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ABSTRACT
Online ranker evaluation focuses on the challenge of effi-
ciently determining, from implicit user feedback, which ranker
out of a finite set of rankers is the best. It can be modeled
by dueling bandits, a mathematical model for online learning
under limited feedback from pairwise comparisons. Compar-
isons of pairs of rankers is performed by interleaving their
result sets and examining which documents users click on.
The dueling bandits model addresses the key issue of which
pair of rankers to compare at each iteration.

Methods for simultaneously comparing more than two rankers
have recently been developed. However, the question of
which rankers to compare at each iteration was left open.
We address this question by proposing a generalization of
the dueling bandits model that uses simultaneous compar-
isons of an unrestricted number of rankers.

We evaluate our algorithm on several standard large-scale
online ranker evaluation datasets. Our experimental results
show that the algorithm yields orders of magnitude improve-
ment in performance compared to state-of-the-art dueling
bandit algorithms.

1. INTRODUCTION
Evaluation of rankers can be done online by presenting

the ranked lists produced by rankers to users and then in-
ferring the quality of the rankers by analyzing users’ clicks.
Online evaluation of rankers has become increasingly popu-
lar, partly because user behaviour can be easily logged. This
provides online evaluation methods with inexpensive access
to large amounts of training data [5]. One of the key draw-
backs of online evaluation methods is that the outputs of
new, potentially poor, rankers need to be presented to ac-
tual users. If a new ranker turns out to be poor, then users
will be presented with poor results and, in the worst case,
might abandon the service [7]. Conversely, if new rankers are
not presented there is a risk of overlooking better rankers in
the pool of rankers.

In online evaluation, it is usually easier for users to make
relative judgements, rather than absolute judgements. Rankers
can be compared by interleaving their result lists and exam-
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ining which documents a user clicks on. Interleaving meth-
ods were found to require 1-2 orders of magnitude less data
than absolute metrics to detect even small differences in re-
trieval quality [5].

When using interleaving to compare pairs of rankers, it
is critical to determine which two rankers to interleave at
each comparison, i.e. to resolve the exploration-exploitation
tradeoff. Dueling bandits is an elegant mathematical frame-
work for solving this [15, 18, 19, 17].

Recently, interleaving has been generalized to multileav-
ing which permits more than two rankers to be compared
in a single comparison [12, 13, 2]. Prior work on multileav-
ing has shown that repetitive simultaneous comparison of
fixed sets of rankers through multileaving is similarly accu-
rate in identifying the best ranker in the set and faster than
sequential comparisons of pairs of rankers through interleav-
ing. However, prior work focused only on the comparisons
themselves, and did not address the key issue of selecting
subsets of rankers for each comparison. This approach has
disadvantages. Firstly, since poor rankers are participating
on all the comparisons the quality of the multileaved lists
throughout the evaluation process is poor. Secondly, very
poor rankers that could potentially be eliminated early in
the process continue being evaluated, which does not allow
the comparisons to focus on rankers whose quality is harder
to distinguish.

We extend the dueling bandit framework and propose
a Multi-Dueling Bandit algorithm that provides an intel-
ligent selection of rankers for simultaneous comparisons and
improves the trade-off between exploration and exploita-
tion. Our experimental evaluations of the new algorithm
on real web search learning-to-rank datasets show that our
algorithm yields orders of magnitude improvement in per-
formance compared to state-of-the-art dueling bandit algo-
rithms.

2. BACKGROUND AND RELATED WORK
Our work builds on two main bodies of literature. The

first is concerned with selecting promising rankers from a
pool of rankers and the second is concerned with combining
their ranked lists and evaluating their relative quality. The
corresponding prior work is discussed next.

2.1 Dueling Bandits
Learning from limited relative feedback from pairwise com-

parisons can be modeled as a K-armed dueling bandit prob-
lem [15]. The goal is to select pairs of rankers, so that a
mix of their rankings will be almost as good as the ranking



of the best ranker in the pool. There are several possible
definitions of the best ranker for pairwise comparisons. The
most common definition is the Condorcet winner, which is a
ranker that is (pairwise) better that any other ranker in the
pool. Note that a Condorcet winner is not guaranteed to
exist. Nevertheless, many dueling bandit algorithms assume
the existence of a Condorcet winner and we follow suit.

Zoghi et al. [18] proposed an algorithm for the dueling
bandit setting based on the idea of relative upper confidence
bounds (RUCB). The algorithm maintains a relative upper
confidence bound on the probability that a given arm i is
better than another arm j. The algorithm then selects an
arm i that might be the best, based on its upper confi-
dence bounds relative to all other arms, and then selects
the challenger with the highest upper confidence bound rel-
ative to i. Zoghi et al. [17] subsequently proposed a divide-
and-conquer algorithm, MergeRUCB, extending their earlier
work in [18]. Experiments by Zoghi et al. suggest that for
large numbers of arms it outperforms RUCB.

Komiyama et al. [10] proposed an algorithm, Relative
Minimum Empirical Divergence (RMED), which draws arms
based on whether an arm has not been compared with other
arms sufficiently often, or if it is not substantially beaten
by many other arms. To decide if an arm has been suffi-
ciently explored it uses bounds based on the KL-divergence.
They showed that this algorithm outperformed RUCB and
MergeRUCB. To the best of our knowledge this is currently
the best performing dueling bandit algorithm.

All algorithms listed above are limited to pairwise com-
parisons, whereas our proposed algorithm is based on simul-
taneous comparisons of multiple rankers.

2.2 Comparison Methods
Combining ranked lists and evaluating chosen rankers is

based on click-through information obtained by interleaving
(for two rankers) or multileaving (for two or more rankers)
methods.

Interleaving has been generalised to simultaneous compar-
ison of more than two rankers. The proposed multileaving
methods include Team Draft Multileave (TDM) [12], Opti-
mised Multileave (OM) [12], Probabilistic Multileave (PM)
[13], and Sample Only Scored Multileave (SOSM) [2]. SOSM
was found to outperform the other multileaving methods,
which can either be less accurate, or fail to scale well with
the number of rankers [2]. We used SOSM to multileave
rankers for our multi-dueling bandit algorithm.

3. THE MULTI-DUELING BANDIT PROB-
LEM

In multi-dueling bandits, at each iteration, t, an algorithm
selects a subset, St, of K arms and observes outcomes of
noisy pairwise comparisons (duels) between all pairs of arms
in St. In the ranking scenario this corresponds to multileav-
ing the ranked lists of the subset, St, of rankers and then
inferring the relative quality of the lists (and the correspond-
ing rankers) from user clicks. When the size of St is limited
to 2 the problem reduces to standard dueling bandits.

Let P = [pij ] be a matrix of probabilities that arm i wins
in a pairwise comparison with arm j (it satisfies pij = 1−pji
and we define pii = 1

2
). In pairwise comparisons the best

arm is not always well-defined. We follow the assumption in
most dueling bandit literature that there exists a Condorcet

winner, which is a unique arm ∗ satisfying p∗j >
1
2

for all
j 6= ∗. That is, the Condorcet winner ∗ is pairwise better
than any other arm j. The quality of all arms is then defined
by their regret, r(j) = p∗j − 1

2
, which is a shifted probabil-

ity of losing to the best arm (this definition also coincides
with dueling bandits). Smaller regret corresponds to better
quality and the regret of playing the best arm is zero. The
quality of a set of arms St is defined by the average quality
of the constituent arms (the average regret)

r(St) =

∑
j∈St

p∗j

|St|
− 1

2
. (1)

The goal of a multi-dueling bandit algorithm is to select
subsets of arms S1, S2, . . . , so that the cumulative regret∑T
t=1 r(St) is minimized. All arms have to be selected a

small number of times in order to be explored, but the goal
of the algorithm is to minimize the number of times when
suboptimal arms are selected.

Simultaneous comparison of more than two arms may af-
fect their pairwise winning probabilities. For example, in
ranking, the effective length of a multileaved ranked list is
typically limited by 10 items, since users rarely go beyond
the first page of results. Therefore, the simultaneous com-
parison of more than 10 rankers means that some rankers
may be compared based on a merged list that does not in-
clude their top suggestions. This may affect the estimates of
their relative quality. This effect, which we refer to as dis-
tortion may also occur when less than 10 rankers are com-
pared, since the limited length of the merged list does not
allow perfect representation of every ranker. The exact level
of distortion depends on the data, ranker, and method used
for multileaving. The level of distortion of estimates of the
pairwise winning probabilities made by SOSM, which was
used in our experiments, is evaluated in Section 4.2.4. It is
important to emphasize that in all our experimental compar-
isons, except one pathological case, the advantage of parallel
exploration outweighed the disadvantage due to distortion
in estimates.

3.1 Multi-Dueling Bandit Algorithm
The proposed multi-dueling bandit algorithm maintains

optimistic estimates of pairwise winning probabilities pij
and plays arms that, according to these optimistic estimates,
have a chance of being the Condorcet winner. When there
is a single candidate, the algorithm exploits this knowledge
and plays only that candidate. When there are multiple can-
didates the algorithm explores by comparing them all. We
increase parallel exploration by adding additional arms to
such comparisons, as described below.

Our estimates of pairwise winning probabilities are based
on empirical counts of wins/losses. In order for these esti-
mates to be meaningful the algorithm has to assume that
pairwise winning probabilities are consistent with the pair-
wise winning probability matrix P , irrespective of the com-
position of the set St (meaning that they are not distorted).
More precisely, since correct identification of the Condorcet
winner depends on correct estimation of the probabilities
p∗j , it is important that they remain at a certain margin
above 1

2
irrespective of the composition of St. Incorrect es-

timation of pij-s for i, j 6= ∗ does not influence identification
of the Condorcet winner and, therefore, their distortion does
not disturb the operation of the algorithm.

We now describe our algorithm, which is provided in the



Algorithm 1 box. We denote by nij(t) the number of times
up to round t that i and j were compared with each other.
Let wij(t) denote the number of times when arm i beat
arm j. We break ties randomly, so that nij(t) = wij(t) +
wji(t). We compute upper confidence bounds uij(t) on the
probabilities pij :

uij(t) =
wij(t)

nij(t)
+

√
α ln t

nij(t)
(2)

(uij-s are the optimistic estimates of pij-s and they are anal-
ogous to those used in [18] for pairwise comparisons). The
first term in uij(t) is an empirical estimate of pij and the
second term bounds the fluctuations of this estimate with
high probability, see [1, 18]. The α parameter in the second
term controls the width of the upper confidence bound.

Additionally, we maintain a second wider upper bound
vij(t), which we use to increase parallel exploration. We
define vij(t) by

vij(t) =
wij(t)

nij(t)
+

√
βα ln t

nij(t)
, (3)

where the parameter β ≥ 1 controls how much wider it is
than the upper confidence bound of Equation 2. When there
is more than one candidate for a Condorcet winner according
to the “narrow” confidence bounds in Equation 2 an explo-
ration round is triggered and arms that could be Condorcet
winner candidates according to the“wide”confidence bounds
are compared. This leads to some arms being explored pre-
emptively and decreases the overall number of exploration
rounds by increasing parallel exploration.

Given K arms, we define Ui(t) = minj∈K,j 6=i {uij(t)}, i.e.
Ui(t) is the smallest upper confidence bound of i. Let E de-
note the set of potential Condorcet winners, which contains
all arms i for which Ui(t) ≥ 1/2. Additionally, we define
Vi(t) = minj∈K,j 6=i {vij(t)} and F to be the set of potential
Condorcet winners according to the wider upper bounds,
that is, all arms for which Vi(t) ≥ 1/2.

At each iteration of Algorithm 1, if there is only a single
potential Condorcet winner in E, we choose this arm. If
there are several potential Condorcet winners, we select all
arms in the larger set F . In the unlikely event that there
are no potential Condorcet winners, we select all arms.

4. EXPERIMENTAL EVALUATION
We next present the experimental evaluation of our Multi-

Dueling Bandits (MDB) algorithm.

4.1 Experimental Setup
We begin by describing our experimental setup.

4.1.1 Baselines
We compare our MDB algorithm to three state-of-the-art

dueling bandit algorithms, namely RUCB and MergeRUCB,
both implemented in the freely available software package
Lerot [11], and RMED1 [10]. As per [17], we set the α
parameter of Equation 2 for RUCB to 0.51, and to 1.01
for MergeRUCB. For RMED1 we use the same parameter
setting as [10]: f(K) = 0.3K1.01. To select the param-
eters for MDB, we carried out a grid search on the grid
{0.5, 1, 1.5} × {1.25, 1.5, 2, 4} on a separate dataset, specifi-
cally the validation set of the YLR1 dataset, and found the

1 W = [wij ] := 0K×K
2 Play all arms and update the corresponding entries in
W

3 for t = 2, . . . , T do

4 U := [uij(t)] =
wij(t)

nij(t)
+

√
α ln t
nij(t)

, uii(t) = 1/2

5 V := [vij(t)] =
wij(t)

nij(t)
+

√
βα ln t
nij(t)

, vii(t) = 1/2

6 E = {i s.t. Ui(t) ≥ 1/2} (The set of potential
champions according to U)

7 F = {i s.t. Vi(t) ≥ 1/2} (The set of potential
champions according to V )

8 if |E| > 1 then
9 Choose all arms f ∈ F for comparison and

update the corresponding entries in W
10 else if |E| = 1 then
11 Choose the arm e ∈ E
12 else
13 Choose all arms for comparison and update the

corresponding entries in W
14 end
Algorithm 1: Multi-Dueling Bandit (MDB) Algorithm.

Table 1: Datasets. Each dataset consists of a num-
ber of query-document pairs, together with a rel-
evance judgement for the pair. Each document is
represented by a feature vector.

Datasets Queries URLs Features

MSLR-WEB30K 2 31,531 3,771,125 136
YLR Set 1 [4] 19,944 473,134 700
YLR Set 2 [4] 1,266 34,815 700
Yandex 3 9,124 97,290 245

best parameters to be α = 0.5 and β = 1.5. We used these
as our parameter settings for MDB for all other experiments.

4.1.2 Datasets
We compare the algorithms on four large-scale evaluation

datasets summarised in Table 11. Since there was no Con-
dorcet winner for the Yandex dataset, we randomly sampled
subsets of 200 rankers from the Yandex dataset, selecting the
first subset with a Condorcet winner.

4.1.3 Ranker Construction
Following [17], for each dataset we choose the rankers to

be the features of the dataset. That is, for a given feature,
we construct a ranker which ranks documents only accord-
ing to the score of that feature. As noted in [17] this is a
somewhat artificial setup from a learning-to-rank perspec-
tive, however from the point of view of evaluating dueling
and multi-dueling bandit algorithms, the difficulty of a prob-
lem instance is affected by the relative performance of the
rankers, not their absolute performance. Using the feature
rankers is therefore useful for assessing the performance of
dueling and multi-dueling bandit algorithms since many of
the features perform similarly and are therefore difficult to
distinguish using interleaved or multileaved comparisons.

1Only 519 features are non-zero for YLR Set 1 and only 596
features are non-zero for YLR Set 2. The remaining features
are zero for all query-document pairs.



(a) YLR1

Figure 1: Cumulative regret averaged over 10 runs
against number of iterations for the 4 algorithms on
the YLR1 dataset with the navigational click model.

4.1.4 Simulated User Model
All experiments are conducted using a simulated user model.

For each iteration we randomly sample with replacement one
query from the pool of queries of the dataset. The dueling
or multi-dueling bandit algorithms choose rankers, whose
results are then interleaved or multileaved respectively, and
presented to a simulated user. For the dueling bandit algo-
rithms, we compare pairs of rankers using probabilistic inter-
leaving [8]. For MDB, we use SOSM [2]. Both probabilistic
interleaving and SOSM only present the top-10 documents
to users. Clicks are then generated from a probabilistic user
model [9]. The interleaving or multileaving algorithm scores
the chosen rankers using the clicks generated by the user
model.

The click model used for these experiments was the navi-
gational user model from [9], unless otherwise stated. This
click model has been used as a standard click model for du-
eling bandit algorithm evaluation in [17].

4.2 Results
Below we summarize the experimental results for the var-

ious experiments. For all figures, the error bars show the
standard deviation of cumulative regret across runs for each
algorithm at the given time step.

4.2.1 Experiments on Real Learning-to-Rank Datasets
Figure 1 shows how the cumulative regret increases with

each iteration using the real learning to rank dataset YLR1.
It shows that MDB substantially outperforms the baselines.
It outperforms the best dueling bandit algorithm, RMED1,
by almost 2 orders of magnitude. RMED1 outperforms
RUCB and MergeRUCB, as expected from the results of
[10]. The results for the other datasets are similar, and can
be seen in the extended version [3], with MDB outperform-
ing the best dueling bandit algorithm, RMED1, by a factor
of 3 in the dataset with the smallest number of features, and
orders of magnitude for the other datasets.

Note that for the Yandex dataset, since there was no Con-
dorcet winner, we randomly sampled 200 of the 245 feature
rankers to obtain a dataset with a Condorcet winner. Re-
sults using the full Yandex dataset with no Condorcet winner
are described in the extended version [3].

4.2.2 Dependence on Number of Rankers
To isolate the impact of the number of rankers being com-

Figure 2: Cumulative regret averaged over 10 runs
after 5,000,000 iterations against number of rankers
for the 4 algorithms, and a random policy, on sub-
sets with M rankers of the YLR1 dataset with nav-
igational click model.

pared on the real datasets involving multileaving, we investi-
gate how regret scales with the number of rankers being com-
pared using the YLR1 dataset. We randomly sampled sub-
sets of rankers of sizes {10, 25, 40, 55, 70, 85, 100, 115, 130, 145}
from the YLR1 dataset. Note that we randomly sampled
different subsets of rankers for each run. For each of these
subsets we then carried out 10 runs of each algorithm over
5,000,000 iterations and recorded the average cumulative re-
gret across runs.

Figure 2 shows how the performance of the 4 algorithms
varies as a function of the number of rankers. Additionally
we have shown the performance of a random policy which
simply selects a random subset of the rankers for multileav-
ing at each iteration. We observe that as the number of
rankers increases the cumulative regret increases most for
RUCB and MergeRUCB, while it increases more slowly for
RMED1. Regret appears to be almost independent of the
number of rankers for MDB.

These experiments were also carried out for the perfect
and informational click models, and the results were very
similar but have been omitted due to page restrictions.

For the MDB algorithm, the regret associated with hav-
ing to explore suboptimal rankers does not appear to be
additionally compounded by the number of rankers being
explored. This is an important characteristic of the MDB
algorithm, since if we can explore additional rankers with no
substantial additional cost, the risks associated with large-
scale online ranker evaluation are substantially mitigated.

Note that it may appear that regret levels off for MergeRUCB
as we increase the number of rankers. This is due to the fact
that for 5,000,000 iterations there is a limit to how much
regret can be incurred just by making random choices in
5,000,000 iterations. For larger problem sizes and for a time
frame of 5,000,000 iterations, MergeRUCB begins to per-
form no better than a random policy. This does not imply
that MergeRUCB performs as badly as a random policy in
general, but for these problem instances it has not yet be-
gun to eliminate suboptimal arms after 5,000,000 iterations.
Further iterations would be needed to show improvements
relative to the random policy.



(a) informational click model

Figure 3: Cumulative regret averaged over 10 runs
against number of iterations for the 4 algorithms
on the YLR1 dataset using the informational click
model.

4.2.3 Dependence on Click Model
To test the robustness of our approach to the choice of

click model, we also investigated performance using the per-
fect and informational click models [9]. Figure 3 shows the
cumulative regret for the informational click model, using
randomly selected subsets of size 200 of the rankers from the
YLR1 dataset. We chose to use subsets of the full dataset
for these experiments because of the computational costs
of running RMED1 on the full YLR1 dataset. For all click
models MDB outperforms the best dueling bandit algorithm
by between 1 and 2 orders of magnitude, and the results for
the remaining click models are included in the extended ver-
sion [3].

For MDB, the regret doubles when going from the per-
fect to the navigational click model, but does not increase
further for the informational click model. In contrast, for
the dueling bandit algorithms, regret for the informational
click model is approximately double that for the navigational
click model, which is approximately double that of the per-
fect click model. MDB is therefore least affected by varying
the click model in our experiments.

4.2.4 Distortion of probability estimates due to mul-
tileaving

As discussed earlier, simultaneous comparison of more
than two arms may affect their pairwise winning probabili-
ties. We called this effect distortion. We can quantify this ef-
fect by first randomly sampling a fixed size subset of rankers
that includes a Condorcet winner, and then measuring, after
some fixed number of multileavings, the fraction of rankers
that beat the Condorcet winner more than 50% of the time.
If there is no distortion, and the number of multileavings is
sufficient, we expect this fraction to be zero.

In these experiments we test the level of distortion in the
multileaving method SOSM, and examine how robust our
MDB algorithm is to possible distortions in the multileaving
method.

For each dataset, and each click model, we randomly sam-
ple subsets of rankers of sizes 3, 10, and 100 that include
a Condorcet winner. We examine the probabilities of the

rankers beating the Condorcet winner after 3,000 multileav-
ings. Note that this is likely to be an overestimate of the
distortion of the multileaving method, since, for rankers of
very similar quality, 3,000 iterations may not be sufficient to
reliably distinguish rankers. Table 2 shows the average, over
30 runs, of the percentage of rankers that beat the Condorcet
winner. Note that we have only included the results for the
informational click model, the results for the remaining click
models are shown in the extended version [3].

We observe that the distortion problem is almost unique
to the MSLR dataset, and is exacerbated by the noisiest click
model, the informational click model. The distortion prob-
lem is exclusively related to the feature ranker 133 in the
MSLR dataset. Feature ranker 133 scores documents solely
based on the query-document clicks, i.e. a document was
clicked on in response to a query. This feature is very good
at identifying 1 or 2 documents that are very likely to be
relevant. However, when asked to rank documents in a mul-
tileaved set, most of the documents, even though they might
be relevant, have not been previously clicked on. As such,
ranker 133 is unable to distinguish between the vast major-
ity of documents. Thus, even though ranker 133 performs
well in pairwise comparisons, where it has contributed half
of the documents in the results list, it performs very poorly
when multileaved with many other rankers. Table 2 also
includes results for the MSLR dataset, when feature ranker
133 is excluded. This is denoted by MSLR*. When ranker
133 is excluded, no substantial distortion is observed.

The moderate levels of distortion observed for the Yandex
and MSLR dataset (excluding feature ranker 133) are likely
to be mostly caused by the fact that there are many rankers
that are very similar in quality, and so 3,000 comparisons
are not sufficient to differentiate these similar rankers.

Table 2: Percentage of rankers beating the Con-
dorcet winner (distortion), averaged over 30 runs,
after 3,000 iterations for 3, 10, and 100 rankers be-
ing multileaved for each dataset and click model.
The dataset denoted MSLR* is the MSLR dataset
with feature ranker 133 removed.

Distortion

Num. Rankers 3 10 100

MSLR Informational 0.0% 6.8% 41.3%
MSLR* Informational 0.0% 2.9% 2.7%
YLR1 Informational 0.0% 0.0% 0.3%
YLR2 Informational 0.0% 1.0% 0.9%

Yandex Informational 3.3% 3.9% 3.4%

The only problem setting where our MDB algorithm did
not substantially outperform the best baseline dueling ban-
dit algorithm, RMED1, was for the MSLR dataset with all
136 feature rankers with the informational click model. The
results for this problem setting are shown in Figure 4. This
is due specifically to the feature ranker 133 in the MSLR
dataset. In the extended version [3], we show that there was
some distortion for all click models for the MSLR dataset.
However, it is with the informational click model that the
distortion is greatest, reaching 41.3% for 100 rankers. This
is a very high percentage. The MDB algorithm appears to
be robust to more reasonable levels of distortion, suffering
substantially less regret than the baselines for the MSLR



Figure 4: Average cumulative regret over 10 runs
against number of iterations for the 4 algorithms
on the MSLR dataset using the informational click
model.

dataset with the navigational click model, and with the per-
fect click model (this result is omitted due to the page re-
striction). Additionally, for the MSLR dataset with feature
ranker 133 removed, MDB substantially outperformed all
baselines for all click models. Results are omitted due to
the page restriction.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes a generalisation of the K-armed duel-

ing bandits termed multi-dueling bandits (MDB). We have
applied MDB in online ranker evaluation to leverage the
power of simultaneous comparisons through multileaving and
improve the exploration-exploitation trade-off. Our exper-
imental results on data from 4 standard datasets demon-
strated up to 1 to 2 orders of magnitude reduction in re-
gret compared to state-of-the-art dueling bandit algorithms,
RUCB [18], MergeRUCB [17], and RMED1 [10] in all ex-
cept one pathological case discussed below. Generally, rel-
ative benefits compared to dueling bandits increased with
the number of rankers being compared. For MDB, the in-
curred regret did not increase substantially as the number of
rankers increased. As such, the risks associated with large-
scale online ranker evaluation are substantially mitigated.
Further experiments showed that MDB was robust to vari-
ous user click models.

Experiments were also conducted to examine the behaviour
of MDB in the absence of a Condorcet winner, which is the
case for the full Yandex dataset. In this case, the regret
was approximated by measuring the NDGC@10 score. In
this case MDB outperformed the best dueling bandit algo-
rithm, RMED1, by approximately an order of magnitude
after 5,000,000 iterations.

We also investigated the level of distortion of pairwise
winning probabilities in multileaving using SOSM. For the
MSLR dataset using a navigational click model, the dis-
tortion reached 41.3%. In this case MDB was inferior to
RMED1. The high level of distortion was due to the pecu-
liarities of ranker 133. If ranker 133 is removed, the distor-
tion of pairwise winning probabilities is significantly reduced
and MDB outperforms all other algorithms.

There are a number of avenues for future work. The
distortion of pairwise winning probabilities in multileaving

needs further investigation. All existing multileaving algo-
rithms exhibit this behaviour. It remains an open question
as to whether a new multileaving algorithm can be designed
to avoid this problem, or at least minimize it. Furthermore,
a theoretical analysis of our algorithm needs to be developed
to better understand its power and limitations. Addition-
ally, since a Condorcet winner is not guaranteed to exist, it
may be useful to explore other concepts of winners, such as
the Copeland [16], Borda [14] and von Neumann [6] crite-
ria. Finally, we note that the proposed multi-dueling bandit
algorithm can be applied to a broad class of problems and
applications in other domains, e.g. recommender systems.

6. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis

of the multiarmed bandit problem. Machine learning,
47(2-3):235–256, 2002.

[2] B. Brost, C. Lioma, Y. Seldin, and I. J. Cox. An improved
multileaving algorithm for online ranker evaluation - in press.
SIGIR, 2016.

[3] B. Brost, Y. Seldin, I. J. Cox, and C. Lioma. Multi-dueling
bandits and their application to online ranker evaluation. arXiv
preprint arXiv:1506.00312, 2016.

[4] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge
overview. In Yahoo! Learning to Rank Challenge, pages 1–24,
2011.

[5] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue.
Large-scale validation and analysis of interleaved search
evaluation. TOIS, 30(1):6, 2012.

[6] M. Dud́ık, K. Hofmann, R. E. Schapire, A. Slivkins, and
M. Zoghi. Contextual dueling bandits. arXiv preprint
arXiv:1502.06362, 2015.

[7] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing
exploration and exploitation in learning to rank online. In
Advances in Information Retrieval, pages 251–263. Springer,
2011.

[8] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic
method for inferring preferences from clicks. In CIKM, pages
249–258. ACM, 2011.

[9] K. Hofmann, S. Whiteson, and M. D. Rijke. Fidelity,
soundness, and efficiency of interleaved comparison methods.
TOIS, 31(4):17, 2013.

[10] J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret
lower bound and optimal algorithm in dueling bandit problem.
arXiv preprint arXiv:1506.02550, 2015.

[11] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot:
An online learning to rank framework. In Proceedings of the
2013 workshop on Living labs for information retrieval
evaluation, pages 23–26. ACM, 2013.

[12] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and
M. de Rijke. Multileaved comparisons for fast online evaluation.
In CIKM, pages 71–80. ACM, 2014.

[13] A. Schuth et al. Probabilistic multileave for online retrieval
evaluation. SIGIR, 2015.

[14] T. Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic
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