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ABSTRACT 

Big narratives on the role of metallurgy in social change and technological innovations are 

common in archaeology. However, informed discussion of these issues requires a 

contextualised characterisation of metallurgical technology at the local level in its specific 

social and technological context.  

This paper approaches early metallurgy in Iberia from a technological perspective. We focus 

on the site of Las Pilas in the Vera Basin (Mojácar, Almería, Spain), where the whole 

metallurgical chaîne opératoire has been documented in situ through archaeological 

excavation of a 3rd Millennium BC context. The study includes microstructural, mineralogical 

and chemical analyses of ores, slag, technical ceramics and finished artefacts, as well as 

domestic pottery used for comparative purposes. These results are discussed with reference 

to the archaeological context and evidence for other domestic activities and crafts.  

Our aim is to contribute to better characterise the early metallurgical tradition of Southeast 

Iberia, paying particular attention to specific technological tools, knowledge and recipes that 

may allow future comparative approaches to knowledge transmission or independent 

innovation debates. For this particular case, we demonstrate the direct production of 

arsenical copper in a low-scale, low-specialisation, low-efficiency set up that involved the 

crucible smelting of complex oxidic ores in a context that suggests associations with cereal 

roasting and, indirectly, with basket and pottery making. 

KEYWORDS: Early Metallurgy, Prehistoric Technology, Arsenical Copper, Slag, Iberia, Copper 

Age.  

 

INTRODUCTION 

Technology has traditionally been considered of essential importance in social change, given 

that key technological innovations have the capacity to cause profound social 

transformations. However, we should be wary of possible assumptions implicit in this 

premise: there is a tendency to relate technology to ‘progress’ and from this surmise that 
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more complex technological systems equate to superior societies, which are typically seen 

as the source of the knowledge transmitted to ‘lower’ societies. 

In the realm of prehistoric metallurgy, V. Gordon Childe created a persuasive model 

whereby metallurgy was seen as a highly complex and socially transformative technology 

requiring full-time specialists. Metallurgy was thought to have been developed by the 

civilisations of the Near East, from where it would have spread into Europe. More recent 

work has proposed that metallurgy could have been developed independently in more than 

one location (e.g. Renfrew 1969; Ruiz-Taboada and Montero-Ruiz 1999; Höppner et al., 

2005; Radivojević et al. 2010); it has questioned its purported impact in social structures 

(e.g. Montero Ruiz, 1994; Bartelheim 2007; Kienlin, 2010; 2016), and it has emphasised that 

aesthetic rather than functional adaptations may have been major factors shaping 

metallurgical traditions (e.g. Smith 1982; Aranda et al., 2012; Martinón-Torres & Uribe-

Villegas, 2015). 

Informed discussion of the above issues requires a contextualised characterisation of 

metallurgical technology at the local level. In our view, this approach is likely to allow a 

better understanding of the social impact of metallurgy and the organisation of production, 

besides providing more detailed information to address issues of invention and knowledge 

transmission. Southeast Iberia has consistently featured on debates about the origins and 

social impact of metallurgy, but contextual studies have been limited. 

This paper approaches early metallurgy in Iberia from a technological perspective. We focus 

on the site of Las Pilas in the Vera Basin (Mojácar, Almería, Spain), where the whole 

metallurgical chaîne opératoire has been documented in situ through archaeological 

excavation. Metallurgical contexts are defined and analytical results of archaeometallurgical 

remains are presented. Our aim is to contribute to better define the metallurgical tradition 

of Southeast Iberia, paying particular attention to specific technological tools, knowledge 

and recipes that may allow future comparative approaches to knowledge transmission or 

independent innovation debates. Beyond strictly technical aspects, we discuss craft 

organisation and aim to contribute to a contextual understanding of early metallurgy in 

Iberia. 

 

ARCHAEOLOGICAL BACKGROUND 

The Vera Basin, in the Iberian Southeast, is a large tertiary basin spanning some 320 km2 and 

traversed by three rivers: Aguas, Antas and Almanzora. It is framed by the Almagro and 

Almagrera mountain ranges in the North; Cabrera mountain range in the South; Bédar and 

Lisbona ranges in the West and the Mediterranean Sea in the East (Fig. 1). 
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Thanks to the extensive archaeological works that started in the late 19th century by Henry 

and especially Louis Siret, we know of the extensive occupation of the Vera Basin during the 

Late Prehistory, with early metallurgical stages constituting a decisive moment of 

occupation (Camalich Massieu and Martín Socas, 1999). With additional work at 3rd 

Millennium BC sites such as Almizaraque, Zájara or Campos (Cuevas del Almanzora) as well 

as at 2nd Millennium BC sites such as El Argar (Antas), Fuente Álamo (Cuevas del Almanzora) 

or Gatas (Turre), the Vera Basin has become a priority study area, with much archaeological 

research especially devoted to investigate the role of early metallurgy in the process of 

social stratification.  

The site of Las Pilas/Huerta Seca (Mojácar), with an approximate surface area of 5 ha, is 

located in this broader context (UTM 30S 601913, 4111690). It is placed on top of a plateau 

30 m above sea level, close to the estuary of the river Aguas and flanked by two 

watercourses flowing into it.  

The site was discovered in 1989 and it was subjected to three archaeological campaigns in 

1990, 1991 and 1994 (Alcaraz Hernández, 1992; Camalich Massieu and Martín Socas, 1999; 

Rovira Buendía, 2007). In the last campaign, an area of 40 m2 was excavated. The 

occupation of the site was structured in a sequence of ten phases , based on documented 

stages of the restructuration and re-organisation of the inhabited area. Based on the 

absolute dates, this occupation took place during the 3rd Millennium BC, with the most 

recent phase (phase 10) defined by the occurrence of material culture associated to the Bell 

Beaker horizon. 

In terms of constructive features, the settlement is characterised by round huts, some of 

them partially excavated on the ground, generally built on a stone and clay plinth, with 

rammed-earth walls. They usually have a central post to hold the conical roof made of 

vegetal lattices waterproofed with clay. Several negative structures related to grain and 

water storage are associated to these huts. Some large walls have been documented too, 

possibly related to the demarcation or defence of this sector, which clearly underwent 

frequent functional re-organisation of the domestic and craft activity areas.   

The last excavation campaign yielded a substantial archaeometallurgical assemblage. 

Notwithstanding one copper awl and one copper mineral fragment recovered in phases 1 

and 2 respectively, metalworking debris (i.e. slag and a copper lump) appeared from the 

phase 5 and reach the highest frequency in phase 9. Phase 5 is defined by three negative 

storage structures associated to a round hut partially excavated on the ground. After their 

useful life, these structures were intentionally filled up with waste derived from household 

and craft activities. Medium size stones resulting from the dismantling of previous stone 

plinths due to a restructuration of the inhabited space have also been documented as filling 

materials. Two small copper mineral fragments, one slag fragment as well as two corroded 

fragments of copper were found in two of these structures. Four Hordeum vulgare nudum 
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seeds from this phase were dated by AMS (Table 11), three of them from the same 

depositional contexts than the metallurgical remains. They show that the first metallurgical 

activity documented in this sector of the site occurred during the first quarter of the 3 rd 

Millennium BC. If we consider the chrono-cultural sequence proposed for the Iberian 

southeast, this would be associated to the second phase of the Formative Period (Castro et 

al., 1996), or Early Copper Age (Molina et al., 2004). 

However, the most complex and complete evidence of metallurgical activity was recovered 

from phase 9. This phase is characterised by the building of a 60-70 cm wide wall 

demarcating an area where mainly two activities were carried out: cereal processing and 

metal smelting and melting. This area, of circular or oval tendency, is c. 6 m in diameter and 

is delimited by a ditch, 30 cm wide and 15 cm deep. In this area, three post holes and two 

combustion structures lined with clay were identified (Fig. 2). The central one was primarily 

used for cereal roasting while the second one, in a peripheral area, was connected to metal 

smelting and melting. This structure, only partially preserved (60-70 cm), had a circular/oval 

shape and is delimited by adobe bricks, with the ground completely vitrified by high 

temperatures. A minimum of 5 ceramic blowpipe nozzles were found in this structure (Fig. 

2) together with a complete crucible. Copper droplets as well as slag and crucible fragments 

were also recovered in the interior of this structure, as well as in a border area where most 

of the metallurgical waste was discarded. Remains associated to the complete metallurgical 

sequence have been documented in this area: from mining (one stone hammer, two 

grinding stones and several ore fragments), through smelting and melting (slag, crucibles, 

blowpipe nozzles and copper droplets) to finished objects.  

Based on six AMS dates, five of them on T. aestivum durum seeds and one on H. vulgare 

nudum (Table 1), this phase developed during the second half of the 3rd Millennium BC 

(2578-2276 2σ cal. BC), that is to say in an advanced period of the Iberian Chalcolithic when, 

according to the periodisation proposed for the area, the first evidence for Bell Beakers are 

documented [Late Beaker Chalcolithic (Castro et al., 1996), or Late Copper Age (Molina et 

al., 2004)]. This area was affected by a fire that caused its collapse, and the space was then 

reorganised with the building of a round hut over it which corresponds to the Bell Beaker 

phase (Phase 10). 

 

MATERIALS AND METHODS 

More than 240 archaeometallurgical finds were recovered during the archaeological 

excavation of the site. The collection includes 70 ore fragments (combined weight 383 g), 93 

slag fragments (377 g), 24 slagged crucible sherds, one complete crucible, 13 fragments of 

ceramic blowpipe nozzles (MNI five), 42 corroded copper droplets or lumps (14.7 g), two 
                                                                 
1 Three samples of charcoal entrapped in slag fragments were also dated and results are included in Table 1. 

However, dates discussed in the text are based on short lived samples to avoid the old wood effect. 
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copper awls (2.7 and 1.8 g respectively) and one possible fragmented burin (3.5 g), one 

stone hammer and two grinding stones (Fig 3). In order to reconstruct the whole 

metallurgical chaîne opératoire, selected materials were sampled for further analyses at the 

UCL Institute of Archaeology’s Wolfson Archaeological Science Laboratories. We employed a 

stratigraphic sampling frame that considered archaeological and typological information, as 

well as the results of screening analyses of 130 objects by portable XRF (pXRF) using an 

Olympus Innov-X Systems Delta Premium. Thirty one samples were selected from across the 

compositional groups qualitatively identified by pXRF, and including all archaeological 

phases with archaeometallurgical remains. The sample set included 11 ore fragments, nine 

slag fragments, nine crucible sherds, one blowpipe nozzle and two awls (Table 2). Six 

additional samples of domestic pottery were also studied for comparison with technical 

ceramics. 

Samples were mounted in epoxy resin and polished to 0.25μm. Optical microscopy under 

both plane polarised light (PPL) and cross polarised light (XPL) was used to identify areas of 

interest for further analyses by scanning electron microscopy with energy dispersive 

spectrometry (SEM-EDS), which were performed with a Philips XL30 with an Oxford 

Instruments x-sight EDS. The SEM-EDS system used an accelerating voltage of 20 kV, a 

working distance of 10 mm, a spot size of 5.3, and a process time 5, corresponding to a 

deadtime of c. 30%; acquisition time was 100 s. The certified arsenic copper standard BCR 

691-C from the European Commission was used to monitor the reliability of the analyses. 

Data was processed by INCA spectrometer software, outputting data as elements for metal 

phases, and adding oxygen by stoichiometry in ceramics and slag. Chemical compositions of 

slag samples are averages from several analyses trying to avoid large inclusions and 

corroded areas. For ceramics, we analysed both large areas to obtain an estimate of the 

‘bulk’ composition, and smaller areas focused on the matrix and devoid of large inclusions. 

All data have been normalised to 100% but analytical totals are provided. We acknowledge 

that SEM-EDS area analyses of porous and coarse-grained materials such as those reported 

here are more prone to mineralogical effects that affect the accuracy of quantitative values, 

as reflected in the variable analytical totals for our results. However, this technique remains 

the most cost-effective for the study of slagged crucibles, as it provides the combination of 

microstructural and chemical information necessary for a technological study.   

X ray diffraction (XRD) was conducted on 10 ore samples to complement the identification 

of mineral species. XRD was performed using a Rigaku MiniFlex 600 X Ray diffractometer 

with a Cu(Ka) target, a tube voltage of 40 kV and a tube current of 15 mA.  

Trace element analysis of ore samples were done at the Geochronology and Geochemistry 

SgIker-Facility of the University of the Basque Country UPV/EHU (Spain) (See Supplementary 

Material 1 for analytical procedures).  
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RESULTS 

1. Ores 

 

Ore fragments are mostly of small size with an average weight of 5.5 g, and the biggest 

fragments reaching up to 79 g. Malachite and azurite are the main copper mineral phases , 

within two main types of gangue macroscopically identifiable: either dark ferrous, or whitish 

calcareous/dolomitic. Qualitative pXRF analyses were conducted on all ore samples 

recovered. Most of them turned out to be complex copper minerals bearing high levels of 

arsenic, zinc and lead. Four qualitative compositional groups were identified on the basis of 

pXRF: mainly Cu; CuAs; CuAsZn and CuAsZnPb without any clear correlation between these 

groups and the two types of gangue identified. Six samples were then selected for ICP-MS 

and ten samples for XRD, optical microscopy and SEM-EDS, which allowed the identification 

of complex copper oxides, carbonates and arseniates such as calcio-duftite, conichalcite or 

olivenite (Tables 3 and 4). Most of the samples bear relatively large amounts of zinc; this 

element appears usually combined with arsenic and copper forming complex phases  such as 

cuprian adamite or zincolivenite, but it can also occur as a silicate (willemite) or carbonate 

(smithsonite) as well as an enrichment in malachite. Sulphides are comparatively scarce, 

although some galena inclusions were documented. Some samples also contain phases with 

significant levels of cobalt and nickel, especially sample 6975 (Table 4), as well as small 

inclusions of perroudite, a sulpho-halide of mercury and silver (Fig. 4). 

 

The chemistry and mineralogy of the specimens described are consistent with those of ores 

documented in the surrounding mining districts (Montero Ruiz, 1994; Favreau et al. 2013). 

In particular, three copper deposits may have been the source of the ores identified in Las 

Pilas: Pinar de Bédar, Herrerías/Almagrera and Cerro Minado, respectively c. 10, 20 and 30 

km from the site, as the crow flies (Fig. 1). 

 

The copper mineralisations from Pinar de Bédar are consistent with those from Las Pilas as 

they have arsenic and zinc and lead as major elements accessory to copper (Montero Ruiz, 

1994: 177). Although there is no evidence of prehistoric exploitation in Pinar de Bédar, this 

could have been obliterated by intense works in modern times. Thus we consider it a 

possible ore source area due to proximity to the site and concordance in composition.  

 

Cerro Minado has some similarities with the ores documented in Las Pilas too, and it is likely 

to have been exploited in Prehistory. Domergue (1987) identified some stone mining tools 

and classified it as a Bronze Age mine, and recent surveys have documented stone peaks 

and hammers inside the mine (Delgado Raak et al., 2014). An absolute date, MAMS-18508 

3905±21 BP (Delgado Raak et al., 2014: 30) confirms its exploitation during the Copper Age 

contemporaneous with the occupation of several sites in the area such as Almizaraque, 

Campos or Las Pilas. The elemental composition of some geological samples reported high 
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levels of arsenic (up to 42%) and the frequent occurrence of sulphidic phases, but the most 

characteristic feature of copper minerals from Cerro Minado is the typically high cobalt (up 

to 0.9%) and nickel (up to 1.2%) (Favreau et al. 2013; Delgado Raak et al., 2014: 19) – a trait 

also shared with some samples from Las Pilas . This is due to the co-existence of erythrite 

[Co3(AsO4)2·8H2O] and annabergite [Ni3(AsO4)2·8H2O] with copper minerals and arsenates. 

Native silver and Hg-bearing silver have also been documented in Cerro Minado (Bertran-

Oller et al., 2012: 247; Favreau et al. 2013: 36) – which is again consistent with the 

microanalysis of some Las Pilas samples, and perroudite is known to occur in the Almeria 

province in the mines of Las Cocotas and Rodalquilar (Favreau et al. 2013: 37); however, the 

main native silver deposit in the area is Herrerías (c. 20 km from the site) , where some 

specimens reach up to c. 13% Hg (Bartelheim et al., 2012: 200).  

 

Copper minerals from Sierra Almagrera/Herrerías also bear high levels of arsenic (Montero, 

1994: 177), and two Cu-Zn and Cu-Zn-Fe metallogenic phases have been documented in 

Sierra Almagrera (Martínez Frías et al., 1989: 265). Thus, there are several potential ore 

sources for Las Pilas, and it is possible that more than one were exploited. An ongoing lead 

isotope analysis programme in the area will hopefully shed more light on copper sourcing 

and will allow us to characterise the structure and organisation of copper mining in the area. 

 

2. Technical ceramics  

 

Three types of technical ceramics have been found in Las Pilas: the blowpipe nozzles and 

two type of crucibles. 

 

The blowpipe nozzles are cylindrical and have a maximum length of 13.2 cm. With walls c. 7-

10 mm thick, the internal diameter is c. 15 mm; however, this diameter is reduced at the tip, 

which is domed and bears a small perforation of only 4-5 mm (Fig. 5). They are made of 

white-firing fabrics and show evidence of vitrification at the tip, although not to catastrophic 

extents. Examination of the impressions left on the inner surface of these objects indicates 

that they would have formed with fresh clay applied over one end of a hollow reed tied with 

ropes. The tip would then be perforated from the outside, leaving diagnostic burrs on the 

inside. Such manufacture is consistent with recent experimental studies, which also 

concluded that fresh-clay nozzles had a more efficient and longer use, than those fired prior 

to use (Obón and Berdejo, 2013).  

 

No ceramic tuyérès or blowpipe nozzles had been documented up to now in the 

archaeometallurgical record for prehistoric Southeast Iberia, even at sites where large 

amounts of metallurgical debris such as crucibles and slag have been found, such as Los 

Millares or Almizaraque. This has led to the suggestion that the main air supply systems 

would have been either natural draft, or reeds used as blowpipes without any ceramic 

nozzle (e.g. Gómez Ramos 1996). The only Chalcolithic nozzles hitherto recovered in Iberia 
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come from the Northeast, Central Portugal and the Southwest. Two fragments of cylindrical 

tuyérès with an internal diameter of 7-8 mm were recovered in La Bauma del Serrat del 

Pont (Tortellà, Girona) (Alcaide et al., 1998: 91). In central Portugal, one conical nozzle with 

a maximum internal diameter of c. 20 mm was recovered in Pedra do Ouro (Hunt, 2003: 

303) and one cylindrical nozzle with a rounded end and a smaller perforation, very similar to 

those found in Las Pilas, was recovered in Vila Nova de Sao Pedro (Jalhay and Paço, 1945: 

Lam. XXI). However, this nozzle would also constitute an exception in Portugal, as no other 

nozzles have been recovered in sites where the complete metallurgical process has been 

recovered in situ such as the rounded house V of Zambujal (Müller et al., 2007; Gauss, 

2015). In Extremadura, one possible tuyérè was recovered from the site of La Sierrecilla 

(Santa Amalia, Badajoz) (Cruz Berrocal et al., 2006: 65) while the best known examples are 

those from Valencina de la Concepción (Sevilla) in the Southwest (Nocete et al., 2008: 728) 

although their exceptionally large internal diameters (between 20 and 60 mm) would have 

prevented their use as blowpipes2. Experimental studies have concluded that the internal 

diameters of blowpipes usually fall in the range of 5-10 mm, while tuyérès attached to 

bellows are about 15-35 mm, and tuyérès or openings for natural draft furnaces from 50 to 

over 100 mm (Rehder, 1994: 348). Against this background, all Copper Age tuyérès 

documented in Iberia up to now would have been attached to bellows, except for the 

examples of Las Pilas and possibly Vila Nova de Sao Pedro – hence our choice of the term 

‘blowpipe nozzles’. The capabilities of blowpipes are constrained by the power of the 

human breath, while air supplied by bellows can develop higher temperatures and generate 

heat at about 70 times the rate developed by blowpipes (Rehder, 1994: 349); therefore the 

use of blowpipes instead of bellows generally indicates smaller scale metallurgy. Bellows 

would be essential for larger and more productive furnaces. In any case, as larger drafts are 

usually linked to hollowed furnaces, and up to now we do not have evidence for any such 

furnace in Chalcolithic Iberia, the overall scarcity of blowpipes and the presence of crucible 

sherds in most of the metallurgical sites would suggest the extended use of reeds without 

any ceramic nozzle over small crucibles.  

                                                                 
2 We are not including here the only tuyérè recovered at Cabezo Juré (Alosno, Huelva) due to its imprecise 
context and especially its morphology. Regarding its context, a journal article (Nocete, 2006: 651) claims that it 
was recovered in the Southern Slope, where the so-called ‘furnaces’ are described; however, in the Spanish 

monograph on the site (Nocete, F. ed. 2004), this purported tuyérè is drawn together with the domestic 
pottery and ascribed to US14 (Nocete et al. 2004: 141, Fig. 8.11)  ̶  a stratigraphic unit described as sealing a 
storage structure on the Upper Platform of the site and therefore not related to the ‘furnaces’ in the Southern 
Slope. Furthermore, in the micro-spatial analysis of the site, this artefact is drawn on Northern Slope (Nocete, 

2004: 349). This micro-spatial analysis also presents significant discrepancies with the spatial description of the 
site published in the journal paper: while the site is described as markedly functionally divided in the English 
version (“activities were rigorously demarcated by function: processing of or e took place on the south slope 

and copper casting in the residential area to the north. The fortress [on the Upper Platform], by contrast, 
featured no metal -working” [Nocete, 2006: 647]), remains of ores, crucibles and slags are drawn on both 
slopes in the Spanish monograph (Nocete, 2004: 369). The morphology of the tuyérè also raises some doubts 
on its functionality, as it has a bi -conical profile with a maximum diameter of c. 60 mm. This shape, which 

would seem inefficient for a tuyérè, is reminescent of a domestic pottery type known in Iberia as a ‘support’ 
(see e.g. Hunt 2003). The same morphology and hence dubious ascription applies to as at least two of the 
items described as tuyérès in Valencina de la Concepción (Nocete et al., 2008: 728). 
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Turning to the crucible sherds, these are much more common in the archaeological record. 

At Las Pilas, they usually consist of heavily slagged amorphous fragments with slag layers up 

to 3 mm thick. The rim of the vessel is occasionally conserved, in some cases with the slag 

layer overflowing it. Although they are usually too fragmented to reconstruct the typology 

of the crucibles, at least two types have been identified. Due to the lack of curvature of the 

rim and their flatter, shallow shape, some of them seem to correspond to the so called 

“crucible-furnace” (horno vasija), i.e. flat open vessels of 1-2 cm in thickness and up to 50 

cm diameter (Rovira, 2002: 89) (Fig. 6). In one sample, organic imprints were documented 

on the outside surface of the sherd, reflecting a plain weave basketry (Alfaro 1984: 113) that 

seems to correspond to an esparto basket used to mould the vessel. Fresh clay would have 

been applied inside the esparto basket and pressed against it to form the crucible; the 

mould would have been either removed prior to use, lost during firing, or decayed 

subsequently (Fig. 7). This ceramic technique has been documented in domestic pottery at 

several sites in Iberia including the nearby sites of Campos and Zájara, as it is a common 

technique for the manufacture of open vessels such as large dishes or platters  (e.g. Camalich 

Massieu and Martín Socas, 1999; Delibes et al., 1998: 166-167; Valiente et al., 2003). 

However, it had not been documented in crucible manufacture up to now, which suggests 

that pottery making technology did not require any significant adaptation for metallurgy. 

The second crucible type corresponds to vessels of rectangular shape. One of them was 

recovered intact, and its dimensions are 27 cm x 6 cm in plan, with a height of 4 cm and 

walls of up to c. 2 cm in thickness. These crucibles display a much thinner slag layer and 

could have been related to melting rather than smelting (see discussion below). 

 

The fabrics of rectangular crucibles are usually greyish while ‘crucible-furnaces’ are either 

greyish or orange, although both of them typically show a gradient from a darker inner 

surface to a lighter outside, consistent with exposure to high temperatures and heating 

from the top – as typical for prehistoric crucibles. They both are rather coarse in texture, 

with abundant inclusions of quartz and potassium feldspar reaching grain sizes of up to 1 

and 3 mm respectively. For comparison, six samples of domestic pottery were selected. 

Three of them are similarly coarse, with rough surfaces, while the other three samples have 

finer textures and burnished surfaces. 

 

The compositions of the ceramic matrices of crucible and blowpipe samples, obtained by 

SEM-EDS area scans that avoided large inclusions, show exceptionally high alumina levels 

(averages of 33.6% and 32.8% respectively). This feature is typical of highly refractory 

ceramics that proliferate since the late Middle Ages (Martinón-Torres and Rehren, 2009; 

2014). However, they also display remarkably high concentrations of alkali and alkali earth 

oxides (averages of 9.4% and 8.8%), which would have diminished their thermal stability 

(Tables 5 and 6). When compared to common pottery, they display broadly similar 

compositions (Fig. 8). ‘Bulk' compositions are enriched in SiO2 because of the abundant 



11 
 

silicate minerals, and they fall in the area defined by Freestone and Tite (1986) as typical of 

ancient technical ceramics and building bricks. The compositions of the ceramic matrices  

avoiding quartz grains fall outside this area due to the higher alumina concentrations, 

although still plotting far from modern refractories because of their high alkali and alkaline-

earth levels. The chemical composition of the technical ceramic matrices is remarkably 

similar to those of domestic pottery, especially the fine wares, most notably in the high 

alumina, even if there are slight differences such as the higher lime and lower potash of the 

former. This similarity indicates that clay refractoriness was not a major concern for ancient 

metallurgists – or, at least, that specific clays were not reserved for the manufacture of 

technical ceramics. However, a more specific study including petrographic analyses of 

domestic pottery as well as technical ceramics (crucibles and blow pipe nozzles but also 

loom weights and adobes) is currently ongoing, which will shed more light on the 

technological choices on pottery making.  

 

Going back to the crucibles, the coarse grain size and abundance of temper would have 

contributed to improve the performance of the vessels – although it should again be noted 

that domestic pottery showed similar fabrics, hence arguing against the hypothesis of a 

specialised metallurgical ceramic recipe. Quartz temper is known to improve the 

performance of technical ceramics not only by virtue of its own refractoriness, but also 

because of its expansion during heating and subsequent contraction upon cooling; this 

process creates a network of voids and microcracks that improve toughness and thermal 

shock resistance (Martinón-Torres and Rehren, 2009: 56; cf. Tite et al., 2001; Kilikoglou et 

al., 1998). Feldspars behave differently and have lower melting points; while in the right 

proportion and grain size they may act as fluxes and promote the crystallisation of highly 

refractory mullite (Martinón-Torres et al., 2006; 2008), the melting during use of large 

feldspar grains such as those in the Las Pilas crucibles could potentially create weak points 

and lead to catastrophic failure, especially if high temperatures were sustained for long 

periods. The same applies to some iron oxide minerals also documented in the fabrics, and 

which often appear clearly melted. Organic temper is not documented in any crucible in Las 

Pilas, contrary to many prehistoric crucibles in the Old World, commonly tempered with 

organics (Bayley and Rehren, 2007: 47). 

 

All in all, these technical ceramics do not reveal the selection of specific clays or tempering 

materials, and they are unlikely to have been exceptionally refractory. This is consistent with 

the heavy vitrification and bloating displayed towards the inner surfaces, and the significant 

interaction between the slag and the molten ceramic. In at least one case, the crucible 

clearly failed during use, and slag can be seen flowing through the crack to the bottom of 

the vessel (Fig. 9). Having said this, the material properties of the crucibles were sufficient to 

smelt copper, even if they were exposed to the very limit of their thermal ability. In this, 

they are comparable to most Old World prehistoric crucibles (Bayley and Rehren 2007; 

Martinón-Torres and Rehren 2014). 
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3. Slag and slagged ceramics 

 

Smelting is attested to at the site both by small slag lumps and thick slag layers on crucible-

furnace fragments. Most slag fragments are of small size (2-3 cm except for three larger 

pieces of 5 cm), have irregular shape and an average mass of 4 g, with the largest fragment 

reaching 109 g (Fig. 10). No slag cakes or larger lumps have been recovered. This level of 

fragmentation would seem consistent with the crushing of slags by metalworkers in order to 

recover copper prills trapped within (e.g. Bachmann, 1982; Rovira 2002). Fragments of 

embedded charcoal are often visible, as well as mineral relicts. In fact, some of these lumps 

would best be described as only partially reacted minerals which could derive from failed or 

incomplete smelting operations, or at least from areas of the crucible where the reaction 

was far from complete. Interestingly, however, they appear not to have been regarded as 

worthy of further processing or re-smelting. Slag layers in smelting crucible fragments are 

usually thick (some exceeding 2 mm) and in some cases they overflow the rim of the 

smelting vessel (Fig. 6). They display a greenish surface colour, denoting their copper-rich 

nature; small charcoal remains are also macroscopically identifiable in some samples.   

 

The smelting process is affected primarily by four factors: the composition of the charge and 

technical ceramics, the firing temperature, the redox conditions and the length of the 

process (Hauptmann, 2007: 20). All of these parameters can be inferred from the 

compositional and mineralogical analyses of slag fragments.  

 

3.1.  Chemical composition 

An approximation to the bulk composition of slags (Table 7) was obtained by averaging 

SEM-EDS area analyses of the slag lumps or crucible slag layers. The results show typically 

high and variable levels of copper, zinc arsenic and lead, as well as low alkali contents (max. 

1.4%). The great variability in concentrations of the main oxides is notable, with wide ranges 

such as c. 4-36% SiO2, 1-12% CaO, 0.2-48% FeO, 5-42% CuO, 0.5-46% ZnO, 3-29% As2O3, and 

0-16% PbO. This heterogeneity in bulk compositions both within and between samples must 

be related to the complex geology of the region and consequently the variable crucible 

charge composition, as well as to the fact that most of them did not reach a completely 

liquefied state. In fact, some of them cannot even be described as a silicate; the combined 

weight percent of CuO, ZnO, As2O3 and PbO is higher than 50% in most samples. As a 

general trend, levels of iron and calcium are inversely correlated, reflecting variable 

contributions of the either dolomitic or ferrous gangue components.  

When compared to the slag layers still adhering to the crucible sherds, discrete slag lumps 

are generally richer in copper and arsenic oxide, probably reflecting a larger abundance of 

relatively large unreacted minerals. Slag layers on crucibles are, in turn, typically richer in 

silica, alumina, and the oxides of zinc and lead. The enrichment in silica and alumina 

probably reflects a higher degree of interaction between the ceramic and the forming slag 
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at the interface; the relatively constant SiO2/Al2O3 ratio in these slag layers supports the 

suggestion of a common origin for both oxides, though it should be noted that this ratio is 

typically higher in the slag than in the associated ceramic, and hence it is likely that there 

was an additional contribution of silica in the charge, probably from quartz gangue or other 

silicates in the charge. The often higher levels of zinc and lead in these layers may also result 

from the high reactivity between these oxides and the ceramic at this interface, where they 

would form stable silicates (cf. Kearns et al., 2010). Thus, overall, and in spite of these 

notable compositional differences, we believe that the slag lumps would have formed inside 

crucibles, and that both types of residues derive from the same processes  (see also section 

3.3 on copper prills). 

Bulk copper levels are remarkably high (mean 27% CuO in slag lumps) implying high copper 

losses in the slag (Fig. 11), typically seen either as abundant metallic copper prills or as 

remnants of unreacted copper minerals; dissolved copper in the slag matrices is much lower 

(typically 2-3% CuO; Table 8), reflecting the relatively low reactivity between copper oxide 

and silica even at relatively high temperatures (cf. Kearns et al. 2010). Copper losses in the 

slag are affected primarily by both by oxidation and viscosity. Too oxidising conditions will 

prevent the reduction of copper to metal, while facilitating the formation of magnetite or 

other spinels. Spinels will in turn increase the slag viscosity, making it difficult for metallic 

prills to coalesce together into a larger metal bath. As shown in the microstructural data 

presented below, both factors are at stake in this assemblage. 

The slag matrices are composed mainly by silica-rich glasses bearing high levels of iron, zinc, 

arsenic and lead oxides. As noted above, copper, zinc, arsenic and lead oxides must come 

from the ore. The greater interaction of the slag layers with the smelting vessels is 

evidenced by their higher amount of silica, alumina and potash in their matrix composition. 

On the other hand, higher levels of oxides of calcium, magnesium and arsenic are 

documented in the slag fragments. The latter chemical signatures are mostly related to a 

higher ore (and gangue) contribution, although charcoal ashes and a post-depositional 

alteration may have been additional sources of calcium for the slag (see below, section 4).  

3.2. Mineralogical examination  

 

The heterogeneity of the slag already indicated by the bulk chemical analyses becomes even 

clearer in microstructural examination. The complete liquefaction of the slag or phase 

equilibrium, which would have required higher temperatures and longer reaction times, 

only occurred sporadically; unreacted mineral relicts are identifiable in most specimens.  

 

Slag microstructures contain crystallised and dendritic cuprite, spinel, Mg-rich willemite and 

melilite crystals, as well as sulphide inclusions, with sporadic occurrence of pyroxene, olivine 

or olivenite (Table 9. See Supplementary Material 2 for formulas of mineralogical phases 

mentioned). Interstitial glass only occurs in three out of nine slag fragments while it is 
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clearly recognisable in all crucible slag layers, where the silica absorbed from the ceramic 

vessel may have contributed to the glass development. The absence of glassy matrix and the 

frequency of mineral relicts in most of the slag fragments indicate non-equilibrium reactions 

in variable redox conditions, with insufficient reaction times.   

 

Sample 5-8815 is the only slag lump dating to the earliest metallurgical phase at the site, 

and its microstructure is slightly different to the rest: it consists predominantly of a fine 

mixture of delafossite and magnetite (Fig. 12). Although peculiar in the absence of silicates, 

this mineralogy might result from the smelting of iron-rich copper ores, although it would 

denote poor control of atmospheres (Hauptmann, 2007: 171-172).  

 

The remaining slag fragments without glassy matrices (samples 5-6918, 5-6855, 5-6912, 5-

6916 and 5-6933), all dated to the later phase 9, are more clearly connected to smelting 

activities, given the presence of residual minerals. They consist mainly of complex copper 

ores only partially smelted, where large willemite inclusions, as well as copper ore relicts 

bearing high levels of arsenic and some zinc and cobalt are clearly visible (Fig. 13a-b, Table 

10). Thermal decay of the dolomitic gangue, which starts at 550ºC, could have been the 

cause for the significant remains of Mg-rich calcite identified in sample 5-6912 (Fig. 13c). 

Calcite itself decomposes under oxygen influx at 600ºC or at 800ºC in a reducing gas 

atmosphere (Hauptmann, 2007: 176). Its presence is therefore suggesting either low 

temperatures or short smelting processes. This dolomitic decomposition contributed to the 

formation of tabular crystals of calcium arsenates and euhedral magnesia silicates 

embedded in a CuAsZnPb oxide compound (Fig. 14, Table 11).   

 

Chalcocite inclusions, some of them bearing silver, are frequently documented (Fig. 13d) 

indicating the presence of a minor amount of sulphides in the charge, probably as impurities 

in the predominantly oxidic ores. It is worth noting that no metallic prills were found in 

these less reacted samples. However, the presence of rounded phases dominated by oxides 

of copper and arsenic, and surrounded by a lead halo, suggest that metal may have been 

present but subsequently corroded (Fig. 15a). In any case, the excess of oxygen in the 

smelting gas atmosphere is suggested by the presence of free cuprite, spinels and other 

heavy metal oxides, compared to the near absence of pyroxenes or olivines (Fig. 15, Table 

12).  

 

The rest of slags analysed, including all of the slag layers adhering to crucibles, are more 

similar to each other and seem to have been further melted than the ones described above. 

They were formed by the crystallisation of almost completely liquefied melts under 

moderately (sometimes weakly) reducing gas atmospheres. Cuprite is one of the most 

abundant phases. Besides its precipitation from copper prills, cuprite also crystallised from 

the melt either as a finely dispersed exsolution in the glassy matrix, which is responsible for 

the reddish appearance of the slag under the optical microscope, or as a dendritic 
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intergrowth (Fig. 16a and b). The presence of dendritic growths of cuprite would suggest 

that temperatures of c. 1200ºC were reached (Rovira, 2005: 91). Likewise, the co-existence 

of dendritic cuprite with skeletal magnetite, rhombohedric melilite and metallic copper is 

testament to the variable oxidising-reducing gas atmosphere during the smelting process.  

 

Besides cuprite, spinels and Mg-rich willemite are the most common oxide phases 

documented in the better reacted slag samples. Depending on the iron, zinc, aluminium and 

magnesium content of the ore used, the composition of the spinel group minerals formed 

ranges from magnetite to franklinite, hercynite or spinels proper (Fig. 16c).  

 

The common presence of rhombohedric crystals of Mg-rich willemite can likewise be 

explained by the decomposition of zincolivenite or zinc silicates  – both documented in the 

ores (Table 4). These would have decomposed and recrystallised from the melt forming 

rhomboedric siliceous crystals enriched on magnesia as well as globular zinc oxides (Fig. 

16d). The clustered occurrence of these Mg-rich willemite crystals in some samples (Fig. 

16e) also suggest that they are the result of the decomposition of primary zinc silicate 

relicts. 

 

Melilite and pyroxene are sporadically documented; olivine occurs only occasionally, as a 

solid solution between monticellite and kirschsteinite. The dolomitic gangue documented 

could have contributed to the development of tetragonal and thin tabular melilite crystals 

and pyroxene, whose compositions range from hardysonite to Fe-rich diopsides with up to 

12-13% Fe depending on the Ca/Mg/Zn ratio in the charge. Zinc partially substitutes 

magnesia also in the formation of Zn-rich rhombohedric pyroxenes with different Zn/Mg 

ratios (Fig. 16). 

 

This co-existence of metal oxides with silicates is consistent with an excess of heavy metals 

and variable pO2 atmospheres with oxidising conditions in which magnetite, delafossite or 

cuprite could grow but reaching reducing enough gas atmospheres for silicates to develop 

and for metallic copper to retain high levels of arsenic, zinc or iron. 

4. Copper prills. 

The high amount of copper trapped in the slag is present not only as unreacted minerals and 

newly formed oxides, but also as metallic particles; these are usually rounded prills of only a 

few µm in diameter, but occasionally they reach up to c. 3 mm (Fig. 17). Due to the 

heterogeneity of the copper ores used and variable conditions within the crucibles, prill 

compositions are highly variable too, both within and between samples (Table 13). The only 

recurring element (except for the prills in slag sample 5-6912) is arsenic. Other elements 

such as S, Fe, Co, Ni, Zn, As, Ag, Sb and Pb range from below detection limits to quite 

considerable concentrations. Sample 5-6815 stands out particularly, as it bears copper prills 

with high levels of cobalt, nickel, antimony and lead as well as arsenic, zinc and iron. Due to 
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the large amount of impurities in the copper prills, some of them exhibit a dendritic 

microstructures. This can be clearly seen in Fig 17b, showing a metal prills where α grains 

(orange) richer in copper (with 2.5% As) would have started to crystallise first at c. 1060ºC 

while the inter-dendritic compound with up to 25% As and up to 1.6% Pb would have 

remained molten until temperatures had lowered down to c. 650-750ºC. Silver and lead 

segregates have also been identified in some copper prills. 

 

Within the overall spectrum of variability, there is a notable trend that differentiates the 

metal prills in the slag fragments from those in the slag layers still adhering to crucibles. The 

latter tend to be richer in arsenic, iron and zinc, whereas the former tend to be richer in 

silver. Rather than interpreting this as indicative of two different processes, we take it as 

further evidence to support the idea proposed above: namely, that the slag fragments 

would have formed in the same crucible-furnaces, but further from the ceramic interface 

and thus in atmospheres that would have probably been more oxidising. This would explain 

the loss of arsenic, zinc and iron from the metal in the more oxidised area of the reaction, 

with the corresponding increase in the concentration of the more noble copper and silver. 

In this sense, it is also significant that while the prills in the slag fragments are poorer in 

arsenic, the bulk composition of these samples shows higher arsenic oxide levels (Table 7), 

again showing that arsenic was present in these outer layers, but in oxide rather than 

metallic form. 

 

All in all, the high levels of metals with high affinity for oxygen such as iron, zinc or arsenic 

indicate that, even if fluctuating, sufficiently strongly reducing atmospheres were reached in 

the crucibles. As for the overall variability in metal compositions, we need to acknowledge 

that these cannot be taken as direct indications of the composition of the metal being 

produced (Dungworth, 2000); indeed, arsenic levels recorded in the crucibles are much 

higher than in any artefacts known from the region and period (Rovira et al, 1997). Arsenic 

levels would decrease by oxidation and evaporation upon melting (McKerrel and Tylecote, 

1972), and much of the compositional diversity would be erased when the metal was 

melted and homogenised. As such, we can propose that the main product of the site would 

be arsenical copper, probably with relatively high silver at the trace level , but it would be 

risky to hypothesise further a ‘typical’ impurity composition of the metals produced at Las 

Pilas. 

 

5. Melting crucibles 

 

The second type of crucibles are those with a quadrangular section. One complete specimen 

and half of a second one were recovered in addition to several fragments.  As described 

before, these crucibles have a max. dimension of c. 27 x 11 cm, a height of 4 cm and walls 

up to c. 2 cm. Contrary to the thick slag layers described for the smelting vessels , these 

crucibles exhibit a thin whitish-yellowish layer of calcareous appearance that covers their 
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interior, but occasionally appears as exterior patches as well  (Fig. 18). In some areas on the 

inner part of the complete crucible, a thin greenish slag layer was also visible, however its 

appearance was more reminiscent of corroded metal than of vitreous and viscous slag.  

 

The intentional lining of moulds and crucibles with a variety of materials can prevent 

chemical interactions between the ceramic and the liquid metal and facilitate the removal 

of the metal from the mould (Zori et al. 2012, cf. Karageorghis and Kassianidou, 1999). 

Intentional parting layers in crucibles have been documented in regions such as Egypt, Chile 

or Argentina. Glass making crucibles in Late Bronze Age Egypt were internally coated with a 

lime-rich parting layer which formed a physical barrier and allowed the easy separation of 

the glass ingot from the ceramic (Smirniou and Rehren, 2016). The lining of crucibles and 

casting moulds with bone ash has been documented at several sites in Chile (Niemeyer et 

al., 1993; Zori et al., 2012; Plaza and Martinón-Torres, 2015) and Argentina (González, 2010; 

Raffino et al., 1996). However, such crucible parting layers have not been reported for 

prehistoric European metallurgy (but see a possible coated mould in Soares et al . 2008). 

Thus it was particularly important to determine whether the calcareous layer in the Las Pilas 

melting crucibles was an intentional attribute or the result of post-depositional alteration. 

 

Two samples of these rectangular crucibles were examined under the SEM-EDS. These 

internal layers are 0.3–0.5 mm in thickness (Fig. 19a), very porous, and currently dominated 

by lime, silica, copper oxide and arsenic oxide. These oxides occur as a fine mixture of two 

phases – one rich in calcium and arsenic, the other one in copper and silicon (Fig. 19b). In 

sample 5-7166, a small area of melted ceramic was documented under this layer, containing 

a few corroded prills of arsenical copper entrapped – hence suggesting that the calcareous 

layer post-dates the last high-temperature utilisation (Fig. 19c). In spite of the enrichment of 

the calcareous layer in arsenic and copper, there are no obvious microstructural features 

such as neoformed crystals that would confirm high temperature reaction between the 

heavy metals and this material. As such, while we acknowledge that further analyses may be 

needed, we are currently more inclined to consider this layer as a natural deposition from 

the calcareous burial environment. Arsenic is known to form stable calcium arsenates at 

room temperature in oxidising environments (Navarro et al., 2004), and this may well be 

post-depositional phenomenon explaining the current composition of this layer. It might 

seem surprising that this layer is not currently present on domestic pottery from the site, 

but its absence might simply be a result of more thorough post-excavation cleaning. Similar 

layers are also macroscopically visible in crucibles of the nearby site of Santa Bárbara as well 

as in Los Millares; further analyses of these residues are currently under development.  

 

Turning to the diagnostic metallurgical residues in these technical ceramics, as noted above 

these are much less substantial than in the smelting vessels. Their composition is much 

richer in ceramic oxides, with some alkali enrichment (especially potash) probably derived 

from fuel ash. The small but significant presence of oxides of copper, lead and arsenic is 
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consistent with the melting of the metals smelted on site, while the absence of zinc and 

other oxides abundant in ores and smelting slag argues against the use of these ceramics for 

smelting.  

 

While it might be argued that these constitute casting moulds rather than melting crucibles,  

their relatively large volume would argue against this. The volume of the void in the best 

preserved one is estimated at c. 380 cc, corresponding with over 3.5 kg of copper, which is 

far higher than the weight of the heaviest objects known in the period. Axes from the 

contemporary site of Los Millares weigh 250 g on average and even some of the heaviest 

ones, those found in Valencina de la Concepción (Seville) weight up to 1600 g (López Aldana 

and Pajuelo, 2013). Furthermore, the relatively high fabric vitrification and the enrichment 

in fuel ash oxides seem more consistent with their use as melting crucibles , where lumps of 

metal would have been mixed with charcoal and thus necessitating a relatively larger 

volume. 

6. Metal Artefacts  

Copper artefacts are remarkably scarce at the site. Besides some amorphous pieces of 

corroded metal, only two awls c. 7 and 2.5 cm long respectively, and one fragment of a 

possible burin of quadrangular section were recovered. One of the awls had some imprints 

of wood on its surface but it was too corroded to conduct further analyses, so only one awl 

and the burin were sampled.  

Bulk composition analyses by SEM-EDS did not detected any impurity documented in the 

slag prills, except for arsenic, quantified as up to 2.5% (Table 14). However, small inclusions 

rich in silver as well as antimony and bismuth were identified, allowing a connection 

between these artefacts and the other metallurgical waste.  

The high levels of zinc detected in the ores used were almost completely lost during 

smelting, with very little ending up in the metal. Part of the zinc remained in the slag, either 

unreduced or reoxidised following reduction, and much was certainly evaporated as it was 

reduced (boiling point of zinc is 907 °C). Most of the lead partitioned into the slag 

compounds, although still present in several slag prills. Its absence in the final objects could 

derive from its oxidation during melting.  

The iron content in copper artefacts is another important technological parameter, with 

higher levels expected in copper smelted in slagging furnaces (Craddock and Meeks, 1987). 

Although some of the slag-trapped prills in Las Pilas are ferruginous, iron would be oxidis ed 

during remelting, something also documented in the nearby site of Almizaraque, with iron 

levels up to 5.7% in some slag prills (Müller et al., 2004: 44). The low levels of iron in the 

artefacts from Las Pilas are consistent with the pattern described for the whole of Iberia, 

with Fe usually less than 0.05% and only exceptionally reaching up to 0.7% (Juhngans et al., 
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1960; 1968; Hook et al., 1987; Rovira et al., 1997). Recently, it has been shown that iron 

levels increase in copper alloys during the Early Iron Age, which may be related to technical 

improvements of higher reducing conditions associated to furnace smelting, in contrast to 

previous crucible smelting (Valerio et al., 2015) as already proposed by Craddock and Meeks 

(1987). 

As a noble metal, silver is more difficult to remove from copper, and its lower levels in the 

artefacts could be a consequence of the homogenisation of the metal during melting. 

Cobalt, nickel and antimony are only present in one slag sample, implying that ores 

containing these elements were only sporadically. They are detected in low quantities in the 

final objects, although inclusions rich in antimony were identified under the SEM. 

Arsenic losses will be affected primarily by the conditions of the smelting and melting (the 

evaporation rate of arsenic being higher under oxidising conditions), the length and 

intensity of the working techniques when shaping the objects, and the possibility of 

recycling. In the case of Las Pilas, high levels of arsenic are documented in the ores, with a 

Cu/As ratios up to 1.4/1 (Table 15). These levels of arsenic are still documented in the 

copper prills of the smelting slags (Cu/As ratio up to 1.8/1). Although the average amount of 

arsenic in copper prills is lower than in ore samples (see Table 15), the evaporation rate of 

arsenic during smelting seems to be low. The main losses of arsenic are more likely to occur 

during melting and casting, when metal is exposed to high temperatures and more oxidising 

atmospheres (see McKerrel and Tylecote, 1972 for experimental rates of arsenic losses) 

leading to low arsenic levels in the final objects. Although starting from high arsenic ores, 

the two objects found in Las Pilas only have 1% arsenic on average, lower than the levels 

observed in other sites in the area such as Almizaraque.  

 

DISCUSSION AND CONCLUSIONS 

Recent studies of early metallurgy have focused mostly on broad models for the emergence 

and spread of metallurgy in the Old World, or on long distance contacts and exchange. 

These studies rarely focus these questions on the local scale. However, detailed contextual 

studies are essential to understand the development of early metallurgy in its sociotechnical 

context, and to begin to characterise traditions whose evolution and possible interaction 

may be mapped in space and time.    

The technology of arsenical copper smelting and melting in Las Pilas. 

Las Pilas provides evidence of in situ extractive metallurgy spanning several centuries since 

the beginnings of the 3rd Millennium BC. Complex oxide ores containing mineral mixtures of 

copper, arsenic and other heavy elements were smelted with charcoal in large, flat, circular 

crucible-furnaces, with the air supplied by blowpipes made of reed tubes protected with a 
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clay nozzle. The resulting metal, typically arsenical copper, was subsequently melted and 

refined in rectangular melting crucibles which, like the smelting crucibles, were heated from 

above. The fabric of the ceramics employed for technical purposes is virtually identical to 

coarse ceramics employed locally for domestic use, and the technique of moulding pottery 

by means of an esparto basket has been documented for the first time in crucible 

manufacturing.  This use of large, flat crucible-furnaces and blowpipe nozzles would differ 

from early Near Eastern and Eastern European metallurgical traditions, where no crucibles 

have been recovered (e.g. in Serbia Radivojević et al., 2010), smelting was achieved in 

simple holes in the ground (e.g. in the Levant Golden et al., 2001) or hearth installations are 

lined with broken pottery (e.g. in Bulgaria Rehren et al., 2016) 

Metallurgy at Las Pilas is characterised by its small scale. Productivity, in terms of 

optimisation of metal extraction, does not seem to have been a major concern3. Ores were 

transported to the site with the gangue and crushed in situ (as indicated by the ore samples 

recovered and the two grinding stones found at the site), and simple but less efficient 

technologies were chosen: blowpipes instead of bellows and open air structures instead of 

closed furnaces. Slags and partially smelted ores were not re-smelted to recover the high 

amounts of copper still trapped in them, nor even when the smelting process failed before 

had it been finished. The abundance of copper resources in the area may have been one of 

the reasons why efficiency was not a constraint.  

In terms of the technological proficiency, control over atmospheres and other smelting 

parameters were not mastered. Most of the slags were not completely liquefied, and they 

are relatively poor in silica and other light oxides that would have facili tated the production 

of a homogeneous slag layer separate from the metal. Non-equilibrium reactions were 

developed in variable redox conditions, sometimes with too oxidising atmospheres and with 

insufficient reaction times. The low refractoriness of the crucibles may have constrained the 

smelting times. Notwithstanding its technical inefficiency, this metallurgy was sufficiently 

cost-effective to meet the needs of these societies, and metal was undoubtedly obtained. In 

this aspect, the evidence from Las Pilas is similar to that described for the nearby site of 

Almizaraque (Müller et al., 2004) although some of the metallurgical features of the 

workshop of Las Pilas (i.e. blowpipe nozzles or crucibles with basketry imprints) have not 

been documented at Almizaraque. 

There is a recurrent use of complex copper minerals bearing high levels of arsenic, zinc and 

lead. While some of the ore samples recovered are relatively pure malachite, most of the 

minerals and slag samples bear high concentrations of other elements. It has recently been 

proposed for the Chalcolithic Balkans that early smelters carefully selected black-and-green, 

manganese-rich malachite for smelting, while green pure malachite was set aside for 

                                                                 
3 We acknowledge that one of the authors, FMG, is not in agreement with the interpretation of Southeastern 
Chalcolithic metallurgy as a low-efficiency technology with a low scale of production and a l imited degree of 
specialisation.  
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lapidary work (Radivojević and Rehren, 2015). In the case of Las Pilas, however, there is no 

indication that specific mineral types were selected for. While green and blue are the 

predominant colours overall, it does not seem likely that metallurgists would have had the 

ability (or, indeed, the desire) to distinguish between pure copper carbonates and those 

containing copper and cobalt arsenates, zinc carbonates or lead and copper sulphides – as 

typical of the local geology. 

The complexity and variability of the ore charges and smelting conditions was reflected in 

the composition of the prills trapped in the s lag. If we were to classify these prills 

qualitatively based on the presence/of absence of  Ni, As, Ag and Sb, as proposed in recent 

approaches to legacy copper-alloy data (e.g. Bray and Pollard., 2012; Pollard et al., 2015), 

we would find five different metal types at a single production site. This variability would be 

further increased if we considered the presence/absence of additional elements such as S, 

Fe, Co, Zn and Pb. This variability would be partly erased during metal re-melting, so that 

the final objects would only bear copper and arsenic in significant concentrations – but it is 

still worth noting that the two objects analysed from the site would still represent two 

different metal groups as per the above classification, while four groups could be identified 

in other Chalcolithic sites in the province such as El Malagón and Los Millares (Hook et al., 

1991), and three groups in the slag prills of Almizaraque (Müller et al., 2004).  

While the objects from Las Pilas are both relatively poor in arsenic in spite of the arsenic-

rich nature of the ores, the heterogeneity in the arsenic compositions becomes more 

prominent if we consider the composition of other Chalcolithic objects recovered in the 

area. The average arsenic at El Malagón was quantified as 1.67% by AAS (with a maximum 

value of 3.31%), and this value is 2.25% (max. 6.04%) at Los Millares (Hook et al. 1989: 73). 

Comparable data was obtained by XRF by the Project Archaeometallurgy of the Iberian 

Peninsula for artefacts from Los Millares (mean 2.2% As, max. 11.3%) (Montero Ruiz, 1994; 

Rovira, et al., 1997). The same project reported a mean 3.6% As (max. 11.2%) at 

Almizaraque (max. 11.2%) and La Encantada (max. 7.0%) down to 0.9% at El Barranquete 

(max. 2.0%) (Montero Ruiz, 1994; Rovira et al., 1997). In Loma de Belmonte, a necropolis 

close to the site of Las Pilas and probably associated to it, levels of arsenic are 2.3% on 

average (max. 3.5%) (Montero Ruiz, 1994; Rovira et al., 1997). On balance, the variability 

and the higher arsenic content in objects from Almería province when compared to other 

areas seems to be a reflection of the local geology and its complex mineralogy, much more 

than of a metallurgical awareness of the properties of different alloys (Delibes et al., 1989; 

Rovira, 2004). 

The organization of copper production in its social context. 

Beyond the more strictly technical aspects, we should address how copper production was 

organised at the site and within its specific social and cultural context.  
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The earliest evidence of high-temperature metallurgy at the site is dated to 2905-2743 2σ 

cal. BC. Metallurgical activity continued at the site during subsequent phases, although 

evidence is scarce (of course, based on the relatively small site area excavated compared to 

the extended surface estimated for the site). The main documented metallurgical evidence 

corresponds to the phase dated to 2578-2276 2σ cal. BC. In this period, metallurgical activity 

is established in a communal area where other daily activities related to a central fire place 

took place. A semi-circular structure made of clay bricks was erected next to the central fire 

place as a way to demarcate the smelting area. The highly vitrified and burnt clay of the 

structure where some slag, and charcoal fragments were found, as well as the associated 

blowpipes and crucible found in situ support the interpretation of this as the smelting 

location.  

This productive setting, inside the settlement in a productive area in which other activities 

were simultaneously carried out, and the relatively inefficient technology used (blowpipes 

and crucible smelting), together suggest a low degree of specialisation and scale of 

production. As also proposed by experimental studies (e.g. Hanning et al. 2010), part-time 

metalworkers may have been able to produce copper with this rather simple technology, 

similar to the one described in the nearby site of Almizaraque (Delibes et al. 1989; 1991; 

Müller et al., 2004) or in the southwestern site of Zambujal (Müller et al., 2007; Gauss, 

2015). In this aspect, the evidence found at Las Pilas would be coherent with the “household 

production” model proposed by Strahm and Hauptmann (2009) in their “Innovation Phase”, 

technologically characterised by smelting in simple crucibles which do not seem associated 

to social hierarchisation. It should be noted, however, that, their scheme does not seem 

fully applicable to the development of metallurgy in Iberia, as recently discussed by Rovira 

and Montero Ruiz (2013), since the “Initial Phase” of native copper exploitation has not 

been documented so far, and the “Consolidation Phase” is not recognised until the Iron Age.    

The context of metal production shows that metalworkers were integrated with the rest of 

the communal activities and crafts. There is no indication that the communication of 

metallurgical knowledge had to rely on strong leadership and/or political control to be 

efficient (see also Kienlin, 2016); nor that metallurgical knowledge was secret, as proposed 

for instance in the Southeastern Alps where smelting and funerary practices took place 

under rock shelters and in ritual contexts away from domestic villages (Dolfini, 2014: 483; cf. 

Budd and Taylor, 1995). At Las Pilas, metallurgy is developed inside the village in an area 

destined to pyrotechnical activities. In this sector, two combustion structures were 

documented adjoining the wall which bounds the site, in the most external area in relation 

to the dwellings. The bigger one dedicated mainly to cereals roasting (mostly T. aestivum 

durum), and the second one, made with a plinth of adobe on which the blowing pipes sit, 

exclusively devoted to metallurgy. Nothing suggests that metalworkers were in any way 

detached from the community: metallurgy is developed in a productive area in close 

interaction with other crafts. 
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Furthermore, this productive context together with the necessity of ore procurement, 

convey a picture of communal and collaborative work in which the boundaries between 

different crafts are faint. In fact, craftspeople may have faced common technical problems, 

such as the control of heat, and social relationships may have allowed the transfer of skills 

and techniques from one production system to another (e.g. Sofaer, 2006). In the case of 

Las Pilas, this is exemplified by the manufacture of some crucibles which embody basketry, 

pottery and metallurgy – thus materialising social communication of knowledge and skills in 

contexts where co-operation is necessary. 

Our work has provided an example of high-resolution characterisation of the engineering 

parameters, scale, and efficiency of early metallurgy in Southeast Iberia, with inferences 

about context and craft organisation derived from the archaeological excavation. It is hoped 

that a proliferation of studies of this kind may facilitate more nuanced comparisons that 

may allow for a better grounded discussion of the possible existence, nature and direction 

of lines of knowledge transmission, both within specific regions and across larger spaces.  
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FIGURES 

 
Fig. 1. Location of the site in relation to the main mining districts in the area and other sites 

mentioned in the text.  

 
Fig. 2. Archaeological context in which most of the archaeometallurgical remains were 

found. On the right, details of the two combustion structures: top, the central fire and the 

complete crucible found in situ; below, the blowpipe nozzles found in situ.  
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Fig. 3. Some of the archaeometallurgical materials found in the site: a) stone hammer; b) 

and c) mills; d) ore fragments; e) blowpipe nozzles; f) thermally altered bricks on which 

blowing pipes were recovered; g) slag fragments; h) a complete crucible; i) crucible sherds; j) 

metal objects.  
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Fig. 4. Some of the mineral phases identified in ore samples. Ca-Duf: Calcio-Duftite; Chr: 

Chrysocolla; Co: Conichalcite; Cu-Ad: Cuprian Adamite; Dol: Dolomite; Gal: Galena; Mal: 

Malachite; Mus: Muscovite; Mw: Mawbyite; Ni-Ol: Nickel-Olivine; Pe: Perroutite; Wi: 

Willemite; Zn-Mal: Zn rich Malachite; Zn-Ol: Zincolivenite. 
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Fig. 5. Drawings of some of the blowpipe nozzles. Note the internal imprints of the nozzles.  

 

 

 
Fig. 6. Sherds of “vase-furnace” crucibles. Note the slag flowing over the rim of one sherd 

(top right) and through a crack of one broken crucible (bottom right).  
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Fig. 7. Top left: one crucible sherd of a ‘crucible furnace’ with basketry imprints of its 

manufacture in its outer surface. Bottom left: example of a Neolithic basket from Cueva de 

los Murciélagos (Albuñol, Granada) at the Spanish National Archaeological  Museum. Right: 

example of a pottery vessel with basketry imprints from the nearby site of Campos 

(Camalich Massieu and Martón Socas, 1999: fig. 12-8).  
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Fig. 8. Bulk and matrix compositions of technical and domestic ceramics compared to 

compositions of actual refractories shown in the ternary diagram FeO+Alkali and Alkaline 

Earths ̶ SiO2 ̶ Al2O.  
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Fig. 9. a) Common quartz and b) feldspar inclusions in fabric ceramics. Both pictures taken 

from bottom areas of crucibles with less vitrification. c) Slag flowing through a cracked 

crucible exposed to the very limit of its refractoriness. d), e) and f) High vitrification of 

ceramic fabrics and high interaction between slag and ceramic.  
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Fig. 10. Some of slag samples.  

 
Fig. 11. Bulk chemical composition of the slag fragments (black) and slag layers (red) shown 

in the ternary diagram Cu2O ̶ FeO+MgO+CaO ̶ SiO2+Al2O3. 
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Fig. 12. SEM-BSE image of slag fragments 5-8815 showing the formation of delafossite and 

magnetite under oxidising conditions.  

 

 

 
Fig. 13. a) Complex copper ore relict in sample 5-6918; b) Willemite relicts in sample 5-6606; 

c) Inclusion of calcite in sample 5-6912; d) Example of chalcocite relict in sample 5-6912. See 

Table 10 for SEM-EDS analyses.  
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Fig. 14. SEM-BSE image of sample 5-6912. Note how the dolomitic decomposition 

contributed to the formation of tabular crystals of calcium arsenates and euhedral magnesia 

silicates embedded in a mixture of CuAsZnPb oxides. See Table 11 for SEM-EDS results.  

 

 

 
Fig. 15. SEM-BSE image of samples a) 5-6933 and b) 5-6588. Spinels indicate a rather 

oxidising atmosphere. Globular copper and arsenical copper oxides as well as copper 

chloride possibly as a result of postdepositional oxidation. Note white halos surrounding 

globular copper oxide in sample 5-6933 (a) as a consequence of lead segregation.  
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Fig. 16. SEM-EDS images of most significant phases documented in slag samples. A) Unstable 

reducing conditions evidenced by the precipitation of metallic copper prills and the growth 

of dendritic cuprite in sample 5-6735. B) Finely disperse exsolution of cuprite and Zn-rich 

spinels embedded in the glassy matrix in sample 5-6974. Note a silver inclusion in the large 

arsenical copper prill. C) Arsenical copper prills bearing iron and Zn-rich spinels as results of 

redox conditions in sample 5-6608. D) Globular Zinc oxides, Zn-rich spinels and Mg-rich 

willemite in a glassy matrix in sample 5-6606. E) Cluster occurrence of these Mg-rich 

willemite crystals in sample 5-6816. F) Pyroxene and zinc oxide in a glassy matrix in sample 

6816. Note clustered dendritic growth of calcium arsenates. G) Zn-rich rhombohedric 

pyroxene and Mg-rich Willemite in glassy matrix in sample 5-6735. H) Acicular delafossite 

and crystals of Zn-rich delafossite in sample 5-6616.  

 

 

 
Fig. 17. A) SEM-BSE image of a large copper prill in sample 5-6735. B) Detail of the same prill 

under the optical microscope. Unetched sample. Note high porosity (black holes) and small 

round segregates of lead (indicated with white arrows). The dendritic microstructure shows 

α grains (orange) with 2.5% As growing from the inter-dendritic compound with up to 25% 

As and up to 1.6% Pb. General composition results in area analysis are 8.9% As and 0.6% Pb.  
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Fig. 18. Sample of a melting crucible. Note the inner whitish/yellowish layer. 
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Fig. 19. A) SEM-BSE image of the inner layer of sample 5-6727. B) Detail of the slag layer 

with the calcium arsenate compound (whitish) and the copper silicate (greyish). C) Melted 

area of sample 5-7166. All copper prills are heavily weathered. 
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TABLES 

Table 1. Conventional radiocarbon age and calibrated AMS results of the metallurgical phases (OxCal 4.2 software; Intcal13 calibration curve). 

Site Location Phase Laboratory Material Date BP Cal. BC 1σ (68.2% ) Cal. BC 2σ (95.4% ) C13/C12 

Las Pilas 
Mojácar, 

Almería 
5 

Beta – 

408051 

H. vulgare 

nudum 
4220± 30 

2894 – 2866 (34.5% ) 

2804 – 2762 (33.7% ) 

2905 – 2853 (42.8% ) 

2813 – 2743 (42.8% ) 

2727 – 2696 (9.9%) 

-21.5 o/oo 

Las Pilas 
Mojácar, 

Almería 
5 

Beta – 

408053 

H. vulgare 

nudum 
4210± 30 

2890 – 2864 (26.4%) 

2806 – 2760 (39.7% ) 

2716 – 2713 (2.1%) 

2900 – 2848 (33.3%) 

2814 – 2737 (47.7% ) 

2731 – 2679 (14.5%) 

-22.9 o/oo 

Las Pilas 
Mojácar, 

Almería 
5 

Beta – 

408054 

H. vulgare 

nudum 
4200± 30 

2886 – 2861 (20.0%) 

2808 – 2757 (40.5% ) 

2718 – 2706 (7.7%) 

2894 – 2841 (27.1%) 

2814 – 2678 (68.3% ) 
-22.7 o/oo 

Las Pilas 
Mojácar, 

Almería 
5 

Beta – 

408055 

H. vulgare 

nudum 
4120± 30 

2856 – 2811 (21.3%) 

2747 – 2724 (10.2%) 

2698 – 2624 (36.7% ) 

2866 – 2804 (25.1%) 

2777 – 2579 (70.3% ) 
-24.5 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta - 

403262 

Charcoal within 

slag 
4130 ± 30 

2858 - 2831 (13.5%) 

2821 - 2809 (5.5%) 

2753 - 2721 (15.3%) 

2702 - 2631 (33.9% ) 

2872 - 2798 (27.0%) 

2794 - 2786 (1.1%) 

2780 - 2617 (62.9% ) 

2610 - 2582 (4.5%) 

-21.9 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408061 

T. aestivum 

durum 
3980± 30 

2565 – 2526 (36.8% ) 

2496 – 2468 (31.4%) 
2578 – 2457 (95.4% ) -21.8 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408063 

T. aestivum 

durum 
3950± 30 

2562 – 2535 (14.6%) 

2492 – 2454 (38.4% ) 

2418 – 2407 (5.5%) 

2376 – 2351 (9.7%) 

2568 – 2521 (19.7%) 

2499 – 2346 (75.7% ) 
-22.9 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408062 

T. aestivum 

durum 
3880± 30 

2455 – 2418 (20.7%) 

2408 – 2336 (39.4% ) 

2323 – 2308 (8.2%) 

2467 – 2286 (94.2% ) 

2247 – 2236 (1.2%) 
-19.3 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408060 

T. aestivum 

durum 
3870± 30 

2454 – 2418 (18.0%) 

2407 – 2376 (16.9%) 

2350 – 2293 (33.3% ) 

2465 – 2278 (89.7% ) 

2251 – 2229 (4.3%) 

2220 – 2211 (1.4%) 

-21.4 o/oo 
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Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408064 

H. vulgare 

nudum 
3860± 30 

2454 – 2418 (14.8%) 

2406 – 2376 (14.8%) 

2350 – 2286 (38.6% ) 

2461 – 2276 (84.3% ) 

2254 – 2210 (11.1%) 
-19.9 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

408065 

T. aestivum 

durum 
3860± 30 

2454 – 2418 (14.8%) 

2406 – 2376 (14.8%) 

2350 – 2286 (38.6% ) 

2461 – 2276 (84.3% ) 

2254 – 2210 (11.1%) 
-20.9 o/oo 

Las Pilas 
Mojácar, 

Almería 
9 

Beta – 

403257 

Charcoal within 

slag 
3820± 30 

2299 - 2202 (68.2% ) 

 

2448 - 2446 (0.2%) 

2436 - 2420 (1.4%) 

2405 - 2378 (3.5%) 

2350 - 2193 (84.9% ) 

2176 - 2144 (5.3%) 

-21.6 o/oo 

Las Pilas 
Mojácar, 

Almería 
10 Ua -48819 

Charcoal within 

slag 
4155± 43 

2871-2837 (20.2%) 

2815-2799 (9.5%) 

2793-2785 (4.8%) 

2780-2673 (65.3% ) 

2882 - 2619 (98.6% ) -17.0 o/oo 
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Table 2. List of samples analysed. 

  Type Phase Sample ID OM SEM-EDS XRD ICP-MS 

Ore 7 5-8479 X X X X 

Ore 8 5-6726 X X X X 

Ore 9 5-6740   X X 

Ore 9 5-7706 X X X X 

Ore 9 5-6972 X X X X 

Ore 9 5-6491 X X X X 

Ore 9 5-6826 X X X  

Ore 9 5-6902 X X X  

Ore 9 5-6597 X X X  

Ore 9 5-7422 X X X  

Ore 9 5-6732 X X X  

Slag 5 5-8815 X X   

Slag 9 5-6816 X X   

Slag 9 5-6825 X X   

Slag 9 5-6855 X X   

Slag 9 5-6918 X X   

Slag 9 5-6912 X X   

Slag 9 5-6916 X X   

Slag 9 5-6933 X X   

Slag 9 5-6606 X X   

Slagged Crucible 9 5-6727 X X   

Slagged Crucible 9 5-7479 X X   

Slagged Crucible 9 5-6815 X X   

Slagged Crucible 9 5-6966 X X   

Slagged Crucible 9 5-6974 X X   

Slagged Crucible 9 5-6608 X X   

Slagged Crucible 9 5-6616 X X   

Slagged Crucible 9 5-6618 X X   

Slagged Crucible 9 5-6735 X X   

Blowing pipe nozzle 9 5-7250 X X   

Domestic Vessel  5-1158 X X   

Domestic Vessel  5-2312-1 X X   

Domestic Vessel  5-4128-2 X X   

Domestic Vessel  5-5007-2 X X   

Domestic Vessel  5-4145-19 X X   

Domestic Vessel  5-4087-2 X X   

Copper Awl 1 5-11454 X X   

Copper Lump 5 5-8862 X X   

Copper Awl 9 5-2997 X X   
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Table 3. Mineral phases identified in ore samples and technique of identification. Due to the 

complexity of the ores analysed, only the main phases were identified by XRD, while minor 

phases and inclusions were detected by SEM-EDS.  

ID 5-6491 5-6597 5-6726 5-6746 5-6826 5-6902 5-6972 5-7422 5-7706 5-8479 Tech. 

Azurite 

Cu3(CO3)2(OH)2 
X X X  X X X  X  

SEM-EDS, 

XRD 

Malachite 

Cu2(CO3)(OH)2 
X X X X  X X X X X 

SEM-EDS, 

XRD 

Zn-Malachite X X X      X  SEM-EDS 

Conichalcite 

CaCu(AsO4)(OH) 
      X X   SEM-EDS 

Olivenite 

Cu2(AsO4)(OH) 
     X     SEM-EDS 

Ni-Olivenite       X    SEM-EDS 
Zincolivenite 

CuZn(AsO4)(OH) 
X X X  X      SEM-EDS 

Cuprian Adamite 

(Zn,Cu)2AsO4OH 
X X X      X  

SEM-EDS, 

XRD 
Calcio-Duftite 

(Pb,Ca)CuAsO4(OH) 
        X  SEM-EDS 

As-Claraite 

(Cu, Zn)3(CO3)(OH)4 •4H2O 
X          SEM-EDS 

Chrysocolla 

(Cu,Al)2H2Si2O5(OH)4 

•nH2O 

 X     X X X  SEM-EDS 

Zn-Chrysocolla X X         SEM-EDS 
Willemite 

Zn2SiO4 
  X  X      SEM-EDS 

Smithsonite 

ZnCO3 
  X        SEM-EDS 

Zn-Mimetite 

Pb5(AsO4)3Cl 
  X        SEM-EDS 

Perroudite (Inclusions) 

Hg5Ag4S5(I,Br)2Cl2 
     X X   X SEM-EDS 

Galena (Inclusions) 

PbS 
 X X        SEM-EDS 

Cerusite (Inclusions) 

PbCO3 
X          SEM-EDS 

Mawbyite (Inclusions) 

PbFe3+
2 (AsO4)2(OH)2 

X          SEM-EDS 

Muscovite 

KAl2(AlSi3O10)(OH)2 
 X       X  SEM-EDS 

Dolomite 

CaMg(CO3)2 
  X   X  X X  

SEM-EDS, 

XRD 
Limonite 

FeO(OH) · nH2O 
 X   X   X  X 

SEM-EDS, 

XRD 
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Table 4. Q-ICP-MS results of ore samples.  

 
Na Mg Al P K Ca Sc Ti V Cr Fe Mn Co Ni Cu Zn As Rb Sr Y Ag Sb Ba Pb Bi 

ID ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

5-6726 60.58 7644 122.7 355.3 344 21950 0.143 2.379 74.51 2.183 4708 20.16 32.69 182.3 5.824 56070 41220 0.673 25890 2.31 5.451 27.76 541.9 29100 25.76 

5-6491 65.26 4681 493.7 806.8 374.6 2634 0.4881 6.66 100.5 3.778 13070 17.95 62.24 391.2 25.54 60520 70610 1.269 319.6 10.04 46.66 151.3 58.72 38290 90.37 

5-6740 65.82 3640 5001 333 2257 1443 4.163 79.14 23.22 5.879 7157 18.78 19.25 15.72 22.96 448.8 385.8 9.641 99.09 2.147 0.2895 1.823 14.8 342.80 0.85 

5-7706 54.42 46780 569.6 567.7 377 11860 0.895 9.234 55.12 2.906 2965 44.14 63.3 206.9 13.13 37820 43830 1.429 462.8 7.233 33.89 21.21 1426 15040 699.10 

5-6972 153.8 1984 1319 3461 668.6 5541 0.467 4.574 95.3 2.575 9409 183.6 4546 9731 23.84 4599 68290 1.509 498.2 2.331 310.3 60.77 117.2 538.90 783.10 

5-8479 39.39 1182 592.7 635.7 248.4 3506 0.4735 4.19 106 2.524 77310 109.4 408.3 760.5 28.26 912.7 4998 0.5987 107 3.373 273.2 441.1 7.513 209.70 121.00 

 

 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th U 

ID ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

5-6726 0.49 0.38   0.24                       86.11 

5-6491 2.80 2.01 0.50 1.81 0.43 0.16 0.45 0.12 0.46 0.15 0.38 0.10 0.36 0.11 0.19 103.90 

5-6740 2.96 4.65 0.85 3.31 0.64 0.21 0.54   0.45 0.09 0.28   0.26   0.94 20.22 

5-7706 2.66 3.36 0.61 2.61 0.61 0.29 0.70 0.11 0.73 0.15 0.45   0.38   0.37 437.50 

5-6972 1.69 3.01 0.34 1.30 0.33 0.10 0.49   0.43   0.22   0.22   0.39 127.00 

5-8479 1.64 3.27 0.37 1.47 0.36 0.08 0.44   0.40   0.24   0.21   0.15 10.02 
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Table 5. ‘Bulk’ ceramic compositions obtained by SEM-EDS analyses of large areas. Averages of up to 6 analyses per sample are reported. Data 

are in wt% and normalised, with oxygen added by stoichiometry. The low analytical totals in the technical ceramics are due to higher 

vitrification and porosity. Tr = Traces (below 0.5%). 

 

C
r
u

c
ib

le
s 

ID Na2O SD MgO SD Al2O3 SD SiO2 SD K2O SD CaO SD TiO2 SD FeO SD Total 

5-6974 0.8 0.1 1.1 0.1 20.6 0.6 63.6 1.4 3.8 0.1 1.1 0.0 0.9 0.1 8.1 0.3 59.8 

5-6618 0.8 0.3 1.4 0.1 22.1 1.6 60.6 2.2 3.9 0.4 0.9 0.4 1.0 0.1 9.3 0.2 65.0 

5-7479 0.7 0.0 1.6 0.0 16.5 0.3 70.3 0.0 2.6 0.1 1.1 0.1 0.7 0.1 6.5 0.3 53.1 

5-6608 0.8 0.1 1.5 0.1 24.0 0.3 57.5 1.4 4.8 0.6 1.3 0.5 tr  9.8 0.3 74.0 

5-6735 0.9 0.2 1.7 0.4 23.0 2.9 55.9 6.0 4.3 1.0 5.4 3.4 0.8 0.3 7.9 1.8 78.3 

5-6727 0.7 0.1 1.3 0.1 24.0 0.6 57.4 1.8 3.4 0.3 2.1 0.4 0.8 0.1 10.3 1.0 59.4 

5-6616 0.7 0.1 1.3 0.2 24.5 0.7 56.5 1.1 3.4 0.1 1.3 0.3 1.2 0.3 11.1 0.3 52.3 

5-6815 0.8 0.1 1.2 0.1 22.7 1.4 58.8 3.4 3.9 0.3 1.3 0.2 0.9 0.1 10.5 1.6 71.9 

Average 0.8 0.1 1.4 0.2 22.2 2.5 60.1 4.5 3.8 0.6 1.8 1.4 0.8 0.2 9.2 1.5 64.2 

Blowpipe 5-7250 0.9 0.3 0.9 0.0 21.0 1.8 62.0 2.5 4.6 0.5 1.1 0.4 0.9 0.1 8.7 0.4 59.3 

D
o

m
e
st

ic
 p

o
tt

e
r
y

 

C
o

a
r
se

 

5-5007-2 2.5 0.3 1.3 0.0 21.4 1.2 61.8 2.1 4.1 0.2 0.9 0.1 0.7 0.1 7.3 0.3 112.3 

5-4087-2 1.1 0.2 1.4 0.0 21.3 0.4 60.2 0.5 5.0 0.1 0.7 0.1 1.0 0.0 9.4 0.1 111.9 

5-1158 0.8 0.2 1.4 0.1 25.6 0.3 55.8 0.7 4.4 0.1 tr  0.9 0.1 10.7 0.8 90.6 

Average 1.5 0.7 1.4 0.0 22.8 2.0 59.3 2.5 4.5 0.4 0.7 0.2 0.9 0.1 9.1 1.4 104.9 

T
h

in
 

5-4145-19 0.7 0.1 2.1 0.0 18.4 0.0 62.7 0.6 3.5 0.1 5.0 0.8 0.7 0.0 7.0 0.2 105.5 

5-2312-1 1.1 0.0 2.4 0.0 22.2 1.2 59.7 1.5 4.6 0.4 1.3 0.1 0.9 0.0 7.9 0.1 112.5 

5-4128 0.9 0.0 1.3 0.1 21.0 0.8 60.3 0.6 5.3 0.2 1.2 0.3 0.7 0.1 9.3 0.4 105.6 

Average 0.9 0.2 1.9 0.5 20.5 1.6 60.9 1.3 1.5 0.7 2.5 1.8 0.8 0.1 8.1 0.9 107.9 
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Table 6. Matrix ceramics compositions obtained by SEM-EDS. Average of up to 6 analyses per sample are reported. Areas analysed were 

selected avoiding any inclusions. Data are normalised in wt% with oxygen added by stoichiometry. Tr = Traces (below 0.5%). 

C
r
u

c
ib

le
s 

ID Na2O SD MgO SD Al2O3 SD SiO2 SD K2O SD CaO SD TiO2 SD FeO SD Total 

5-6727 1.0 0.1 1.6 0.1 33.2 2.1 47.8 2.7 4.2 0.4 1.2 0.2 tr  10.6 0.1 95.4 

5-6974 1.2 0.2 1.0 0.2 35.3 3.6 47.9 0.6 5.7 0.1 0.8 0.2 0.6 0.6 7.5 2.0 101.9 

5-6618 1.2 0.1 1.2 0.2 35.9 0.8 45.7 2.8 5.9 0.3 1.5 0.3 tr  8.0 1.6 97.0 

5-6608 1.0 0.4 1.7 0.1 33.5 4.0 47.2 4.7 5.4 1.3 0.7 0.2 0.5 0.1 9.9 1.2 103.5 

5-6735 1.2 0.4 2.5 0.2 32.5 0.5 49.1 3.3 6.6 1.2 5.5 1.8 0.6 0.1 11.2 1.3 109.1 

5-7479 1.0 0.1 1.9 0.7 33.5 4.9 50.5 1.4 4.7 1.1 1.2 0.5 tr  6.8 2.3 107.1 

5-6616 0.9 0.1 1.3 0.3 34.8 0.6 47.7 0.6 4.3 0.1 1.3 0.1 0.5 0.1 9.2 0.9 94.7 

5-6815 1.0 0.1 1.5 0.2 32.8 0.8 45.8 1.5 4.9 0.2 0.9 0.2 tr  12.5 1.7 101.3 

Average 1.1 0.1 1.6 0.4 33.6 1.8 47.2 1.6 5.5 0.7 1.6 1.3 0.4 0.1 9.4 1.7 101.2 

Blowpipe 7250 1.6 0.2 1.4 0.2 33.0 0.6 45.5 1.5 5.4 0.3 0.9 1.4 0.6 0.2 11.5 1.2 96.5 

D
o

m
e
st

ic
 v

e
ss

e
ls

 

C
o

a
r
se

 5-5007-2 1.1 0.6 1.7 0.5 28.8 2.2 52.3 1.9 7.5 1.4 0.8 0.4 tr  7.7 1.5 88.4 

5-4087-2 1.7 1.2 1.3 0.2 28.4 2.9 51.9 0.8 5.3 0.7 0.7 0.1 tr  10.3 2.3 88.6 

5-1158 0.9 0.2 1.3 0.3 29.5 3.5 52.5 4.2 5.2 1.4 tr  tr  9.9 2.7 106.2 

Average 1.2 0.3 1.4 0.2 28.9 0.4 52.2 0.2 6.0 1.0 0.6 0.1 tr  9.3 1.1 94.4 

T
h

in
 

5-4145-19 1.0 0.2 1.2 0.0 34.9 0.2 50.3 0.2 8.5 0.4 tr  tr  3.9 0.3 99.7 

5-2312-1 0.7 0.0 2.2 0.8 30.6 4.0 50.4 1.1 8.4 1.0 0.9 0.6 tr  6.5 1.3 115.3 

5-4128 0.8 0.5 2.3 1.9 29.8 4.5 50.6 3.2 7.9 1.6 tr  tr  8.3 4.6 119.5 

Average 0.8 0.1 1.9 0.5 31.7 2.2 50.4 0.1 8.2 0.2 0.4 0.3 tr  6.2 1.8 111.5 
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Table 7. ‘Bulk’ slag compositions obtained by SEM-EDS. Average of up to 6 analyses per sample are reported. Areas analysed were selected 

trying to include all representative features and avoiding big inclusions and corroded zones. Data are normalised in wt% with oxygen added by 

stoichiometry. Low analytical totals are due to the presence of carbonates and porosity. Tr = Traces (below 0.5%). 

S
la

g
 F

r
a

g
m

e
n

ts
 

ID MgO  SD Al2O 3 SD 
SiO

2 
SD S SD Cl SD K2O  

S
D 

Ca
O  

SD TiO 2 SD FeO  SD CoO SD Ni2O 3 SD CuO  SD ZnO  SD As2O 3 
S
D 

Ba
O  

SD Ag2O SD PbO  SD 
Tota

l 

5-8815     4.4 
1.

0 
  1.0 0.2   1.0 0.3   47.7 5.3     41.7 3.2 0.5 0.4 3.2 

0.

1 
      73.4 

5-6855 0.6 0.6 tr  12.5 
2.
0 

1.8 0.5 tr    2.8 0.5   20.0 7.7     30.7 5.4 15.6 5.7 11.5 
2.
5 

    3.8 2.1 73.3 

5-6916     8.6 
6.
2 

1.0 0.8 2.6 1.8   2.4 0.4   14.1 9.9     37.5 9.0 10.6 2.1 11.9 
2.
0 

  0.7 0.6 10.5 1.5 82.6 

5-6825 5.7 1.7 6.6 4.9 22.5 
1.
1 

tr  0.7 0.1 0.5 0.4 7.7 2.9 0.5 0.3 12.3 4.3   0.8 0.1 27.7 4.1 5.6 0.3 7.8 
1.
8 

    1.3 0.4 85.4 

5-6933 tr  0.9 0.6 9.8 
3.
1 

1.6 0.7 2.3 0.8   3.4 0.8   11.0 3.1 0.8 0.8 1.9 1.5 34.2 0.9 13.1 6.7 14.4 
2.
2 

    6.0 2.1 73.7 

5-6606 3.2 0.8 1.5 0.3 15.6 
1.

9 
  0.8 0.2 0.1 0.1 5.6 0.9   8.7 1.4     6.0 1.4 46.2 1.4 5.3 

0.

6 
2.2 0.4   4.3 0.2 

102.

9 

5-6816 5.9 3.6 tr  12.6 
1.
8 

tr  0.8 0.6 0.1 0.1 10.6 2.3 tr  5.0 1.2     12.1 3.4 26.4 3.0 12.3 
1.
5 

    13.8 1.5 89.3 

5-6912 9.3 2.7   8.5 
2.
0 

0.5 0.7 1.4 0.4   11.3 2.9   3.1 1.1     22.6 3.3 18.1 3.0 21.4 
2.
5 

    3.7 0.5 84.9 

5-6918 2.0 0.1   7.9 
6.
2 

3.5 2.1 0.9 0.3   8.7 1.1   tr  10.2 1.8 3.0 0.5 30.2 0.2 3.6 0.1 29.4 
2.
7 

      88.8 

Average  3.0 3.1 1.1 2.0 11.4 
5.
0 

1.0 1.1 1.2 0.7   5.9 3.6   13.6 
13.
3 

    27.0 
11.
0 

15.5 13.2 13.0 
7.
6 

    4.8 4.4 
 

S
la

g
 l

a
y

e
r
s 

5-6608 2.4 1.0 2.6 1.4 16.0 
1.
7 

0.7 0.1 1.1 0.5 0.5 0.1 2.8 1.0   22.2 5.8     16.8 5.5 19.5 5.4 6.2 
1.
4 

    9.2 1.0 85.6 

5-6616 2.3 0.1 3.8 0.2 25.7 
3.
4 

  0.6 0.4 1.4 0.5 6.2 0.9 0.5 0.1 21.8 5.6   0.5 0.4 7.6 3.0 16.9 2.8 5.6 
2.
0 

    7.5 0.7 97.6 

5-6974 4.3 0.5 6.0 1.1 18.9 
4.
3 

    1.1 0.3 7.2 0.1 tr  13.7 2.7     13.2 1.0 16.9 1.5 13.0 
0.
7 

tr    5.0 0.5 95.0 

5-6815 2.8 0.4 5.0 1.3 36.2 
1.

8 
tr 

   
0.9 0.2 12.0 1.2 tr  13.7 1.5 

  
tr 

 
5.3 1.1 18.0 5.7 2.8 

0.

4 
0.5 0.6 

  
1.9 0.2 87.6 

5-6735 4.2 0.7 4.2 0.5 26.3 
3.
4 

    0.5 0.2 10.6 1.4 tr  9.2 0.9     5.5 3.0 25.5 3.7 4.6 
0.
3 

    9.2 0.7 102.2 

5-7479 2.8 3.0 3.8 0.8 25.0 
2.
9 

tr  tr  0.6 0.2 7.1 2.1   6.0 0.8     5.3 1.7 36.0 3.2 4.9 
1.
1 

    7.8 0.5 92.7 

5-6618
1
   1.8  16.9  0.9  0.9    9.4    4.0      6.1  35.4  8.4      16.3  80.2 

Average  2.7 1.3 3.9 1.3 23.6 
6.
5 

0.3  0.4 0.4 0.7 0.4 7.9 2.9   12.9 6.6     8.6 4.3 24.0 7.9 6.5 
3.
1 

    8.1 4.1  

1 Only one bulk analysis was performed on this sample due to its heavy corrosion. 
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Table 8. Matrix slag compositions obtained by SEM-EDS. Average of between 3-12 analyses per sample are reported. Areas analysed were 

selected avoiding any inclusions, crystals or prills. Data are normalised in wt% with oxygen added by stoichiometry. Tr = Traces (below 0.5%). 

S
la

g
 F

ra
g

m
en

ts
 

ID 
Na2

O  
Mg
O  

StD 
Al2O

3 
StD SiO 2 StD P2O 5 StD S StD K2O  StD CaO  StD 

TiO
2 

St
D 

MnO  FeO  
St
D 

Ni2O 3 
St
D 

CuO  StD ZnO  StD As2O 3 StD 
Ba
O  

StD PbO  StD Total 

5-6606 
 

3.5 1.7 2.3 1.5 25.7 4.1 0.5 0.4   
1.0 0.5 16.6 3.7 tr   6.4 2.8   

1.0 0.6 17.7 5.3 9.9 1.9 6.2 6.3 9.2 3.2 101.0 

5-6816 
     

16.7 1.5   
1.3 0.1 tr 

 
12.8 4.7 tr 

  
4.7 2.1   

5.3 2.2 16.1 3.1 17.0 1.9 0.8 0.3 24.9 2.4 80.2 

5-6825 tr 8.7 0.6 8.1 4.2 26.5 7.0 
    

1.7 0.2 24.1 8.0 1.2 0.1 
 

12.9 8.8 0.5 0.7 3.1 0.7 4.3 1.0 8.1 2.4 
  

tr 
 

101.1 

Average  
 

4.1 4.4 3.4 4.2 23.0 5.4 
    

1.3 
 

17.8 5.7    8.0 4.4 
  

3.1 2.1 12.7 7.3 11.7 4.7 2.3 3.4 11.5 12.5 
 

S
la

g
 L

ay
er

s 

5-6974 
 

4.5 0.4 3.8 1.5 24.9 2.5     
1.3 0.3 10.0 0.8 0.5 0.2  5.9 1.5   

11.5 3.1 15.1 0.1 16.5 2.9   
6.0 0.9 97.5 

5-6618 
 

tr 
 

5.9 0.9 28.5 2.3   
0.9 0.6 1.7 0.3 8.8 2.1 tr   5.2 0.5   

tr 
 

16.9 2.2 7.1 2.2   
24.3 2.6 92.3 

5-6815 
 

3.0 1.7 6.9 0.7 35.0 2.0 0.7 0.8 tr  3.1 1.6 11.1 1.6 0.8 0.4 
 

17.5 2.1 
    

14.7 1.8 2.4 2.2 1.4 1.9 3.1 1.4 98.7 

5-7479 
 

1.6 1.4 6.8 3.4 32.4 5.9   
tr  1.4 0.5 11.5 4.6 tr   7.5 0.7   

4.1 2.3 18.5 4.1 5.6 3.2   
9.9 2.4 95.7 

5-6608 tr 2.0 1.0 4.3 1.8 30.5 7.1 tr    2.1 0.8 9.7 3.8 tr  tr 5.2 2.7   
1.9 0.9 14.6 6.6 6.4 3.7 0.7 1.0 21.9 9.3 101.3 

5-6735 
 

2.3 0.3 3.5 1.0 25.2 4.9 tr    1.4 0.3 9.1 1.3 tr   5.5 1.7   
5.5 3.8 14.4 2.9 9.7 1.7 1.4 1.4 21.5 6.6 101.3 

5-6616 tr 2.1 0.5 4.9 1.9 29.7 5.8 tr  tr  1.7 0.7 9.6 2.8 
   

7.5 2.3 
  

5.3 4.9 15.3 4.4 7.9 1.7 0.5 0.7 14.4 4.8 101.4 

Average  
 

2.2 1.3 5.1 1.3 29.5 3.4     1.8 0.6 10.0 0.9 0.6   7.8 4.1 
  

4.1 3.7 15.6 1.4 8.0 4.1 0.6 0.6 14.4 7.8 
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Table 9. Mineralogical phases identified in slag samples by SEM-EDS. Complex CuAsZnPb, CuAsZn or CuAsZnCo oxides are present in 

samples with *.  

 

 

 

 

 

S
la

g
 F

r
a

g
m

e
n

ts
 

ID CuO ZnO PbO Delafossite Spinel Mg/Fe-rich Willemite Pyroxene Melilite Olivine Ca-Arsenates Sulphide Glass  

5-8815 X   X X           

5-6918* X          X  

5-6855* X  X   X     X   

5-6912* X      X  X X X   

5-6916* X          X   

5-6933* X  X  X         

5-6606 X X   X X       X 

5-6825 X    X        X 

5-6816 X X   X X X   X  X 

S
la

g
 l

a
y

e
r
s 

5-6608 X    X X X     X 

5-6735 X     X X X    X 

5-7479 X X    X X     X 

5-6815 X    X   X   X X 

5-6618 X X    X  X    X 

5-6974 X    X      X X 

5-6616 X   X X X X     X 
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Table 10. Composition of mineral relicts in slag samples shown in Figure 13 obtained by SEM-EDS. Area analyses as large as possible trying to 

avoid large voids. Oxygen added by stoichiometry in 13a-c; sulphur and chlorine reported as elements. Data in wt%. Analytical totals of 7a and 

7c are very low due to carbon not being measured and high porosity, these results are therefore not normalised to 100%. 

ID Fig. MgO Al2O 3 SiO2 S  Cl K2O  CaO MnO FeO CoO Ni2O 3 CuO ZnO As2O3 Total 

5-6918 13a 2.9 3.1 23.7 3.4 0.8 0.7 20.8 0.5 5.3 1.6 1.2 22.2 1.1 12.6 66.6 

5-6606 13b   26.4          73.6  96.0 

5-6912 13c 4.5 0.6 2.5 0.9   45.6      1.1  55.4 

 

ID Fig. S  CuO Ag Total 

5-6916 13d 33.8 62.7 1.5 102.5 

 

 

 

Table 11. Composition of phases indicated in Fig. 14 obtained by SEM-EDS. Oxygen has been added by stoichiometry. Data are normalised and analytical 

totals given. Tr = Traces (below 0.5%). 

Spectrum ID Phase  MgO  SiO 2 K2O  CaO  FeO  CuO  ZnO  As2O 3 PbO  Total 

9c 1 5-6912 Mg silicates 42.5 30.6  1.9 1.1 2.6 12.5 8.9  104.2 

9c 2 5-6912 Calcium arsenates 3.4 1.2  37.2  4.4 1.9 47.5 1.5 97.4 

9c 3 5-6912 Complex oxide 1.0  tr 4.2 1.7 34.2 12.3 20.4 25.3 97.12 

 

 

 

 

 



56 
 

Table 12. Composition of phases indicated in Fig. 15 obtained by SEM-EDS with oxygen added by stoichiometry. Data are normalised. Tr = Traces (below 

0.5%). 

 Spectrum ID Phase  MgO  SiO 2 P2O 5 K2O  CaO  FeO  Ni2O 3 CuO  ZnO  As2O3 AgO  PbO  Total 

15a 5-6933 FeZn Spinel  2.3    59.4 0.8 1.6 34.3 1.4  2.1 93.1 

15b 1 5-6588 Fe rich Willemite 1.8 27.0    5.3  0.5 64.4    99.4 

15b 2 5-6588   1.4  0.6 2.5 1.8  16.2 31.3 38.7 1.6 5.9 92.3 

15b 3 5-6588   1.3  tr 2.6 3.8  11.8 20.5 25.0  40.0 90.3 

15b 4     5-6588 Cuprian Adamite   1     3.1 59.5 36.4   89.1 

15b 5 5-6588   1.3 tr  0.5 1.2  30.8 30.2 33.8  1.9 88.6 

 

 

Table 13. Compositions of copper prills in slag samples obtained by SEM-EDS. Average analyses of between 4-20 prills per sample are 

reported. Data are normalised in wt% as elements. Analytical totals given. Tr = Traces (below 0.5%). 

 ID O SD S Fe SD Co SD Ni SD Cu SD Zn SD As SD Ag SD Sb SD Pb SD Total 

S
la

g
 F

ra
g
m

en
ts

 5-6606 0.5 0.3  1.4 1.1     80.0 10.1 tr  17.4 9.5 tr    tr  104.1 

5-6816 tr   tr      97.4 7.4   1.0 0.3 0.6 0.5   0.5 0.5 92.3 

5-6912 0.6 0.1        98.2 1.2     1.2 0.2     106.3 

5-6825 0.7 0.0  1.3 0.3     93.7 0.6   4.3 0.2       102.7 

Average 0.5 0.1  0.7 0.8     93.5 9.0   5.7 8.0 0.5 0.5   0.2 0.3  

S
la

g
 l
a
y
er

s 

5-6974 0.6 0.2  0.9 0.5     95.5 3.6   2.7 1.8 tr      97.6 

5-6618 1.0 1.3  tr      69.7 1.2 0.8 1.1 28.3 5.5       96.1 

5-7479 1.1 0.6 tr tr    tr  81.7 6.0 tr  15.4 5.2 tr    1.1 1.2 97.4 

5-6815 0.8 0.2 tr 1.7 1.0 4.3 3.0 6.2 4.9 52.9 21.2 0.5 0.8 28.2 7.7   0.7 0.0 3.9 2.8 99.6 

5-6608 tr   1.4 1.1   tr  83.3 8.7 tr  14.8 7.0       105.6 

5-6735 0.9 0.2  0.5 0.5     87.3 18.5 0.5 0.7 10.1 10.9 0.5 1.1   tr  96.4 

5-6616 1.1 0.5  2.3 1.0     95.7 0.4 tr  tr      tr  102.3 

Average 0.8 0.3  1.1 0.8   0.9 2.3 80.9 15.2 tr  14.2 11.1 tr    0.8 1.4  
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Table 14. Composition of metal objects obtained by SEM-EDS. Average of between 4-7 area analyses per sample are reported. Data are 

normalised in wt% as elements.  

Sample ID Technique Cu% As% Total 
Sb 

Inclusions 
Ag 

Inclusions 
Bi 

Inclusions 

Copper lump 5-8862 SEM-EDS 97.7 2.3 97.2 X X X 

Copper burin 5-2997 SEM-EDS 98.9 1.1 101.4 X X X 

Copper Awl 5-11454 SEM-EDS 98.9 1.0 103.1 X  X 

Copper Average   98.5 1.5     
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Table 15. Cu/As proportions in ores, prills and objects re-normalised to 100%. 

Sample ID Technique Cu% As% Ratio 

Ore 5-6726 ICP-MS 58.55 41.44 1.4/1 

Ore 5-6491 ICP-MS 78.34 21.65 3.6/1 

Ore 5-6740 ICP-MS 99.87 0.16  

Ore 5-7706 ICP-MS 74.97 25.02 3/1 

Ore 5-6972 ICP-MS 77.73 22.26 3.5/1 

Ore 5-8479 ICP-MS 98.29 1.73 56.8/1 

Ore Average   81.3 18.7 4.3/1 

Prills 5-6606 SEM-EDS 82.1 17.8 4.6/1 

Prills 5-6816 SEM-EDS 99.0 1.0  

Prills 5-6912 SEM-EDS 100 nd  

Prills 5-6825 SEM-EDS 95.6 4.4 15/1 

Prills 5-6974 SEM-EDS 97.2 2.7 36/1 

Prills 5-6618 SEM-EDS 71.1 28.9 2.4/1 

Prills 5-7479 SEM-EDS 84.1 15.8 5.3/1 

Prills 5-6815 SEM-EDS 65.2 34.7 1.8/1 

Prills 5-6608 SEM-EDS 84.9 15.0 5.6/1 

Prills 5-6735 SEM-EDS 89.6 10.4 8.6/1 

Prills 5-6616 SEM-EDS 100 tr  

Prills 
Average 

  88.0 11.9 7.3/1 

Copper lump 5-8862 SEM-EDS 97.7 2.3 42/1 

Copper Awl 5-2997 SEM-EDS 98.9 1.1 90/1 

Copper Awl 5-11454 SEM-EDS 98.9 1.1 90/1 

Copper 
Average   98.5 1.5 66/1 
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Supplementary Material 1. 

 

Analytical procedures of trace elements analyses by ICP-MS at the 

University of the Basque Country (UPV). 

 

Trace element analysis of ore samples were done at the Geochronology and Geochemistry 

SgIker-Facility of the University of the Basque Country UPV/EHU (Spain).  

Reagent was concentrated HNO3 Merck Pro-Analysi further distilled in the laboratory by 

surface distillation using an Acidest quartz distiller. Deionized water was obtained using a 

Millipore Elix device and polished to obtain a resistivity ≥ 18 M Ohm cm with a Barnstead 

EasyPure system. Rh solution, used as internal standard, and multielemental solutions for the 

initial tuning and calibration of the mass spectrometer, and for quality control (QC) of the 

results were prepared from 1000 ppm Merck multi-element standard solutions for ICP, 

stabilized in HNO3 2 to 6 %.  

Internal standard was added by means of an automatic online addition kit in order to prevent 

random errors. Weighing to 0.1 mg precision was done with an electronic balance GRAM SV 

205-A. The solution resulting of sequential multistep acid attack in Savillex PFA vessels and 

evaporation on heating plate was gravimetrically diluted to a factor adequate for the analysis. 

The elemental concentration was determined using a Thermo XSeries 2 inductively coupled 

plasma mass spectrometer (ICP-MS) equipped with collision cell (CCT), an interphase 

specific for elevated total dissolved solids (Xt cones) and shielded torch. A concentric 

nebulizer and quartz expansion chamber were employed. Further details on the instrumental 

method are given in García de Madinabeitia et al. (2008).  

The recoveries in % for the QC solutions are given in the Table of results. Error estimation 

for each element is established using the error propagation equation of Miller and Miller 

(2010). Uncertainty of the results corresponds to a 95 % confidence level. 
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García de Madinabeitia, S.; Sánchez Lorda, M.E.; Gil Ibarguchi, J.I. (2008): Simultaneous 

determination of major to ultratrace elements in geological samples by fusion-dissolution and 

inductively coupled plasma mass spectrometry techniques. Analytica Chimica Acta, 625(2): 

117-130. 
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Chemistry. Pearson Education Limited, Prentice-Hall. 
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Supplementary Material 2. 

Chemical formulas of mineralogical phases documented in slags. 

 

 Cuprite CuO 

 Chalcocite Cu2S 

 Willemite Zn2SiO4 

 Olivenite Cu₂AsO₄OH. 

 Delafossite CuFeO2 

Spinel Group 

Magnetite Fe2+Fe3+2O4 

Franklinite 
(Zn,Mn2+, 

Fe2+)(Fe3+,Mn3+)2O4, 

Hercynite Fe2+Al2O4 

Spinels MgAl2O4 

Olivine 
Monticellite CaMgSiO4 

Kirschsteinite CaFeSiO4 

Melilite 
Hardysonite Ca2ZnSi2O7 

Fe-Rich Diopsides CaMgSi2O6 

 Pyroxene Mg2Si2O6 

 

 

 




