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Background: Temporal lobe epilepsy (TLE) is a common and frequently intractable seizure disorder. 

The pathogenesis of acquired TLE is thought to involve large-scale alterations to the expression of 

genes controlling neurotransmitter signalling, ion channels, synaptic structure, cell death, gliosis and 

inflammation, among others. Identifying mechanisms coordinating gene networks in TLE would 

improve our understanding of the disease and help identify novel druggable targets or biomarkers. 

MicroRNAs (miRNAs) are a family of small non-coding RNAs that control levels of multiple proteins 

by post-transcriptionally decreasing messenger RNA stability and translation. Accordingly, they could 

represent important regulatory mechanisms and therapeutic targets in epilepsy.  

    Recent developments: Studies over the past five years found select changes to miRNA levels in 

the hippocampus of TLE patients and animal models of epilepsy. Among early functional studies was 

the demonstration that silencing brain-specific miR-134 using antisense oligonucleotides 

(antagomirs) had potent anti-seizure effects whereas genetic deletion of miR-128 produced fatal 

epilepsy in mice. Levels of certain miRNAs were also found to be altered in the blood after seizures 

in rodents. In the past 18 months, functional studies identified nine further miRNAs that appear to 

influence seizures or hippocampal pathology. Their targets include transcription factors, 

neurotransmitter signalling components and modulators of neuroinflammation. New approaches to 

manipulate miRNAs have been tested including injection of mimics (agomirs) to enhance brain levels 

of miRNAs. Altered miRNA expression has been reported in other types of refractory epilepsy and 

there has been progress on how miRNA levels are controlled, with studies on DNA methylation 

indicating epigenetic regulation. Last, differences in circulating miRNAs have been found in epilepsy 

patient biofluids implying diagnostic potential. 

   Where next? The recent functional and biomarker studies need to be replicated by other groups to 

build a more robust evidence base. Researchers need to identify the cell type(s) in which the miRNAs 

execute their functions and their primary targets to explain the phenotypic effects of modulating 

miRNAs. There are challenges around the delivery of large molecules such as antisense inhibitors or 

mimics to the brain of patients and the multi-targeting effects of miRNAs create additional risk of 
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unanticipated side effects. Potential genetic variation in miRNAs should be explored as a candidate 

for modifying disease susceptibility. In summary, the latest findings provide exciting advances and a 

rich source of new miRNA targets but significant challenges remain before their role in the 

pathogenesis, treatment and diagnosis of epilepsy can be translated to the clinic. 

 

Keywords:  Antisense; noncoding RNA; hippocampal sclerosis; drug-resistant epilepsy; microRNA; 

precision medicine  
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Introduction 

The 68th general assembly of the World Health Organization recently ascertained that epilepsy is one 

of the most common severe neurological disorders, affecting more than 50 million people 

worldwide.1 This and other reports,2 urge member states to improve investment in epilepsy research 

and increase research capacity. Six million people in Europe are treated for epilepsy with an 

estimated annual cost of 14 billion Euros in 2010.3 Epilepsy is characterized by recurrent seizures, a 

higher mortality rate, and decreased social participation and quality of life.  Current anti-epileptic 

drugs (AEDs) are ineffective in a third of patients and biomarkers predicting the response to specific 

AED do not exist in clinical practice.4 In addition, there is no convincing evidence that the available 

AEDs impact the underlying pathophysiology and are not merely seizure-suppressive. However, the 

need for disease-modifying drugs is increasingly recognised.5 This includes treatment addressing 

epileptogenesis as well as ictogenesis.  Ideally, persons at risk that suffered an initial precipitating 

injury should be identified by the use of valid biomarkers of epileptogenesis and the occurrence of 

epilepsy could then be prevented by disease-modifying treatment.4  

    How should anti-epileptogenesis and disease-modification in epilepsy be achieved? Analysis of 

brain tissue from patients with TLE indicates there is large-scale dysregulation of gene expression. 

This includes entire networks of genes that regulate pathways including inflammation, gliosis, 

synaptic structure and function.6 A disease-modifying treatment in the future may need to target 

critical “nodes” in these pathways. Alternatively, drugs could target regulators of transcription and 

RNA processing as well as epigenetic factors.  

   This Rapid Review focuses on recent developments which have seen exciting progress, with several 

new miRNAs targeted in animal models of epilepsy, a better understanding of their mechanisms, and 

the first clinical studies to explore biomarker potential. Also, the first curated database on miRNA in 

epilepsy was established.7 Termed EpimiRBase, the fully searchable database features up to date 

information on miRNA expression changes in brain and blood from published studies on 

experimental and human epilepsy, as well as details of functional studies. Criteria for what 
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constitutes a miRNA have also been revised during this time with researchers arguing for more strict 

criteria resulting in only 523 human miRNA “genes” meeting the standards.8 According to these 

criteria some miRNAs recently linked to epilepsy may not be bona fide miRNAs.9 

 

 

Regulation of gene networks by microRNAs 

A new layer of gene expression control was discovered in mammals in the early 2000s involving 

small non-coding RNAs called microRNAs (miRNA). These work by binding to complementary sites in 

messenger RNA (mRNA) and reducing mRNA stability and translation.10 It has been estimated that 

levels of ~60% of all proteins are directly regulated by miRNAs.11  The biogenesis and mechanism of 

miRNA action have been reviewed elsewhere,12, 13 and are summarized in Figure 1. After biogenesis, 

miRNAs are selected by an RNA-induced silencing complex (RISC), a multi-enzyme complex 

containing Argonaute proteins. The miRNA-containing RISC is then guided to target mRNAs. The 

target selection is specified by a 7 – 8 nucleotide complementarity match, the “seed” interaction, 

between the miRNA and mRNA.14 This leads to degradation of the mRNA or translational inhibition 

and lower protein levels of the target.  An individual miRNA can have dozens of targets, regulating 

several genes in a single pathway or single genes in several pathways.15 As an example, genetic 

deletion of brain-expressed miR-128 resulted in upregulation of 1035 mRNA transcripts of which 154 

were predicted direct miR-128 targets; remarkably, 27 fell within a single pathway.16 This multi-

targeting property has obvious advantages for disease-modification in epilepsy since it offers the 

possibility to disrupt several processes at once. It increases, however, the potential for unwanted or 

unanticipated side effects of any miRNA-based therapy.  

     

 

MicroRNAs in epilepsy 
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The first study on miRNA in human epilepsy appeared in 2010 and identified an increase in 

hippocampal levels of miR-146a, a miRNA linked to the control of inflammatory responses.17 

Researchers later reported genome-wide analysis of miRNA expression,18 and evidence for 

dysregulation of the miRNA biogenesis pathway,19 in human epilepsy. 

    In vivo functional data were first reported on five miRNAs (in chronological order); miR-132,20 miR-

34a,21, 22 miR-134,23 miR-184,24 and miR-128.16 Most notably, studies in mice showed that inhibiting 

miR-134 after status epilepticus suppressed the development of spontaneous seizures,23 and genetic 

deletion of miR-128 resulted in fatal epilepsy.16 A further nine miRNAs have recently been 

functionally interrogated using miRNA inhibitors (antisense oligonucleotides targeting miRNAs 

termed antagomirs) and mimics (agomirs) in in vivo models of epilepsy (see Table 1 for a summary, 

Figure 1 and Supplementary Table S1 for more complete details). The findings suggest miRNAs could 

be a broad and flexible class of targets for the treatment of seizures and epilepsy-related 

neuropathology.  

     A profiling analysis of the mouse brain RISC after status epilepticus induced by intraamygdala 

microinjection of the excitotoxin kainic acid identified miR-22 as the most abundant miRNA within 

the contralateral hippocampus.25 This brain region is largely spared damage in the model and the 

authors found that blocking miR-22 by intracerebroventricular injection of antagomirs exacerbated 

neuroinflammation and increased the frequency of spontaneous seizures.25 Pharmacologic and 

genetic studies suggested this was largely due to de-repression of the purinergic P2X7 receptor 

which drives microglia activation and release of the proconvulsive inflammatory cytokine interleukin 

1β. An injection of miR-22 mimics reduced spontaneous seizures in mice although the effects lasted 

only a few days.25 However, miR-22 may have other targets of relevance to epilepsy. Recent work in 

Aplysia showed that miR-22 targets cytoplasmic polyadenylating binding protein, an RNA-binding 

protein involved in translation, and impairs maintenance of long-term facilitation, a model of 

synaptic plasticity and memory26.  
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    Zhan and colleagues reported that miR-23b was downregulated in mouse cortex after seizures 

induced by a low dose of kainic acid prompting tests of a miR-23b mimic.27 The authors found that 

injection of miR-23b mimic into the mouse ventricle after kainic acid alleviated some of the high 

amplitude spiking seen on EEG the next day.27  

    Levels of neuronal miR-124 were found to decline following kainic acid-induced status epilepticus 

in rats.28 A key target of this miRNA was the neuron restrictive silencing factor, a transcriptional 

suppressor that coordinately represses various genes during epileptogenesis.28 However, increasing 

miR-124 levels in the model with mimics did not affect the later occurrence of spontaneous seizures, 

a finding put down to the parallel enhancement of inflammation produced by miR-124 acting on 

microglia.28 This neatly captures a key challenge with miRNA manipulations; their multi-targeting can 

impact repair functions or can lead to seizures. A separate study also found levels of miR-124 were 

lower in experimental and human epilepsy.29 In that report the pre-treatment of rats with miR-124 

mimics reduced seizure severity during pilocarpine-induced status epilepticus and 

pentylenetetrazole-induced seizures. These findings suggest potential seizure-suppressive effects of 

miR-124 may be lost where there is pre-existing epileptic pathology although conflicting findings 

may be due to differences in models, dose and route of mimic administration.  

    Recent studies showed that miR-155 opposes beneficial functions of microglia in models of motor 

neuron disease by suppressing multiple genes required for microglia activation, phagocytosis and 

inflammatory signalling.30 Targeting miR-155 restored microglia function and protected against 

neurodegenerative changes, findings that may be relevant for epilepsy. Now, a team has shown that 

injection of antagomirs against miR-155 before pilocarpine-induced status epilepticus improves 

post-ictal behaviour in mice.31   

    A screen of brain-expressed miRNAs in both children with TLE and rats subject to pilocarpine-

induced status epilepticus identified upregulation of miR-181a.32 An intracerebroventricular injection 

of miR-181a mimic produced neuronal death in rats,33 whereas antagomirs against miR-181a 
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reduced neuronal death after status epilepticus.32 These studies did not investigate whether 

manipulation of miR-181a affected seizures but previous work showed this miRNA can target the 

GluA2 subunit of the AMPA receptor leading to reduced dendritic spines and miniature excitatory 

post-synaptic currents34. 

    Pilocarpine-induced status epilepticus was reported to upregulate miR-199a in the rat 

hippocampus and antagomirs against miR-199a reduced seizure severity in the model.35 This was 

partly mediated by protection of Sirtuin1 levels, a deacetylase and transcriptional silencer.35 

Interestingly, miR-199a also targets inhibitors of the mechanistic target of rapamycin (mTOR) 

pathway.36 Since increased mTOR activity is implicated in common causes of focal pharmacoresistant 

epilepsy including tuberous sclerosis and cortical dysplasia,37 miR-199a antagomirs may offer 

alternative approaches to mTOR inhibition. 

    miR-203 was upregulated in both experimental and human epilepsy and the inhibitory glycine 

receptor –β was identified as a potential target.38 Intranasal injection of antagomirs targeting miR-

203 corrected glycine receptor levels after experimental status epilepticus and reduced the 

frequency of spontaneous seizures in mice.38  

    Status epilepticus induced by pilocarpine in rats upregulated miR-210 in the hippocampus and 

injection of antagomirs against miR-210 shortly after status epilepticus reduced injury to the 

hippocampal CA1 subfield.39 Antagomir treatment also normalized expression of GABAergic 

signalling components although it was not established whether these were direct targets of miR-

210.39 

    Lower levels of miR-219 were found in models of status epilepticus and cerebrospinal fluid 

samples from TLE patients.40 Silencing miR-219 in normal mice using antagomirs resulted in spiking 

and high amplitude discharges on EEG. Co-injection of the NMDA receptor antagonist dizocilpine 

obviated the EEG changes suggesting the observed phenotype was mediated by de-repression of this 
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receptor. The authors also showed that pre-treating mice with miR-219 mimic protected against 

seizures induced by kainic acid.40 Reduced miR-219 expression may influence brain excitability 

through other mechanisms, such as altering levels of Tau.41  

 

 

Pathways under miRNA control in epilepsy  

Early functional studies linked miRNA effects on seizures to neuroinflammation and neuronal 

microstructure. For example, targeting miR-134 altered the number and volume of dendritic spines 

on excitatory neurons, presumably through its target, Limk1.23, 42 miR-146a and miR-221/222 can 

control immune responses through targets such as interleukin-1β and cell adhesion molecules, 

respectively.17, 18, 43 miRNA dysregulation probably impacts a wide variety of molecular and cellular 

pathways in epilepsy including differentiation and migration or cell proliferation. Identification of 

unsuspected pathways, such as axon guidance,44, 45 emphasizes that knowledge of epilepsy-

associated miRNAs may also help to further unravel the pathogenic mechanisms underlying epilepsy. 

While it is unknown whether deregulation of axon guidance cue expression influences 

epileptogenesis, these molecular signals are known to contribute to various neurological disorders 

through their ability to control neurite growth and guidance, neuron migration and synapse 

development and function.46 Axon guidance molecules may be important for the integration of 

newly differentiated neurons, for example in the dentate gyrus, a process disturbed in epilepsy.47 It 

should be noted that for most miRNAs implicated in epilepsy to date, in vivo work, functionally 

linking the miRNA and their targets within the context of epilepsy, e.g. in epilepsy animal models, is 

lacking. It is also emerging that miRNAs enhance the breadth of their impact by suppressing 

transcriptional activators and silencers that control expression of large cohorts of genes.28 Future 

‘unbiased’ systems studies, including assessing impact of miRNAs on the proteome,48 are required to 

understand the complex alterations of neuronal function and network defects in epilepsy. Figure 2 
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depicts a theoretical synapse annotated with some of the new epilepsy-associated miRNAs, several 

previously epilepsy-associated miRNAs, putative target mRNAs and their likely cellular and 

subcellular sites of action.  

 

Cellular resolution of miRNAs in epilepsy 

Understanding the mechanisms by which miRNAs influence epileptic networks requires knowledge 

of the cell type(s) in which the miRNA and target are expressed. miRNAs display unique cell-specific 

expression in the brain,49 but most efforts to discover epilepsy-associated miRNAs use blocks of 

tissue that contain mixed cell types. This is an obvious confounder that has only rarely been 

addressed. In one study, a neuronal-specifically tagged Argonaute protein was expressed in mice in 

order that sequencing could be performed only on the active miRNA in neurons.16 A recent study 

used laser capture microdissection to profile the dentate granule cell layer, a relatively homogenous 

population of excitatory neurons.45 This identified a set of miRNAs that underwent expression 

changes during different phases of epileptogenesis in rats and several of these miRNAs were found 

to be regulated in the same subfield in human epilepsy.45 The dentate granule cell layer would 

include cell populations involved in neurogenesis which may express very different sets of miRNAs 

from mature cells involved in epileptic networks. Nevertheless, this and other approaches to profile 

miRNA expression in unique cell types,50 should improve our knowledge of the cellular basis of 

miRNA-mediated effects in epilepsy.  

 

Control of miRNA expression in epilepsy 

It is largely unknown how miRNA expression becomes deregulated in animal models of epilepsy or 

TLE patients. Presumably some is indirect: changes in the number or function of neurons or glia are 

accompanied by changes to levels of miRNAs normally expressed in those cells. Other mechanisms 

may be more specific. The miR-124 gene locus underwent a reduction in histone acetylation after 

kainic acid-induced status epilepticus in rats, an epigenetic silencing mechanism which may account 
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for the reduced hippocampal levels of miR-124.28 A recent study suggested a link between miRNA 

levels in epilepsy and methylation of DNA.51 Increased DNA methylation typically promotes 

compaction of chromatin and a reduction in the transcription of genes at those sites.  A genome-

wide analysis of DNA methylation using hippocampal tissue from TLE patients found differences in 

the methylation state of multiple miRNA genes.51 For some there was a highly significant association 

between methylation status and expression of the miRNA. Interestingly, interleukin-1β upregulates 

miR-146a expression in human astrocyte cultures suggesting that the immune system is not only 

controlled by miRNAs but can regulate miRNAs as well.43 

 

Genetic variation in miRNAs  

It is intriguing to think that mutations in miRNAs might contribute risk for epilepsy. A number of 

candidate gene association studies have now been reported but there is no compelling evidence yet 

that genetic epilepsies are caused by mutations or variation in miRNA genes.52-55 There has been no 

systematic effort to examine the contribution of miRNA sequence variation to human epilepsy. This 

is about to change. The EpimiRNA consortium is exploring the relationship between sequence 

variation in miRNAs and miRNA targets in epilepsy.56 The project examines whether there is an 

enrichment of variants falling in a particular miRNA-related region in a large cohort of epilepsy 

patients compared to controls. To the best of our knowledge there are no other similar efforts 

underway presently that primarily focus their high throughput DNA sequencing on sites in the 

genome that are specifically miRNA-related. The sequencing strategy is focusing on regions that are 

most likely to cause epilepsy when mutated. All miRNAs in this set,57 are included along with a 

subset of predicted miRNA targets. To predict the miRNA targets, the miRNAs expressed in human 

hippocampus,58 are used. This ensures focus on targets that are most likely to contribute to epilepsy. 

Binding targets are computationally predicted based on sequence complementarity within each 

gene’s 3’ untranslated region. The subset of these targets for which the corresponding miRNA has 

been shown in functional studies to regulate the predicted target mRNAs are extracted.59 Following 
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this, criteria such as sensitivity to regulatory variation and conservation of regulatory sequence,60 are 

included and targets falling in genes predicted to be sensitive to regulatory variation prioritized. 

Sequencing will generate a set of candidate causal variants in miRNA-related regions, and highlight 

miRNA-related regions in which variation contributes to epilepsy.  

 

 

miRNAs as biomarkers of epilepsy 

Evidence has emerged that circulating miRNAs in biofluids may be useful biomarkers of brain injury. 

This pool of miRNAs is thought to originate from damage or disruption of the blood-brain barrier 

allowing passage of small quantities of brain-expressed miRNAs. These circulate for some time 

afterwards due to stable complexing with proteins or encapsulation in extracellular vesicles.  Early 

animal studies suggested specific miRNA biofluid profiles existed for different types of brain injury, 

including a pattern unique to prolonged seizures,61 and this has been confirmed more recently.45 A 

molecular biomarker of epilepsy would be of enormous benefit for diagnosis, decisions on risk of 

epilepsy development or monitoring treatment responses.4 Now, a study identified a set of 

circulating miRNAs in epilepsy patients.62 This included increased serum levels of miR-146a, a miRNA 

already linked to epilepsy. Another set of miRNAs showed differences in blood levels between 

patients with controlled versus refractory seizures,63 indicating potential biomarkers of drug-

resistant epilepsy. Because the studies included both focal and generalized epilepsies their value for 

identifying different epilepsies remains uncertain. Additional reports of biofluid miRNAs in epilepsy 

patients are emerging.9, 40 A first step toward using miRNAs for diagnostic tests was recently 

undertaken. Using miR-134 as a known epilepsy-associated miRNA, a team developed an 

electrochemical detection method for measuring ultra-low levels of miRNAs and showed that 

plasma miR-134 levels were higher in epilepsy patients compared to controls.64  
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Opportunities and barriers for miRNA therapeutics  

Limitations of recent functional studies 

Standards for demonstrating effectiveness of potential treatments for epilepsy are rapidly 

changing.65 A recent study looking at gene therapy in epilepsy highlighted the challenges of 

designing a translational study in a disease with symptoms (seizures) which are variable and difficult 

to quantify.66 This and other reports emphasise the importance of designing randomised, blinded, 

intent-to-treat trials to increase the potential for clinical translation. The strength of evidence in 

most of the recent miRNA functional studies falls short of these objectives. Several are brief reports 

that lack sufficient detail on experimental design, methodology or data reporting, particularly 

around performance and analysis of EEG. Dosing of antagomirs and mimics is frequently performed 

before status epilepticus which limits clinical relevance. There have been reports on anti-seizure 

effects of miRNA manipulations in more than one in vivo model.16, 23, 42 However, there will need to 

be in vivo validation of a miRNA targeting treatment by an independent group, cross-species 

corroboration and, ideally, validation in human samples.  

    Overexpression or knockdown of miRNAs in cultured neuronal networks can be investigated for 

effects on activity prior to performing in-depth studies in other model systems. This will help to 

focus in vivo research to those with confirmed effect and satisfies commitments to replace, reduce 

and refine animal use in epilepsy research.65 Microelectrode array technology was recently used to 

interrogate the effect of miR-128 knockdown using a miRNA-sponge on in vitro neuronal activity.67 

Recordings identified increases in spike and burst rates in the miR-128-depleted neurons 

characteristic of epileptogenic network activity, highlighting a novel approach to screen candidate 

epilepsy miRNAs.67 Microelectrode arrays are not sensitive, however, for miRNAs that impact 

aspects of epileptogenesis such as immune components. 

    Most of the new studies have focused on targeting miRNAs before or at the time of status 

epilepticus. Future studies should also differentiate between treatments that prevent the 

development of epilepsy (anti-epileptogenic), and treatments that suppress spontaneous seizures in 
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chronic models (seizure-suppressive). An additional possible distinction is between such treatments 

that suppress seizures without changing the underlying tendency to seize (seizure-suppressive), and 

treatments which alter the underlying pathology, and essentially ‘cure’ epilepsy (disease-modifying). 

The ideal treatment would fall in the final category, where a one-off administration could reverse 

the underlying dysregulation of a network of genes, and return neurons/networks to a non-epileptic 

state. 

 

Prospects for a miRNA-based treatment for epilepsy 

The multi-targeting actions of miRNAs could make it difficult to predict or avoid off-target effects. 

Nevertheless, the global RNA interference delivery market is estimated at $25 billion and a number 

of biotechnology and pharmaceutical companies have therapeutic pipelines that include miRNA-

based treatments. Some have reached clinical trials.68, 69 While encouraging, it is unclear whether 

these or other companies will focus on epilepsy-based miRNA therapies. Moreover, while RNA-

based therapies were once a major focus of biotechnology and pharmaceutical companies this has 

undergone some decline due to failure to meet expectations and reach the market.70 Innovations 

around delivery and formulation are expected to improve this outlook.70 As long as no small 

molecule approach is available to specifically influence miRNA levels, miRNA-based treatments will 

have to rely on large antisense-like molecules such as antagomirs. Getting such large molecules 

across the blood brain barrier creates additional challenges. The direct injection of antagomirs or 

mimics into the ventricle or hippocampus in animal studies is unlikely to be translatable to patients 

except when injections could be performed this way as an alternative to surgical resection of a 

seizure focus. There may be more creative approaches for delivery of miRNA-based treatments to 

the brain. Intra-nasal delivery has been reported in animal studies for antagomirs targeting miR-

134,23 and recently miR-203 mimic.38 Intra-thecal injection has been used in clinical trials of 

antisense-based therapies.71 It is unknown, however, whether these routes will be effective at 

delivering a miRNA-based treatment to a seizure focus. Nanoparticle or other formulations that 



  Rapid Review for Lancet Neurology 
 

16 
 

encapsulate miRNA-based treatments could facilitative central uptake after systemic injection. For 

example, cell penetrating peptides or exosome-based cargo systems.70 Their prolonged duration of 

action - antagomirs have been shown to reduce levels of their targets in the brain for many weeks23, 

35 – may offset other limitations. A single injection might only be required at the time of an epilepsy-

precipitating insult or at infrequent intervals in chronic epilepsy.  Restoring or upregulating miRNAs 

may be more challenging. Mimic effects do not last as long as antagomirs.25 Over-expressing small 

RNAs has also been reported to trigger neurotoxicity due to exceeding the miRNA processing 

capacity in cells.72 Techniques for preventing single miRNA:mRNA interactions could limit off-target 

effects by preventing a miRNA from regulating one particular mRNA while leaving the miRNA to 

regulate other targets. Gene editing techniques may eventually become useful, to either manipulate 

expression or edit miRNAs.73 A final consideration is that intracerebral delivery may not be a 

prerequisite for all therapeutic effects of miRNAs. Recent work in a stroke model showed systemic 

but not intracerebral delivery of miR-122 improved functional recovery in rats, indicating targets 

besides neurons and glia such as cerebral microvessels or immune responses may be important for 

miRNA-based therapeutic effects on neurologic disorders.74  

 

 

Conclusions and future directions 

Recent studies have considerably expanded the number of miRNAs with potential roles in epilepsy, 

improved our understanding of their targets, and suggested biomarker potential. In addition to the 

limitations of the recent work and questions raised above, what are other future directions? A 

critical test of translation will be whether a miRNA-based treatment in a region of epileptogenic 

tissue can affect or reverse established epilepsy. More emphasis on cellular resolution by use of cell 

sorting or expressing tagged RISC components in different cell types will help explain mechanisms. 

Understanding what controls levels of miRNAs in epilepsy would also be valuable. While miRNAs are 

considered multi-targeting, most research has focused on single targets; convincing evidence that 
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miRNAs are multi-targeting in epilepsy is yet to appear. Most work to date has focused on the 

hippocampus and TLE but this should expand to include other brain regions and causes of epilepsy 

that feature miRNA dysregulation and thus might benefit from miRNA-based therapeutics.75 It is 

possible that current AEDs produce effects on miRNA levels within the brain and it would be 

important to explore whether this has any contribution toward the efficacy or otherwise of these 

drugs. Last, researchers might combine miRNA manipulations to increase effect size or mix an 

antagomir with a mimic. In summary, research on miRNAs promises to make an important impact on 

our understanding of the causes, treatment and diagnosis of epilepsy.   

 

 

Search strategy and selection criteria 

A PubMed search was performed on September 14th 2016 using the terms “epilepsy AND microRNA” 

and “seizure AND microRNA”. From this list we focused on published work that featured 

manipulations of novel miRNAs in in vivo epilepsy models since Jan 1, 2015. In addition, we searched 

for papers during the same period that focused on brain-related functions of the individual 

microRNAs for which functional interrogations in epilepsy models had been performed. Thus we 

searched for “brain AND miR-” and included -22, -23b, -124, -128, -134, -155, -181a, -199a, -203, -

210, -219. We then selected the most important and relevant articles based on a subjective appraisal 

of their depth, quality and mechanistic insight that could be relevant to epilepsy. The authors also 

reviewed their own records and the bibliographies of the papers included. Only articles in English 

were considered. A search was also made to identify genetics consortia primarily focusing their high 

throughput DNA sequencing on sites in the genome that are specifically miRNA-related. We 

searched for “epilepsy miRNA” on NCBI’s dbGaP server : http://www.ncbi.nlm.nih.gov/gap, 

“epilepsy miRNA” on NCBI’s GEO database http://www.ncbi.nlm.nih.gov/gds, and “epilepsy miRNA” 

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gds
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on EMBL-EBI’s ArrayExpress database: http://www.ebi.ac.uk/arrayexpress/. No other relevant 

projects were identified. 
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Figure 1 miRNA biogenesis and overview of miRNA manipulation approaches used in recent 

functional studies  

 

Cartoon presenting the miRNA biogenesis pathway and schematic of recent methods used to 

functionally interrogate the role of individual miRNAs in animal models of epilepsy. Left, miRNA 

biogenesis begins with transcription of a primary miRNA (pri-miRNA), mainly by RNA polymerase II 

(pol II), from introns of protein coding genes as well as specific miRNA “gene” loci. The 

microprocessor complex in the nucleus contains the RNase Drosha and DiGeorge Syndrome Critical 

Region 8 (DGCR8) which cleave the pri-miRNA to produce a ~60 – 70 nucleotide hairpin structure, 

the pre-miRNA. The pre-miRNA is then exported to the cytoplasm by exportin 5 and processed 

further by Dicer, another RNase, to produce the mature ~22 nucleotide duplex miRNA, a process 

enhanced by transactivation-responsive RNA binding protein (TRBP). One strand of the miRNA 

(“guide”) is bound by an argonaute (Ago) protein which forms the miRNA-induced silencing complex 

(RISC). Once loaded, the RISC traffics along target mRNAs until sufficient complementary binding is 

present. This produces stable miRNA:mRNA binding that facilitates mRNA decay or translational 

repression following recruitment of other factors (not shown) such as GW182 proteins. Right, 

introducing an antisense oligonucleotide sequence complementary to the miRNA can block miRNA 

function and thereby de-repress a target mRNA. Introducing a miRNA mimic (agomir) will facilitate 

miRNA-dependent silencing of targets. 
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Figure 2 Sites of action and potential target mechanisms underlying effects of miRNA 

manipulations on seizures and histopathology.  

 

Cartoon presenting a schematic featuring several of the recently identified miRNAs with effects in 

seizure/epilepsy models depicted alongside putative targets. Figure also includes miRNAs previously 

linked to epilepsy and their proposed targets (in shadow).  

Key: C/EBPα, CCAAT enhancer binding protein-α; CREB, cyclic AMP response element binding 

protein; ERK, extracellular signal-regulated kinase; GAD, glutamate decarboxylase; GAT-1, GABA 

transporter 1. Gly-B, glycine receptor B; IRAK, Interleukin-1 receptor-associated kinase; Limk1, LIM 

domain kinase 1; SIRT1, sirtuin 1; TRAF, TNF receptor associated factor; Crossed line on miR-210 

intended to signify that regulation of the GABA signalling components has not been proven directly. 

 


