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Abstract

We introduce a two-player nonlocal game, called the (G,H)-isomorphism game, where clas-
sical players can win with certainty if and only if the graphs G and H are isomorphic. We
then define the notions of quantum and non-signalling isomorphism, by considering perfect
quantum and non-signalling strategies for the (G,H)-isomorphism game, respectively. In the
quantum case, we consider both the tensor product and commuting frameworks for nonlocal
games. We prove that non-signalling isomorphism coincides with the well-studied notion of
fractional isomorphism, thus giving the latter an operational interpretation. Second, we show
that, in the tensor product framework, quantum isomorphism is equivalent to the feasibility of
two polynomial systems in non-commuting variables, obtained by relaxing the standard integer
programming formulations for graph isomorphism to Hermitian variables. On the basis of this
correspondence, we show that quantum isomorphic graphs are necessarily cospectral. Finally,
we provide a construction for reducing linear binary constraint system games to isomorphism
games. This allows us to produce quantum isomorphic graphs that are nevertheless not isomor-
phic. Furthermore, it allows us to show that our two notions of quantum isomorphism, from
the tensor product and commuting frameworks, are in fact distinct relations, and that the latter
is undecidable. Our construction is related to the FGLSS reduction from inapproximability
literature, as well as the CFI construction.

1 Introduction

Given graphs G and H, an isomorphism from G to H is a bijection ϕ : V (G) → V (H) such that
ϕ(g) is adjacent to ϕ(g′) if and only if g is adjacent to g′. When such an isomorphism exists, we
say that G and H are isomorphic and write G ∼= H. The notion of isomorphism is central to a
broad area of mathematical research encompassing algebraic and structural graph theory, but also
combinatorial optimization, parameterized complexity, and logic. The graph isomorphism (GI)
problem consists of deciding whether two graphs are isomorphic. It is a question with fundamental
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practical interest due to the number of problems that can be reduced to it. Additionally, the GI
problem has a central role in theoretical computer science as it is one of the few naturally defined
problems in NP which is not known to be polynomial-time solvable or NP-complete. While there
is a deterministic quasipolynomial algorithm for the GI problem [5], regardless of its worst case
behavior, the problem can be solved with reasonable efficiency in practice (e.g. see [18]). In relation
to the context of this paper, it is valuable to notice that the discussion around graph isomorphism
has branched into the analysis of many equivalence relations that form hierarchical structures.
Prominent instances are, for example, cospectrality, fractional isomorphism, etc. [4, 13, 31].

We remark here that, though we will touch on algorithmic aspects of the relations we define,
this is not a paper about algorithms, and we make no claims that this work is useful for developing
algorithms for the graph isomorphism problem. This work is concerned with theoretical aspects of
some new and old relaxations of graph isomorphism.

Integer programming formulations. As is the case for all constraint satisfaction problems, the
GI problem can be formulated as an integer programming problem. Our next goal is to give two of
these formulations as they are relevant to this work. The first one is an integer quadratic program
(IQP) and the second one an integer linear program (ILP). We note that several recent develop-
ments concerning the graph isomorphism problem are based on hierarchies of linear programming
relaxations of the ILP formulation for the GI problem we give below (e.g. see [3, 14]).

Consider two graphs G and H with adjacency matrices AG and AH respectively. Recall that
the adjacency matrix, AG, of a graph G is a symmetric matrix whose rows and columns are indexed
by V (G), and such that Agg′ = 1 if g is adjacent to g′, and Agg′ = 0, otherwise. Throughout this
work we will only consider undirected loopless simple graphs. In the IQP below, and throughout
this work, we will use rel(g, g′) to denote the relationship of g and g′, i.e., whether they are equal,
adjacent, or distinct and non-adjacent. It is easy to verify that G ∼= H if and only if there exist
real scalar variables xgh for all g ∈ V (G), h ∈ V (H) such that following IQP is feasible:

(IQP)

x2gh = xgh, for all g ∈ V (G), h ∈ V (H);∑
h′∈V (H)

xgh′ =
∑

g′∈V (G)

xg′h = 1, for all g ∈ V (G), h ∈ V (H);

xghxg′h′ = 0, if rel(g, g′) 6= rel(h, h′).

The second integer programming formulation for the GI problem is based on permutation ma-
trices, i.e., square 01-matrices with a single 1 in every row and column. Again, it is straightforward
to verify that G ∼= H if and only if there exists an n × n permutation matrix P = (pij) such that
PTAGP = AH , or equivalently when the following ILP is feasible:

(ILP)

p2ij = pij , for all i, j ∈ [n];
n∑

`=1

p`j =
n∑

k=1

pik = 1, for all i, j ∈ [n];

AGP = PAH , where P = (pij).

By the Birkhoff-von Neumann theorem, the convex hull of the set of n×n permutation matrices
is equal to the set of n×n doubly stochastic matrices, i.e., entrywise nonnegative matrices where the
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sum of the entries in each row and column is equal to 1. This naturally suggests the following linear
relaxation of the GI problem. We say that G and H are fractional isomorphic, and write G ∼=f H,
if there exists a doubly stochastic matrix D such that AGD = DAH . This defines an equivalence
relation on graphs that has been studied in detail and characterized in multiple ways [27].

Matrix relaxations. In this work we focus on two natural matrix relaxations of (IQP) and (ILP).
First, we consider (IQP), where we relax the scalar variables xgh to d×d Hermitian indeterminates
Xgh. This leads to the following quadratic polynomial system in Hermitian variables:

(IQPd)

X2
gh = Xgh, for all g ∈ V (G), h ∈ V (H);∑

h′∈V (H)

Xgh′ =
∑

g′∈V (G)

= Xg′h = Id, for all g ∈ V (G), h ∈ V (H);

XghXg′h′ = 0, if rel(g, g′) 6= rel(h, h′).

Note that by definition, every family of matrices {Xgh}g,h which is feasible for (IQPd) satisfies

X2
gh = Xgh = X†gh and thus each matrix is an orthogonal projector.

For the matrix relaxation of (ILP), we replace the permutation matrix P with a block matrix
P = [[Pij ]] where each block Pij is a d × d orthogonal projector. Thus we consider the following
program in Hermitian d× d indeterminates Pij :

(ILPd)

P 2
ij = Pij , for all i, j ∈ [n];

n∑
`=1

P`j =

n∑
k=1

Pik = Id, for all i, j ∈ [n];

(AG ⊗ Id)P = P(AH ⊗ Id), where P = [[Pij ]].

Note that for d = 1 the matrix P is exactly a permutation matrix.
As we will see in Section 5, the system (IQPd) is feasible if and only if (ILPd) is feasible. Thus

the feasibility of (IQPd) (or equivalently (ILPd)) corresponds to a “robust” relaxation of the notion
of graph isomorphism which we call quantum isomorphism (see Definition 1.1).

Although the term “quantum isomorphism” might seem unmotivated at this point, as we will
see in the next section, feasibility of (IQPd) corresponds to a relaxation of graph isomorphism based
on the existence of winning quantum strategies for a certain type of game. The relaxation makes
use of the mathematical formalism of quantum theory and its definition requires physical resources
available in quantum mechanics (see Theorem 2).

1.1 Nonlocal games

A two-party nonlocal game includes a verifier and two players, Alice and Bob, that devise a coop-
erative strategy. The game is defined in terms of finite input sets XA, XB and finite output sets
YA, YB for Alice and Bob respectively, a Boolean predicate V : XA ×XB × YA × YB → {0, 1} and
a distribution π on XA ×XB.

In the game, the verifier samples a pair (xA, xB) ∈ XA × XB using the distribution π and
sends xA ∈ XA to Alice and xB ∈ XB to Bob. The players respond with yA ∈ YA and yB ∈ YB
respectively. We say the players win the game if V (xA, xB, yA, yB) = 1.
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The goal of Alice and Bob is to maximize their winning probability. In the setting of nonlocal
games, the players are allowed to agree on a strategy beforehand, but they cannot communicate
after they receive their questions. The parties only play one round of this game, but we will be
concerned with strategies that win with certainty, i.e., probability equal to 1. We will refer to such
a strategy as a winning or perfect strategy. Lastly, note that as we only consider perfect strategies
we may assume without loss of generality that the distribution π has full support.

Strategies for nonlocal games. A deterministic classical strategy for a nonlocal game is one
in which Alice’s response is determined by her input, and similarly for Bob. In a general clas-
sical strategy, the players may use shared randomness to determine their responses. They may
also use local randomness, but this can be incorporated into the shared randomness without loss
of generality.

In this paper we focus on another family of strategies where the players are allowed to use
quantum resources to determine their answers. Specifically, a quantum strategy for a nonlocal
game allows the players to determine their answers by performing joint measurements on a shared
quantum state. A driving force behind the emerging field of quantum computing is that quantum
nonlocal effects can lead to advantages for various distributed tasks, e.g. see [7]. We will introduce
the mathematical formalism of quantum strategies for nonlocal games in Section 3.2.

In Section 3.3, we consider the family of strategies satisfying the non-signalling constraints (see
Equation (8)). Intuitively, the non-signalling property says that Alice’s local marginal distributions
are independent of Bob’s choice of measurement and, symmetrically, Bob’s local marginal distribu-
tions are independent of Alice’s choice of measurement. Thus, Alice cannot obtain any information
about Bob’s input based on her input and output, and vice versa. This is the most general class of
strategies we consider in this work.

For any of the above classes of strategies, the typical goal is to determine the maximum (or supre-
mum) probability of winning a given nonlocal game. This is known as the classical/quantum/non-
signalling value of the game.

The (G,H)-isomorphism game. Given two graphs G and H, we now define a nonlocal game
which we call the (G,H)-isomorphism game, with the intent of capturing and extending the notion
of graph isomorphism. The (G,H)-isomorphism game is played as follows: The verifier selects
uniformly at random a pair of vertices xA, xB ∈ V (G)∪V (H) and sends xA to Alice and xB to Bob
respectively. The players respond with vertices yA, yB ∈ V (G) ∪ V (H). Throughout, we assume
that V (G) and V (H) are disjoint so that players know which graph their vertex is from.

The first winning condition is that each player must respond with a vertex from the graph that
the vertex they received was not from. In other words we require that:

(1) xA ∈ V (G)⇔ yA ∈ V (H) and xB ∈ V (G)⇔ yB ∈ V (H).

If condition (1) is not met, the players lose. Assuming (1) holds we define gA to be the unique
vertex of G among xA and yA, and we define gB, hA, and hB similarly. In order to win, the answers
of the players must also satisfy the following conditions:

(2) rel(gA, gB) = rel(hA, hB),

In other words, if Alice and Bob are given the same vertex, then they must respond with the same
vertex. If they receive (non-)adjacent vertices they must return (non-)adjacent vertices. Also,
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assuming that Alice receives gA and Bob hB, if Alice outputs hA = hB then in order to win we
require that Bob returns gB = gA. Note that we do not explicitly require that G and H have the
same number of vertices.

1.2 Contributions

In this work we use the (G,H)-isomorphism game in order to capture and extend the notion of
graph isomorphism. First, we show that there exists a perfect classical strategy for the (G,H)-
isomorphism game if and only if G and H are indeed isomorphic graphs. This suggests that by
considering perfect quantum and non-signalling strategies for the (G,H)-isomorphism game we
may define the notions of quantum and non-signalling isomorphisms of graphs. Note that we
will actually consider two different classes of quantum strategies: those from the tensor product
framework of joint measurements and those from the commuting operator framework. However, we
will mainly focus on the former class, and when we refer to quantum strategies we will be referring
to these. We will use “quantum commuting strategies” to refer to the latter class of strategies.
The detailed formalism of quantum strategies will be given in Section 2, and quantum commuting
strategies will be introduced in Section 5.4.

Definition 1.1. We say that two graphs G and H are quantum isomorphic/ quantum commuting
isomorphic/ non-signalling isomorphic, and write G ∼=q H / G ∼=qc H / G ∼=ns H, whenever there
exists a perfect quantum/quantum commuting/non-signalling strategy for the (G,H)-isomorphism
game.

This idea of associating a nonlocal game to a constraint satisfaction problem corresponding to a
certain graph property and studying its quantum and non-signalling value is not new. This was first
done for the chromatic number of a graph in [9] and generalized to graph homomorphisms in [15].

Since every classical strategy can be trivially considered as a quantum strategy and any quantum
strategy is necessarily non-signalling (see Equation (7)), we have that

G ∼= H ⇒ G ∼=q H ⇒ G ∼=ns H.

As we will see, neither of these implications can be reversed.
In Section 4 we focus on non-signalling isomorphism. Based on a result of Ramana, Scheinerman,

and Ullman [27] which relates fractional isomorphism to the existence of a common equitable
partition, in Theorem 4.5 we show the following:

Result 1. For any graphs G and H we have that G ∼=f H if and only if G ∼=ns H.

It is worth noting that there is a polynomial time algorithm for determining if two graphs are
fractionally isomorphic [27]. Combined with Result 1 this implies that non-signalling isomorphism
is also polynomial-time decidable. Furthermore, it is known that fractional isomorphism distin-
guishes almost all graphs [6], and so it follows that the same holds for non-signalling and quantum
isomorphism, since the latter is a more restrictive relation.

In Section 5 we focus on quantum isomorphism. We show that perfect quantum strategies for the
isomorphism game must take a special form. This allows us to reformulate quantum isomorphism
in terms of the existence of a set of projectors satisfying certain orthogonality constraints. Based
on this we can show the following:
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Result 2. For any two graphs G,H the following are equivalent:

(i) G ∼=q H;

(ii) The system (IQPd) is feasible for some d ∈ N;

(iii) The system (ILPd) is feasible for some d ∈ N.

Specifically, we prove the equivalence (i)⇔ (ii) in Theorem 5.4 and (i)⇔ (iii) in Theorem 5.8.
As a consequence of Result 2 (iii) it follows that quantum isomorphic graphs must be cospectral with
cospectral complements. This allows us to conclude that quantum and non-signalling isomorphism
are different relations, since there are many examples of graphs that are fractionally isomorphic
but not cospectral (e.g. any pair of r-regular graphs is fractionally isomorphic).

Lastly, in Section 6 we consider the question of whether isomorphism and quantum isomorphism
are different relations. In Theorem 6.4 we show that they are indeed distinct notions:

Result 3. There exist graphs that are quantum isomorphic but not isomorphic.

The main ingredient in the proof of Result 3 is a reduction from linear binary constraint system
(BCS) games, introduced by Cleve and Mittal [11], to isomorphism games. Specifically, we show
that a linear BCS game has a perfect classical (quantum) strategy if and only if a pair of graphs
constructed from the BCS are (quantum) isomorphic. Since there exist linear BCS games that
have perfect quantum strategies but no perfect classical strategies, this allows us to produce pairs
of graphs that are quantum isomorphic but not isomorphic. The smallest example of such a pair
we are able to construct uses the Mermin magic square game, which produces two graphs on 24
vertices each that are quantum isomorphic but not isomorphic (see Figures 1 and 2).

The same reduction as above can be used in the quantum commuting case, and thus we obtain
that a given linear BCS game has a perfect quantum commuting strategy if and only if the corre-
sponding pair of graphs are quantum commuting isomorphic. Using this reduction and two recent
results of Slofstra [29], we are able to prove the following:

Result 4. There exist graphs that are quantum commuting isomorphic but not quantum isomorphic.
Furthermore, determining if two graphs are quantum commuting isomorphic is undecidable.

It will also follow from the above that quantum commuting isomorphism and non-signalling
isomorphism are distinct relations, since the latter is polynomial time decidable by its equivalence
with fractional isomorphism.

2 Preliminaries

Linear algebra. The standard basis of Cd is denoted by {ei : i ∈ [d]}, where [d] := {1, . . . , d}.
For a matrix X ∈ Cd×d we denote by X† its conjugate transpose and by XT its transpose. We
denote the set of d × d Hermitian operators by Hd. Throughout this work we equip Hd with the
Hilbert-Schmidt inner product 〈X,Y 〉 = Tr(X†Y ). A matrix X ∈ Hd is called positive semidefinite
(psd) if ψ†Xψ ≥ 0 for all ψ ∈ Cd. The set of d× d psd matrices is denoted by Hd

+. We use the fact
that for two psd matrices X,Y ∈ Hd

+ we have that XY = 0 if and only if 〈X,Y 〉 = 0.
A matrix E is called an (orthogonal) projector if it satisfies E = E† = E2. We typically omit

the term “orthogonal” because we will often refer to two projectors E and F being orthogonal (to
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each other) whenever they satisfy EF = 0. We use the fact that for any family of projectors {Ei}i
satisfying

∑
iEi = I we have that EiEj = 0, for all i 6= j.

We denote by Mn(d) the set of n× n block matrices whose blocks are matrices in Hd. For any
family of matrices {Eij}ni,j=1 ⊆ Hd we denote by [[Eij ]] the element of Mn(d) whose (i, j)-block is
equal to Eij . The (i, j)-block of a matrix P ∈Mn(d) is denoted by Pi,j .

Quantum mechanics. In this section we briefly review some basic concepts from the theory of
quantum information. For additional details we refer the reader to [21] and references therein.

To any quantum system one can associate a Hilbert space Cd. The state of the system is
described by a unit vector ψ ∈ Cd. Note that states that can be described in this way are actually
known as pure states, and more generally the state of a quantum system is described by a Hermitian
positive semidefinite matrix with trace equal to one. However, for quantum strategies for nonlocal
games it suffices to consider only pure states, so we restrict our attention to this case.

One can obtain classical information from a quantum system by measuring it. For the purposes
of this paper, the most relevant mathematical formalism of the concept of measurement is given
by a Positive Operator-Valued Measure (POVM). A POVM M consists of a family of Hermitian
psd matrices {Mi ∈ Hd

+ : i ∈ [m]} such that
∑m

i=1Mi = I, where m is some integer and I is
the identity matrix. According to quantum mechanics, if the measurement M is performed on a
quantum system in state ψ ∈ Cd, then the probability that outcome i occurs is ψ†Miψ. We say that
a measurementM is projective if all of the POVM elements are projectors. Note that for any set of
projectors {Mi : i ∈ [m]} the condition

∑m
i=1Mi = I implies that the Mi’s are mutually orthogonal.

Therefore the POVM elements of any projective measurement are orthogonal to each other.
Consider two quantum systems S1 and S2 with corresponding state spaces Cd1 and Cd2 re-

spectively. The state space of the joint system (S1, S2) is given by the tensor product Cd1 ⊗ Cd2 .
Moreover, if the system S1 is in (pure) state ψ1 ∈ Cd1 and S2 is in (pure) state ψ2 ∈ Cd2 then the
joint system is in state ψ1 ⊗ ψ2 ∈ Cd1 ⊗ Cd2 . Not every state in the joint system space Cd1 ⊗ Cd2

can be written as a tensor product. States that cannot be written as a tensor product are known
as entangled states. It is the existence of entangled states that allows for quantum advantage in
nonlocal games and many other scenarios.

If {Mi ∈ Hd1
+ : i ∈ [m1]} and {Nj ∈ Hd2

+ : j ∈ [m2]} define measurements on the individual

systems S1 and S2 then the family of operators {Mi ⊗ Nj ∈ Hd1d2
+ : i ∈ [m1], j ∈ [m2]} defines

a product measurement on the joint system (S1, S2). The probability of getting outcome (i, j) ∈
[m1]× [m2], when measuring the quantum state ψ, is equal to ψ∗(Mi ⊗Nj)ψ.

It is often convenient to use the fact that any quantum state ψ ∈ Cd ⊗ Cd admits a so-called
Schmidt decomposition: ψ =

∑d
i=1 λi αi ⊗ βi where {αi : i ∈ [d]} and {βi : i ∈ [d]} are orthonormal

bases of Cd and λi ≥ 0 for all i ∈ [d]. The bases {αi : i ∈ [d]} and {βi : i ∈ [d]} are known as the
Schmidt bases of ψ, and the λi are its Schmidt coefficients. We say that ψ has full Schmidt rank if
its Schmidt coefficients are all positive. Note that one can also consider a Schmidt decomposition
of states in Cd1 ⊗ Cd2 where d1 6= d2, but for us it suffices to consider d1 = d2.

We say that a state is maximally entangled if all of its Schmidt coefficients are the same. The
canonical maximally entangled state in Cd ⊗ Cd is the state ψd := 1√

d

∑d
i=1 ei ⊗ ei, where ei is the

ith standard basis vector. We will make use of the fact that

(3) ψ†d(A⊗B)ψd =
1

d
Tr
(
ABT

)
, for all A,B ∈ Cd×d.
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3 Strategies for the (G,H)-isomorphism game

In this section we introduce three families of strategies for the (G,H)-isomorphism game (classical,
quantum, and non-signalling) and study how they relate to each other.

Given a fixed strategy for the (G,H)-isomorphism game, we denote by p(yA, yB|xA, xB) the
joint conditional probability of Alice and Bob responding with yA and yB upon receiving inputs
xA and xB respectively. We call such a joint conditional probability distribution a correlation. Let
S be a strategy for a nonlocal game and let pS be the corresponding correlation. An easy but
important observation is that S is a perfect strategy if and only if pS(yA, yB|xA, xB) = 0 whenever
xA, xB, yA, yB do not meet the winning conditions of the game, i.e.,

(4) pS(yA, yB|xA, xB) = 0, when π(xA, xB) > 0 and V (xA, xB, yA, yB) = 0.

In particular, if we specialize (4) to the (G,H)-isomorphism game we have that the correlation
p corresponds to a perfect strategy if and only if

(5) p(yA, yB|xA, xB) = 0, whenever conditions (1) or (2) fail.

As a consequence we have that any winning strategy for the (G,H)-isomorphism game is also
a winning strategy for the (H,G)-isomorphism game, as well as the (G,H)-isomorphism game.

3.1 Classical Strategies

In a classical strategy, Alice and Bob are allowed to make use of shared randomness to determine
how they respond. Note that this does not allow them to communicate. They may also use local
randomness, but this can be incorporated into the shared randomness without loss of generality.
Formally, this means that the correlation associated to a classical strategy has the form p =

∑
i λipi,

where the λi’s encode the shared randomness and satisfy λi > 0, and
∑

i λi = 1, and the pi are
correlations arising from deterministic classical strategies, i.e., for each i, pi(yA, yB|xA, xB) ∈ {0, 1}
for all xA, xB, yA, yB ∈ V (G)∪V (H). Since whether a correlation corresponds to a winning strategy
is determined by its zeros, the correlation p arises from a winning strategy if and only if pi is winning
for all i. Thus we can consider the deterministic strategy corresponding to p1. A deterministic
classical strategy amounts to a pair of functions, fA, fB : V (G) ∪ V (H) → V (G) ∪ V (H), which
map inputs to outputs for each of Alice and Bob respectively. Assuming the strategy is winning,
we have that fA(x), fB(x) ∈ V (G)⇔ x ∈ V (H), and that fA(x) = fB(x) for all x ∈ V (G)∪ V (H).
Since fA = fB, we will refer to both of them as simply f . For g, g′ ∈ V (G), the winning conditions
of the (G,H)-isomorphism game require that rel(g, g′) = rel(f(g), f(g′)). This implies that the
restriction of f to V (G) is an isomorphism from G to an induced subgraph of H. Similarly, the
restriction of f to V (H) is an isomorphism of H to an induced subgraph of G. This is only
possible if G and H are isomorphic and the above two restrictions of f are isomorphisms. Finally,
for g∗ ∈ V (G), let h∗ = f(g∗). The case where Alice is sent g∗ and Bob is sent h∗ allows us
to conclude that rel(g∗, f(h∗)) = rel(f(g∗), h∗). Since h∗ = f(g∗), the relationship between these
vertices is ‘equality’, thus g∗ = f(h∗). In other words, the restriction f |V (G) is the inverse of the
restriction f |V (H).

The above shows that any winning deterministic strategy for the (G,H)-isomorphism game
corresponds to Alice and Bob responding according to a fixed isomorphism between G and H.
Moreover, any classical strategy can be decomposed as a probabilistic (or convex) combination of
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deterministic strategies. Therefore, classical players can win the (G,H)-isomorphism game only if
G and H are indeed isomorphic.

Conversely, suppose that ϕ : V (G)→ V (H) is an isomorphism of graphs G and H. It is easy to
see that if both players respond with ϕ(g) upon receiving g ∈ V (G) and respond with ϕ−1(h) upon
receiving h ∈ V (H), then they will win the (G,H)-isomorphism game. So we see that there exists
a winning classical strategy for the (G,H)-isomorphism game if and only if G and H are indeed
isomorphic graphs.

3.2 Quantum Strategies

A quantum strategy for the (G,H)-isomorphism game consists of a shared entangled state ψ, and
POVMs Ex = {Exy : y ∈ V (G) ∪ V (H)} for each x ∈ V (G) ∪ V (H) for Alice, and Fx = {Fxy :
y ∈ V (G) ∪ V (H)} for each x ∈ V (G) ∪ V (H) for Bob. Upon receiving xA ∈ V (G) ∪ V (H) Alice
performs measurement ExA and obtains some outcome yA ∈ V (G)∪V (H). Similarly, upon receiving
xB Bob measures FxB and obtains some yB. The probability of Alice and Bob outputting vertices
yA and yB upon receiving xA and xB respectively is given by

(6) p(yA, yB|xA, xB) = ψ† (ExAyA ⊗ FxByB )ψ.

Any correlation that can be realized as in (6) is known as a quantum correlation.
Therefore, it follows by (5) that a quantum strategy as described above is a winning strategy

for the (G,H)-isomorphism game if and only if

ψ† (ExAyA ⊗ FxByB )ψ = 0, whenever conditions (1) or (2) fail.

It is important to note that any classical correlation is also a quantum correlation. Indeed, any
deterministic strategy can be produced by using measurements in which all but one of the POVM
elements is the zero matrix. The remaining POVM element will be the identity and performing this
measurement will always result in the outcome corresponding to the identity. Since any classical
shared randomness can also be replicated by measurements on a shared state, this shows that any
classical correlation can be produced by some quantum strategy.

3.3 Non-signalling Strategies

Suppose that Alice and Bob are playing a nonlocal game with a quantum strategy as described in
the previous section. If Alice is given input xA, and Bob is given input xB, the probability that
Alice obtains outcome yA when she performs measurement ExA is given by:

(7)
∑
yB

p(yA, yB|xA, xB) =
∑
yB

ψ† (ExAyA ⊗ FxByB )ψ = ψ† (ExAyA ⊗ I)ψ,

and we see that this does not depend on Bob’s input xB. Similarly, the probability of Bob obtaining
a particular outcome will not be dependent on Alice’s input. This property of quantum correlations
is known as the non-signalling property. Formally, a correlation p(yA, yB|xA, xB) is non-signalling if

(8)

∑
yB

p(yA, yB|xA, xB) =
∑
yB

p(yA, yB|xA, x′B), for all xA, yA, xB, x
′
B, and∑

yA

p(yA, yB|xA, xB) =
∑
yA

p(yA, yB|x′A, xB), for all xB, yB, xA, x
′
A
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In other words, a non-signalling correlation does not allow the two parties to send information
between themselves. If it is the case that nothing, including information, can travel faster than the
speed of light, then any correlation produced by sufficiently distant parties must be non-signalling.
More specifically, if Alice and Bob are separated by a large enough distance, and they are required
to respond to the verifier quickly enough, then we can be certain that their correlation is non-
signalling.

As we have seen, all quantum correlations are non-signalling. However, the converse is not true.
For instance, for input and output sets equal to {0, 1}, the PR box [26] is the correlation given by:

p(y, y′|x, x′) =

{
1
2 , if y + y′ ≡ xx′ mod 2

0, otherwise.

One can check that this correlation is non-signalling, but it is well known [26] that it cannot be
implemented by any quantum strategy.

A general non-signalling correlation may not be physically realizable, so when we refer to non-
signalling strategies, we can think of this as Alice and Bob each simply having some black box
where they enter their inputs into and which gives them their outputs. We only require that the
resulting correlation produced by these boxes obeys the non-signalling condition.

Any correlation that is not non-signalling allows Alice and Bob to communicate some infor-
mation. However, this violates the definition of a nonlocal game, since one of the requirements is
that the players are not allowed to communicate during the game. Thus, one of the reasons for
considering non-signalling correlations is that they represent the largest class of admissible cor-
relations for nonlocal games. More practically, since the non-signalling condition is linear, these
correlations often provide tractable upper bounds on the power of quantum correlations. Indeed, in
the next section we will see that we can completely characterize when two graphs are non-signalling
isomorphic.

4 Non-signalling Isomorphism

Our goal in this section is to show Result 1, i.e., that fractional isomorphism and non-signalling
isomorphism are equivalent relations.

4.1 Non-signalling isomorphism implies fractional isomorphism

To show that non-signalling isomorphism implies fractional isomorphism we show that one can use a
non-signalling correlation that wins the (G,H)-isomorphism game to construct a doubly stochastic
matrix D satisfying AGD = DAH .

First, if p is a winning non-signalling correlation for the (G,H)-isomorphism game, then we must
have that p(g, y|g′, x) = 0 whenever g, g′ ∈ V (G), and similarly when we replace G by H and/or
switch Alice and Bob’s positions. Furthermore, for all h ∈ V (H) we have that p(g, g′|h, h) = 0 if
g 6= g′, and similarly with H replaced by G. Therefore, we have the following observation:

(9)
∑

h′∈V (H)

p(h′, h′|g, g) =
∑

g′∈V (G)

p(g′, g′|h, h) = 1, for all g ∈ V (G), h ∈ V (H).

Our goal is to use (9) to construct the desired doubly stochastic matrix. Specifically, the above
sums will correspond to its row and column sums. We need the following intermediate result.

10



Lemma 4.1. Let p be a winning non-signalling correlation for the (G,H)-isomorphism game. Then,

p(h, h|g, g) = p(g, h|h, g) = p(h, g|g, h) = p(g, g|h, h),

for all g ∈ V (G), h ∈ V (H).

Proof. Set V := V (G) ∪ V (H). For all g ∈ V (G) and h ∈ V (H) we have that

p(h, h|g, g) =
∑
y∈V

p(h, y|g, g) =
∑
y∈V

p(h, y|g, h) = p(h, g|g, h),

where we use (5) for the first equality, for the second equality we use that p is non-signalling and
for the third equality we again use (5). Similarly, we get that

p(h, h|g, g) =
∑
y∈V

p(y, h|g, g) =
∑
y∈V

p(h, y|h, g) = p(g, h|h, g).

Lastly, by the symmetry of G and H we also have that p(g, g|h, h) = p(g, h|h, g). Putting everything
together the lemma follows.

Note that by combining Lemma 4.1 with Equation (9) we get that

|V (G)| =
∑

g∈V (G),h∈V (H)

p(h, h|g, g) =
∑

g∈V (G),h∈V (H)

p(g, g|h, h) = |V (H)|,

which was not obvious even for quantum strategies.
We can now show that two graphs which are non-signalling isomorphic are necessarily fraction-

ally isomorphic.

Lemma 4.2. If G and H are non-signalling isomorphic, then they are fractionally isomorphic.

Proof. Set V := V (G)∪V (H) and let AG and AH be the adjacency matrices ofG andH respectively.
Define D to be a matrix with rows indexed by V (G) and columns by V (H) such that Dgh =
p(h, h|g, g), for all g ∈ V (G), h ∈ V (H). We show that D is doubly stochastic and satisfies
AGD = DAH . First, the gth row sum of D is given by

∑
h∈V (H) p(h, h|g, g) which is equal to 1 by

Equation (9). Furthermore, the hth column sum of D is given by:∑
g∈V (G)

p(h, h|g, g) =
∑

g∈V (G)

p(g, g|h, h) = 1,

where for the first equality we use Lemma 4.1 and for the second one we use (9). Since the entries
of D are also obviously nonnegative, we have that D is doubly stochastic.

Consider the (g, h)-entries of the matrices AGD and DAH . We have that

(AGD)gh =
∑

g′:g′∼g
p(h, h|g′, g′)

(DAH)gh =
∑

h′:h′∼h
p(h′, h′|g, g)

11



Making repeated use of (5) and the non-signalling conditions (8) we get that

(10)

∑
h′:h′∼h

p(h′, h′|g, g) =
∑

h′:h′∼h

∑
y∈V

p(h′, y|g, g) =
∑

h′:h′∼h

∑
y∈V

p(h′, y|g, h)

=
∑

h′:h′∼h

∑
g′:g′∼g

p(h′, g′|g, h) =
∑

g′:g′∼g

∑
h′:h′∼h

p(h′, g′|g, h)

=
∑

g′:g′∼g

∑
y∈V

p(y, g′|g, h) =
∑

g′:g′∼g

∑
y∈V

p(y, g′|h, h)

=
∑

g′:g′∼g
p(g′, g′|h, h).

By Lemma 4.1 we have p(g′, g′|h, h) = p(h, h|g′, g′) and thus (10) implies that∑
h′:h′∼h

p(h′, h′|g, g) =
∑

g′:g′∼g
p(h, h|g′, g′),

i.e., that (DAH)gh = (AGD)gh. Therefore AGD = DAH and G and H are fractionally isomorphic.

4.2 Fractional isomorphism implies non-signalling isomorphism

To show the converse of Lemma 4.2, we use a result of Ramana, Scheinerman, and Ullman [27]
which shows that fractional graph isomorphism is equivalent to deciding whether the graphs have
a common equitable partition. To explain this result we first need to introduce some definitions.

Let C = {C1, . . . , Ck} be a partition of V (G) for some graph G. The partition C is called
equitable if there exist numbers cij for i, j ∈ [k] such that any vertex in Ci has exactly cij neighbors
in Cj . Note that cij and cji are not necessarily equal, but cij |Ci| = cji|Cj |. We refer to the numbers
cij as the partition numbers of an equitable partition C. A trivial example of this is the partition
where each part has size 1. Less trivially, if G is regular, the partition with only one cell is equitable.

Equivalently, a partition C = {C1, . . . , Ck} is equitable if for any i ∈ [k], the subgraph induced
by the vertices in Ci is regular, and for any i 6= j ∈ [k] the subgraph with vertex set Ci ∪ Cj and
containing the edges between Ci and Cj is a semiregular bipartite graph.

We say that C and D have a common equitable partition if there exist equitable partitions
C = {C1, . . . , Ck} and D = {D1, . . . , Dk′} for G and H respectively, satisfying k = k′, |Ci| = |Di|
for all i ∈ [k], and lastly, cij = dij for all i, j ∈ [k]. As an example, if G and H are both d-regular
and have the same number of vertices, then the single cell partitions form a common equitable
partition, and thus any such graphs are fractionally isomorphic.

As it turns out, common equitable partitions characterize the notion of fractional isomorphism.

Theorem 4.3 ([27]). Two graphs are fractionally isomorphic if and only if they have a common
equitable partition.

We prove the converse of Lemma 4.2 by showing that a common equitable partition can be used
to construct a non-signalling correlation that wins the (G,H)-isomorphism game.

Lemma 4.4. If G and H are fractionally isomorphic, then they are non-signalling isomorphic.
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Proof. As G ∼=f H, by Theorem 4.3 the graphs G and H have a common equitable partition
C = {C1, . . . , Ck} and D = {D1, . . . , Dk} respectively. Let ni = |Ci| = |Di| for all i and let cij
for i, j ∈ [k] be the common partition numbers. Also define cij := nj − cij − δij , where δij is the
Kronecker delta function. Note that cij is the number of non-neighbors a vertex of Ci has in Cj .

We use this common equitable partition to construct a winning non-signalling correlation p.
The idea is roughly that if Alice and Bob are given g ∈ Ci and g′ ∈ Cj respectively such that
g ∼ g′, they should respond in a correlated manner with the endpoints of a randomly chosen edge
between Di and Dj . Formally, for g ∈ Ci, g

′ ∈ Cj , h ∈ Di, h
′ ∈ Dj , define a correlation p as follows:

(11) p(h, h′|g, g′) =


1

nicij
, if g ∼ g′ & h ∼ h′

1
nicij

, if g 6' g′ & h 6' h′
1
ni
, if g = g′ & h = h′

0, otherwise.

Furthermore, define

(12) p(h, h′|g, g′) = p(h, g′|g, h′) = p(g, h′|h, g′) = p(g, g′|h, h′), ∀g, g′, h, h′,

and lastly set p(y, y′|x, x′) equal to zero for all values of x, x′, y, y′ not yet accounted for.
It is easy to verify that this correlation evaluates to zero when Alice and Bob’s inputs and

outputs do not meet the winning conditions of the (G,H)-isomorphism game and thus it corresponds
to a perfect strategy. Thus, it only remains to show that p is a valid non-signalling correlation, i.e.,
it satisfies Equation (8). In fact, we show that for all xA, xB, yA ∈ V (G) ∪ V (H) we have:

(13)
∑
yB∈V

p(yA, yB|xA, xB) =

{
1
ni
, if (xA ∈ Ci & yA ∈ Di) or (xA ∈ Di & yA ∈ Ci);

0, otherwise.

and similarly when Alice and Bob exchanged. As this does not depend on the choice of xB it follows
by definition that the correlation p is non-signalling.

Now we proceed to prove (13). If xA ∈ Ci & yA 6∈ Di (or xA ∈ Di & yA 6∈ Ci) we have by
definition that

∑
yB
p(yA, yB|xA, xB) = 0. It remains to consider the case g := xA ∈ Ci and

h := yA ∈ Di (the case xA ∈ Di & yA ∈ Ci follows similarly). For clarity of exposition we divide
the proof in two subcases.

Case 1: If g′ := xB ∈ Cj it follows by (11) that

(14)
∑
yB∈V

p(h, yB|g, g′) =
∑

h′∈Dj

p(h, h′|g, g′) =


p(h, h|g, g′), if g = g′;∑
h′∈Dj∩N(h)

p(h, h′|g, g′), if g ∼ g′;∑
h′∈Dj∩N [h]c

p(h, h′|g, g′), if g 6' g′,

and again by Equation (11) this evaluates to 1/ni in all three cases.

Case 2: If h′ := xB ∈ Dj we have that:

(15)
∑
yB∈V

p(h, yB|g, h′) =
∑
g′∈Cj

p(h, g′|g, h′) =
∑
g′∈Cj

p(g, g′|h, h′) = 1/ni,

13



where the first equality follows from (11), the second one from (12) and the third one by Case 1.
Lastly, we show that p is a valid probability distribution. For this, let xA, xB ∈ V and assume

that xA ∈ Ci (the case xA ∈ Di is similar). Then, we have that∑
yA∈V

∑
yB∈V

p(yA, yB|xA, xB) =
∑

yA∈Di

∑
yB∈V

p(yA, yB|xA, xB) =
∑

yA∈Di

1

ni
= 1,

where for the second equality we used (13).

Combining Lemma 4.2 with Lemma 4.4 we immediately get Result 1.

Theorem 4.5. For any graphs G and H we have that G ∼=f H if and only if G ∼=ns H.

As mentioned above, a common example of graphs that are fractionally isomorphic but not
isomorphic is any pair of non-isomorphic d-regular graphs on n vertices. This makes it seem like
fractional isomorphism is a quite coarse relaxation of isomorphism. But in fact it is known [6]
that asymptotically almost surely every graph is not fractionally isomorphic to any graph that it
is not also isomorphic to. Since non-signalling/fractional isomorphism is the coarsest relation we
will consider in this work, the same holds for all the other relations we will see.

It is worth noting that this is quite different from the related graph-based nonlocal game known
as the (G,H)-homomorphism game [15, 28]. As its name suggests, this game can be won classically
if and only if there exists a homomorphism (adjacency-preserving map) from G to H. However, if
non-signalling strategies are allowed, the game becomes trivial: it can always be won as long as H
has at least one edge [15].

5 Quantum graph isomorphism

In this section we prove Result 2, i.e., we show that quantum isomorphism coincides with existence
of feasible solutions to the programs (IQPd) and (ILPd).

5.1 Common techniques for analyzing quantum strategies

Recall that a correlation p(y, y′|x, x′) is quantum if it can be generated by a quantum strategy, i.e.,
if there exists a quantum state ψ ∈ Cd ⊗ Cd and measurements {Exy}y and {Fxy}y such that

(16) p(y, y′|x, x′) = ψ†
(
Exy ⊗ Fx′y′

)
ψ, ∀x, x′, y, y′.

It is well-known that we may assume without loss of generality that the state ψ has full Schmidt
rank. To see this let ψ =

∑d′

i=1 λi αi ⊗ βi be the Schmidt decomposition for ψ, where {αi}d
′

i=1

and {βi}d
′

i=1 are orthonormal bases of Cd and λi > 0 for all i ∈ [d′]. Consider the isometries

UA =
∑d′

i=1 eia
†
i and UB =

∑d′

i=1 eib
†
i , where ei ∈ Cd′ , and define

(17) ψ̃ = (UA ⊗ UB)ψ, Ẽxy = UAExyU
†
A, ∀x, y and F̃xy = UBFxyU

†
B, ∀x, y.

It is easy to verify that the matrices {Ẽxy}y and {F̃xy}y form valid quantum measurements and

ψ̃ =
d′∑
i=1

λi ei ⊗ ei ∈ Cd′ ⊗ Cd′ ,
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is a valid quantum state with full Schmidt rank. Furthermore, the quantum strategy corresponding
to ψ̃, {Ẽxy}y and {F̃xy} also generates the correlation p(y, y′|x, x′) given in (16). Another useful
consequence of this fact is that the operator ρ = mat(ψ̃) is a diagonal matrix with positive entries.
When considering quantum strategies for the isomorphism game, we will often say we are “working
in the Schmidt basis of the shared state ψ”. By this we mean that we have implicitly performed
the above transformation on the shared state and measurement operators of our strategy.

Lastly, we introduce a useful mathematical tool. Let vec : Cd1×d2 → Cd1 ⊗ Cd2 be the linear
map that takes the matrix uv† to u⊗ v, where v denotes the entrywise complex conjugate of v. In
other words, the map vec creates a vector from a matrix by stacking (the transpose of) its rows on
top of each other. Also, let mat : Cd1 ⊗ Cd2 → Cd1×d2 be the inverse of the vectorization map. It
is not hard to see that the vec map is an isometry, i.e.,

(18) vec(A)† vec(B) = Tr(A†B), for all A,B.

Setting ρ = mat(ψ) we have that

(19) ψ† (E ⊗ F )ψ = vec(ρ)† (E ⊗ F ) vec(ρ) = vec(ρ)† vec(EρFT) = Tr(ρ†EρFT),

where we used (18) and the identity vec(AXBT) = (A ⊗ B) vec(X), for Hermitian operators of
appropriate size. This identity is crucial for our results in the next section.

5.2 Characterizing perfect quantum strategies

In Section 3.2 we described the general form of a quantum strategy for the (G,H)-isomorphism
game. In this section we investigate quantum isomorphisms in more detail, and show that perfect
quantum strategies can always be chosen to take a specific form.

Definition 5.1. A nonlocal game is called synchronous if the players share the same question set
X, the same answer set Y , and furthermore,

(20) V (y, y′|x, x) = 0, for all x ∈ X and y 6= y′ ∈ Y.

Analogously, a correlation is called synchronous if p(y, y′|x, x) = 0, for all x ∈ X and y 6= y′ ∈ Y .

For example, note that the (G,H)-isomorphism game is synchronous. Indeed, in this game the
question and answer sets are both equal to V (G)∪V (H). Furthermore, if the players are given the
same vertex and they respond with different vertices they lose. This shows that (20) is satisfied.

Synchronous games have recently received significant attention in the literature due to the fact
that their perfect quantum strategies always have a special form. Specifically, the following result
or a similar version has appeared in various places [15, 28, 16, 9].

Lemma 5.2. Let ψ ∈ Cd ⊗ Cd, Ex = {Exy : y ∈ Y }, and Fx = {Fxy : y ∈ Y } for all x ∈ X be a
perfect quantum strategy for a synchronous game. If ψ and the operators Exy and Fxy are expressed
in the Schmidt basis of ψ, and ρ = mat(ψ), then

(i) Exy = FT
xy for all x ∈ X, y ∈ Y ;

(ii) Exy and Fxy are projectors for all x ∈ X, y ∈ Y ;

(iii) Exyρ = ρExy and Fxyρ = ρFxy for all x ∈ X, y ∈ Y ;
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(iv) p(y, y′|x, x′) = ψ†
(
Exy ⊗ Fx′y′

)
ψ = 0 if and only if ExyEx′y′ = 0.

Since the graph isomorphism game is synchronous, Lemma 5.2 applies to it. However, in our
next result we show that even more conditions are met by perfect quantum strategies for the
isomorphism game.

Theorem 5.3. Consider two graphs G and H and set V = V (G) ∪ V (H). Let ψ ∈ Cd ⊗ Cd,
Ex = {Exy : y ∈ V }, and Fx = {Fxy : y ∈ V } for all x ∈ V be a perfect quantum strategy for the
(G,H)-isomorphism game. If ψ and the operators Exy and Fxy are expressed in the Schmidt basis
of ψ, and ρ = mat(ψ), then

(i) Exy = FT
xy for all x, y ∈ V ;

(ii) Exy and Fxy are projectors for all x, y ∈ V ;

(iii) Exyρ = ρExy and Fxyρ = ρFxy for all x, y ∈ V ;

(iv) p(y, y′|x, x′) := ψ†
(
Exy ⊗ Fx′y′

)
ψ = 0 if and only if ExyEx′y′ = 0;

(v) Exy = 0 if x, y ∈ V (G) or x, y ∈ V (H);

(vi) Exy = Eyx for all x, y ∈ V .

Proof. The first four conditions follow immediately from Lemma 5.2. For (v), consider g, g′ ∈ V (G)
and note that

(21) 0 =
∑
y∈V

p(g′, y|g, x) =
∑
y∈V

ψ†
(
Egg′ ⊗ Fxy

)
ψ = ψ†

(
Egg′ ⊗ I

)
ψ = Tr(ρρ†Egg′),

where the last equality follows from Equation (19) and the cyclicity of the trace. Since we are
working in the Schmidt basis of ψ, the matrix ρ is diagonal with strictly positive diagonal entries.
Therefore ρρ† has full rank and thus it follows by (21) that Egg′ = 0. Similarly, we have that
Ehh′ = 0 for all h, h′ ∈ V (H).

Lastly, we show (vi). By the rules of the (G,H)-isomorphism game, we must have that
p(y, x′|x, y) = 0 whenever x′ 6= x. Thus by (iv) we have that ExyEyx′ = 0 for all x′ 6= x. Therefore,

Exy = Exy

∑
x′

Eyx′ = ExyEyx.

Also, Exy′Eyx = 0 for y′ 6= y, and thus

Eyx =
∑
y′

Exy′Eyx = ExyEyx.

Combining the two equations above we get that Exy = Eyx.
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5.3 Two algebraic reformulations

In this section we use the structural properties of perfect quantum strategies to the (G,H)-
isomorphism game we identified in Section 5.2 to prove Result 2.

First, we show the equivalence (i)⇐⇒ (ii) from Result 2.

Theorem 5.4. Let G and H be graphs. Then G ∼=q H if and only if there exist projectors Egh for
g ∈ V (G) and h ∈ V (H) such that

(i)
∑

h∈V (H)Egh = I, for all g ∈ V (G);

(ii)
∑

g∈V (G)Egh = I, for all h ∈ V (H);

(iii) EghEg′h′ = 0, if rel(g, g′) 6= rel(h, h′).

Proof. Using Theorem 5.3, it is relatively easy to see that Alice’s operators Egh for g ∈ V (G),
h ∈ V (H) from a perfect quantum strategy satisfy Conditions (i) (ii) and (iii).

Conversely, suppose that Egh for g ∈ V (G) and h ∈ V (H) satisfy the hypotheses of the theorem.
Define Ehg = Egh, and Egg′ = Ehh′ = 0 for all for h, h′ ∈ V (H), g, g′ ∈ V (G). Furthermore, let
Fxy = ET

xy for all x, y ∈ V (G) ∪ V (H). It is easy to see that Ex = {Exy : y ∈ V (G) ∪ V (H)} is
a valid measurement for all x ∈ V (G) ∪ V (H), and similarly for Fx = {Fxy : y ∈ V (G) ∪ V (H)}.
Consider the quantum strategy where Alice and Bob respectively use the measurements Ex and Fx

on a shared maximally entangled state ψd = 1√
d

∑d
i=1 ei ⊗ ei. By (3) we have that

p(y, y′|x, x′) = ψ†d
(
Exy ⊗ Fx′y′

)
ψd =

1

d
Tr(ExyEx′y′),

for all x, x′, y, y′ ∈ V (G) ∪ V (H). This fact combined with Condition (iii) shows that this is a
perfect strategy for the (G,H)-isomorphism game.

Recall that an alternative characterization of graph isomorphism is given by the equation AGP =
PAH for some permutation matrix P , where AG and AH are the adjacency matrices of two graphs.
It turns out that one can use Theorem 5.4 to obtain an analogous formulation of quantum graph
isomorphism. First we will need the following definition:

Definition 5.5. A matrix P ∈ Mn(d) is called a projective permutation matrix of block size d if
it is unitary and all of its blocks are projectors.

Note that a projective permutation matrix of block size one is a unitary matrix whose entries
square to themselves, i.e., a permutation matrix. The following lemma shows that projective per-
mutation matrices can be built out of projectors satisfying the first two conditions of Theorem 5.4.

Lemma 5.6. A matrix P = [[Eij ]] ∈ Mn(d) is a projective permutation matrix if and only if the
matrix Eij is a projector for all i, j ∈ [n] and

(i)
∑n

j=1Eij = I, for all i ∈ [n];

(ii)
∑n

i=1Eij = I, for all j ∈ [n].
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Proof. It suffices that show that, assuming the matrices {Eij}ij are projectors, Conditions (i)
and (ii) in the statement of the lemma are equivalent to P being unitary.

First, assume that Conditions (i) and (ii) hold. Since the matrices {Eij}ij are projectors it
follows that EikEjk = 0, for all i 6= j ∈ [n]. This implies

(
PP†

)
i,j

=
∑
k

EikEjk =

{∑
k E

2
ik = I, if i = j

0, if i 6= j.

Therefore PP† = I and similarly we have that P†P = I, i.e., P is unitary.
Conversely, suppose that P is unitary. Since PP† = I we have that

I =
(
PP†

)
i,i

=
∑
j

E2
ij =

∑
j

Eij .

Analogously, using that P†P = I, we get that
∑

iEij = I, and thus Conditions (i) and (ii) hold.

Remark 5.7. In [20], Musto and Vicary introduced quantum Latin squares. This is an n×n array
of unit vectors in which each row and column forms an orthonormal basis of Cn. They use quantum
Latin squares to construct unitary error bases which are related to teleportation, dense coding, and
quantum error correction. If P is a projective permutation matrix in which each projector Eij has

rank one, then there exist unit vectors ψij such that Eij = ψijψ
†
ij. By Lemma 5.6 we have that

ψ†ijψij′ = 0 when j 6= j′ and ψ†ijψi′j = 0 when i 6= i′. In other words, the vectors ψij form a quantum
Latin square. Thus projective permutation matrices also generalize quantum Latin squares.

We are now ready to prove the equivalence (i)⇐⇒ (iii) from Result 2.

Theorem 5.8. For any two graphs G and H we have that G ∼=q H if and only if there exists a
projective permutation matrix P ∈Mn(d) (for some d ∈ N) such that

(22) (AG ⊗ Id)P = P(AH ⊗ Id).

Proof. Let P = [[Egh]] for g ∈ V (G) and h ∈ V (H). By Lemma 5.6, the blocks {Egh} are projectors
and satisfy Conditions (i) and (ii) of Theorem 5.4. So we only need to show that, assuming these
properties, the equation (AG⊗ Id)P = P(AH ⊗ Id) is equivalent to Condition (iii) of Theorem 5.4.
Note that EghEg′h′ = 0 whenever (g = g′ and h 6= h′) or (h = h′ and g 6= g′) is already guaranteed
by Conditions (i) and (ii) of Lemma 5.6. Thus, we only need to prove the remaining orthogonalities
of Theorem 5.4 (iii).

The (g, g′)-block of AG⊗ Id is equal to Id if g and g′ are adjacent, and is 0 otherwise. Similarly
for the (h, h′)-block of AH ⊗ Id. Moreover, note that for g ∈ V (G) and h ∈ V (H) we have

(23) ((AG ⊗ Id)P)g,h =
∑

g′:g′∼g
Eg′h, and (P(AH ⊗ Id))g,h =

∑
h′:h′∼h

Egh′ .

If Theorem 5.4 (iii) holds, then for all g ∈ V (G) and h ∈ V (H) we have∑
g′∼g

Eg′h =
∑
g′∼g

Eg′h

∑
h′

Egh′ =
∑
g′∼g

Eg′h

∑
h′∼h

Egh′ =
∑
g′

Eg′h

∑
h′∼h

Egh′ =
∑
h′∼h

Egh′ ,
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and therefore it follows by (23) that (AG ⊗ Id)P = P(AH ⊗ Id).
Conversely, if (AG ⊗ Id)P = P(AH ⊗ Id), it follows by (23) that

(24)
∑

g′:g′∼g
Eg′h =

∑
h′:h′∼h

Egh′ , for all g ∈ V (G), h ∈ V (H).

Furthermore, since the projectors Egh are mutually orthogonal for any fixed h ∈ V (H) we have

(25)

 ∑
g′:g′∼g

Eg′h

2

=
∑

g′:g′∼g
Eg′h,

and therefore, combining (24) with (25) it follows that

(26)
∑
g′∼g

Eg′h

∑
h′∼h

Egh′ =
∑
g′∼g

Eg′h =
∑
g′∼g

Eg′h

∑
h′

Egh′ .

As a consequence of (26) we get that

(27)
∑
g′∼g

Eg′h

∑
h′ 6∼h

Egh′ = 0.

Taking traces in (27) we have

(28)
∑

g′:g′∼g, h′:h′ 6∼h
Tr(Eg′hEgh′) = 0.

Since the matrices Egh are positive semedefinite (as they are projectors), all the terms in (28) must
be nonnegative. Therefore, we have that Tr(Eg′hEgh′) = 0 for all g′ ∼ g and h′ 6∼ h, which implies
that Eg′hEgh′ = 0 for all g′ ∼ g and h′ 6∼ h. One can similarly show that Eg′hEgh′ = 0 if h ∼ h′ and
g 6∼ g′. So if one of rel(g, g′) and rel(h, h′) is “adjacency” and the other is not, we have the desired
orthogonalities. We also already noted at the beginning of the proof that when one of rel(g, g′)
and rel(h, h′) is “equality” and the other is not, we have the required orthogonality. The only
thing remaining is when one of rel(g, g′) and rel(h, h′) is “distinct non-adjacency” and the other is
not. However this is implied by what we already have, since the relationship which is not “distinct
non-adjacency” will be one of “equality” or “adjacency”.

Remark 5.9. The above lemma shows that projective permutation matrices play the role of per-
mutation matrices for quantum isomorphisms. In fact, just as any permutation matrix corresponds
to an isomorphism from a complete (or empty) graph to itself, any projective permutation matrix
corresponds to a quantum isomorphism from a complete (or empty) graph to itself.

Since a projective permutation matrix is unitary, the equation (AG ⊗ Id)P = P(AH ⊗ Id) is
equivalent to P†(AG ⊗ Id)P = (AH ⊗ Id), which implies that AG ⊗ Id and AH ⊗ Id have the
same multiset of eigenvalues. Of course this means that AG and AH have the same multiset of
eigenvalues, and thus quantum isomorphic graphs are cospectral with respect to their adjacency
matrices. Since two graphs are quantum isomorphic if and only if their complements are, we have
the following corollary:
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Corollary 5.10. If G ∼=q H then G and H are cospectral with cospectral complements.

Note that this is not the case for non-signalling/fractional isomorphism. Indeed, any two n-
vertex, k-regular graphs are fractionally isomorphic but there are many such pairs that are not
cospectral. From this it follows that quantum and non-signalling isomorphism are different:

Corollary 5.11. There exist graphs that are non-signalling isomorphic but not quantum isomor-
phic.

In an upcoming work [17] we show that cospectrality is a consequence of a semidefinite relax-
ation of quantum isomorphism that we call S+-isomorphism. This relation is strictly weaker than
quantum isomorphism, but still stronger than non-signalling isomorphism.

5.4 Quantum commuting isomorphisms

We note here that there are other mathematical models for performing joint quantum measure-
ments, and thus for playing nonlocal games, which are slightly different than the finite dimensional
tensor product framework we have discussed so far. Firstly, one can consider allowing infinite di-
mensional Hilbert spaces to model the quantum systems of the players. In this case, the strategies
are the same and the probabilities are given by the same expression, but the shared state ψ and
the operators Exy and Fxy for Alice and Bob are allowed to be infinite dimensional. In general, it
is not known whether allowing infinite dimensional spaces can allow one to win a nonlocal game
perfectly when one cannot using finite dimensional strategies. However, though it is not obvious,
it follows from results in [11] that these two models for quantum strategies are equivalent for the
isomorphism game, as well as all other games we consider in this work. But there is yet another
model for joint quantum measurements that we will see is different from the finite dimensional
tensor product framework which we have focused on so far. We explain this model below.

In the tensor product framework, each party has their own (finite dimensional) Hilbert space
that they act on with positive operators. In the quantum commuting framework, both players
share some, potentially infinite dimensional, Hilbert space H on which they both act with positive
elements of the space of bounded linear operators on H, denoted B(H). However, it is required
that all of Alice’s measurement operators commute with all of Bob’s measurement operators. Thus
if Alice performs the measurement {Ei ∈ B(H)+ : i ∈ [m1]} and Bob performs the measurement
{Fj ∈ B(H)+ : j ∈ [m2]} on their shared state ψ ∈ H, then it is required that EiFj = FjEi for all
i ∈ [m1], j ∈ [m2], and the probability that they obtain outcome (i, j) is given by 〈EiFjψ,ψ〉.

The quantum commuting framework is more general than the tensor product framework given
above. To see this note that if {Ei ∈ Hd1

+ : i ∈ [m1]} and {Fj ∈ Hd2
+ : j ∈ [m2]} are measurements

used by Alice and Bob in the tensor product framework, then the measurements {Ei ⊗ Id2 ∈
Hd1

+ ⊗H
d2
+ : i ∈ [m1]} and {Id1 ⊗ Fj ∈ Hd1

+ ⊗H
d2
+ : j ∈ [m2]} are valid joint measurements in the

quantum commuting framework that result in the same outcome probabilities. It is also known,
though it is highly nontrivial, that when restricted to finite dimensional Hilbert spaces, the two
frameworks are equivalent [30]. Thus we always allow for infinite dimensional Hilbert spaces when
considering the quantum commuting framework. It was only recently shown by Slofstra [29] that
the quantum commuting framework can allow one to win some nonlocal games that cannot be
perfectly won using the tensor product framework. In Section 6 we will use his result to show that
this also holds in the specific case of isomorphism games.
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In light of the above, we can define two graphs G and H to be quantum computing isomorphic,
denoted G ∼=qc H, whenever there exists a perfect quantum commuting strategy for the (G,H)-
isomorphism game. Such strategies for the graph coloring game were investigated in [25] and [24].
The analysis in the latter applies to any synchronous game, and thus from their results we can
obtain the following:

Lemma 5.12. Consider a synchronous game with input sets X, output sets Y , and verifcation
function V . There exists a perfect quantum commuting strategy for this game if and only if there
exists a unital C∗-algebra A, a faithful tracial state s : A → C, and projections Exy ∈ A for
(x, y) ∈ X × Y such that

1.
∑

y∈Y Exy = I;

2. s(ExyEx′y′) = 0 if V (y, y′|x, x′) = 0.

Note that tracial state on a unital C∗-algebra A is a linear functional s : A → C such that
s(I) = 1, s(A∗A) ≥ 0 for all A ∈ A, and s(AB) = s(BA) for all A,B ∈ A. The tracial state s is
faithful if s(A∗A) = 0 if and only if A = 0. Note that if A and B are projections, then s(AB) = 0
implies that AB = 0 just like in the finite dimensional case (as long as s is faithful). For the finite
dimensional matrix algebra Cd×d, there is a unique tracial state given by s(M) = Tr(M)/d.

Using the above, we can prove the following analog of Theorem 5.4. We omit the proof since it
is similar to that of Theorem 5.4.

Theorem 5.13. Let G and H be graphs. Then G ∼=qc H if and only if there exists a C∗-algebra
A which admits a faithful tracial state, and projections Egh ∈ A for g ∈ V (G) and h ∈ V (H) such
that

(i)
∑

h∈V (H)Egh = I, for all g ∈ V (G);

(ii)
∑

g∈V (G)Egh = I, for all h ∈ V (H);

(iii) EghEg′h′ = 0, if rel(g, g′) 6= rel(h, h′).

Note that since quantum commuting strategies for nonlocal games are more general than quan-
tum tensor product strategies, we have that two graphs being quantum isomorphic implies that
they are also quantum commuting isomorphic. Similarly, since quantum commuting strategies are
also non-signalling, we have that any two quantum commuting isomorphic graphs are non-signalling
isomorphic. In summary, we have that for any two graphs G and H

(29) G ∼= H ⇒ G ∼=q H ⇒ G ∼=qc H ⇒ G ∼=ns H.

By the end of this work we will see that all of these implications are strict, i.e., none of the four
relations above are equivalent.

5.5 Necessary conditions from quantum homomorphisms

A homomorphism from G to H is an adjacency preserving function ϕ : V (G)→ V (H), i.e., if g ∼ g′
then ϕ(g) ∼ ϕ(g′). When such a function exists, we write G → H. In [15], the homomorphism
game was introduced and with it the notion of quantum homomorphisms. This was in fact part
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of the initial inspiration for the isomorphism game and quantum isomorphisms. In this section
we will see that, as in the classical case, any pair of quantum isomorphic graphs must admit
quantum homomorphisms between each other in both directions. This will imply that quantum
isomorphic graphs must have equal values for several quantum parameters such as the quantum
chromatic number, thus providing us with many necessary conditions for a pair of graphs to be
quantum isomorphic.

Given graphs G and H, the (G,H)-homomorphism game is played as follows: Alice and Bob
are given vertices gA, gB ∈ V (G) and must respond with vertices hA, hB ∈ V (H) respectively. If
gA = gB, then to win they must satisfy hA = hB, and if gA ∼ gB then they must satisfy hA ∼ hB.
Similarly to the isomorphism game, it is not difficult to show that classical players can win the
(G,H)-homomorphism game perfectly if and only if there exists a homomorphism from G to H.
Motivated by this, in [15] they say that there is a quantum homomorphism from G to H, and write

G
q−→ H if there exists a perfect quantum strategy for the (G,H)-homomorphism game.
Suppose that Alice and Bob have a perfect strategy for the (G,H)-isomorphism game. If we

restrict their possible inputs to only the vertices from G, then it is easy to see that they will always
satisfy the winning conditions of the (G,H)-homomorphism game: if they are give the same vertices
from G they will respond with the same vertices from H and if they are given adjacent vertices of
G they will respond with adjacent vertices of H. Therefore, if two players have a perfect (classical
or quantum) strategy for the (G,H)-isomorphism game, then they can use the same strategy, but
restricted to inputs from V (G), to perfectly win the (G,H)-homomorphism game. Thus we have
the following:

Lemma 5.14. If G ∼=q H, then G
q−→ H, H

q−→ G, G
q−→ H, and H

q−→ G.

The usefulness of the above is that we can combine it with known results relating quantum
homomorphisms and certain quantum analogs of classical graph parameters. For instance, the
quantum chromatic number of G, denoted χq(G), is defined as the minimum c ∈ N such that

G
q−→ Kc, where Kc is the complete graph on c vertices. It follows essentially from the definition (and

the fact that quantum homomorphisms can be composed [15]), that if G
q−→ H then χq(G) ≤ χq(H).

This property of χq is known as being quantum homomorphism monotone, and it is analogous to
a similar statement for chromatic number and classical homomorphisms. By the above lemma,
this shows that if G ∼=q H, then χq(G) = χq(H), and similarly for the complements. There are
other quantum parameters defined similarly to χq, such as the quantum clique number ωq(G) :=

min{c : Kc
q−→ G}, or the quantum independence number αq(G) := ωq(G). Similarly to χq, these

parameters are equal for quantum isomorphic graphs.
For the above examples of quantum graph parameters, proving quantum homomorphism mono-

tonicity is straightforward, since the parameters themselves are defined in terms of quantum ho-
momorphisms. However, there are some interesting examples of graph parameters that are not
defined in this way, but still turn out to be quantum homomorphism monotone. For instance, the
well known Lovász theta number (of the complement) was proven to be quantum homomorphism
monotone in [15], as were two variants by Schrijver and Szegedy in [28]. For us, there are two other,
lesser known, quantum homomorphism monotone parameters that will be important for this work.
We introduce both below.

A (d/r)-projective representation of a graph G is an assignment of d× d projectors of rank r to
the vertices of G such that projectors assigned to adjacent vertices are orthogonal. The projective
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rank of a graph G, denoted ξf (G), is the infimum of d
r such that G admits a (d/r)-projective

representation.
A projective packing of a graph G is an assignment, g 7→ Eg ∈ Cd×d, of d×d projectors for some

d ∈ N such that adjacent vertices receive orthogonal projectors. Note that there is no uniformity
condition on the rank of the projectors as there is for a projective representation. The value of a
projective packing is equal to 1

d

∑
g∈V (G) rk(Eg), and the projective packing number of G, denoted

αp(G), is the supremum of the values of all projective packings of G.
If a graph G can be c-colored, then by replacing color i with the projection onto the ith standard

basis vector in Cc gives a (c/1)-projective representation of G, and thus ξf (G) ≤ χ(G). The
inequality can be strict, and in fact the projective rank also lower bounds both the fractional and
quantum chromatic numbers. In a sense, the projective rank can be thought of as a fractional
quantum chromatic number. It was shown in [15] that ξf is quantum homomorphism monotone,
and moreover that if G has a quantum homomorphism to H and the latter has a (d/r)-projective
representation then G has a (d′/r′)-projective representation for some d′, r′ such that d′

r′ = d
r .

Similarly, if S ⊆ V (G) is an independent set of vertices, then assigning the identity matrix to
all vertices of S and the zero matrix to all other vertices produces a projective packing of G with
value |S|. Therefore α(G) ≤ αp(G), and in fact αq(G) ≤ αp(G) holds. It was shown in [28] that

G
q−→ H implies that αp(G) ≤ αp(H), and moreover if G has a projective packing of value γ then

H has a projective packing of value γ.
By the above discussion, we have the following:

Lemma 5.15. If G ∼=q H then ξf (G) = ξf (H) and ξf (G) = ξf (H). Moreover, if G has a (d/r)-

projective representation then H has a (d′/r′)-projective representation where d′

r′ = d
r .

Similarly, we have:

Lemma 5.16. If G ∼=q H then αp(G) = αp(H) and αp(G) = αp(H). Moreover, if G has a
projective packing of value γ then H has a projective packing of value γ.

In our upcoming work [17], we use Lemma 5.15 above to show that quantum isomorphism
and one of our semidefinite relaxations of quantum isomorphism are indeed different relations. In
this work we will use Lemma 5.16 for our reduction of linear binary constraint system games to
isomorphism games in Section 6.2. We note that the projective packing number is similar in many
ways to the quantum independence number. In fact, there are no graphs G for which it is known
that αq(G) 6= bαp(G)c. Moreover, the following was shown in [16]:

Lemma 5.17. Let G be a graph. Then αp(G) ≤ χ(G), and there exists a projective packing of G
of value χ(G) if and only if αq(G) = χ(G).

For our results on quantum commuting isomorphism, we will need an analog of projective
packings that allows the projections we assign to our vertices to be more general objects. Such
an analog of projective representations/projective rank was given in [24], and we can adapt their
approach here. Let A be a unital C∗-algebra that admits a faithful tracial state s. An assignment,
g 7→ Eg ∈ A , of projections from A to the vertices of a graph G is a tracial packing of G if EgEg′ = 0
whenever g ∼ g′. The value of a such a tracial packing is

∑
g∈V (G) s(Eg) = s(

∑
g∈V (G)Eg). The

tracial packing number of G, denoted αtr(G), is the supremum of values of tracial packings of G.
One can also define quantum commuting homomorphisms and thus the quantum commuting

independence number, denoted αqc analogously to quantum homomorphisms and the quantum
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independence number above. Also, it is not difficult to adapt the proofs of Lemmas 5.14, 5.16,
and 5.17 to obtain analogs of these results for quantum commuting iso/homomorphisms and tracial
packing number. We note that quantum commuting homomorphisms have been investigated in [24]
and [23].

6 Separating isomorphism and quantum isomorphism

In this section we prove Result 3, i.e., we construct pairs of graphs that are quantum isomorphic
but not isomorphic. For this we introduce a type of game investigated by Cleve and Mittal [11]
known as binary constraint system (BCS) games. We will show that, in the linear case, one can
reduce the existence of a perfect classical (quantum) strategy for a BCS game to the existence of
a perfect classical (quantum) strategy to a corresponding isomorphism game.

6.1 Binary constraint systems games

A linear binary constraint system (BCS) F consists of a family of binary variables x1, . . . , xn and
constraints C1, . . . , Cm, where each C` is a linear equation over F2 in some subset of the variables.
Thus C` takes the form

∑
xi∈S`

xi = b` for some S` ⊆ {x1, . . . , xn} and b` ∈ {0, 1}. We say that
a BCS is satisfiable if there is an assignment of values from F2 to the variables xi such that every
constraint C` is satisfied. Such an assignment is known as a satisfying assignment.

An example of a linear BCS is the following:

x1 + x2 + x3 = 0 x1 + x4 + x7 = 0

x4 + x5 + x6 = 0 x2 + x5 + x8 = 0(30)

x7 + x8 + x9 = 0 x3 + x6 + x9 = 1

where addition is over F2. Note that the BCS given above is not satisfiable. Indeed, every variable
appears in exactly two constraints and thus summing up all equations modulo 2 we get 0 = 1.

To any linear BCS F we associate the following nonlocal game, which we call the BCS game.
In the BCS game, the verifier gives Alice a constraint C` and Bob a constraint Ck. In order to win,
they must each respond with an assignment of values to the variables in their respective constraints
such that those constraints are satisfied. Furthermore, for the variables in S` ∩ Sk, Alice and Bob
must agree on their assignment. Note that if they are given the same constraint, these conditions
imply that they must give the same response.

As with the other nonlocal games we have considered in this work, it is not difficult to see that
Alice and Bob can win the BCS game classically with probability 1 if and only if the corresponding
BCS is satisfiable. This motivates the following definition.

Definition 6.1. A linear BCS is called quantum satisfiable if there exists a perfect quantum strategy
for the corresponding BCS game.

We note that Cleve and Mittal in [11] also define a nonlocal game corresponding to a linear BCS
that admits a perfect classical strategy if and only if the underlying BCS is satisfiable. However,
their construction is slightly different than the game we devise here. Specifically, in their game, the
verifier gives Alice a constraint C` and to Bob a single variable xi ∈ C`. Alice returns an assignment
for the variables in her constraint and Bob an assignment for his variable. The winning conditions
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are that (i) Alice’s assignment must satisfy C` and (ii) Bob’s assignment on xi must be consistent
with Alice’s assignment. Moreover, they define quantum satisfiability in terms of something they
call a quantum satisfying assignment for the equations in the BCS. However, their main result is
that a BCS game has a perfect quantum strategy if and only if the BCS has a quantum satisfying
assignment, and from this it easily follows that a perfect quantum strategy exists for our version of
the BCS game if and only if one exists for theirs. Moreover, this implies that our notion of quantum
satisfiability is the same as theirs. In the case of quantum commuting strategies, the equivalence
of the two versions of the BCS game follow from the results in [10]. The reason we define the
game differently is simply because the reduction to quantum isomorphism is more natural for this
version.

There are many classes of linear BCS’s that are quantum satisfiable but not satisfiable. Indeed,
the example given above in (30) corresponds to the Mermin-Peres magic square game [19] which
has a perfect quantum strategy. One can also use a result of Arkhipov [1] to construct a linear
BCS that is quantum satisfiable but not satisfiable from any non-planar graph.

6.2 The Reduction

In this section we prove that (quantum) satisfiability of a linear BCS can be reduced to (quantum)
graph isomorphism. As a first step we introduce the graphs we use in the reduction.

To any linear BCS F with m constraints we associate the graph GF which is defined as follows:
For each constraint C`, and each assignment f : S` → F2 that satisfies C` we include a vertex (`, f).
Furthermore, we add an edge between two vertices (`, f) and (k, f ′) if they are inconsistent, i.e., if
there exists xi ∈ S` ∩ Sk such that f(xi) 6= f ′(xi). We remark that this construction is related to
the FGLSS reduction from [12], which is well known in approximability literature.

Note that all vertices of GF corresponding to a fixed constraint are pairwise adjacent. Thus,
for any linear BCS F , any independent set in GF contains at most one vertex corresponding to
each constraint. Therefore α(GF ) ≤ m for any linear BCS F with m constraints.

Given any linear BCS F , we define the homogenization of F , denoted by F0, to be the linear
BCS obtained from F by changing the righthand sides of all of the constraints to 0. Note that the
homogenization a linear BCS always has a solution, namely the all-zero assignment. Also note that
GF and GF0 have the same number of vertices.

We now show that GF0 always contains an independent set of size m (and thus α(GF0) = m).
For each constraint C`, let f0` denote the zero assignment to the variables in S`. Note that (`, f0` )
is a vertex of GF0 . Moreover, (`, f0` ) and (k, f0k ) are not adjacent in GF0 since f0` and f0k are just
restrictions of the same function (the zero assignment to all variables) and thus they necessarily
agree on the intersection of their domains. Thus the vertices {(`, f0` ) : ` ∈ [m]} form an independent
set in GF0 of size m. Therefore, for any linear BCS F with m constraints we have

(31) α(GF0) = m.

We are now ready to prove that satisfiability of a linear BCS F can be reduced to deciding
whether GF and GF0 are isomorphic.

Theorem 6.2. Let F be a linear BCS with m constraints. Then the following are equivalent:

(i) F is satisfiable;
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(ii) The graphs GF and GF0 are isomorphic;

(iii) α(GF ) = m.

Proof. (i) =⇒ (ii). Suppose that F is satisfiable and let F : {x1, . . . , xn} → F2 be a satisfying
assignment. For each constraint C`, let F` be the restriction of F to the set S`. Define a function
ϕ : V (GF ) → V (GF0) as follows. For each vertex (`, f) of GF , set ϕ(`, f) = (`, f ⊕ F`), where
f ⊕ F` is defined to be the function from S` to F2 given by (f ⊕ F`)(xi) = f(xi) + F`(xi).

We first show that ϕ is a function to the vertices of GF0 . For a vertex (`, f) ∈ V (GF ), the
constraint C` has the form

∑
xi∈S`

xi = b`. By assumption, both f and F` satisfy C`, i.e., we have
that

∑
xi∈S`

f(xi) = b` and
∑

xi∈S`
F`(xi) = b`. Adding these up we get

∑
xi∈S`

(f ⊕ F`)(xi) =
b` + b` = 0 and so (`, f ⊕ F`) is indeed a vertex of GF0 . It is also easy to see that ϕ is an injection
and therefore also a bijection.

Next we show that ϕ preserves adjacency. Suppose that (`, f) and (k, f ′) are adjacent in GF .
Then there exists xi ∈ S` ∩ Sk such that f(xi) 6= f ′(xi). It is easy to see that f(xi) + F`(xi) =
f(xi) + F (xi) 6= f ′(xi) + F (xi) = f ′(xi) + Fk(xi) and thus (`, f ⊕ F`) is adjacent to (k, f ′ ⊕ Fk)
in GF0 . So ϕ preserves adjacency and the proof that it preserves non-adjacency is similar. This
implies that ϕ is an isomorphism and thus GF and GF0 are isomorphic.

(ii) =⇒ (iii). We have already seen in (31) that for any linear BCS F with m constraints we
have that α(GF0) = m. By assumption GF ∼= GF0 and the claim follows.

(iii) =⇒ (i). Finally, suppose that α(GF ) = m and that T is an independent set meeting this
bound. As all vertices of GF corresponding to a fixed constraint are pairwise adjacent, we must
have that T contains a unique vertex of the form (`, f) for every ` ∈ [m]. Therefore, we can define
f` : S` → F2 to be such that (`, f`) ∈ T for all ` ∈ [m]. We will use these partial assignments
to define a satisfying assignment F for the BCS F . Consider a variable xi and let ` ∈ [m] such
that xi ∈ S`. We define F (xi) = f`(xi). It remains to show that F is well-defined. Since T is
an independent set in GF , if k 6= ` and xi ∈ Sk, we must have that f`(xi) = fk(xi). Therefore,
the restriction of F to Sk is equal to fk for all k ∈ [m]. This implies that F satisfies all of the
constraints and is therefore a satisfying assignment.

Next we prove the quantum analog of Theorem 6.2:

Theorem 6.3. Let F be a linear BCS with m constraints. Then the following are equivalent:

(i) F is quantum satisfiable;

(ii) The graphs GF and GF0 are quantum isomorphic;

(iii) There exists a projective packing of GF of value m;

(iv) αq(GF ) = m.

Proof. (i) =⇒ (ii). Suppose that F is quantum satisfiable, i.e., there exists a perfect quantum
strategy for the BCS game for F . We now describe a perfect strategy for the (GF , GF0)-isomorphism
game that uses the perfect quantum strategy for the BCS game as a subroutine.

In the (GF , GF0)-isomorphism game, Alice receives a vertex (`A, fA) ∈ V (GF )∪V (GF0). Upon
receiving her question, she uses the perfect strategy for the BCS game to obtain an assignment f ′A :
S`A → F2 that satisfies C`A in F , and responds with the vertex (`, fA⊕f ′A). Similarly, Bob receives
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a vertex (kB, fB) ∈ V (GF ) ∪ V (GF0). Using the perfect strategy for the BCS game he obtains an
assignment f ′B satisfying CkB and he respond withs (kB, fB ⊕ f ′B). Note that (fA ⊕ f ′A)⊕ f ′A = fA
and so without loss of generality we may assume that (`A, fA), (kB, fB) ∈ V (GF ).

We now show that the strategy for the (GF , GF0)-isomorphism game described above is perfect.
For this, we need to show that Conditions (1) and (2) are satisfied. First, note that since f ′A satisfies
constraint C`A in F , Alice’s output (`A, fA ⊕ f ′A) is in V (GF ) if her input (`A, fA) was in V (GF0)
and vice versa, thus Condition (1) of the isomorphism game is met. Second, suppose that Alice and
Bob’s inputs were equal. Since they are using a perfect strategy for the BCS game, the functions
f ′A and f ′B are also the same and thus their outputs (`A, fA ⊕ f ′A) and (kB, fB ⊕ f ′B) are equal.
Third, suppose that their inputs (`A, fA) and (kB, fB) were adjacent. By definition, there exists
xi ∈ S` ∩ Sk such that fA(xi) 6= fB(xi). However, since they are using a perfect strategy for the
BCS game, we have that f ′A(xi) = f ′B(xi) and thus (fA⊕ f ′A)(xi) 6= (fB ⊕ f ′B)(xi). Therefore, their
outputs (`A, fA⊕f ′A) and (kB, fB⊕f ′B) will be adjacent. Lastly, the proof that they output distinct
non-adjacent vertices upon receiving distinct non-adjacent input vertices is similar. Therefore, Alice
and Bob can win the (GF , GF0)-isomorphism game perfectly with this strategy. Since the strategy
they used for the BCS game could be realized by quantum measurements on a shared entangled
state, so can this one. Thus GF ∼=q GF0 and the proof is concluded.

(ii) =⇒ (iii). Suppose that GF and GF0 are quantum isomorphic. By (31) we have that
α(GF0) = m. This implies that GF0 also has a projective packing of value m. Since GF ∼=q GF0 , it
follows by Lemma 5.16 that GF must also have a projective packing of value m.

(iii) =⇒ (i). Suppose that GF has a projective packing (`, f) 7→ E(`,f) ∈ Cd×d of value m. Since
the vertices corresponding to a single constraint form a clique, we have that the projectors assigned
to those vertices are all mutually orthogonal. From this it follows that

(32)
∑

f :(`,f)∈V (GF )

rk(E(`,f)) ≤ d, for all ` ∈ [m].

Furthermore, we have that

(33) m =
1

d

∑
(`,f)∈V (GF )

rk(E(`,f)) =
1

d

∑
`∈[m]

∑
f :(`,f)∈V (GF )

rk(E(`,f)) ≤
1

d
md = m,

where for the inequality we used (32). Thus, equality holds throughout in (33). This implies that∑
f :(`,f)∈V (GF )

rk(E(`,f)) = d, for all ` ∈ [m],

which is possible if and only if

(34)
∑

f :(`,f)∈V (GF )

E(`,f) = Id.

In view of (34), the matrices {E(`,f) : f satisfies C`} form quantum measurement for each ` ∈ [m].
To conclude the proof, we use these measurements to construct a perfect quantum strategy

for the BCS game for F . Specifically, the players share the maximally entangled state ψd =
1√
d

∑d
i=1 ei⊗ei. Upon receiving constraint C`, Alice performs the measurement {E(`,f) : f satisfies C`}
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on her half of ψd to obtain an assignment f : S` → F2 that satisfies C`. Upon receiving constraint
Ck, Bob acts similarly, except that he performs the measurement {ET

(`,f) : f satisfies C`} to get an

assignment f ′ : Sk → F2 that satisfies Ck. The corresponding correlation is given by

(35) p(f, f ′|C`, Ck) = ψ†d

(
E(`,f) ⊗ ET

(k,f ′)

)
ψd =

1

d
Tr(E(`,f)E(k,f ′)),

where for the last equality we use (3).
It remains to check that this strategy wins the BCS game for F perfectly. For this we need to

show that the correlation defined in (35) evaluates to zero whenever the winning conditions of the
BCS game are not fulfilled (recall Equation (4)). Now, by construction of the measurements, Alice
and Bob always output an assignment that satisfies their individual constraints. So the only thing
to check is that the players are consistent on any variables contained in both of their constraints.
However, if there exists xi ∈ S`∩Sk such that f(xi) 6= f ′(xi), then the vertices (`, f) and (k, f ′) are
adjacent in GF . Therefore, the projectors E(`,f) and E(k,f ′) are orthogonal since they originated
from a projective packing. As a consequence, it follows by (35) that the probability of Alice and
Bob responding with f and f ′ respectively upon being given constraints C` and Ck is equal to zero.

(iii) =⇒ (iv). First, note that we can color the complement of GF with m colors because
the vertices corresponding to a fixed constraint of F are an independent set in GF . Therefore,
χ(GF ) ≤ m. Thus if there exists a projective packing of value m, by Lemma 5.17 we have that
χ(GF ) = m and that αq(GF ) = m.

(iv) =⇒ (iii). Conversely, if αq(GF ) = m then we must have that χ(GF ) = m. Then
Lemma 5.17 implies that there exists a projective packing of value m.

As a corollary of the above two theorems, we have that isomorphism and quantum isomorphism
are distinct relations on graphs:

Theorem 6.4. There exists graphs that are quantum isomorphic but not isomorphic. In particular,
if F is a linear BCS that is quantum satisfiable but not satisfiable, then the graphs GF and GF0

are quantum isomorphic but not isomorphic.

The smallest example of a quantum satisfiable but not satisfiable linear BCS that we know of is
the Mermin magic square BCS given in (30). The two corresponding graphs each have 24 vertices.
Interestingly, both of the graphs have automorphism groups that act transitively on their vertices.
In fact, both of the graphs are Cayley graphs. We present the two graphs in Figures 1 and 2 below.

We note here that the first separating example was slightly different than the one presented
above. It was a version of the celebrated CFI construction, named after Cai, Fürer, and Immerman
[8]. The original CFI construction was designed to produce pairs of non-isomorphic graphs that
cannot be distinguished by the d-dimensional Weisfeiler-Lehman algorithm for any fixed d. The
CFI construction was reinterpreted by Atserias, Bulatov, and Dawar [2] to view it as an encoding of
special systems of linear equations over Z2, where each variable appears in precisely two equations.
Our first separating example was literally the CFI construction corresponding to a system of linear
equations as in [2], in which each variable appears in exactly two equations, and that is classically
unsatisfiable over Z2 but quantum satisfiable. The Mermin-Peres magic square game gives rise to
such a system of linear equations. When applied to the constraint system describing the magic
square, this construction produced graphs with several hundred vertices. The final construction
which we described above is a simplified version of this, in which several vertices have been merged
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x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Figure 1: G(F) for the Mermin magic square game (30).

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 0

000 011 101 110

Figure 2: G(F0) for the Mermin magic square game (30).
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together, and several others have been removed, without changing the outcome. The final graphs
have a few dozen vertices. As it turns out, this streamlined version of the construction is quite
similar to the FGLSS reduction from the theory of hardness of approximation [12], which inter-
preted in this context is a reduction from the feasibility problem for arbitrary systems of linear
equations over Z2 (without any restriction on the number of occurrences of each variable) to the
graph isomorphism problem. The FGLSS construction was also used in the context of the graph
isomorphism problem in [22].

6.3 Separating quantum and quantum commuting isomorphism

We can also apply the techniques of the previous section to show that the existence of quantum
commuting strategies for a linear BCS game can be reduced to the existence of a quantum com-
muting strategy for a corresponding isomorphism game. In particular, we have the following analog
of Theorem 6.3:

Theorem 6.5. Let F be a linear BCS with m constraints. Then the following are equivalent:

(i) The BCS game for F has a perfect quantum commuting strategy;

(ii) The graphs GF and GF0 are quantum commuting isomorphic;

(iii) There exists a tracial packing of GF of value m;

(iv) αqc(GF ) = m.

Proof. The proof follows the same format as that of Theorem 6.3. Indeed, note that proof (i)⇒ (ii)
from above is independent of the type of strategy used, i.e., it works just as well for the quantum
commuting case. The proof of (ii) ⇒ (iii) is identical as well, with tracial packing replacing
projective packing. To show that (iii) ⇒ (i), the main difference is to just use s(E(`,f)) in place
of rk(E(`,f))/d, and the fact that for a faithful tracial state s, the equality

∑
i∈[r] s(Ei) = 1 implies

that
∑

i∈[r]Ei = I for any mutually orthogonal projectors E1, . . . , Er. It is then easy to see that
the projectors E(`,f) satisfy Lemma 5.12 and thus the BCS game for F has a perfect quantum
commuting strategy. The equivalence of (iii) and (iv) is identical to the above, just using the
tracial packing analog of Lemma 5.17.

For our main results on quantum commuting isomorphism, we will use the above along with
the following two results of Slofstra [29]:

Theorem 6.6 (Slofstra). There is a linear BCS game that has a perfect quantum commuting
strategy but no perfect quantum strategy.

Theorem 6.7 (Slofstra). It is undecidable to determine if a linear BCS game has a perfect quantum
commuting strategy.

From our Theorem 6.5 and the above two theorems of Slofstra we immediately obtain the
desired corollaries:

Corollary 6.8. There exist graphs G and H such that G ∼=qc H but G 6∼=q H.

Corollary 6.9. It is undecidable to determine if two graphs are quantum computing isomorphic.
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Unfortunately, the linear binary constraint systems that Slofstra uses to prove Theorem 6.6 are
too large to produce graphs of reasonable size, and thus we cannot include any specific examples for
Corollary 6.8. Recall that Theorem 4.5 states that non-signalling isomorphism and fractional iso-
morphism are equivalent relations, and further recall that the latter is known to be polynomial time
decidable. Thus Corollary 6.9 implies that quantum commuting isomorphism and non-signalling
isomorphism are distinct relations:

Corollary 6.10. There exist graphs G and H such that G ∼=ns H but G 6∼=qc H.

We note that using Slofstra’s undecidability result to prove that quantum commuting isomor-
phism and non-signalling isomorphism are not equivalent is overkill in the extreme. In fact, one
can show this more directly using results from our upcoming work [17]

Combining the results of this section with Theorem 6.4, we see that isomorphism, quantum
isomorphism, quantum commuting isomorphism, and non-signalling isomorphism are all distinct
relations, i.e., none of the implications in Equation (29) can be reversed. It is interesting how
much variation there is in the complexity of these four relations. The weakest among them, non-
signalling isomorphism, is polynomial time decidable, but the next strongest, quantum commuting
isomorphism, is undecidable. Of course isomorphism itself was recently shown by Babai [5] to
be decidable in quasipolynomial time. Lastly, the complexity of deciding quantum isomorphism
remains open.
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G061 and by grant LL1201 ERC CZ of the Czech Ministry of Education, Youth and Sports. SS
is supported by the Royal Society, the EPSRC, and the National Natural Science Foundation of
China (NSFC). AV is supported in part by the Singapore National Research Foundation under
NRF RF Award No. NRF-NRFF2013-13. Part of this work was done while AA, DR, and SS were
visiting the Simons Institute for the Theory of Computing.

References

[1] Alex Arkhipov. Extending and characterizing quantum magic games. 2012. arXiv:1209.3819.

[2] Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410(18):1666 – 1683, 2009. A preliminary
version appeared in ICALP 2007. doi:10.1016/j.tcs.2008.12.049.

[3] Albert Atserias and Elitza N. Maneva. Sherali-Adams Relaxations and Indistinguishability in
Counting Logics. SIAM J. Comput., 42(1):112–137, 2013. A preliminary version appeared in
ITCS 2012. doi:10.1137/120867834.

31

http://arxiv.org/abs/1209.3819
http://dx.doi.org/10.1016/j.tcs.2008.12.049
http://dx.doi.org/10.1137/120867834
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[5] László Babai. Graph isomorphism in quasipolynomial time. 2015. arXiv:1512.03547.
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[8] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of vari-
ables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/BF01305232.

[9] Peter J. Cameron, Ashley Montanaro, Michael W. Newman, Simone Severini, and Andreas
Winter. On the quantum chromatic number of a graph. Electronic Journal of Combinatorics,
14(1), 2007. arXiv:quant-ph/0608016.

[10] Richard Cleve, Li Liu, and William Slofstra. Perfect commuting-operator strategies for linear
system games. 2016. arXiv:1606.02278.

[11] Richard Cleve and Rajat Mittal. Characterization of binary constraint system games. In
Proceedings of the 41st International Colloquium on Automata, Languages, and Programming,
ICALP ’14, pages 320–331. 2014. arXiv:1209.2729.

[12] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, March 1996. doi:
10.1145/226643.226652.

[13] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Draft manuscript, 2013. Available online.

[14] Martin Grohe and Martin Otto. Pebble games and linear equations. Journal of Symbolic Logic,
80(03), 2012. arXiv:1204.1990.
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