of ultrafine Pt NPs (Fig. 8) [84]. This interconnected and
porous catalyst system showed an excellent EC activity, high
Fig. 7. 3D gCN structures (a) Schematic illustration of the preparation of a 3D porous gCN.
monolith. (d) Photographs of monolith showing that it could support a 100 g weight. R
tolerance to poisoning, and reliable stability when used as anode
ECs for DMFCs (Fig. 8d).

Recently we have also developed a 3D hybrid material, based
upon a highly crystalline PTI rather than an amorphous gCNH [89].
Pt was deposited onto this 3D material via ethylene glycol
reduction, yielding NPs with �5 nm average size (Fig. 9). Prelimi-
nary tests using a rotating disk electrode showed that the Pt/PTI-
rGO hybrid construct exhibited enhanced ORR activity, with at
least ten-fold higher current density than Pt on pristine PTI at
0.90 V (Fig. 10). The material also displayed higher current density
than Pt on rGO at 0.90 V, indicating that the combination of PTI and
rGO improved the overall performance. Although the current
density was lower than that of commercial Pt/C, these initial
results are encouraging, considering the high durability of PTI.
Further exploration of routes to enhance the interaction between
gCNs and the conducting scaffold, the development of novel
exfoliation pathways for gCNH and the improvement of methods to
increase overall surface area and therefore access to N-containing
catalytic sites, will significantly benefit applications for fuel cells.

4.3. Other gCN/C hybrid electrocatalysts and catalyst supports

Non-noble metal catalysts such as Fe and Co, supported on
gCNH mixed/hybrids, have also been considered as alternative
catalysts for the ORR and HOR [90–93]. Liu et al. reported excellent
ORR electrocatalytic activity, comparable to commercial Pt/C with
enhanced durability and methanol tolerance, for a Co-doped
gCNH/graphene based catalyst under alkaline conditions [91].
They attributed this to the formation of Co-N moieties, which acted
as active sites and promoted rapid charge transfer at the Co-gCNH/
graphene interfaces. They further modified the catalyst and
developed a novel core-shell structure with CoO as the core and
Co-doped gCNH/graphene as the shell. The resulting hybrid
displayed similar ORR catalytic activity, but with an improved
stability due to the ‘self-healing’ ability of the oxide core that
functioned as a source of cobalt, slowly releasing metal atoms or
ions to heal the damaged active surface sites [92].

The use of composite materials involving gCNH materials doped
with, for example, P and S as EC supports represents another field
of investigation. For example, although its overall performance was
still below that of commercial Pt/C, P-doped gCNH grown on
 (b) SEM and TEM images of porous g-C3N4monolith. (c) N2 sorption isotherms of the
eprinted with permission from [83]. Copyright John Wiley and Sons.



Fig. 8. 3D hybrid gCN structures. (a) Schematic illustration of 3D porous rGO-carbon nitride (CN) architectures prepared by hydrothermal reaction, Pt NPs are on the surfaces
of both graphene and g-C3N4 nanosheets. (b, c) TEM morphological and structural analysis of a Pt on graphene-CN hybrid (3:7 ratio, Pt/G3-(CN)7), Insets in c: HRTEM image
and Pt NP size distribution. (d) Cyclic voltammograms of the Pt/G-CN architecture (Pt/G3-(CN)7), Pt/G, Pt/CN and Pt/C in 1 M H2SO4 and 2 M methanol solution at a scan rate of
20 mV s�1, reflecting the highest electrocatalytic activity of Pt/G3-(CN)7. Reprinted with permission from [84]. Copyright John Wiley and Sons.

Fig. 9. Structure of PTI-rGO 3D hybrid aerogel catalyst support (a) SEM image of PTI-rGO 3D hybrid aerogel (b) TEM image of Pt dispersion on PTI-rGO hybrid aerogel. (c)
Average particle size and size distribution of Pt nanoparticles.
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flexible carbon fibre paper (CFP) has been shown to exhibit
enhanced ORR activity compared to its phosphorous-free counter-
part, and comparable to Pt supported on CFP [94]. 2D nanohybrid
structures based on graphene quantum dots decorated onto
sulphur-doped gCNH have also been developed. This unique S-
gCN@GQD hybrid material has shown enhanced ORR catalytic
activity, which was comparable to those of well-developed
graphene and GQD based catalysts [95]. Such heteroatom-doped



Fig.10. Electrochemical testing of PTI and 3D PTI-rGO hybrid catalyst supports (a) ORR polarization curves of Pt supported on PTI, and rGO, and PTI-rGO hybrid, in comparison
to commercial Pt/C (Alfa Aesar), at 1600 rpm in 0.1 M HClO4. (b) Detail highlighting the ORR overpotential region.
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gCN hybrid materials are still far from commercial application,
however they do present an interesting path for constructing new
types of gCNH-based materials for energy conversion applications.

5. Integrated catalysts containing carbon nitride components

Di Noto et al. have defined “carbon nitride-based EC” (CN-based
EC) supports as being composed of a carbon-based matrix into
which nitrogen atoms have been embedded through synthesis
reactions [45]. This family therefore includes all of the N-doped
carbons, which have been extensively reviewed elsewhere [36]
and that form structures ranging from N-doped mesoporous
carbon [96] to N-doped carbon nanotubes [43]. These materials
generally have N contents of <5 at% and they typically exhibit
significantly different catalytic behavior to the gCN materials
discussed above. CN-based ECs are often prepared by a one-pot
synthesis, whereby solvated metal complexes and precursor
molecules with high nitrogen content (either as one or multiple
species) are adsorbed onto a carbon or carbonaceous precursor and
the resultant composite material is pyrolyzed. The pyrolysis step
acts to form the metal NPs and incorporate nitrogen into the
carbon matrix [46,47]. In its simplest form this methodology has
produced effective bulk electrocatalysts [46], but these materials
have poorly defined structures and intrinsic irreproducibility,
which has a significant impact on their overall efficacy and lifetime
performance [45].

More recently, a new class of CN-based ECs has emerged in
which there is a much more ordered and highly localized
concentration of N atoms. This has been achieved by devising
strategies to intelligently incorporate catalyst precursors within
carbonaceous matrices [97–99]. Through the development of 3D-
crosslinked inorganic-organic networks, Di Noto et al. were able to
coordinate metal ions with macromolecular N-containing ligands,
which, through the use of a two-step “soft” pyrolysis technique,
was than graphitized to form a foam-like conductive carbon matrix
in which NPs were held in stabilizing “N coordination nests”
[45,97,98]. This method has been refined further through the
introduction of a core-shell approach [100,101], whereby the metal
and its surrounding N-containing matrix are constructed onto a
conductive core. Through the use of these methods it was shown
that the standard Pt NPs could be replaced with Pd in ORR ECs
[102,103] or a bimetallic system [104], while still achieving a
reduction in ORR overpotential vs Pt/C [105]. High Pt loading core-
shell structures have also been described by Wu et al. [99]. These
ECs showed improved activity for methanol oxidation over Pt/C
due to higher Pt utilization and more rapid charge transfer,
although here the Pt was deposited after the N-containing shell
was constructed.

6. Carbon nitrides as catalyst supports for PEM water
electrolyzers (PEMWEs)

PEMWEs are a promising technology for producing hydrogen
from renewable, intermittent energy sources such as wind and
photovoltaics [1,106,107]. PEMWEs have many advantages over the
traditional alkaline electrolyzer systems, for example, they are
capable of achieving current densities over 2 A cm�2, reducing both
operational and other costs of electrolysis [108]. In addition,
PEMWE technologies provide very high purity hydrogen, giving the
opportunity to obtain compressed gases directly from an installa-
tion. Furthermore, PWMEWs are ecologically clean, safer than
other alternatives [109] and have a low gas crossover rate, allowing
them to work over a wide range of power inputs [110]. However,
current state-of-the-art PEMWEs also face significant challenges,
mainly the need for relatively high loadings of precious metal ECs
on both anode and cathode due to the corrosive acidic regime
provided by the proton exchange membrane. These ECs must not
only resist the corrosive low pH conditions (pH �2), but must also
sustain high applied overpotentials (�2 V), especially at high
current densities [110].

Only a few materials, generally Pt group metals and their
compounds, will perform effectively in operational PEMWE
environments. Amongst those typically considered, the highest
catalytic activity for the oxygen evolution reaction (OER) is
exhibited by RuO2. Unfortunately, this material corrodes at an
appreciable rate with oxygen evolution [111] and hence must be
stabilized by introduction of iridium or other elements. IrO2 can be
used as an alternative EC [112,113]. As with fuel cells, the high costs
and low abundance of the catalytically active metals, has driven
research into reducing their loading by dispersing them on low-
cost supports that remain stable under operating conditions. Most
approaches to-date have focused on supporting IrO2 on materials
such as TiO2 [114], b-SiC [115], SnO2 [116], Ta2O5 [117], Nb2O5 [118]
and Sb2O5 [119]. Because gCN and gCNH materials have been
attracting attention as fuel cell catalyst supports with potentially



Fig. 11. Electrochemical data for unsupported IrO2 (40%) and gCN supported IrO2 (40%) as anode catalysts (both with 1.6 mg cm�2 metal loading) for a PEMWE. (a) Cell
potential (V) vs current density measurements and (b) Nyquist plots of imaginary vs real parts of the complex impedance function (Z) for PEMWE tested with IrO2

nanoparticles supported on gCN (IrO2(40%)-gCNH) and pure IrO2 nanoparticles (IrO2(40%)-Unsupported) both of which were applied onto a Nafion membrane and used as
anode electrocatalysts operating at 80 �C, ambient pressure.
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superior properties, it is of interest to study their performance in a
PEMWE environment.

Jorge Sobrido et al. presented preliminary data for a bench scale,
gCN-based, PEMWE operating at 50 �C and atmospheric pressure
[120]. The results demonstrated that use of gCNH as a catalyst
support at the anode improves the OER charge transfer kinetics
and therefore the electrocatalytic activity (Fig. 11). Polarization
measurements in this study showed high operating potentials for
the gCNH supported EC, relative to unsupported IrO2. However, the
impedance data indicated that the gCNH supported IrO2 has
significantly smaller charge transfer resistance than the unsup-
ported IrO2 at higher current density, with the most significant loss
associated with higher Ohmic resistance. This implies that there
may be an avenue to optimize a gCNH-based electrode with
reduced catalyst loading, although steps will need to be taken to
improve the electronic conductivity of the catalyst.

7. Conclusion and outlook

Given the clear advantages associated with the incorporation of
nitrogen into EC supports, there is great promise for future catalyst
supports based on gCN materials. gCN supports have the potential
to better anchor Pt and other metal NPs, improve the catalyst
dispersion and durability, reduce the catalyst loading, and lead to
improved catalyst performance. The results reviewed above
demonstrate the progress already made with this this unique
family of materials for EC development for fuel cell and electro-
lyzer applications. Now it will be necessary to cultivate a deeper
understanding of the catalyst/support interactions and the role of
the gCN or gCNH phases in determining the OER and ORR reaction
kinetics. It is also essential to optimize the gCN structure and
chemistry, including the CxNyHz stoichiometry, and work on the
incorporation of these materials in hybrid electrocatalysts and
catalyst support combinations with high intrinsic catalytic activity,
surface area and electrical conductivity. The continued develop-
ment of new technological inks and 3D porous networks based on
gCN materials is, likewise, an area for future development, as is the
preparation of new families of integrated NP catalysts, where the
active metal sites and protective N-rich regions are incorporated
along with conductive graphene. As these new materials are
investigated and efficient catalyst-support combinations identified
and tested, it will be critically important to advance efficient, low-
cost and scalable processes for their synthesis and commercial
production, especially via drop-in technologies that can enter the
marketplace rapidly.
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