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Abstract

The increasing use of mice models in cognitive tasks that were originally designed for rats raises
crucial questions about cross-species comparison in the study of spatial cognition. The present
review focuses on the major neuroethological differences existing between mice and rats with a
particular attention given to the neurophysiological basis of space coding. Whereas little difference
is found in the basic properties of space representation in these two species, it appears that the
stability of this representation changes more drastically over time in mice than in rats. We consider
several hypotheses dealing with attentional, perceptual and genetic aspects and offer some
directions for future research that might help in deciphering hippocampal function in learning and
memaory processes.

Introduction

As pointed out by Hans J. Hedrich®, the Norway rat (Rattus norvegicus) was the first mammalian
species to be domesticated for scientific purpose as early as the first half of the 19" century. With
the advent of molecular techniques in the late ‘80s and the development of transgenic mouse
models, mice account nowadays for three-quarters of the mammals used in biomedical research’.
For this reason, the mouse was the second mammal to have its genome fully sequenced, right after
the human genome®.

Historically, the rat has been most commonly used by physiologists, with a special attention given to
learning and memory™®, whereas the mouse became the model of choice for genetic studies. By
allowing manipulation of specific genes thought to be involved in cognitive processes, the knockout
approach increased drastically the use of mice in behavioural research®®. This has led to the
confounding situation in which mice have been used extensively in behavioural paradigms originally
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designed for rats, with virtually no consideration of the differences between these two species, as if
4,5-11
» )

they were fully interchangeable (see on this specific matter Refs
Rodents’ abilities in spatial navigation tasks have been widely investigated for decades. This has led
to the production of a vast amount of experimental data on brain and behaviour available in both
species. In order to evaluate putative cognitive differences between these two species, we will first
present the primary concepts in spatial navigation and discuss the nature of the spatial
representation in the rodent brain. We then examine throughout the last sections the interactions
between behaviour and brain activity that might explain interspecies differences when tested in
common spatial tasks.

SPACE PERCEPTION

As early as the beginning of the 20™ century, scientists began to investigate in details the
mechanisms supporting the ability of animals to find their way back to their nest (e.g. Ref ). It
appeared quickly that the selection of appropriate navigational strategies was primarily determined
by the perception of space, that is, by the nature of the cues that could be used for navigation®.

Cues for navigation

Cues useful for navigation are of two sorts: External cues provided by the environment (allothetic
cues) and self-motion related cues (idiothetic cues). Allothetic cues encompass visual, tactile,
auditory and olfactory signals whereas idiothetic cues are provided mainly by vestibular and

1415 Note that a given sensory modality organ can provide both types of

proprioceptive inputs
information: for instance, vision can convey allothetic information about static environmental

landmark as well as idiothetic cues through the optic flow generated during self-motion.

In laboratory conditions, allothetic cues can be easily manipulated in order to trigger changes in

1617y Conversely, manipulation of

behaviour and brain activity in freely-moving animals (e.g. Refs
idiothetic cues cannot be achieved without partially restraining the animals (e.g. head fixed
preparation®®). These cues are otherwise always available (even in complete darkness), and are
sometimes sufficient for an animal to estimate distance and orientation parameters. For instance,
Wallace and Whishaw'® recorded trajectories from rats moving around a circular table-top in
either light or complete darkness conditions. Although their speed was lower in the dark, rats
managed to head to their departure point with the same precision in both conditions. In addition,
rats demonstrated knowledge of the distance to the goal, as their speed significantly decreased at
%2 1n this case, both

direction and distance controlled the trajectory, independently from the availability of allothetic

the midpoint of the homeward trip, regardless of the length of the trip

information. The ability of animals to keep track of their position with respect to a departure point

is termed path integration and can prove, to some extent, to be sufficient for an animal to achieve

19,21

accurate navigation™“". Indeed, the principal limitation of this navigation strategy comes from the

iterative nature of the process leading to accumulation of errors with increasing distance

traveled®*?.

® Following Gallistel’®, navigation is defined as “the process of determining and maintaining a course or
trajectory from one place to another.”
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Although rodents are able to use idiothetic sighals to navigate, they usually rely heavily on allothetic
cues when available. In general, the visual modality is the most used. Olfactory and tactile signals
can also help localisation, particularly when visual cues are less salient (e.g. olfactory-based
nhavigation in the dark®*; cooperation of olfactory and vision®*; auditory cues®®). However, landmarks
can be unstable and allothetic cues may sometimes not be sufficient to disambiguate two similar
enviranments {such a situation is probably more likely to happen in laboratory conditions). In natural
conditions, animals combine allothetic and idiothetic signals to navigate, depending on their

reliability. We generally refer to this process as multisensory integration™®,

Multisensory integration

To assess the relative contribution of each type of information to self-localisation, a common
paradigm consists in causing a conflict between different sensory sources. For instance, in the
experiment by Etienne and collaborators®’, hamsters first learned to go from their nest to a feeder
located in the middle of a 220 cm diameter circular arena by following a baited spoon directed hy
the experimenter. Once there, the hamsters filled in their cheek pouches with food and came back
to the nest. During training, a light spot was presented at the opposite side of the nest. During the
test, this visual cue was rotated by either 90° or 180°, thus creating a conflict between visual and
idiothetic cues. If hamsters relied exclusively an idiothetic cues, they would directly return to their
nest. If they relied on the visual cue, they would aim at the opposite direction of the spotlight. The
authors found that animals did neither one nor the other, but chose a position that was
intermediary between the one indicated by self-motion cues and the one deduced from the visual
cue. Interestingly, the deviation from the actual nest position depended upon the degree of conflict
between self-motion cues and the visual cue. When the spotlight was rotated 90° (small conflict),
the final position was far away from the nest position, as if the animals used preferentially the visual
cue over idiothetic cues. On the contrary, when the spotlight was rotated 180° {large conflict), the
final position was closer to the nest, thus suggesting that the idiothetic cues were given a larger
weight than the visual cue. Overall, these results suggest that navigation relies on a weighted
multisensory integration processzg. In this context, the contribution of each sensory modality
depends on the degree of confidence that can be attributed to them. There are several other
examples suggesting that mammals navigate by combining allothetic and idiothetic cues™**?** . In
certain conditions, rats can show a hierarchy in the use made of different sensory modalities to
guide navigation, vision being predominant over olfactory or self-motion cues®®. However, the
relative importance given to certain sensory sources over others greatly depends on their reliability
within a reference frame*"*.

To summarize, rodents can navigate using a combination of allothetic and idiothetic information, in
a flexible and opportunistic manner, allowing switches between various strategies continuously in
the course of navigation.
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NAVIGATION STRATEGIES

“No wild animal roams at random over the country; each has a home-region, even if it has not an

n33

actual home.”*® Home range® concept (or home-region as previously defined by Ernest T. Seton) has

been widely used in order to define the “area traversed by the individual in its normal activities of

1734

food gathering, mating, and caring for young.””” In the wild, mice and rats show territorial behaviour

33 and show home base behaviour in laboratory settings®. In this

like many other mammals
context, home base refers to the location in which the animal spends a disproportionate period of
time and from which it performs excursions®®. During this home base behaviour, it appears that

exploratory behaviour is organized®® and that specific locomotor patterns can be identified®.
Exploring space

Most mammalian species show increased exploratory activity when confronted with novelty and
rodents are no exception**2. This behaviour consists in moving towards unknown places or objects
and gathering different types of information from several sensory modalities. Exploratory behaviour
diminishes with habituation, albeit in different ways across species® and strains™. Interestingly, this
diminution seems to depend on the integrity of the hippocampus (e.g. Refs ™, but see Ref *° for
contrasting results), a structure known for its major implication in spatial navigation®. Exploration
is a central concept in spatial cognition, as this specific behaviour allows the animal to gain spatial

50,51

knowledge and build representations of its environment®®**. It is a form of latent learning®’, which

refers to the acquisition of knowledge occurring in the absence of explicit reward™.
Organisation of exploration

Exploration behaviour can be triggered by a wide set of stimulus (e.g. a new environment®*, a new

object in a familiar environment®’, a new spatial arrangement of objects*’**

, or even a change in the
environment topology®®). Novelty detection often interferes with the ongoing behavioural activities
that animals have to perform, as if acting on the current goal of the animal, prioritising the gathering

41,42,57 . 58 - . . R .
22" or other behaviours™. However, despite its instinctive

of new knowledge over feeding
component and seemingly random structure, behavioural studies demonstrate that novelty
exploration is actually quite organised®®®® while still enabling the expression of inter-individual

B 61
differences™.

Basically, when exploring a new environment for the first time, a rodent will make excursions from
its departure point to unexplored parts of its environment, most often following the borders, and

39,62,63 s . .
2=Re52 Specific behaviours such as rearing or

regularly returning to a place termed ‘home base
grooming are more likely to occur at the home base®. The home base is usually the place where the
animal was first released in the environment®, but it has to provide sufficient shelter to be
effective®®. Regarding this latter observation, Whishaw and colleagues suggested that exploration
would mainly serve to optimise safety. Exploration has similar patterns in the absence of visual cues:
in the dark, rats placed in a new environment will still organise their displacements around a chosen

home base. Their displacements show invariant characteristics, e.g. a dissociation between the

® Home range is not to be confused with the territoriality concept, the latter being the protected part of the
home range. However, these two concepts largely overlap in some instance (i.e. territory can include the
entire home range or only the nest; see Ref > for further discussion on this matter).
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outward trajectory (i.e. away from the home base) and the return trajectory (towards the home
base)®.

More recently, a thorough characterization of mice exploratory behaviour was performed by Fonio
and collaborators®. The authors demonstrated that exploration of a new and large circular arena
could be decomposed in several behavioural patterns, the order of which was highly reproducible
among individuals. These behavioural patterns progressively take place within the three-dimensional
space: mice first make short back and forth trips from their home base following the wall (one-
dimensional motion). Once they complete a full turn, they begin making small incursions inside the
environment (two-dimensional) that progressively become independent from the home base. They
end up performing jumping movements (three-dimensional). The authors highlighted the fact that in
their experiment, exploration was free: the departure point of exploration trips was the mouse
home cage, where ad libitum water and food were provided, and the time left for exploration was
exceptionally long (45h in total). In common rodent experiments, exploration is forced and
constrained in time and space, which might explain why the full pattern of exploratory behaviour is
usually not observed. The importance of environmental limits (and probably geometrical
information) is evidenced by the necessity for the mice to first entirely explore the borders before
performing incursions towards the centre of the environment. In addition to providing shelter,
borders™ and geometrical layout®® probably serve as anchor points necessary to build a spatial map

f 50,67
of an environment o .

Object exploration

The spontaneous exploration of objects is usually seen as good indication that mammals memorise
and manipulate representations of space and objects in space (e.g. Ref ®® in hamsters; Ref * in rats).
Indeed, the selective exploration of new objects in a known environment can only be possible if one
has previously stored the arrangement of objects in this environment and is able to compare the
current layout with the memorised representation. Many studies rely on spontaneous exploration to
assess the memory for the nature or the position of abjects, which relates to the ‘what’ or ‘where’

70,71

aspects of episodic-like memory”™"". In rodents, the hippocampus appears to be selectively involved

in processing memory for object locations®’.
Exploration and task performance

Interestingly, Olton and collaborators showed the importance of exploration (also termed ‘shaping’
in that context) prior to testing. Rats that were not given the opportunity to explore a radial arm
maze before testing, did not perform better than chance in the task’®. Therefore, exploration {or
simple pre-exposure to an environment), even in the absence of food, seems necessary for
subsequent performance in navigation tasks’> . As an example, Chai and White tested rats in their
ability to discriminate neighbouring locations in a radial arm maze”. In this task, rats were confined
to a specific arm of the maze, where they could either find food or not. When later tested with a free
choice between adjacent arms that include the food-paired arm, rats demonstrated preference for

376 If not pre-exposed to the maze, the

this arm only if previously exposed to the entire maze
knowledge acquired when restrained in an arm was not sufficient to build a representation of the
environment and of the spatial configurations of the maze arms. In that regard, it is interesting to

note that in complex environments rats spend more time exploring the topologically relevant parts

John Wiley & Sons
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of a maze (i.e. the intersections), probably reflecting encoding of information on the connectivity
56,77

layout of the environment
Evidence reviewed above shows the crucial role of exploration in building a representation of space,
and, by extension, in developing accurate navigation strategies. A navigation strategy can be defined
by a set of rules to follow in order to reach a spatial goal when one is placed in a particular situation.
Spatial information processing can endow the animal with navigation strategies allowing different
degrees of behavioural flexibility and complexity. For example, turning left at the green sign is a
response strategy whereas going to a specific place defined by its relationships with surrounding
cues is a place strategy. Although there are different ways to categorize strategies, they are sharing

common features'**%7%,

Guidance

In certain navigation situations, the goal is either directly visible or cued. In that case, the best
strategy, or at least the less cognitive demanding, is to orient towards the goal and approach it. This
type of strategy is termed target approaching (when the goal itself is visible) or beacon approaching
(if a cue is located at the goal position), or more generally cue, guidance or taxon strategy. It only
requires learning of a single stimulus-response association.

Contrary to most functions described here, it is generally accepted that the hippocampus is not
involved in guidance strategy, or at least that hippocampal lesions do not impair performance in cue-
79-82

guided tasks”™ "“. The ability for rats with hippocampal lesions to perform a guidance strategy is

often used as a control for non-spatial aspects of behaviour {e.g. sensory or motor abilities).
Response strategy

In some instances, the goal is neither visible nor directly cued but can be reached by means of
associations between elements of the environment and actions (each association being
independent from the others). This response (or stimulus-triggered response) strategy, also
termed egocentric strategy®, has been first studied by Edward C. Tolman in his search to identify
the nature of the information used by animals to solve a spatial task®***. A commonly used
place/response task is the cross-maze task, in which rats are trained to retrieve food from one arm
using either a place or a response strategy. During training, access to the north arm is blocked.
Animals are then placed on the starting point of the south arm, and allowed to consume the food
pellet located at the end of the east arm. In this phase, turning right {action) when facing the
intersection (stimulus) will be sufficient to reach the goal. During the probe trial, access to the
south arm is blocked. Animals are released from the north arm, and allowed to choose either the
east arm (place learning) or the west arm (response learning). Similarly to the cue strategy,
hippocampal lesions do not impair performance when the response strategy can be used to
navigate towards a goalgﬁ. Conversely, the striatum is likely to be one of the key structures
involved in this strategy®’. Overall, it seems that in the intact animal, these two structures acquire

88
|

different types of information simultaneously and in parallel™, at least during the early phases of

acquisition of the spatial task®.

Routes

John Wiley & Sons
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When specific actions can be associated to specific states as in the response strategy, but the
knowledge of the state is not sufficient to select the action, one can use a route strategy. The route
strategy has also been termed sequential egocentric strategy or sequence-based navigation®®. It
relies on a sequence of stimulus-response actions and it can also be used in a modified version of the
Morris water maze in which neither proximal nor distal cues are present™. In this task, the animal
has to cross three identical intersections before reaching its goal but the action to be performed at
each of these intersections is different. Therefore, a sequence of stimulus — response associations
must be learned and each choice must be selected according to its position in the sequence. We
note that a route strategy is more complex than a succession of cue and response strategies,
because the order of the stimuli in the sequence is important. Many structures are likely to be
involved in this strategy, which holds a sequential (and possibly a timing) component. The CA1 field
of the hippocampus would be one of the structures involved, along with other cortical and
subcortical structures.

Place navigation

The strategy which probably requires the highest level of spatial information processing is the place
{or map-based) strategy. It consists in localising the goal and oneself using the spatial relationships
between elements of the environment. Contrary to the response strategy, it enables flexible
behaviour, i.e. adaptability in the face of environmental changes. It was postulated to rely on a
‘cognitive map’, as defined by Edward C. Tolman®?.

Tolman® suggested that animals can manipulate representations of their environment and that they
were not simply stimulus-response machines, in contradiction with the behaviourist approach,
largely dominant at that time. Namely, Tolman proposed that rats could rely on a cognitive map to
navigate, or, in other words, a neural representation of places and of the relationships between
these places, independent of the current position of the subject. Tolman advanced several
arguments to support this view. First, the rats are able to find shortcuts and to perform detours.
Second, the rats show vicarious-trial-and-error behaviour (i.e. rats would occasionally pause and
look back and forth at an intersection in a maze) when facing a choice. Third, the rats display several
forms of latent learning. For example, that exploration improves further performance in a task®™ is
evidence that the animal acquires information in the absence of an explicit reward. Another instance
of such latent learning is provided by the observation that rats can incidentally learn what type of

d®*®_ Fourth, the rats express

reward is available even when not currently motivated for this rewar
hypothesis-based (or strategy-based) behaviour. This behaviour corresponds to a form of learning
that shows a sudden shift from a near-random to near-perfect performance, contrary to what is
observed with trial-and-error learning. Such a change in behaviour would underlie a non-incremental
neural process, i.e. a sudden change of hypothesis about the world (see Ref > for a review of these

arguments).

In the late ‘70s, the concept of cognitive map was amended following discoveries on its putative
heural bases (namely, the hippocampus™®). This updated theory, supported by neural data, led to a

large amount of research centred on the role of the hippocampus and related brain areas in spatial

94-96
)

cognition. To date, although few criticisms (e.g. Refs and reformulations have been addressed

97-99

(e.g. Refs ), the cognitive map concept offers one of the most fruitful experimental paradigm in

cognitive neuroscience.

John Wiley & Sons
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BRAIN SUBSTRATES OF NAVIGATION IN MICE AND RATS

Given the extensive behavioural evidence of a flexible use of the different cues (see section Space
Perception), it is fair to assume that space representation at the neural level shows a great

dependence on multisensory integration. Indeed, such integration is present at the neural level in

18,100 101

the hippocampus and later on also in

102,103

, where place cells have been first described in the rat
the mouse . We shall review in the following sections the principal differences between these
two species in terms of hippocampal place cell activity with a careful look to their basic properties

and experience dependent dynamics.

Sidebar title: Hippocampal place cells and the representation of space

Since its discovery in the early ‘70s by John O’Keefe, hippocampal place cells have been extensively
studied in numerous spatial memory paradigms. These pyramidal cells are selectively active in
restricted portions of space and change their firing activity (i.e. both firing rate and location)
according to the nature of the environment being tested. Therefore, these place cells, along with
other spatially tuned types of neurons (e.g. grid cells'®, head direction cells'®), are thought to

provide the rat brain with a unique spatial signature characterizing a specific environment, and

101

thereby a memory trace of the subject’s place. Originally discovered in the rat™ ", place cells have

. . P - - . 102,103 . 106
been found since then in other mammalian species, including mouse™ """, big brown bat™, non-

108

human primates'®’ and human'®. Although there is little doubt on the role played by place cells

across these various species in spatial processing, few constitutive differences remain, especially in

the primate literature. For instance, it appears that hippocampal cells in the non-human primate

109

brain are sensitive to whole-body motion'® and spatial view''? during passive translocation, while

such factors have somewhat limited impact on rodent place cell activity (e.g. see Ref *** on the “local
view” issue). However, it is possible that these discrepancies arise from the experimental design per

. . . . . . . . 112
se {passive translocation versus active exploration) rather than in any interspecies differences .

Basic properties of hippocampal pyramidal cells

As mentioned in the Introduction, the growing number of mice used in behavioural studies focusing
on learning and memory raises the question of interoperability of the various behavioural tests used

in this field of research. To this end, Routh and collaborators™*?

asked whether basic properties of
hippocampal CA1 pyramidal cells share common features between rats (Sprague-Dawley) and mice
(C57BL/6). In line with others" ™€ the authors found larger hippocampi in rats than in mice, this

113

difference being partly due to a smaller width of the dentate gyrus in mice . However, the total

number of neurons might be similar in the two species, as the CA1 pyramidal neurons appeared to
be more densely packed in mice'™"".

Routh and colleagues found little difference between rats and C57BL/6 mice regarding the cellular
morphologies and passive membrane properties of CA1 pyramidal neurons, except for a more
hyperpolarized resting membrane potential, and a lower resonance frequency® in mice neurons.
Since resonance frequency is thought to be directly related to the magnitude of the

° The membrane potential resonance property describes the ability of neurons to respond selectively to inputs

. 118
at preferred frequencies™ .
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113,119

hyperpolarization-activated cation current (/) , mice would have less I, active at rest compared

to rats. Furthermore, i, has been shown to regulate dendritic integration of distal synaptic inputs to

120712 peletion of one of the two channels isoforms (HCN1) responsible of

CA1 pyramidal cells
enhances behavioural performance in a hippocampal-dependent task, increases the power of theta
oscillations and synaptic plasticity at the entorhinal inputs to CA1 neurons'??. This last result is of
particular importance given the central role of synaptic plasticity and long-term potentiation in
stabilizing the activity of hippocampal place cells'®. As discussed below, differences in molecular
composition of HCN channels might be a key component of place field instability generally observed

in mice.
Basic spatial properties of place cells

Cross-species comparison of the functional properties of place cells appears critical in understanding
the general principles underlying hippocampal function'**. However, there is relatively little
comparative information even for the basic spatial properties of place cells {(e.g. firing rate, spatial
coherence, spatial information content and place field size). Several non-exclusive factors might
explain this lack of systematic comparison. First, over the 40 years of research on hippocampal place
cells, rat has been the dominant model. It is only from the mid ‘90s that mice models have been
used in learning and memory research with emphasis on the molecular and genetic aspects, but not
on the fundamental spatial properties of hippocampal place cells. Second, the wide variety of strains
in both species (e.g. inbred versus outbred) and genetic backgrounds used for transgenic research
reduces drastically our ability to draw systematic comparisons. Third, no single methodology has
been laid down to analyse the various parameters of the spatial discharge of hippocampal neurons.
For instance, there exists at |east six different ways if only to mathematically define a place field (i.e.
the portion of space where the place cell is active) all species combined'>* ™.

Despite all these limitations, it is possible to get a rough idea on the degree of similarity of basic
spatial properties of hippocampal place cells recorded in both mice (C57BL/6) and rats (Long-Evans)

1311031327138 1+ appears from this selected sample (see Table 1) that

using nearly identical criteria
average firing activity is similar in both species. The internal organization of the place field (i.e.
spatial coherence; a measure of the extent to which the firing rate in a pixel is predicted by the rates

of its neighbours*

) is nearly identical as well. It seems that the main difference concerns the spatial
information content, which is a measure of the extent to which a cell’s firing can be used to predict
the position of the animal™*. This index is nearly twofold in rats. However, inferring any particular
behavioural alteration from variations of this measure can prove cumbersome given its
dependency to other variables such as the place field size. Indeed, numerous experimental studies
reporting a loss of spatial information content report also an increased size of hippocampal place
fields (e.g. Ref '), However, it is unknown whether hippocampal place fields in mice are
broader than those observed in rats. In addition, works performed by Markus and colleagues***
suggest that place field reliability is more important for spatial navigation than the size of the

place field per se. This issue will be developed in the following section.

John Wiley & Sons
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1

2

3 Table 1: Comparison of main properties of place cells in mice and rats

4

) Mice (range ™) Rats (range ")

? Average firing (Hz) 1.1—2.27 103133136138 0.79—1,73 13113213

8 Spatial coherence 0.51—0.71 103.133.137.138 0.64—0.67 3113413

9 Information (bits per spike) 0.7—0.85 13718 1.43—2.17 B113213a13

10 Stability 0.3—0.45 145146 0.5—0.7 17148

11

12

51 Place cell activity over time

12 A great deal of studies that initially explored the relationship between place cell activity and
17 behaviour involved lesioning or inactivating specific brain areas (see Ref *° for a review on this
18 specific matter). Most of these studies were performed in the rat and showed that performance
19 deteriorated when place cell activity was altered™***2. Studies conducted in transgenic mice
32 reached a similar conclusion™’ 138153713,

22 . . . . - ) )

23 Aging studies provided further support for the idea that place cell activity was tightly linked to
24 behavioural performance in rodents**"" % More precisely, major differences are observed
25 between young and aged animals when comparing place field stability across days®. For instance,
26 hippocampal place cells in young rats show strong place field stability over time'®® while aged
gg animals show spontaneous rearrangements of place field locations (i.e. place cells remap) from time
29 to time'®’. At this point, it is important to note that the same aging effect has been reported for
30 mice place cells'®:. However, a major interspecies difference is found when comparing place field
31 stability (see Table 1); hippocampal place cell representation in mice does show a marked instability
gé in normal conditions'®*13314>14

gg Place field relative instability has been reported straight from the beginning of electrophysiological
36 recordings in freely-moving mice'®****, but has been specifically investigated by Kentros and
37 collaborators a few years later'®. Since then, this particular aspect of place cells in mice has been
38 reported in other electrophysiological™® and calcium imaging™®**®* studies. In the forthcoming
28 sections we will review the different hypotheses that tried to explain interspecies differences
a1 regarding the place cells dynamics.

42

43 Attentional hypothesis

44

45 Kentros and collaborators'*® showed that mice place fields are unstable when the behavioural task
46 did not require any particular attention (ie. the animal was left free to explore an open
j; environment). Conversely, when the animal had to perform a pellet chasing task or, to a greater
49 extent, when it had to solve a spatial navigation task (i.e. the animal had to reach an unmarked zone
50 in the environment to receive a reward), place cells showed highly reproducible patterns of activity
51 between sessions. This work also showed that a positive correlation exists between the level of
gé behavioural performance and the degree of place cells stability: the best performing animals had the
54

55

56 A place cell that fires at the same location in a familiar environment across multiple sessions is said to show a
37 stable place field.

58

59

60
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more stable place fields. The authors assumed therefore that attentional processes were
responsible for the increase of place field stability.

Such attentional effect is also ohserved in the rat but in very particular conditions. Zinyuk and
collaborators'® trained rats to perform either a simple pellet chasing task or a navigation task on a
rotating arena. The continuous rotation of the arena in a cue-rich room allowed to dissociate the
stationary room-based from the rotating arena-based reference frame. The animals that were
trained in the simple pellet chasing task showed less stable place fields than the animals that were
trained in the navigation task when tested on the rotating arena (i.e. firing was more organized in
the task-relevant frame). In the same line, Fenton and Muller*®® showed that in a simple pellet-
chasing task, place cell firing was not nearly as reliable in the time domain as in the positional
domain {i.e. place cell discharge during different passes through the firing field is extremely variable,

7

a phenomenon called overdispersion). Fenton and collaborators'’ showed that attention could

constraint this temporal variability of place cell firing.

Overall, Kentros and colleagues'® explain the natural instability of place fields in mice by arguing
that these animals pay less attention to distal environmental cues compared to rats. This idea is
supported by the work of Eichenbaum and colleagues'®” showing that place cells in the mice are
more easily controlled by local rather than distal cues. In this task, mice were allowed to explore a
plus-maze that contained a large set of controlled stimuli, including local cues consisting of a
distinctive surface on each maze arm. Additionally, distal cues, composed of distinct three-
dimensional objects, were fixed on a curtain surrounding the maze. On the test phase, local and
distal cues were rotated 90° in opposite directions. During this test phase, in control mice, place cells
appeared to follow local rather than distal cues. However, these results could bhe also interpreted
based on a hierarchical organization of sensory inputs, since the local cues were tactile and the distal
cues were relying on the visual modality.

Hierarchical organization of sensory inputs

Although attention positively modulates place field stability in mice, it should be noted that this

degree of stability remains relatively low when compared to recordings obtained in similar

124

conditions in rats (see Table 1). Las and Ulanovsky * speculate that these discrepancies can be

attributed to a differential use of sensory inputs in rats and mice. According to the authors, olfactory
cues might play a much more important role in place field formation in mice than in rats. Indeed,
theoretical*®® and experimental work®® suggest that olfactory cues might control place field activity

170

to a greater extent than what has been previously thought . In addition, experimental data from

f 1Y) show that olfactory cues affect a wide set of

several behavioural experiments (reviewed in Re
behaviours in mice, perhaps more strongly than in rats {(but see subsection Genetic Differences
172 2% suggest that

rats would tend to develop more visually-based maps whereas mice would develop olfactory-based

below). Added to the fact that visual acuity is poorer in mice ’*, Las and Ulanovsky
map. The relative importance of the various sensory information in shaping the place cell activity in
mice remains however to be tested more thoroughly.

Another argument presented by Kentros and colleagues'® in favour of genuine cognitive differences

between mice and rats relies on results showing poorer performance in the Morris water maze task

M This task is thought to rely heavily on a distal cues triangulation process'”, although rats

174,175

in mice
could use preferentially directional responding over true place navigation on occasions

John Wiley & Sons
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Accordingly, rats use complex spatial strategies to find the hidden platform in the maze*’®. On the

contrary, swimming patterns of the mice appeared more stereotyped, reflecting a preferential use of

77 This last observation has to be considered along with further results

178

sequence-based navigation
obtained in rats by Hamilton and colleagues '® showing that lesions of the dorsal tegmental nuclei
(a brain structure known to contain head-direction cells) disrupt landmark-based navigation in this
task. Given the predominant influence of the head-direction system on place cell activity'”®, one
can formulate the hypothesis that place field instability observed in mice might be closely linked
to an instability in the head-direction signals. Indeed, when comparing head-direction cells
characteristics between these two species, it appears that these cells are less reliably anchored to
salient environmental cues in mice®®. Nonetheless, particular caution should be taken in
interpreting mice behavioural data obtained in the water maze task, as the nature of the
behavioural strategy used during training could impact the way results are obtained in the probe

trials® 182

. For instance, adopting a spiralling search strategy during training can prove to be quite
effective to locate the platform but mice showing such behaviour will score poorly in the final
probe trial. Overall, it seems that mice use less robust and flexible strategies to solve spatial tasks
than rats do™* but show nonetheless a certain capability to switch strategies when given the

opportunity®.
Behavioural factors underlying stable place field activity

Exploratory behaviour (see section Exploring Space) is a complex response to novelty that results
from a compromise between the mativation to gather information about the surroundings and the

need to avoid predators™®>*5¢

. As tracking technology improves, it is now feasible to analyse carefully
the fine locomotor elements of exploratory behaviour in rodents*’. Several studies by Golani and
colleagues identified the moment-to-moment developmental sequence of forced®”?” and free
exploration® in rodents. Forced exploration refers to the procedure where the animal is placed
directly into the test box at the start of the session, whereas in the free exploration procedure the

animal has access to both the test box and its home cage®.

In forced exploration, Long-Evans rats and BALB/cltau mice show a gradual increase of excursion
length when placed in the arena. For both species, path length increases across individuals both
within and across multiple sessions, reflecting some habituation process. In contrast, in the same
conditians, C57BL/6Jtau mice show a complete reversed profile across the session (i.e. when
introduced in the arena, C57BL/6Jtau mice start with full circle excursions and only then proceed
with smaller radial movements). This behaviour is likely to reflect greater risk taking of C57BL/6 mice
compared to BALB/c'*
C57BL/6 and BALB/c mice share common exploratory patterns®.

. In free exploration, these strain differences are much less pronounced, as

To sum up, in classic studies of place cells in freely-moving rodents, the exploratory behaviour of
C57BL/6 mice appears rather different from that of rats and might contribute to some extent to the
differences observed in terms of place field stability. It is also important to note that a food pellet

34190 Therefore,

chasing task will likely interfere with the proper completion of exploratory behaviour
systematic comparisons of place cells recordings in different mice strains showing behavioural
differences in forced but not in free exploration {e.g. C57BL/6 versus BALB/c) would shed light on the

contribution of specific locomotor patterns to stabilize place cell activity.

Genetic differences

John Wiley & Sons
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Although belonging to the same subfamily Murinae, rats and mice share only 30% of their DNA
sequences’. Most of the genetic differences observed between these two species concern olfactory
receptors, which are nearly 40% more numerous in rat’s genome. Other major differences involve
multiple biological processes such as pheromones detection, detoxification and proteolysis. Apart
from the qualitative differences in genome sequences, rats and mice might differ also in channel
subunit composition. For instance, as previously suggested by Routh and colleagues™, a particular
subunit composition of h channels {composed of HCN1 and HCN2 isoforms) in mouse would explain
the lower hyperpolarization-activated cation current (/) at the entorhinal —CA1l synapse (see
subsection Basic properties of hippocampal pyramidal cells above). Interestingly, Kandel and
colleagues™ performed hippocampal place cells recordings in HCN1 knockout mice in various
behavioural tasks. They found that CA1 hippocampal place fields in these mice were larger and more
stable than the controls. These electrophysiological data complement nicely the behavioural results
showing improved performance of the HCN1 knockout mice in a hippocampal-dependent task'*.
Additionally, a recent study performed by Bittner and colleagues'® showed that active dendritic
integration in pyramidal neurons at the entorhinal —CAl synapse is instrumental in forming new
place fields and that similar mechanisms might be involved in stabilizing place cell activity.

To summarize, although sharing common basic neural features, rats and mice do show significant
differences when comparing brain representations of space. The relative instability of
representations in mice might lead to cognitive differences that are expressed not so much as
differences in behavioural performance as differences in navigation strategy selection. Molecular
variants of certain channels expressed in the mouse hippocampus might be directly related to this
phenomenon but constitute undoubtedly only a small fraction of the pertinent genetic factors that
are at play in space representation.

Conclusion

Much of our review focused on the major neuroethological differences existing between mice and

rats in spatial cognition. Although sharing many behavioural characteristics in simple exploration

tasks'>?’, the neural representation of space differs largely between these two species in terms of

stability3>1*>196163184 This |ast observation correlates to some extent with interspecies differences

4,177,184

in navigational strategies used to solve spatial tasks . Additionally, it appears that a simple

madification in behavioural paradigms (e.g. free versus forced exploration) can induce important

3780 0On the other hand, growing evidence converge

113,122,191

behavioural changes within one single strain

towards molecular explanation for the origin of place field instability in mice . More

importantly, these constitutive differences appear unrelated to the positive attentional effect

145,146

observed on place field stability as forebrain deletion of HCN1 does not involve changes in

anxiety or attention'*%.

Additionally, we let deliberately aside the strain issues in our review. All the behavioural and
physiological data discussed in the previous section dealt with the C57BL/6 mouse genetic
background unless otherwise stated. However, numerous reports stressed out the importance of the

strain being used in spatial tasks, these between-strain differences leading sometimes to contrasting

results'®* 7928011337 Added to the fact that laboratory environment is likely influencing behavioural
196

results'® and that interindividual variability in genetically identical mice emerges with time'®’, all

John Wiley & Sons
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these considerations strongly support the need of a greater behavioural and physiological
characterization of animal models used in learning and memory research™.

Notes

[Please add any notes here]
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47 Hippocampal place fields. Spatial navigation in rats and mice relies on the activity of hippocampal place
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