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Abstract. Diffusion MRI is a frequently-used imaging modality that
is used to infer microstructural properties of tissue, down to the scale
of microns. For single-compartment models, such as the diffusion ten-
sor, the interpretation of the models depends on the voxels having ho-
mogeneous tissue. This limitation makes it difficult to directly measure
diffusion parameters for small structures such as the fornix, which may
have partial volume in every voxel. In this work, we use a segmenta-
tion from a structural scan to calculate the tissue composition for each
voxel in diffusion space. We model the signal from a voxel as a linear
combination of the signals from these components, and thus fit param-
eters on a per-region basis. Fitting diffusion parameters to all regions,
simultaneously, bolsters the data for small regions, which allows accurate
estimation of the diffusion parameters. We test the proposed method by
using diffusion data from the HCP. We downsample the HCP data, and
show that our method returns parameter estimates that are closer to
the high-resolution ground truths than region-of-interest methods. We
apply our technique to the diffusion parameters in the fornix for adults
born extremely preterm and matched controls. We show that our method
estimates diffusion parameters accurately for structures that are small,
compared to a typical diffusion MRI resolution.

1 Introduction

Diffusion imaging is a vital tool for probing the microstructure of in-vivo tis-
sue. Parametric models of diffusion offer an informative way to summarise the
information from many different b-values and gradient directions. The model pa-
rameters are often averaged over a region, under the reasonable assumption that
tissue within a structure will have similar diffusion properties. This approach
works well in large regions, where we can erode a probabilistic segmentation
to obtain voxels that are fully within the tissue. But, the diffusion parameters
within structures such as the fornix - a narrow white matter structure surrounded
by cerebrospinal fluid - may not be measured by this approach [1]. Because of
the large scale of diffusion MRI voxels relative to the fornix a majority of, and
perhaps all, voxels will contain partial volume. This partial volume affects the
measurements for fitting diffusion parameter models, especially in regions with



a spatial extent on the order of a voxel width (for example, the fornix). If we
selected a threshold-based segmentation, we may have to adjust the threshold
probability over time if the fornix grew or atrophied, biasing the experiment. If
we chose a low percentage threshold throughout, we would be biasing the ex-
periment by including more or less partial volume depending on the structure’s
size, when we are more interested in its microstructure.

In this work, we extend the calculation of a region’s parameters to include
information from all voxels in the region during the model-fitting, instead of
fitting voxel-wise and then averaging. While there has been work on eliminating
the contribution of free water to diffusion parameter estimates [2], the proposed
approach directly estimates the diffusion parameters of all tissue types within
the image, without relying on a prior: diffusion models or values. In the proposed
framework, we use a probabilistic segmentation as weights for canonical diffusion
signals, optimised for each segmentation class (henceforth referred to as tissues).
The modelled signal in a voxel is a linearly weighted sum of each tissue present
in the voxel, where the weights are given by the segmentation probabilities.

We first validate the method on in-vivo diffusion data from the Human Con-
nectome Project [3]. By using such high-resolution data, we can measure diffusion
parameters in the fornix directly, using hand-drawn regions of interest. By down-
sampling this data, we simulate a more typical diffusion acquisition, and are able
to test whether our approach retrieves the correct parameter values. After vali-
dating our approach, we apply it to adults born extremely preterm, comparing
the diffusion within the fornix to term-born controls. The comparison is inter-
esting as the patient group has pervasive differences in brain morphology and
function, including memory (associated with the fornix).

This framework presented is similar to [4] in its use of multi-modal imaging to
make a diffusion mixture model. This work differs in that there is no requirement
of multiple shells of diffusion data, an important advantage for using this method
in older data.

2 Methods

2.1 Theory

In this work we attempt to measure diffusion parameters from below the reso-
lution at which they were obtained. If we imagine a voxel at a higher resolution
(for example in the Tj-weighted scan) being downsampled to a lower resolution
(the diffusion scans), the proportion of the tissue in a voxel of diffusion space
will be reduced. Even in a best case scenario, the probability of there being at
least a threshold T% of the tissue within a voxel depends on the position of the
tissue relative to the voxel borders. Our approach eliminates any dependence
of measured parameters on the precise voxel boundaries, by using all diffusion
information within the region of interest.

Varying b-values and gradient directions during a diffusion scan establishes
how water diffuses in each voxel, which is summarised with a mathematical



model. Within a given voxel, the water diffusion from several microstructural
environments is measured together. A voxel’s signal, S, in the DT model, is
given by: g
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where Sy is the diffusion signal with zero diffusion weighting, b are the b-values,
g are the gradient directions and D is the second-rank diffusion tensor.

In our approach, we are trying to obtain D for each of the k tissue classes
(in the case of the fornix, white matter, grey matter and CSF). In a given voxel,
we model the signal as being represented as a weighted sum of each of the tissue
classes that are present:
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Dj is now the diffusion tensor for a given region. The p; are non-negative,
and constrained between 0 and 1. This approach considers the components of
the Dj as unknown parameters that are optimised to best fit the data. This is
a mixture-model approach, that generates the diffusion parameter estimates for
the entire volume simultaneously, instead of per voxel. For the case of two tissue
classes, this reduces to the signal model in [1].

In order for a single diffusion tensor to represent the diffusion properties in
different voxels, we must account for different orientation in different parts of the
same tissue. In the conventional approach, we would use the same b-matrix for
each voxel in the image. However, we are mainly interested in orientationally-
independent measurements, such as the fractional anisotropy (FA). In this work,
we redefine the gradient-directions for each voxel, so that the principal directions
of all voxels in the image align. The gradient directions at each voxel are calcu-
lated by first, performing a tensor-fit to the voxel and establishing V; and V5,
the first and second eigenvectors of D. We then calculate the rotation matrix R
such that V; and V, align with [1,0,0] and [0,1,0]. Our vector for the i** voxel
then becomes g, = Rg.

After calculating principal diffusion directions in every voxel, and the Sp,
with a weighted-least-squares tensor fit, we initialise a 3 X k matrix with identi-
cal diffusivities in each of the tissue classes. At each iteration of the optimisation,
we calculate the signal for the entire volume simultaneously, before the 3k dif-
fusion parameters are updated. We fit using Matlab 2014b, using non-linear
optimisation [5].

2.2 Data

To test the proposed approach, we use data from the Human Connectome Project
(HCP). This diffusion data has a resolution of 1.25mm?, with 108 volumes with
b < 1200s.mm 2. The T1-weighted MRI is at resolution 0.703mm?.

For the experiments on adult subjects, we collected MRI data at 19 years of
age from 15 adolescents. Eight (4 Male) of these were born extremely preterm



(fewer than 26 weeks completed gestation) and seven (3 Male) were recruited
as matched controls. We acquired 3D T1-weighted volume at 1 mm isotropic
resolution (TR/TE = 6.78/3.06 ms) for segmentation and diffusion MRI with
the following characteristics: Diffusion-weighted data was acquired across four
b-values at b = (0, 300, 700, 2000)s.mm~2 with n = (4, 8, 16, 32) directions
respectively at TE=70ms (2.5x2.5x3.0mm). For the fitting, we discarded the
highest shell of b-values. All data was acquired using a Philips 3T Achieva. For
the segmentations, we manually drew the fornix on a T}-weighted segmentation
and also labelled the surrounding tissue using multi-atlas label propagation and
fusion [6] based on the Neuromorphometrics, Inc. labels.

3 Experiments and Results

3.1 Validating method using HCP data.

We used the high resolution of the HCP data to determine pseudo ground-truth
values for diffusion parameters in the column, the crus and the body of the
fornix. Each of these regions is hand-drawn onto the subject’s T;-weighted MRI.
We downsample the segmentation from categorical labels into a probabilistic
diffusion segmentation, where the probabilities represent fractions of the tissue
in that diffusion voxel. We varied the downsampling to achieve voxels of isotropic
dimension from 1.25mm to 3.5mm. In order to use HCP data as a model for a
more typical diffusion acquisition, we adjust it in the following ways. We added
rician noise to the downsampled data, to bring the data to a clinically realistic
SNR. We exclude any volumes corresponding to b values of over 1200, to ignore
effects that are not modelled with the DT. We also used a subset of the 108
available diffusion volumes. We tested the performance of our algorithm with
varying numbers of these subsets, using between 12 and 60 readings. We compare
three approaches for analysing average parameter values:

M1 For each region, we identify voxels where the membership to that region is
above the threshold and average their values.

M2 We resample the downsampled DWI to high-resolution HCP space before
fitting the DT model and, again, averaging the values for each region. For
this, we use 7th-order b-splines, as recommended in [7].

M3 (proposed): We calculate parameter values for each region, explicitly ac-
counting for partial volume. The p are given by downsampling labels from
the T}-weighted segmentation into diffusion space.

3.2 Results

In Figure 1 we test approach M1. As the threshold changes, so do the results for
the classical approach. With a 90% threshold, at a resolution of 2mm isotropic,
all fornix tissue has partial volume, and so even at this good resolution, we
would be unable to proceed with this threshold. However, as we decrease the
threshold, increasing the resolution results in decreasing FA, as CSF partial



Effect of percentage threshold on parameter estimates
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Fig. 1. In this graph, we see the effect of downsampling the resolution (x axis) on pa-
rameter estimates from a threshold-based approach. As the voxel dimension increases,
the parameter estimation is less reliable and at some point stops, as there are no
more supra-threshold voxels to sample. The choice of the threshold will influence the
measured parameter value.

volume contaminates the estimates. For the body of the fornix, the measured
FA decreases by up to 13% by changing the thresholding, and when downsampled
to 2.5mm, the measured FA is up to 25% lower than the pseudo-gold-standard.

In approach M2, we use the segmentation at the HCP resolution. After down-
sampling the data and adding noise, we interpolate the diffusion data back to
the HCP resolution in order to fit the diffusion tensor and average the results
over the ROI. These results are displayed in Figure 2. The measured diffusion
parameters diverge from their true’ values as we interpolate data of lower res-
olution. With no downsampling, the values of nearby white matter, the column
and the crus of the fornix are similar. However, as the downsampling increases,
the FA estimates decrease due to the partial volume. This means that parameter
values that should be similar are diverging because of local surroundings.

With the proposed method, the FA in the column and crus of the fornix is
constant (Figure 2). The body of the fornix has an increasing FA. The mean
diffusivities are more constant in the proposed method than with the classical.
Downsampling the data affects the accuracy of all the measured parameters
using the classical approach.

3.3 Comparison of preterm-born and term-born young adults.

We compare fornix DTI parameters as calculated with M2 (upsampling DWT to
T;-space and fitting the tensor) and M3 (proposed) in Figure 3. The MD in the



Proposed Classical with Upsampling
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Fig. 2. In our method (left), the diffusion parameters in the fornix are fairly consistent
with downsampling. While the results for larger regions match the classical approach,
we improve for the fornix. We present the results for a thresholding approach with prior
upsampling of the data (right). The results here, for diffusion parameters of the fornix,
show a divergence of the diffusion parameter readings depending on their surrounding
tissue. The scale factor is the factor by which we’ve downsampled the volume. In these
experiments, we used 12 diffusion readings, 2 of which were reference volumes.

fornix is higher in general for the classical approach compared to ours. In the
classical approach, there is a significant difference in the MD with the subject
group having higher MD (p < 0.0005). Both approaches measure higher mean
FA in the control group, but neither is significant when accounting for multiple
comparisons. The optimisation took less than a minute for each subject.

4 Discussion

Our method achieves consistent and accurate parameter estimates for small re-
gions in partial volume. Although interpolating data reveals some details that
are hidden at low resolution [7], interpolation of downsampled HCP data biased
the results of the measured diffusion parameters in the fornix. FA values in all
parts of the fornix tended to be underestimated and diverged from FA estimates
in other white matter regions.This means that the local surroundings of the
fornix biased the diffusion results, which our method was able to address.
There is promise in using this approach in subject groups, such as the
preterm-born young adults in this study. Our approach reduces the impact of
partial volume on measuring the properties of the fornix. The lower MD we
measured for subjects and controls is in accord with this. The higher FA val-
ues suggest that we are able to measure the diffusion in the highly-anisotropic
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Fig.3. In a-b the fornix is highlighted with an arrow in a control and a preterm
subject. The preterm-born subject has noticeable abnormalities in the corpus callosum,
and enlarged ventricles. In ¢, we display the measured parameters using our proposed
approach vs the classical.

region of the fornix with less impact from the surrounding cerebrospinal fluid.
While this is not a conclusive result, due to the small number of subjects, it is
a promising sign. There is some evidence from both methods that preterm-born
adults have lower FA in the fornix than controls, which is congruent with the
general consequences of being born prematurely.

While there are a range of biophysical compartment models in use in diffusion
imaging, most of these rely on multi-shell data to fit compartments in each voxel,
or else have to heavily restrict the available parameters. We circumvent this by
fitting on a per-tissue basis, by using information from a structural segmentation.
This means our method has the advantage that it is completely determined by
the data.

Another way to calculate diffusion parameters would be investigating super-
resolution techniques. Alexander et al [8] showed that a machine-learning ap-
proach could be used to effectively super-resolve the diffusion data from DTI
parameters. For this particular method, it is unclear how generalisable the ap-
proach is without high-resolution training data from each scanner in use. Our
validation only used 12 diffusion volumes, and no training data, which renders
the method suitable to past datasets.

We show that it is feasible and possible to estimate diffusion parameters for
regions that are small on the scale of diffusion MRI. In large, contiguous regions
we achieved the same results as for the classical approach, of thresholding and
averaging. We used the fornix as a region of interest to show that our approach
was able to recover diffusion parameter estimates consistently, when the classical
approach failed. Although results were good in the fornix, the model would have
to be extended significantly to cope with geometry such as crossing fibres.

The presented approach achieves close-to gold-standard results with minimal
processing time and requirements for the diffusion acquisition. This is because
we aggregate data from all voxels in which a particular region is present, even



in part. This type of approach fits conceptually with more sophisticated, multi-
compartment models - we plan to extend our investigation to using multi-modal
segmentations to determine volume fractions for certain tissue types. In this
work, we proposed a method to extract diffusion tensor parameters from tissue
that has partial volume. We have validated the method using high-quality data
from the HCP, and applied it in a new cohort of clinical interest.
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