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Background: Nevirapine is the only nonnucleoside reverse transcriptase inhibitor
currently available as a paediatric fixed-dose-combination tablet and is widely used
in African children. Nonetheless, the number of investigations into pharmacokinetic
determinants of virological suppression in African children is limited, and the predictive
power of the current therapeutic range was never evaluated in this population, thereby
limiting treatment optimization.

Methods: We analysed data from 322 African children (aged 0.3–13 years) treated with
nevirapine, lamivudine, and either abacavir, stavudine, or zidovudine, and followed up
to 144 weeks. Nevirapine trough concentration (Cmin) and other factors were tested for
associations with viral load more than 100 copies/ml and transaminase increases more
than grade 1 using proportional hazard and logistic models in 219 initially antiretroviral
treatment (ART)-naive children.

Results: Pre-ART viral load, adherence, and nevirapine Cmin were associated with viral
load nonsuppression [hazard ratio¼2.08 (95% confidence interval (CI): 1.50–2.90,
P<0.001) for 10-fold higher pre-ART viral load, hazard ratio¼0.78 (95% CI: 0.68–
0.90, P<0.001) for 10% improvement in adherence, and hazard ratio¼0.94 (95% CI:
0.90–0.99, P¼0.014) for a 1 mg/l increase in nevirapine Cmin]. There were additional
effects of pre-ART CD4þ cell percentage and clinical site. The risk of virological
nonsuppression decreased with increasing nevirapine Cmin, and there was no clear
Cmin threshold predictive of virological nonsuppression. Transient transaminase
elevations more than grade 1 were associated with high Cmin (>12.4 mg/l), hazard
ratio¼5.18 (95% CI 1.95–13.80, P<0.001).

Conclusion: Treatment initiation at lower pre-ART viral load and higher pre-ART CD4þ

cell percentage, increased adherence, and maintaining average Cmin higher than current
target could improve virological suppression of African children treated with nevirapine
without increasing toxicity.
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Introduction
Fixed-dose combination (FDC) formulations have
considerably improved access to antiretroviral treatment
(ART) through decreased cost and improved feasibility,
especially in sub-Saharan Africa [1]. Currently available
paediatric-dispersible FDCs are limited to combinations
of a nonnucleoside reverse transcriptase inhibitor
(NNRTI), nevirapine, with two nucleoside-reverse
transcriptase inhibitors (NRTIs), and are widely used
in children in low-income countries [2].

Nevirapine pharmacokinetics exhibits high variability,
attributed in part to single nucleotide polymorphisms
(SNPs) of cytochrome P450 2B6 (CYP2B6), which
encode an important metabolic pathway for this drug [3–
5]. In adults, low nevirapine concentrations have been
associated with increased risk of virological failure [6–8]
and high exposures with increased risk of skin rashes [9–
11] and hepatotoxicity [7,12]. Based on the concen-
tration–response relationship, a therapeutic range of 3–
8 mg/l has been suggested for nevirapine therapeutic drug
monitoring [13]. However, several studies failed to
confirm these associations [4,14,15], and low incidences
of nevirapine-related adverse events have been reported
in low-income settings [16] and in African children
[17,18]. Despite widespread use, few studies have
investigated the pharmacokinetic determinants of efficacy
of nevirapine-based regimens in children. The predictive
power of the suggested targets has also never been
thoroughly investigated in black Africans or in children.
Whether these pharmacokinetic targets should be
universally applied across populations was recently
questioned [4].

Our aim was therefore to investigate associations between
nevirapine trough concentrations (Cmin) and long-term
virological outcomes and adverse events in African
children and establish if any other factors predict
treatment outcome after adjusting for drug exposures,
allowing treatment optimization.
Methods

Population and study design
The Children with HIV in Africa - Pharmacokinetics and
Adherence/Acceptability of Simple Antiretroviral Regi-
mens (CHAPAS-3) trial enrolled HIV-infected ART-
naive and ART-experienced (>2 years ART with viral
load <50 copies/ml at screening) children aged 0.3–13
years from four sites in Uganda and Zambia [19], treated
following WHO 2010 guidelines [20] with an NNRTI
(nevirapine or efavirenz) and two NRTIs (lamivudine and
randomized abacavir, stavudine, or zidovudine). Nevira-
pine was coformulated with companion NRTIs in
paediatric FDCs provided by Cipla (Mumbai,
 Copyright © 2017 Wolters Kluwer H
Maharashtra, India) [19]. Children on nevirapine were
switched to efavirenz-based ART if aged more than
3 years and diagnosed with tuberculosis (TB) or
experienced nevirapine-related adverse events, or to
boosted protease inhibitor-based ART if less than 3 years
with these events or for clinical or immunological failure
(or if efavirenz-intolerant). Samples for pharmacokinetics
analysis (described previously) [5] were taken at weeks 6,
36, and every 24 weeks thereafter. Viral load was assayed
retrospectively on stored plasma taken at enrolment and
weeks 48, 96, 132, or 144.

Statistical analysis
A previously developed model describing the steady-state
population pharmacokinetics of nevirapine [5] was used
to derive empirical Bayesian estimates for each child at
each pharmacokinetic visit for clearance, Cmin (evening
trough concentration), Cmax (maximum concentration),
and AUC0–24 (area under the curve). Due to diurnal
variability in clearance [5], this analysis included
measurements relating to daytime exposures only.

The primary efficacy outcome was viral load more than
100 copies/ml (the limit of detection as many samples had
to be diluted due to low volumes). For descriptive
analysis, response was categorized as suppressed (<100
copies/ml within 48 weeks of treatment initiation,
maintained throughout follow-up), slow suppression
(<100 copies/ml achieved after 48 weeks but maintained
throughout subsequent follow-up), rebounded (<100
copies/ml within 48 weeks but viral load>100 copies/ml
at single or multiple visits thereafter), and never
suppressed (viral load never <100 copies/ml). ART-
experienced children (all viral load <50 copies/ml at
enrolment) were analysed separately from ART-naive
children initiating treatment at enrolment. As multiple
pharmacokinetic exposures were available for each child,
geometric means of pharmacokinetics parameters across
follow-up within each individual, and interindividual
variability (expressed as coefficient of variation [21]) for
Cmin and AUC0–24 were compared between groups using
Kruskal–Wallis and rank-sum tests. Categorical factors
were compared between groups using Fisher’s exact test.

The effect of nevirapine Cmin on the risk of virological
nonsuppression (>100 copies/ml) in the subset of ART-
naive children only was estimated using Cox proportional
hazards regression models (Andersen–Gill repeated
outcomes framework) with Efron approximation in R
(survival package) [22–25]. Viral loads were matched
with the model estimated Cmin from the closest sampling
visit preceding each viral load. Each time interval ran
from the preceding to the current viral load (classified as
suppressed vs nonsuppressed ‘event’), and the matched
Cmin was applied to the whole time interval. Nonlinearity
in the effect of Cmin was explored visually using smoothed
splines and tested using fractional polynomials (Stata mfp
cox; Stata Statistical Software: Release 14. StataCorp. LP,
ealth, Inc. All rights reserved.
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College Station, Texas, USA) [26]. As Cox regression
does not provide estimates of the absolute probability of
suppression, we estimated this using a mixed-effects
repeated measures logistic model (Stata mfp logistic;
StataCorp. LP) [26]. The best-fitting dichotomous
threshold for nevirapine Cmin in the Cox model was
identified by profile likelihood, as described previously
for efavirenz [27]. Following the same method, we
conducted simulations introducing unexplained residual
variability on predicted concentrations from the popu-
lation pharmacokinetics model (additive error 0.32 mg/l,
proportional error 5.26%) [5] to derive 95% confidence
intervals (CIs) for this threshold (2.5th and 97.5th
percentile of most predictive cut-offs from 500 simu-
lations). The sensitivity, specificity, accuracy, and positive
and negative predictive values of the identified threshold
for viral load suppression were compared with those of
the 10th, 25th, and 50th percentiles of estimated
nevirapine Cmin in this study and cut-offs proposed in
the literature [6,7,13].

Finally, we used backwards elimination (exit P¼ 0.05,
retaining all levels of categorical factors where P< 0.05)
to consider the additional independent effects on
nonsuppression of factors with associations (P< 0.2) in
univariate models. Categorical covariates included
NRTI-backbone (abacavir, zidovudine, or stavudine),
sex, clinical site, exposure to ART in children
and/or mothers in prevention of mother-to-child
transmission [pMTCT (regimens listed in footnote to
Table 1)], metabolizer status (MET) based on CYP2B6
516G>Tj983T>C SNP (extensive metabolizers –
516GGj983TT; intermediate metabolizers –
516GGj983TC or 516GTj983TT; slow metabolizers –
516TTj983TT or 516GTj983TC; and ultraslow meta-
bolizers – 516GGj983CC) [5], mother as primary carer,
and self-reported missing of any ART doses in previous 4
weeks. Continuous variables included baseline (pre-
ART) viral load (bVL) and CD4þ cell percentage
(bCD4þ cell percentage), truncated at 50% to avoid
undue influence of outliers), current age, weight-for-age
Z-score (WAZ) [28], height-for-age Z-score (HAZ) [28],
and adherence [percentage of doses taken based on
Medication Event Monitoring Systems (MEMS)-cap
container openings in the interval between previous and
current viral load (truncated to a lower limit of 0.5)]. The
only factor with incomplete information was adherence;
when no data were available for current interval, the
preceding interval’s value was carried forward. If no prior
MEMSdatawereavailable(n¼ 21),weimputedthemedian
value for all ART-naive individuals. Nonlinear effects in
continuous variables were explored as described above for
Cmin. Interactions between factors included in the final
modelwere investigatedand included ifPwas less than0.05.

Adverse events
Adverse events considered to be nevirapine-related were
hypersensitivity reactions [HSR, including Stevens–
 Copyright © 2017 Wolters Kluwe
Johnson Syndrome (SJS)], raised liver enzymes [aspartate
or alanine transaminase (ASTor ALT)>grade 2, i.e.>5�
upper limit of normal (ULN)], and acute hepatitis. The
characteristics of children developing adverse events were
compared with others using Fisher’s exact or rank-sum
tests. AST and ALT were measured at enrolment and
weeks 6, 12, 24, and 24-weekly throughout the study and
were matched with nevirapine Cmin as described for viral
load. The association between nevirapine Cmin (and all
covariates above and pre-ART more than grade 1
transaminase elevation) and the risk of developing more
than grade 1 ASTor ALT, that is, more than 2.5� ULN
(composite endpoint), was estimated in the ART-naive
group as for virological nonsuppression. In addition, in
the same group, the change from baseline in transaminase
levels at weeks 6, 48, and 96 was compared using
Wilcoxon signed rank test separately for children with
Cmin below and above the threshold identified most
predictive of transaminase more than 1 grade elevations
by likelihood profiling as explained above. Probabilities of
adverse events were similarly estimated using mixed-
effects logistic regression.
Results

Patient characteristics
Of 478 children in CHAPAS-3, 338 received nevirapine
(99 ART-experienced) combined with a two-NRTI
backbone, and contributed 3340 pharmacokinetics
samples (1566 dosing intervals, 1–6 per individual) and
718 viral loads after enrolment (1–3 per individual).
Sixteen individuals (all ART-naive) changed ART: nine
to efavirenz (when TB was diagnosed) and seven to
protease-inhibitors [three for adverse events, four for
clinical failure (two in year 2 and two in year 3)]. The
demographic characteristics and model-estimated phar-
macokinetics parameters for children included in this
analysis are shown in Table 1 by virological response
group.

Amongst ART-naive children, 151 (68%) achieved and
maintained viral load less than 100 copies/ml, 125 (56%)
by week 48. Those who took longer to suppress had
almost three times higher pre-ART viral load and lower
CD4þ cell counts. Amongst ART-naive participants who
suppressed by week 48, 27 rebounded, and the majority
of these children resuppressed during follow-up. Pre-
ART CD4þ cell percentage in these rebounders was
lower than other groups, and median pre-ART viral load
between that for the suppressed group and for those
taking longer to suppress or never suppressed. The
remaining 45 ART-naive children (20%) never suppressed
viral load to less than 100 copies/ml, but only four
showed clinical evidence of treatment failure. Individuals
who never suppressed had significantly higher pre-ART
viral load than children who suppressed by week 48,
r Health, Inc. All rights reserved.
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lower adherence than the other ART-naive children (82
vs 93%, rank-sum P¼ 0.005) and lower nevirapine
pharmacokinetics exposures (P< 0.05) with higher levels
of intraindividual variability (P¼ 0.02), possibly indicat-
ing erratic adherence patterns.

ART-experienced children were much older, with viral
load less than 50 copies/ml and higher CD4þ cell
percentage at enrolment. The average Cmin and AUC in
this group was also higher than most ART-naive children
(P< 0.001). Despite comparable MEMS-adherence
scores, ART-experienced children had significantly lower
intraindividual variability in nevirapine pharmacokinetics
measures than ART-naive children (P< 0.001), which
might suggest more consistent adherence. Virological
outcomes remained excellent: 88 (89%) remained
suppressed less than 100 copies/ml throughout the study,
10 (10%) had a virological rebound, and only one child
had all viral load measurements more than 100 copies/ml.

Concentration–response relationship
Cox repeated failures regression on 437 matched
pharmacokinetics viral load measurements in 219
ART-naive individuals (Table 2) showed that the hazard
of nonsuppression decreased by 7% for every 1 mg/l
increase in nevirapine Cmin (95% CI: 2–12%). The
estimated probability of nonsuppression declined from
26% for a nevirapine Cmin of 3 mg/l to 18, 12, and 9% for
Cmin values of 8, 12, and 16 mg/l, respectively, using the
mixed-effects repeated measures logistic model (Fig. 1a).
Likelihood profiling identified a nevirapine Cmin of
10.2 mg/l (95% CI 7.9–11.8) as most predictive of
decreased risk of virological nonsuppression (Supplement
Fig. S1a, http://links.lww.com/QAD/B33). Despite the
markedly decreased probability of nonsuppression with
 Copyright © 2017 Wolters Kluwe

Table 2. Univariate and multivariate predictors of virological suppressio

Factor

Un

HR (95% CI

Cmin (per 1 mg/l higher) 0.93 (0.88–0.9
Site (1 ref) (2) 1.65 (0.91–2

(3) 1.02 (0.54–1
(4) 1.41 (0.72–2

Age (per 1 year older) 0.83 (0.71–0.9
Pre-ART CD4þ cell percentage (per 10% higher) 0.82 (0.65–1.0
Pre-ART VL (per 10-fold higher) 2.26 (1.68–3.0
WAZ (per unit higher) 0.84 (0.69–1.0
HAZ (per unit higher) 0.81 (0.69–0.9
MEMS score (per 10% higher) 0.87 (0.76–0.9
WHO clinical stage (1 ref) (2) 1.78 (0.81–3

(3) 1.34 (0.61–2
(4) 2.36 (0.87–6

ART, antiretroviral treatment; CI, confidence interval; HAZ, height-for-age
scores.
aShowing all factors with univariate P<0.2, and hence considered for inc
bBased on backwards elimination using exit P>0.05. HR, hazard ratio, cli
Joint Clinical Research Centre, Kampala, Uganda; (3) – Bristol Myers Squibb
Kampala, Uganda; (4) – Joint Clinical Research Centre, Gulu, Uganda.
Cmin above this threshold and improved specificity and
positive predictive value, in comparison with the other
Cmin cut-offs, the identified threshold had inferior
sensitivity, accuracy, and negative predictive power
(Table 3).

Predictors of virological nonsuppression
Nevirapine Cmin, clinical site, age, WAZ, HAZ,
adherence, bCD4þ cell percentage, and bVL were all
associated with viral load more than 100 copies/ml in
univariate analyses (P< 0.2). However, only Cmin,
clinical site, adherence, bCD4þ cell percentage, and
bVL were independent predictors (P< 0.05). After
adjusting for these factors, the effect of Cmin dropped
slightly from 7 to 6% (95% CI 1–10%) (Table 2). The
strongest predictors were adherence and bVL. Every 10%
increase is MEMS score was associated with a 22%
reduction (95% CI 10–32%), and a 10-fold higher bVL
was associated with a 2.08-fold increase (95% CI 1.50–
2.90) in the risk of nonsuppression. Furthermore, for
every 10% increase in bCD4þ cell percentage, the risk of
viral nonsuppression was 29% (95% CI 5–46%) lower.
The hazard of nonsuppression was significantly greater at
two of the three sites in Uganda, even after adjusting for
other significant effects (characteristics by site in
Supplement Table S1, http://links.lww.com/QAD/
B33). No significant interactions were detected between
predictors in the final model; in particular, there was no
evidence that associations between nevirapine exposure
and nonsuppression varied by centre (Site 1 – ref, Site 2 –
P¼ 0.23, Site 3 – 0.51, Site 4 – P¼ 0.09).

Adverse events
Skin reactions were rare (four grade-2 HSR, one grade-3
HSR, and one grade-4 SJS). All occurred in ART-naive
r Health, Inc. All rights reserved.

n on nevirapine.

ivariatea Final multivariate modelb

) P HR (95% CI) P

8) 0.004 0.94 (0.90–0.99) 0.014
.99) 0.096 (2) 1.98 (1.01–3.85) 0.045
.93) 0.943 (3) 1.19 (0.64–2.23) 0.573
.78) 0.315 (4) 2.58 (1.15–5.75) 0.021
8) 0.034
3) 0.101 0.71 (0.54–0.95) 0.019
2) <0.001 2.08 (1.50–2.90) <0.001
1) 0.069
5) 0.013
9) 0.037 0.78 (0.68–0.90) <0.001
.91) 0.154
.97) 0.466
.37) 0.090

adjusted Z-scores; VL, viral load; WAZ, weight-for-age adjusted Z-

lusion in the multivariate model.
nical sites: (1) – University Teaching Hospital, Lusaka, Zambia; (2) –
Children’s Clinical Centre of Excellence, Baylor College of Medicine,

http://links.lww.com/QAD/B33
http://links.lww.com/QAD/B33
http://links.lww.com/QAD/B33


910 AIDS 2017, Vol 31 No 7

Fig. 1. (a) Probability of nonsuppression (viral load >100
copies/ml) for nevirapine Cmin, (b) probability of transam-
inase grade 2 or higher elevations for nevirapine Cmin.
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c

patients within 2 weeks of ART initiation, and nevirapine
was stopped before pharmacokinetics sampling. The
mean pre-ART age and CD4þ cell percentage were
2.8 years and 22%, respectively, and did not differ
significantly from other children (rank-sum P> 0.4); sex
was also similar (two boys, four girls; exact P¼ 0.43) as
was CYP2B6-MET (three extensive metabolizers, two
intermediate metabolizers, and one slow metabolizers,
exact P¼ 0.87).

Transaminase measurements postbaseline were available
for 335 children (2273 samples). At enrolment, AST was
significantly higher in ART-naive than ART-experienced
children with median 43 IU (5th–95th: 26–127) vs 32 IU
(22–60), P less than 0.001, but ALT was similar with
median 21 (9–75) vs 23 (13–53), P¼ 0.14. Transaminase
elevations grade 3 and above were rare (15 in total) and
were not associated with any particular characteristics
(Supplement Table S2, http://links.lww.com/QAD/
B33), there were no cases of acute hepatitis.

Of 39 more than grade 1 elevations observed in 235 ART-
naı̈ve children, 24 (nine both ASTand ALT, six ASTonly,
 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.
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and nine ALT only) were matched with nevirapine
concentrations and were included in the Cox repeated
failures model. The model identified nevirapine Cmin

[hazard ratio per unit higher (95% CI) 1.07 (1.01–1.13),
P¼ 0.032], but no other factors (including baseline
transaminase elevation, sex, age, and WAZ/HAZ) to be
univariably associated with increased risk of transaminase
grade 2 and above elevations. Likelihood profiling
identified Cmin cut-off of 12.4 mg/l (95% CI 7.7–
13.5) with hazard ratio (95% CI) above vs below the
identified threshold of 5.18 (1.95–13.80), P less than
0.01, (Supplement Fig. S1b, http://links.lww.com/
QAD/B33). All the observed transaminase elevations
were transient and none led to change in treatment, and
although AST and ALT levels were higher in matched
samples with nevirapine Cmin more than 12.4 mg/l, at
most time points the increase from baseline was not
statistically significant (Table 4). The probability of
transaminase elevations by nevirapine Cmin estimated
using mixed-effects repeated measures logistic model are
presented in Fig. 1b and c and remained below 10% up to
30 mg/l.
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Discussion

We observed that virological nonsuppression in a group of
African children treated with nevirapine in combination
with two NRTIs was affected by nevirapine Cmin and
treatment adherence, as well as pre-ART viral load and
CD4þ cell percentage. Despite confirming a significant
concentration–response relationship, we could not
identify a meaningful exposure cut-off predictive of
virological nonsuppression. Furthermore, other factors
independent of systemic exposures were more strongly
associated with nonsuppression than nevirapine exposure.
Children with lower viral load at ART initiation and
better adherence had improved virological outcomes.
Adverse events were rare, but high nevirapine Cmin was
associated with transient grade 1 and above transaminase
elevations.

Similar to previous investigations in adults [6,7,29], we
confirmed that higher nevirapine concentrations led to
superior virological suppression in children. Customarily
used efficacy thresholds for nevirapine were derived from
distributions of concentrations in adult, predominantly
white, patients, even though nevirapine exposures are
higher in African populations [10] and children [5,30],
bringing into question their universal applicability [4].
We recently proposed an alternative method of selecting
an efficacy threshold based on likelihood profiling and
successfully used it for efavirenz in a similar population of
African children [27]. Interestingly, a similarly clear cut-
off could not be derived for nevirapine, in line with
findings by Van Leth et al. [31]. The identified Cmin

threshold of 10.2 mg/l, despite having superior sensitivity
 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.
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and negative predictive value, had substantially lower
specificity and accuracy than other cut-offs (Table 3). In
comparison, the threshold identified for efavirenz (Cmin

of 0.65 mg/l) was visibly superior to previously suggested
and clearly predicted nonsuppression, with only 7% of
samples above it but 37% below it having viral load more
than 100 copies/ml [27]. Nevirapine has lower potency
(protein adjusted IC95 of 196.6 vs 54.7 ng/l) [32] and
shorter half-life than efavirenz, which is the most potent
component of NNRTIþ two NRTI ART contributing
65% of its total efficacy [33]. A higher contribution to
treatment efficacy of the two accompanying NRTIs may
have obscured a clear pharmacokinetics efficacy threshold
for nevirapine. The above could also explain why
virological outcomes were more strongly related to
several other factors than nevirapine exposures in children
on nevirapine-based ART.

The effects of pre-ART CD4þ cell percentage and viral
load on virological outcome have been well documented
[34–39]. In CHAPAS-3, ART-naive children on
nevirapine with a higher pre-ART viral load either took
much longer to achieve viral load less than 100 copies/ml
or never suppressed, consistent with the increased hazard
of virological nonsuppression with higher pre-ART viral
load. The pre-ART CD4þ cell percentage in ART-naive
children who rebounded after achieving initial suppres-
sion by week 48 was significantly lower than in other
groups, and it was also an independent predictor of
virological nonsuppression. Our findings highlight the
benefits of treatment initiation in early stages of disease, in
children with a low viral load and high CD4þ cell
percentage. The recent START trial [40] in adults
confirmed the importance of starting ART early, and
supported guidelines recommending initiation of ART
regardless of CD4þ cell count [41].

Our findings emphasize the importance of treatment
adherence in achieving and maintaining virological
suppression, consistent with other studies in African
children [38,39]. Children who never achieved viral load
less than 100 copies/ml in our study had significantly
lower MEMS scores. Adherence also independently
predicted virological nonsuppression with risk decreasing
by 22% for every 10% higher MEMS score. It has been
hypothesized that adherence above 95% is required to
achieve and maintain beneficial effects of ART [31,42].
Interestingly, in CHAPAS-3, the median adherence in
children taking efavirenz, an NNRTI administered once
a day, was higher than for nevirapine (99 vs 91%) [27].
This could explain why the association between
adherence and virological outcome was more significant
for nevirapine than efavirenz. Meta-analyses confirm that
once-daily regimens and reduced pill burden are
associated with higher adherence to ART [43,44]. Lower
adherence could be a contributory factor to the higher
proportion of ART-naive patients on nevirapine who
never achieved viral load less than 100 copies/ml (20 vs
 Copyright © 2017 Wolters Kluwer H
6% on efavirenz) and worse virological outcomes in
ART-experienced children. CHAPAS-3 was not
designed to compare the effectiveness of nevirapine
and efavirenz, but several other studies in children in
resource-limited settings suggest better virological out-
comes for the latter [36–38,45–47]. Yet, nevirapine is
currently the only NNRTI formulated as all-in-one
paediatric FDC. Although developing a similar formu-
lation containing efavirenz could improve treatment
adherence and hence virological outcome, this is
challenging due to the larger efavirenz dose and higher
pharmacokinetic variability due to its pharmacogenetics
[5,48].

Adverse events were rare in our study, replicating other
paediatric investigations [17,18,49]. High nevirapine
concentrations were associated with elevated hepatic
enzymes in adults, in particular in those with low BMI
[12,50], but several other studies including African
patients showed a low risk of hepatotoxicity [10,15,16].
In CHAPAS-3, although we detected an association
between high nevirapine exposures and increased risk of
developing more than grade 1 transaminase elevations, all
observed events were transient and did not lead to ART
substitutions. Likelihood profiling identified a Cmin

threshold of 12.4 mg/l as most predictive of these
transient events, and although we observed higher
transaminase levels during the study when concentrations
were above this threshold, they were not significantly
different to baseline. Moreover, the baseline values of
AST and ALT for ART-experienced children (on
nevirapine-based ART for >2 years) were not signifi-
cantly higher than in ART-naive children. Together, these
suggest that these findings may have limited clinical
relevance. Recent reports hypothesize that nevirapine-
related hepatotoxicity has a genetic cause [51–53].
Similarly, HSRs were rare, possibly due to dose escalation
in the first 2 weeks of the study [17]. Small numbers
precluded associations with any specific patient charac-
teristics, but they occurred early in the study, before any
pharmacokinetics sampling, making it difficult to
confirm speculations of their idiosyncratic cause [4,54].

Considering nevirapine’s low genetic barrier for viral
resistance [8], the risk of nonsuppression decreasing with
increasing drug concentrations, and the presented safety
profile, maintaining Cmin higher than the current target of
3–8 mg/l could have beneficial effects on general
treatment outcomes in African children, and nevirapine
concentrations as high as 12.4 mg/l should not lead to
increased risk of adverse events. Results of recent
nevirapine population pharmacokinetic analysis in
children from CHAPAS-3 [5] show that currently
recommended paediatric dosage [41] provides average
Cmin at the upper range of the 3–8 mg/l target, even
though slow metabolizers determined by CYP2B6
516G>Tj983T>C genotype are at risk of exposures
above 12.4 mg/l [5].
ealth, Inc. All rights reserved.
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Our study has several limitations. We could not find a
plausible explanation for the detected effect of clinical site
on virological outcome, which was not due to small
imbalances in other factors as these were either adjusted
for or had no association with virological nonsuppression.
These centre effects likely reflect residual confounding
from factors not captured in our study, either differences
in other aspects of management on ART or other local
variability in the patient populations, for example, in
socio-economic status, distance to clinic, and others.
However, we found no evidence that the effect of other
independent predictors (adherence, viral load, and
nevirapine exposure) varied across centres (i.e. no
interaction/heterogeneity) supporting generalizability
of these findings to other settings. No genotyping was
conducted at enrolment, so we were not able to assess the
impact of preexisting NNRTI resistance on response.
However, we did not find any evidence of an association
between pMTCT (predominantly single-dose nevira-
pine) and increased risk of nonsuppression, similarly to
another recent study [39], suggesting that the impact of
preexisting NNRTI resistance may be relatively small
compared with the other factors assessed. Most viral loads
were matched with nevirapine concentrations measured
12 weeks earlier, and one could argue that drug
concentrations measured on the same day as viral load
could be more predictive of virological outcome.
However, suppression is likely related to maintained
drug exposure above a certain threshold, and a random
measurement in the time period preceding it could be a
better indicator of it. Adherence in our study was only
measured in certain time periods, and the same drug-
taking pattern was assumed to persist until the next
measurement. Most children had only three viral loads
after enrolment, and our analysis assumed that no viral
rebounds occurred in between. Lastly, our findings should
not be generalized to ART based on other drugs, in fact,
amongst children enrolled to CHAPAS-3, we found
different predictors of virological outcome for children
on efavirenz.

Conclusion
Higher nevirapine concentrations were associated with
significantly better virological outcomes, but a mean-
ingful cut-off predictive of increased risk of non-
suppression could not be identified, possibly due to the
effects of the combined NRTIs. Lower viral loads at
ART initiation and higher treatment adherence were
the most predictive determinants of virological
suppression. The outcome was further affected by
pre-ART CD4þ cell percentage and clinical site.
Adverse events were rare and, even though we detected
an association between nevirapine Cmin more than
12.4 mg/l and transaminase elevations, this is of limited
clinical relevance due to their transient character.
Treatment initiation at lower viral load and higher
CD4þ cell percentage, increased adherence, and
maintaining average Cmin higher than current target
 Copyright © 2017 Wolters Kluwe
could have a positive effect on virological suppression
of African children treated with nevirapine.
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