
The role of population structure
and size in determining bat patho-
gen richness

Tim C. D. Lucas

A thesis submitted in partial fulfilment of the
requirements for the degree of:

Doctor of Philosophy of
University College London

2016

Primary supervisor:
Prof. Kate E. Jones

Secondary supervisor:
Dr Hilde M. Wilkinson-Herbots



ii

I, Tim C. D. Lucas, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has
been indicated in the thesis.



iii

Abstract

Pathogens acquired from animals make up the majority of emerging human diseases, are
often highly virulent and can have large effects on public health and economic development.
Identifying species with high pathogen species richness enables efficient sampling and mon-
itoring of potentially dangerous pathogens. I examine the role of host population structure
and size in maintaining pathogen species richness in an important reservoir host for zoonotic
viruses, bats (Order, Chiroptera). Firstly I test whether population structure is associated
with high viral richness across bat species with a comparative, phylogenetic analysis. I find
evidence that bat species with more structured populations have more virus species. As
this type of study cannot distinguish between specific mechanisms, I then formulate epi-
demiological models to test whether more structured host populations may allow invading
pathogens to avoid competition. However, these models show that increasing population
structure decreases the rate of pathogen invasion. As both global host population structure
and local group size appear to be important for disease invasion, I use the same modelling
framework to compare the importance of host density, group size and number of groups. I
find that host group size has a stronger effect than density or number of groups. There are
few bat population size estimates to empirically test the importance of host population size
on pathogen richness. Therefore, to assist future research, I develop a method for estimating
bat population sizes from acoustic surveys. Overall in this thesis, I show that the structure
and size of host bat populations can affect their ability to maintain many pathogen species
and I provide a method to measure population sizes of bats. These findings increase our
understanding of the ecological process of pathogen community construction and can help
optimise surveillance for zoonotic pathogens.
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1.1 Pathogen richness and the impacts of zoonotic
diseases
Over 60% of newly emerged diseases are zoonotic (acquired from animals) with
wild animals being the predominant source (Jones et al. 2008, Taylor et al. 2001,
Woolhouse & Gowtage-Sequeria 2006). Zoonotic diseases can be extremely viru-
lent with viruses such as Nipah and Ebola having case fatality rates over 50% (Le-
febvre et al. 2014, Luby et al. 2009). Furthermore these pathogens can have large
economic costs. For example, SARS is estimated to have cost $40 billion (Knobler
et al. 2004). In particular these impacts can have huge effects on lower-income eco-
nomies. For example, both Liberia and Guinea experienced negative per capita
growth rates of -2% due to the Ebola epidemic in 2014 (World Bank 2014, World
Bank 2015). More generally, death rates per 1,000 people living with AIDS are
up to ten times higher in developing countries than in Europe and North Amer-
ica (Granich et al. 2015). The global richness of pathogens is large but mostly
unknown (Poulin 2014). Recent studies suggest that the global number of mam-
malian virus species is of the order of hundreds of thousands (Anthony et al.
2013) while only 3,000 virus species, across all taxonomic groups, are currently
described (King et al. 2011). This large pool of unknown pathogens presents a
continuing risk of new pathogens spilling over into humans.

Surveillance of zoonotic diseases is crucial for reducing the health impacts
of these diseases. In particular it is important to categorise and describe diseases
before they spill over into humans. For example, SARS was not identified until
months into the pandemic (Drosten et al. 2003). It is also important to improve
our ability to predict when outbreaks will occur. For example, if it is known that
there is i) a higher disease prevalence in a given host species than normal, or ii) a
greater-than-usual abundance of a species that is a known reservoir of a high
risk zoonotic disease, or iii) increased contacts between humans and a pathogen
reservoir, preparations can be made for a potential outbreak in that area.

However, funds for zoonotic disease surveillance are limited and so efforts
must be optimised. A number of different metrics could be used to optimise zo-
onotice disease surveillance. One broad group of measures includes factors that
predict the chance of transmission of a disease from wildlife hosts to humans.
These measures include bushmeat usage and overlap between host and human
population density (Brierley et al. 2016, Estrada-Peña et al. 2014, Redding et al.
2016). Alternatively, knowing which species are likely to have many pathogens
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allows us to sample and identify potentially zoonotic viruses efficiently. In prac-
tice, surveillance effort should be prioritised using a combination of these factors.
In particular, one sensible approach would be to spatially prioritise surveys using
factors that affect risk of transmission (Brierley et al. 2016, Jones et al. 2008) and
then prioritise host species within an area by species specific factors that affect
risk of transmission and factors that are likely to predict host pathogen richness
(Kamiya et al. 2014, Luis et al. 2013, Nunn et al. 2003).

Suggested factors that might control pathogen richness include individual,
environmental and population level traits. Individual traits that have been stud-
ied include body mass and longevity. Increased body mass is expected to in-
crease pathogen richness as large bodies provide more resource for pathogens to
consume and potentially more niches for them to occupy (Arneberg 2002, Bordes
et al. 2008, Gómez-Rodrı́guez et al. 2015, Kamiya et al. 2014, Poulin 1995). In-
creased longevity is also expected to increase pathogen richness by increasing the
number of pathogens a host encounters in its lifetime (Ezenwa et al. 2006, Luis
et al. 2013, Nunn et al. 2003). Environmental factors may also play a role. Lat-
itude has been studied as a proxy for environmental factors (Kamiya et al. 2014,
Poulin 2010). It is predicted that warmer climates promote species richness via
metabolic mechanisms or by increasing the rate of evolution (Brown et al. 2004,
Dunn et al. 2010, Rohde 1992). Furthermore, population level traits that affect
the dynamics of disease spread have also been studied. Animal density (Arne-
berg 2002, Kamiya et al. 2014, Nunn et al. 2003) and sociality (Altizer et al. 2003,
Bordes et al. 2007, Ezenwa et al. 2006, Vitone et al. 2004) have both been predicted
to increase pathogen richness by increasing the rate of spread of new pathogens.
Population structure is difficult to study directly, but genetic measurements of
population structure and measures based on the geographic shape of the species
range have been used to study population structure (Gay et al. 2014, Maganga
et al. 2014, Nunes et al. 2006, Turmelle & Olival 2009). However, the results thus
far have been contradictory with studies finding both positive and negative rela-
tionships between pathogen richness and populations structure. Finally, species
with larger range sizes are expected to have higher pathogen richness as they ex-
perience a wider range of environments and have more sympatric host species
(Kamiya et al. 2014, Nunn et al. 2003). These relationships can provide a basis for
predicting which species will have high pathogen richness and should be prior-
itised for sampling and surveillance.

However, without a better mechanistic understanding of how pathogen rich-
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ness is created and maintained it is difficult to predict how pathogen richness,
and therefore zoonotic disease risk, will respond to global change. Competition
between pathogens can occur by different mechanisms: immunological mechan-
isms such as cross-immunity or shared immune response (Fenton & Perkins 2010)
and ecological mechanisms such as removal of susceptible hosts by death (Rohani
et al. 2003) or competition for internal host resources (Griffiths et al. 2014). As in
ecological systems, competition leads us to the expectation that competitive ex-
clusion occurs (Ackleh & Allen 2003, Ackleh & Salceanu 2014, Bremermann &
Thieme 1989, Martcheva & Li 2013, Turner & Garnett 2002). Therefore, the large
number of coexisting parasite species needs an explanation.

1.2 Influence of population size and structure on
pathogen richness

1.2.1 Single-pathogen models
In an unstructured, or well-mixed, population, epidemiological interactions —
events in which pathogens can potentially be transmitted — occur randomly
between individuals; an individual is equally likely to interact with any other
individual. In contrast, in a structured population, epidemiological interactions
are not random. This non-randomness can arise for many different reasons. For
example, the geographic distribution of individuals or social groups can both
cause individuals to be more likely to interact with certain individuals than oth-
ers (Keeling 1999, May & Anderson 1983, Vespignani 2008). Furthermore, differ-
ent processes can structure a population depending on how pathogens are trans-
mitted. In the case of a sexually transmitted disease, epidemiological interactions
only occur between mating individuals and the mating systems of the species will
govern which individuals interact (Castillo-Chavez et al. 1995, Castillo-Chavez et
al. 1996, Eames & Keeling 2002). In contrast, if a pathogen is transmitted through
the environment, by persisting in a water source for example, epidemiological
interactions can occur between individuals that are never in close proximity to
each other (Cross et al. 2009, Park 2012). In these different cases, the processes by
which population structure forms are different.

There is a large literature on the role of population structure on single-disease
dynamics, as reviewed by Pastor-Satorras et al. (2015), driven by applications to
human health as well as computer viruses (Pastor-Satorras & Vespignani 2001)
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and the social spread of information (Goffman & Newill 1964). In particular,
work has concentrated on how population structure affects the basic reproduc-
tion number, 𝑅0 (Barthélemy et al. 2010, Colizza & Vespignani 2007, May & Lloyd
2001, Pastor-Satorras & Vespignani 2001, Wu et al. 2013). Formally, 𝑅0 is the av-
erage number of individuals infected by a single infected individual entering a
naïve population where no individuals have previously acquired immunity to
the pathogen of interest. More intuitively, 𝑅0 combines relevant parameters to
yield a threshold above which a disease is expected to infect a significant propor-
tion of the population (Anderson & May 1979, May & Anderson 1979). Below
the threshold, only small outbreaks that quickly die out are expected.

The roles of population size and density in the dynamics of single pathogens
are also well established (Anderson & May 1979, Heesterbeek 2002, Lloyd-Smith
et al. 2005, May & Anderson 1979). Broadly, larger populations can maintain a
disease more easily by having a larger pool of susceptible individuals (individu-
als without acquired immunity) and having a greater number of new susceptible
individuals enter the population by birth or immigration (Anderson & May 1979,
May & Anderson 1979). High density populations are expected to have a greater
number of contacts between individuals and so promote the spread of a pathogen.
However, there is much discussion about if, and when, the number of contacts
might scale independently of density (McCallum et al. 2001).

1.2.2 Multi-pathogen models
While the majority of theoretical work considers single pathogens, with models
examining whether a pathogen can spread and persist in a population, much
less work has been done on multiple pathogen systems. Studies have found tens
(Anthony et al. 2013) or even hundreds (Anthony et al. 2015) of virus species in
a single host species. Therefore ignoring inter-pathogen competition is an over-
simplification.

A number of studies have considered the case where two pathogens spread
concurrently and examine which pathogen infects more individuals. These stud-
ies have found that increased population structure reduces dominance of the
more competitive strain (Poletto et al. 2013, Poletto et al. 2015, van de Bovenkamp
et al. 2014). However, this again reveals little about how pathogen communities
form and what factors control total pathogen richness. Far fewer papers expli-
citly study long term coexistence of two or more pathogens. Those that do com-
monly find that competitive exclusion is likely (Ackleh & Allen 2003, Ackleh &
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Salceanu 2014, Bremermann & Thieme 1989, Castillo-Chavez et al. 1995, Mart-
cheva & Li 2013, Turner & Garnett 2002). Mechanisms that have been shown to
allow pathogen coexistence include superinfection (Li et al. 2010, May & Nowak
1994), density-dependent deaths (Ackleh & Allen 2003, Kirupaharan & Allen
2004) and differing transmission routes (Allen et al. 2003).

The specific role of density on the ability of pathogens to coexist has not been
theoretically studied though it is commonly found to promote pathogen richness
in comparative empirical studies (Arneberg 2002, Kamiya et al. 2014, Nunn et al.
2003). The few papers that have directly studied how coexistence of pathogens
responds to population structure have found that population structure can allow
pathogens to coexist even though competitive exclusion would occur in a fully
mixed population (Allen et al. 2004, Nunes et al. 2006, Qiu et al. 2013). Further-
more, genetic diversity has been shown to be maximised at intermediate levels
of population structure (Campos & Gordo 2006). The roles of population struc-
ture and social group size have been examined in comparative studies (Altizer
et al. 2003, Bordes et al. 2007, Ezenwa et al. 2006, Gay et al. 2014, Maganga et al.
2014, Rifkin et al. 2012, Turmelle & Olival 2009, Vitone et al. 2004). There is much
disagreement between these studies. Population structure has been shown to
promote (Maganga et al. 2014, Turmelle & Olival 2009) and inhibit pathogen rich-
ness (Gay et al. 2014). Similarly, group size has been shown to promote (Bordes
et al. 2007, Rifkin et al. 2012) and inhibit (Ezenwa et al. 2006) pathogen richness.
While increased group size should generally decrease population structure, the
literature is rarely clear on the relationships between these and other variables.

1.3 Bats as reservoirs of zoonotic diseases
In recent decades bats have been implicated in a number of high profile zoonotic
outbreaks such as Nipah (Field et al. 2001, Halpin et al. 2011), Ebola (Leroy et
al. 2005), SARS (Li et al. 2005) and Hendra (Field et al. 2001). These outbreaks
have led to much research on whether bats are a particularly important source
of zoonotic disease (Luis et al. 2013, Olival et al. 2015, Wang et al. 2011) and ex-
aminations of factors, such as flight, social living and longevity, that might pre-
dispose them to being reservoirs of zoonotic viruses (Calisher et al. 2006, Dobson
2005, Kuzmin et al. 2011, O’Shea et al. 2014, Racey 2015). Given that bats are the
second largest order of mammals (Wilson & Reeder 2005), we may expect them
to be the source of many viruses simply through weight of numbers (Luis et al.
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2013). The broad conclusions are that while bats do host more zoonotic virus
species than other groups (Luis et al. 2013) they do not host more virus species
per host species (Olival et al. 2015).

Many factors of bat populations make them epidemiologically interesting.
They have highly varied and sometimes complex social structures (Kerth 2008).
Some species are largely solitary or live in very small groups — e.g., Lasiurus
borealis (Shump & Shump 1982) — while other species live in colonies of millions
of individuals — e.g., Pteropus scapulatus (Birt et al. 2008). These groups can be
very stable (Kerth et al. 2011, McCracken & Bradbury 1981). Further complexity
arises due to their propensity for seasonal migration (Cryan et al. 2014, Fleming
& Eby 2003, Richter & Cumming 2008) and seasonally changing social organisa-
tion such as maternity roosts, hibernation roosts and swarming sites (Kerth 2008).
Finally, their ability to fly means that populations can be well mixed across large
distances (Peel et al. 2013, Petit & Mayer 1999), though this is highly variable with
some species having limited dispersal (Wilmer et al. 1994).

However, the population density of many bat species, particularly tree roost-
ing species, is unknown (Clement & Castleberry 2013). As they are small, noc-
turnal and difficult to identify in flight, estimating their density is incredibly
difficult without disruptive and time-consuming roost surveys (Humphrey 1971,
Kloepper et al. 2016, Sabol & Hudson 1995). Furthermore, bat densities are gener-
ally estimated by counting bats in roosts and dividing this number by area which
assumes all roosts have been surveyed (Moreno-Valdez et al. 2004, Speakman et al.
1991, Zahn et al. 2006). As density is associated with pathogen richness (Kamiya
et al. 2014) and central to epidemiological models (Anderson & May 1979, May &
Anderson 1979) this leaves large gaps in our understanding of disease processes
in this taxon.

1.4 Thesis overview
In this thesis I examined the role of population structure and density on patho-
gen richness. I used bats as a case study throughout due to their interesting social
structure and importance as zoonotic reservoirs. I combined empirical, compar-
ative studies with simulation models. This allowed me to study specific mechan-
isms while linking my theoretical insights to real-world, empirical tests of hypo-
theses.

First, in Chapter 2, I empirically tested the hypothesis that population struc-
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ture is associated with pathogen richness (measured as known viral richness) in
wild bat populations. To ensure robust results I used two measures of population
structure — the number of subspecies and gene flow — and a larger data set than
previous studies. For both measures I found that bat species with more struc-
tured populations have more known viruses. This relationship is still present
after controlling for study bias and phylogenetic nonindependence. I also tested
for relationships between body mass and pathogen richness, and range size and
pathogen richness, and found strong support for larger bodied bats carrying
more viruses and mixed support for range size promoting pathogen richness.

In Chapter 3, I examined one specific mechanism by which population struc-
ture may promote increased pathogen richness. I tested whether increased pop-
ulation structure can allow newly evolved pathogen strains to invade and persist
more easily. I modelled bat populations as individual-based, stochastic meta-
populations and examined the competition dynamics of two identical pathogen
strains. I tested two factors related to host population structure: dispersal rate
and the number of links between colonies. I found that increased dispersal rate
significantly increased the probability of a newly evolved pathogen invading and
persisting in the population. However, this was only the case at intermediate
transmission rates. I did not find a significant difference in invasion probability
due to the number of links between colonies.

Next, I examined the relationships between a number of elements of popu-
lation structure (Chapter 4). I clarified the interdependence between range size,
population size and density. I also noted that population size can be decom-
posed into colony size and the number of colonies. Using the same model as in
Chapter 3, I then tested which of these factors are most important in promoting
pathogen richness. Specifically I tested which factor most strongly promotes the
invasion and establishment of newly evolved pathogens. I found that popula-
tion size is more important than population density and that colony size is the
important component of population size.

Given the importance of host population size and density on pathogen rich-
ness it is important to have good population estimates for wild bat populations.
However, there are currently very few measurements of bat population size due
to their small size, nocturnal habit and difficulties in identification. Therefore I
aimed to develop a method for estimating bat population size from acoustic data,
specifically data collected by the iBats project (Jones et al. 2011). In Chapter 5 I
developed a generally applicable method — based on random encounter mod-
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els (Rowcliffe et al. 2008, Yapp 1956) — for estimating population sizes of animal
populations using camera traps or acoustic detectors. I used spatial simulations
to test the method for biases and to assess its precision. I found that the method
is unbiased and precise as long as a reasonable amount of data is collected.

Finally, in Chapter 6, I discuss broader conclusions, applications and implic-
ations of my results. I also discuss potential future directions for research.
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Chapter 2

A comparative test of the role of
population structure in
determining pathogen richness

This work was conducted in collaboration with Kate Jones and Hilde Wilkinson-
Herbots.
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2.1 Abstract
Zoonotic diseases make up the majority of human infectious diseases and are
a major drain on healthcare resources and economies. Species that host many
pathogen species are more likely to be the source of a novel zoonotic disease
than species with few pathogens, all else being equal. However, the factors that
influence pathogen richness in animal species are poorly understood. The pat-
tern of contacts between individuals (i.e. population structure) can be influenced
by habitat fragmentation, sociality and dispersal behaviour. Epidemiological the-
ory suggests that increased population structure can promote pathogen richness
by reducing competition between pathogen species. Conversely, it is often as-
sumed that as greater population structure slows the spread of a new pathogen
(i.e. lowers 𝑅0), less structured populations should have greater pathogen rich-
ness. Previous comparative studies comparing pathogen richness and popula-
tion structure measured population structure differently and have had contra-
dictory results, complicating the interpretation. Here I test whether increased
population structure correlates with viral richness using comparative data across
203 bat species, controlling for body mass, geographic range size, study effort and
phylogeny. This is an indirect test between the two competing hypotheses: does
increased population structure allow pathogen coexistence by reducing compet-
ition, or does increased population structure decrease 𝑅0 and therefore cause
fewer new pathogens to enter the population. Bats, as a group, make a useful
case study because they have been associated with a number of important, recent
zoonotic outbreaks. Unlike previous studies, I used two measures of population
structure: the number of subspecies and effective levels of gene flow. I find that
both measures are positively associated with pathogen richness. My results add
more robust support to the hypothesis that increased population structure pro-
motes viral richness in bats. The results support the prediction that increased
population structure allows greater pathogen richness by reducing competition
between pathogens. The prediction that factors that decrease 𝑅0 should decrease
pathogen richness is not supported. Although my analysis implies that increased
population structure does promote pathogen richness in bats, the weakness of
the relationship and the difficulty in obtaining some measurements means that
this is probably not a useful, predictive factor on its own for optimising zoonotic
surveillance.
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2.2 Introduction
Zoonotic pathogens make up the majority of newly emerging diseases and have
profound consequences for public health, economics and international develop-
ment (Jones et al. 2008, Smith et al. 2014, World Bank 2014). Better statistical
models for predicting which wild host species are potential reservoirs of zoonotic
diseases would allow us to optimise zoonotic disease surveillance and anticipate
how the risks of disease spillover might change with global change. The chance
that a host species will be the source of a zoonotic pathogen depends on a num-
ber of factors, such as its proximity and interactions with humans, the prevalence
of its pathogens and the number of pathogen species it carries (Wolfe et al. 2000).
However, the factors that control the number of pathogen species a host species
carries remain poorly understood.

A number of species traits that might control pathogen richness have been
studied. These traits can be at the level of the individual (e.g., body mass and
longevity) or the level of the population (e.g., population density, sociality and
species range size). Large bodied animals have been shown to have high patho-
gen richness with large bodies providing more resources for pathogens (Arne-
berg 2002, Bordes et al. 2008, Kamiya et al. 2014, Luis et al. 2013, Poulin 1995).
Long lived species are expected to have high pathogen richness because the num-
ber of pathogens a host encounters in its lifetime will be higher (Ezenwa et al.
2006, Luis et al. 2013, Nunn et al. 2003). Animal density (Arneberg 2002, Kamiya
et al. 2014, Nunn et al. 2003) and sociality (Altizer et al. 2003, Bordes et al. 2007,
Ezenwa et al. 2006, Vitone et al. 2004) are both predicted to increase pathogen
richness by increasing the rate of spread, 𝑅0, of a new pathogen. Finally, widely
distributed species have high pathogen richness, potentially because they exper-
ience a wider range of environments or because they are sympatric with more
species (Kamiya et al. 2014, Luis et al. 2013, Nunn et al. 2003).

A further population level factor that may affect pathogen richness is pop-
ulation structure. Population structure can be defined as the extent to which
interactions between individuals in a population are non-random. The role of
population structure on human epidemics has been studied in depth and it has
been shown that decreased population structure increases the speed of patho-
gen spread and makes establishment of a new pathogen more likely (Colizza
& Vespignani 2007, Vespignani 2008). In comparative studies of pathogen rich-
ness in wild animals, this relationship with 𝑅0 is often taken as a prediction that
decreased population structure will increase pathogen richness relative to other
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host species (Altizer et al. 2003, Morand 2000, Nunn et al. 2003, Poulin 2014,
Poulin & Morand 2000). However, epidemiological models of highly virulent
pathogens have shown that increased population structure can allow persistence
of a pathogen where a well-mixed population would experience a single, large
epidemic followed by pathogen extinction (Blackwood et al. 2013, Plowright et al.
2011). Furthermore, the assumption that high 𝑅0 leads to high pathogen richness
ignores inter-pathogen competition. Simple epidemiological models of compet-
ition between multiple pathogens show that, in completely unstructured popu-
lations, a competitive exclusion process occurs but that adding population struc-
ture makes coexistence possible (Allen et al. 2004, Nunes et al. 2006, Qiu et al.
2013).

There is a lack of large, comparative studies of the role of population struc-
ture on pathogen richness. Sociality, which is one constituent part of population
structure, has been well studied. However, in primates only a weak positive as-
sociation between sociality and pathogen richness was found (Vitone et al. 2004).
Furthermore, a negative association was found in rodents (Bordes et al. 2007) and
in even and odd-toed hoofed mammals (Ezenwa et al. 2006). Finally, two studies
tested for an association between group size and parasite richness in bats (Bordes
et al. 2008, Gay et al. 2014). Amongst 138 bat species, Bordes et al. (2008) found
no relationship between group size (coded into four classes) and bat fly species
richness. Gay et al. (2014) found a negative relationship between colony size and
viral richness but a positive relationship between colony size and ectoparasite
richness. While sociality is an important component of population structure it
does not capture fully how connected the population is globally.

Three studies have used comparative data to test for an association between
global population structure and viral richness in bats. A study on 15 African
bat species found a positive relationship between the extent of distribution frag-
mentation and viral richness (Maganga et al. 2014). Conversely, a study on 20
South-East Asian bat species found the opposite relationship (Gay et al. 2014).
These studies used the ratio between the perimeter and area of the species’ geo-
graphic range as their measure of population structure. However, range maps
are very coarse for many species. Furthermore, range maps are likely to be more
detailed (and therefore have a greater perimeter) in well studied species.

A global study on 33 bat species found a positive relationship between 𝐹𝑆𝑇
— a measure of genetic structure — and viral richness (Turmelle & Olival 2009).
However, this study included measures using mtDNA which only measures fe-
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male dispersal which may have biased the results as many bat species show fe-
male philopatry (Hulva et al. 2010, Kerth et al. 2002). Furthermore, this study
used measures of 𝐹𝑆𝑇 irrespective of the spatial scale of the study including stud-
ies covering from tens (McCracken & Bradbury 1981) to thousands (Petit & Mayer
1999) of kilometres. As isolation by distance has been shown in a number of bat
species (Burland et al. 1999, Hulva et al. 2010, O’Donnell et al. 2015, Vonhof et al.
2015), this could bias results further. Finally, when a global 𝐹𝑆𝑇 value is not given,
Turmelle & Olival (2009) used the mean of all pairwise 𝐹𝑆𝑇 values between sites.
This is not correct as pairwise and global 𝐹𝑆𝑇 values have different relationships
with effective migration rates.

Here I used a phylogenetic comparative approach to test for a relationship
between increased population structure and pathogen richness in the largest study
of bats to date. I used phylogenetic linear models, controlling for the other life
history characteristics known to impact pathogen richness, to quantify the rela-
tionship between viral richness (as a proxy for pathogen richness) and two meas-
ures of population structure: the number of subspecies and effective gene flow. I
used two measures of population structure to increase the robustness of the ana-
lysis; this is particularly important as previous studies have had contradictory
results (Gay et al. 2014, Maganga et al. 2014, Turmelle & Olival 2009).

I found that increases in both measures of population structure are posit-
ively associated with viral richness and are included as explanatory variables in
the best models for describing viral richness. Furthermore, I found that the role
of phylogeny is very weak both in the models and in the distribution of viral
richness amongst taxa.

2.3 Methods

2.3.1 Data Collection

2.3.1.1 Pathogen richness

To measure pathogen richness I used data from Luis et al. (2013). This data simply
includes known infections of a bat species with a virus species. I have used viral
richness as a proxy for pathogen richness more generally. Rows with host spe-
cies that were not identified to species level according to Wilson & Reeder (2005)
were removed. Many viruses were not identified to species level or their specified
species names were not in the ICTV virus taxonomy (King et al. 2011). Therefore,
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I counted a virus if it was the only virus, for that host species, in the lowest taxo-
nomic level identified (present in the ICTV taxonomy). For example, if a host is
recorded as harbouring an unknown Paramyxoviridae virus, then it is logical to
assume that the host carries at least one Paramyxoviridae virus. If a host carries
an unknown Paramyxoviridae virus and a known Paramyxoviridae virus, it is
hard to confirm that the unknown virus is not another record of the known virus.
In this case, the host would be counted as having one virus species.

2.3.1.2 Population structure data

I used two measures of population structure: the number of subspecies and the
effective level of gene flow. The number of subspecies was counted using the
taxonomy from Wilson & Reeder (2005). The effective level of gene flow was
calculated from estimates of 𝐹𝑆𝑇 collated from the literature. The studies were
from a wide range of spatial scales, from local (∼ 10 km) to continental. As 𝐹𝑆𝑇
often increases with spatial scale (Burland et al. 1999, Hulva et al. 2010, O’Donnell
et al. 2015, Vonhof et al. 2015) I controlled for this by only using data from studies
where a large proportion of the species range was studied. I used the ratio of the
furthest distance between 𝐹𝑆𝑇 samples (taken from the paper or measured with
http://www.distancefromto.net/ if not stated) to the length of the IUCN species
range (IUCN 2010) and only used studies if this ratio was greater than 0.2. This is
an arbitrary value that was a compromise between retaining a reasonable number
of data points and controlling for the bias in spatial scale. I only used global
𝐹𝑆𝑇 estimates as the mean of pairwise 𝐹𝑆𝑇 values is not necessarily equal to the
global 𝐹𝑆𝑇 value. I converted all 𝐹𝑆𝑇 values to effective migration rates using
𝑀 = (1−𝐹𝑆𝑇)/4𝐹𝑆𝑇 . This transforms the data from being bound by (0, 1) to being
in the range [0, ∞) and is easier to interpret.

The two measures of population structure were analysed separately because
the number of subspecies data set had 196 data points but there was only 𝐹𝑆𝑇 data
for 24 bat species. For the subspecies analysis, all bat species in Luis et al. (2013)
were used (i.e. all species with at least one known virus species). This was to avoid
using the very large number of bat species that have simply never been sampled
for viruses. However, for the gene flow analysis, all bat species with suitable 𝐹𝑆𝑇
estimates were used. As some bat species had suitable 𝐹𝑆𝑇 estimates but were
not present in Luis et al. (2013), some bat species with zero known virus species
were included. These bat species with no known viruses were included to make
the greatest use of the 𝐹𝑆𝑇 data available and because the number of species with

http://www.distancefromto.net/
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no known virus species was not unduly large (7 species).
After data cleaning there was data for 196 bat species in 11 families for the

subspecies analysis. Due to the limited number of studies and the restrictive
requirements imposed on study design, there was only data for 24 bat species
in 7 families for the effective gene flow analysis. The raw data are included in
Table A.1.

2.3.1.3 Other explanatory variables

To control for study bias I collected the number of PubMed and Google Scholar
citations for each bat species name including synonyms from ITIS (ITIS 2015).
This was performed in R (R Development Core Team 2010) using the rvest pack-
age (Wickham 2015), with ITIS synonyms being accessed with the taxize pack-
age (Chamberlain & Szöcs 2013). I log transformed these variables as they were
strongly right skewed. I tested for correlation between these two proxies for
study effort using phylogenetic least squares regression (pgls), using the best-
supported phylogeny from Fritz et al. (2009), and likelihood ratio tests using the
caper package (Orme et al. 2012) (Figures 2.1 and A.1). The log number of cita-
tions on PubMed and Google scholar were highly correlated (pgls: 𝑡 = 19.32, df =
194, 𝑝 < 10−5). As the correlation between citation counts was strong, I only used
Google Scholar reference counts in subsequent analyses.

Two factors that have previously been found to be important were included
as additional explanatory variables: body mass (Bordes et al. 2008, Gay et al.
2014, Han et al. 2015, Kamiya et al. 2014, Maganga et al. 2014, Turmelle & Olival
2009) and range size (Kamiya et al. 2014, Maganga et al. 2014, Turmelle & Olival
2009). These other factors were included to avoid spurious positive results oc-
curring simply due to correlations between pathogen richness and a different,
causal factor. Despite commonly being associated with pathogen richness (Arne-
berg 2002, Kamiya et al. 2014, Nunn et al. 2003), population density was not in-
cluded in the analysis as there is very little data for bat densities. Measurements
of body mass were taken from Pantheria (Jones et al. 2009) and primary literature
(Aldridge 1987, Arita 1993, Canals et al. 2005, Heaney et al. 2012, Henderson &
Broders 2008, Lim & Engstrom 2001, López-Baucells et al. 2014, Ma et al. 2003,
Oleksy et al. 2015, Orr & Zuk 2013, Owen et al. 2003, Zhang et al. 2009). Pip-
istrellus pygmaeus was assigned the same mass as P. pipistrellus as they are indistin-
guishable by mass. Body mass measurements were log transformed as they were
strongly right skewed. Distribution size was estimated by downloading range
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maps for all species from IUCN (IUCN 2010) and were also log transformed due
to right skew.

2.3.2 Statistical analysis
Statistical analysis for both response variables — number of subspecies and ef-
fective level of gene flow — was conducted using an information theoretical ap-
proach (Burnham & Anderson 2002), specifically following Whittingham et al.
(2006) and Whittingham et al. (2005). All analyses were performed in R (R Devel-
opment Core Team 2010) and all code is available at https://github.com/timcdlucas/
PhDThesis/blob/master/comparative-test-of-pop-structure.Rtex. I chose a credible
set of models including all combinations of explanatory variables and a model
with just an intercept. In the analysis using the number of subspecies response
variable I also modelled the interaction between study effort and number of sub-
species by including their product. This interaction was included as I believed a
priori that this interaction may be important as subspecies in well studied species
are more likely to be identified. The interaction was only included in models with
both study effort and number of subspecies as individual terms. Following Whit-
tingham et al. (2005) I included a uniformly distributed random variable. This
variable can be used to benchmark how important other explanatory variables
are. The whole analysis was run 50 times, resampling the random variable each
time.

To control for phylogenetic non-independence of data points I used the best-
supported phylogeny from Fritz et al. (2009) which is the supertree from Bininda-
Emonds et al. (2007) with names updated to match the taxonomy by Wilson &
Reeder (2005). This tree was pruned to include only the species I had data for
(Figure 2.1). Phylogenetic manipulation was performed using the ape package
(Paradis et al. 2004). I also performed the analysis using the phylogeny from
Jones et al. (2005) as this has some broad topological differences including the
Rhinolophoidea being sister to the Pteropodidae rather than being related to the
other insectivorous bats (Figure A.3).

The importance of the phylogeny on each variable separately was examined
by estimating the 𝜆 parameter when regressing the variable against an intercept
using the pgls function in caper (Orme et al. 2012). The parameter 𝜆 usually takes
values between zero and one and pgls constrains 𝜆 within these bounds. 𝜆 = 0
implies no autocorrelation while a trait evolving by Brownian motion along the
tree would have 𝜆 = 1. I tested fitted 𝜆 values against the null hypothesis of 𝜆 = 0

https://github.com/timcdlucas/PhDThesis/blob/master/comparative-test-of-pop-structure.Rtex
https://github.com/timcdlucas/PhDThesis/blob/master/comparative-test-of-pop-structure.Rtex
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Figure 2.1 The phylogenetic distribution of viral richness. The phylogeny is
from (Fritz et al. 2009) pruned to include all species used in either the number
of subspecies or gene flow analysis. Dot size shows the number of known
viruses for that species and colour shows family. The red scale bar shows 25
million years.

(no correlation between species) with log-likelihood ratio tests using caper (Orme
et al. 2012).

I fitted phylogenetic regressions for all models in the credible set using the
function gls in the package nlme (Pinheiro et al. 2015). The explanatory variables
were centred and scaled to allow direct comparison of the coefficients (Schielzeth
2010). For each regression model I simultaneously fitted the 𝜆 parameter as this
avoids misspecifying the model (Revell 2010). Unlike the pgls function, gls does
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not constrain 𝜆 to be in the range [0, 1]. 𝜆 < 0 indicates that residuals from the
fitted model are distributed on the phylogeny more uniformly than expected by
chance. 𝜅 and 𝛿 parameters were constrained to one as they are more concerned
with when evolution occurs along a branch than the importance of the phylogeny.
Further, fitting multiple parameters makes interpretation difficult.

To establish the importance of variables I calculated the probability, 𝑃𝑟, that
each variable would be in the best model amongst those examined (under the
assumption that all models are a priori equally likely). This value can more gen-
erally, and with fewer assumptions, be considered as simply the relative weight
of evidence for each variable being in the best model amongst those examined. I
calculated AICc for each model. As each model was fitted 50 times, I calculated
the average AICc, ̄AICc, by averaging AICc scores for each model. ΔAICc was
calculated as min( ̄AICc) − ̄AICc, not the mean of the individual ΔAICc scores,
to guarantee that the best model has ΔAICc = 0. From these ΔAICc values I
calculated Akaike weights, 𝑤. This value can be interpreted as the probability
that a model is the best model, given the data, amongst those examined. For
each variable, the sum of the Akaike weights of models containing that variable
are summed to give 𝑃𝑟. This value can be interpreted as the probability that the
given variable is in the best model.

To determine the direction and strength of the effect of each variable the
mean of its regression coefficient, 𝑏, in all models that contained that variable,
weighted by the model’s Akaike weight, was also calculated. In the subspecies
analysis the inclusion of an interaction term between number of subspecies and
study effort makes interpretation of this mean coefficient more difficult, particu-
larly because the interaction term greatly affects the estimated value of 𝑏. To aid
interpretation, the mean coefficient for the number of subspecies was calculated
for: i) all models containing the number of species, ii) only models with the in-
teraction term and iii) only models with the number of subspecies but not the
interaction term.

2.4 Results

2.4.1 Number of Subspecies
The number of described virus species for a bat host ranged up to 15 viruses
in Carollia perspicillata. There appears to be a positive relationship between the
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Figure 2.2 The relationship between number of subspecies and viral richness
for 196 bat species. The area of the circle shows the number of bat species at
each discrete value. 48 bat species have one subspecies and one known virus
species. The red line represents a phylogenetic simple regression between
the two variables.

number of subspecies and viral richness (Figure 2.2) though few species have
more than five subspecies. Out of 39 fitted models, the top seven models all had
ΔAICc < 4 meaning there was no clear best model (Table 2.2 and Table A.2).
However these top seven models all contained study effort, number of subspe-
cies and the interaction between these two variables. The explanatory variables
log(Mass), log(Range Size) and the uniformly random variable are each in three
of the top seven models. These top seven models had a combined weight of 0.96
meaning that there is a 96% chance that one of these models is the best model
amongst those examined.

Summing the Akaike weights of all models that contain a given variable
gives a probability, 𝑃𝑟, that the variable would be in the best model amongst
those in the plausible set (Whittingham et al. 2006). The number of subspecies
is very likely in the best model (𝑃𝑟 > 0.99) as is the interaction term between the
number of subspecies and study effort (𝑃𝑟 = 0.96) compared to the benchmark
random variable which has 𝑃𝑟 = 0.25 (Figure 2.3A and Table 2.1). When mod-
els with the interaction term are removed there is, on average (mean weighted
by Akaike weights), a positive relationship between the number of subspecies
and viral richness (𝑏 = 0.63, variance = 0.02). Models with an interaction term
between the number of subspecies and study effort have a positive regression
slope for the interaction term (𝑏 = 0.5, variance = 0) and linear term (𝑏 = 0.31,
variance = 0). At median and high values of study effort, this gives a positive
relationship between the number of subspecies and viral richness (Figure A.2).
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Table 2.1 Estimated variable weights (probability that a variable is in the best
model) and their estimated coefficients for both number of subspecies and
gene flow analyses. The coefficients for the number of subspecies variable
are given for models with and without the interaction term because this term
strongly changes the coefficient and because the coefficient can only be use-
fully interpreted when estimated without the interaction. However, there
are no weights for these separated terms as they are not directly compared
in the model selection framework.

Number of Subspecies Gene flow

Variable 𝑃𝑟 Coefficient 𝑃𝑟 Coefficient

Number of subspecies
Total 1.00 0.32
Models without interaction term 0.63
Models with interaction term 0.31

Number of subspecies*log(Scholar) 0.96 0.50

Gene flow 1.00 −0.67

log(Scholar) 1.00 0.99 1.00 2.49
log(Mass) 0.73 0.48 1.00 −0.35
log(Range size) 0.54 0.35 3.96 × 10−8 1.57
Random 0.25 0.05 2.21 × 10−9 0.23

At low values of study effort, the relationship between the number of subspecies
and viral richness becomes flat or even negative.

When using the phylogeny from Jones et al. (2005) the results are broadly
similar (Figure A.4 and Tables A.4 and A.6). Study effort, the number of subspe-
cies and the interaction between the number of subspecies and study effort have
strong support while range size and mass have intermediate support. However,
mass, range size and the interaction between number of subspecies and study ef-
fort have slightly weaker support than in the analysis using the phylogeny from
Fritz et al. (2009).

2.4.2 Gene Flow
The number of described virus species for a bat host ranged up to 12 viruses in
Miniopterus schreibersii (Figure 2.4). Only the model with study effort, gene flow
and body mass was well supported with the second model having an ΔAICc of
34 (Table 2.2 and Table A.2). The effective level of gene flow was likely in the best
model (𝑃𝑟 > 0.99, see Figure 2.3B and Table 2.1). On average (mean weighted by
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Akaike weights) there was a negative relationship between gene flow and viral
richness (𝑏 = −0.67, variance = 0.01) despite the insignificant positive relationship
(Figure 2.4) estimated by the single-predictor model (pgls: 𝑏 = 0.63, 𝑡 = 1.16, df
= 13, 𝑝 = 0.27). Possibly due to the smaller sample size, or a weaker relationship,
this coefficient was much more varied than the number of subspecies coefficient
with 22% of multiple-regression models estimating a positive relationship.

Study effort was very likely in the best model (𝑃𝑟 > 0.99) as was body mass
(𝑃𝑟 > 0.99). However, body mass had a negative average coefficient (𝑏 = −0.35,
variance = 0.04). In contrast to the number of subspecies analysis, range size
was almost certainly not in the best model with 𝑃𝑟 = 3.96 × 10−8. Of the three
explanatory variables in the best model, study effort had the largest effect (𝑏 =
2.49, variance = 0.08). The effect size of gene flow (𝑏 = −0.67, variance = 0.01) was
approximately twice the size of that of body mass (𝑏 = −0.35, variance = 0.04)

When using the phylogeny from Jones et al. (2005) the analysis became very
unstable (Figure A.4). The support for each variable changed dramatically with
each resampling of the random variable. On average however, only the model
containing mass and range size is supported (Tables A.3 and A.6).

2.4.3 Phylogenetic Analysis

2.4.3.1 Number of subspecies

Figure 2.1 shows the phylogeny used and the number of viruses for each species.
The mean number of viruses across families is fairly constant with Nycteridae
having the smallest mean, (1.67). The highest mean is Mormoopidae with 5 virus
species per bat species, but this is based on only 3 species. The Phyllostomidae
have the second highest mean of 3.49 (𝑛 = 37).

The small change in mean pathogen richness across families and the lack of
clear pattern in Figure 2.1 implies that viral richness is not strongly phylogenetic.
This is corroborated by the small estimated size of 𝜆 (𝜆 = 0.04, 𝑝 = 0.21).

Of the explanatory variables, the number of subspecies had no phylogenetic
autocorrelation (𝜆 = 10−6, 𝑝 > 0.99), study effort and distribution size had weak
but significant autocorrelation (Study Effort: 𝜆 = 0.1, 𝑝 = 0.01, Distribution size:
𝜆 = 0.46, 𝑝 < 10−5) and body mass was strongly phylogenetic (𝜆 = 0.93, 𝑝 < 10−5).
Across all multiple regression models the mean value of 𝜆 was 0.08 which im-
plied that the residuals from the models were very weakly phylogenetic. A small
number of models (0.4%) had negatively phylogenetically distributed residuals.
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Figure 2.3 The relative weight of evidence that each explanatory variable is in
the best model for explaining viral richness. The probability that each vari-
able is in the best model (amongst the models tested) is shown for A) the
number of subspecies analysis and B) the effective gene flow analysis. The
boxplots show the variation of the results over 50 resamplings of the uni-
formly random “null” variable. The thick bar of the boxplot shows the me-
dian value, the interquartile range is represented by a box, vertical lines rep-
resent range, and outliers are shown as filled circles. The red “Random” box
is the uniformly random variable. Population structure (number of subspe-
cies and effective gene flow), shown in yellow, is likely to be in the best model
in both analyses.

2.4.3.2 Effective gene flow

There was no phylogenetic signal in the number of virus species (𝜆 = 10−6, 𝑝 >
0.99). Gene flow also had no phylogenetic autocorrelation (𝜆 = 10−6, 𝑝 > 0.99).
Due to the limited sample size, significance tests are unlikely to have much power.
There is little evidence of phylogenetic autocorrelation in study effort (𝜆 = 0.15, 𝑝 =
0.56). However, there is some weak evidence of phylogenetic signal in range size
as the estimated size of 𝜆 is large while 𝑝 is also large, potentially due to a lack of
statistical power (𝜆 = 0.67, 𝑝 = 0.53). Body mass showed significant phylogenetic
autocorrelation (𝜆 = 0.79, 𝑝 = 0).

Across all multiple regression models the mean value of 𝜆 is −1.64 and a large
number of individual models (58%) had negatively phylogenetically distributed
residuals implying the residuals from the model are spread more uniformly on
the phylogeny than expected by chance. Due to the small sample size this was
probably due to a small number of data points with large residuals being distant
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Figure 2.4 Relationship between viral richness and log effective gene flow per
generation for 24 bat species. Green points are studies that estimated effect-
ive gene flow using allozymes and blue points are studies using microsatel-
lites. The red line represents a phylogenetic simple regression between the
two variables.

on the tree.

2.5 Discussion
In this study I have used known viral richness in bats as a case study for the
more general hypothesis that increased population structure promotes patho-
gen richness. In both analyses I found that a positive effect of increasing pop-
ulation structure (a positive effect of the number of subspecies and a negative
effect of gene flow) is likely to be in the best model for explaining viral richness.
Only the effective gene flow analysis, when performed using the phylogeny from
Jones et al. (2005), does not support this hypothesis. Therefore my study sup-
ports the broader hypothesis that increased population structure promotes patho-
gen richness. The positive relationship between increased population structure
and pathogen richness implies that direct or indirect competitive mechanisms
are acting such that increased population structure allows escape from competi-
tion which promotes pathogen richness. Furthermore my study contradicts the
assumption that factors that promote high 𝑅0 will automatically promote high
pathogen richness by increasing the rate of spread of new pathogens entering
into the population (Morand 2000, Nunn et al. 2003).

This analysis is in agreement with two studies that have specifically tested
this same hypothesis (Maganga et al. 2014, Turmelle & Olival 2009). These two
studies used 𝐹𝑆𝑇 (Turmelle & Olival 2009) and fragmentation of species distribu-
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tions (Maganga et al. 2014). Combined with the analysis here using the number
of subspecies, three different measures of population structure have been shown
to correlate with pathogen richness in bats. By analysing data on two measures
of population structure, and using larger data sets than previous studies, it is
hoped that the results here may be more robust than in previous analyses (Gay
et al. 2014, Maganga et al. 2014, Turmelle & Olival 2009).

In contrast, one study Gay et al. (2014) found the opposite relationship using
fragmentation of species distribution. Furthermore, Bordes et al. (2008) found
no relationship between increased colony size and pathogen richness while Gay
et al. (2014) found relationships in opposite directions for virus and ectoparasite
richness. However, the study by Gay et al. (2014) uses relatively few species while
the study by Bordes et al. (2008) uses group size which is a measure of local rather
than global population structure. The overall weight of evidence suggests that
population structure and pathogen richness are associated.

There was strong support for a positive interaction between the number of
subspecies and study effort. The support for this interaction implies that in-
creased population structure has a stronger relationship with known pathogen
richness when study effort is not very low. One interpretation of this is that in-
creased population structure alone does not predict high known viral richness;
reasonable study effort is also needed to turn the expected high viral richness
into known and recorded viral richness. Biases in identification of subspecies
have been noted before (Gippoliti & Amori 2007). The number of subspecies is
more commonly used as a variable in comparative analyses of birds than mam-
mals but the fact that it is associated with study effort is often not taken into
account (Belliure et al. 2000, Phillimore et al. 2007).

Of the other explanatory variables considered, study effort and body mass
were selected as being in the best model while there was marginal evidence for
range size being associated with viral richness. Study effort positively predicted
pathogen richness, confirming the expectation that additional study of a bat spe-
cies yields more known viruses infecting that host species. Therefore, this bias
cannot be ignored in studies using known pathogen richness as a proxy for total
pathogen richness (Gregory 1990, Nunn et al. 2003). While body mass is selec-
ted as being in the best model in both the number of subspecies analysis and the
effective gene flow analysis the estimated coefficients have opposite signs in the
two analyses. In the number of subspecies analysis, body mass has a positive
relationship with pathogen richness which is in agreement with previous stud-
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ies (Bordes et al. 2008, Gay et al. 2014, Kamiya et al. 2014, Maganga et al. 2014,
Turmelle & Olival 2009). However, in the effective gene flow analysis, body mass
has a negative estimated coefficient. This is in contrast to the number of subspe-
cies analysis, previous studies in the literature and the single-predictor model.
This result is probably due to correlations with other variables in the analysis
and exacerbated by the small sample size in this analysis.

2.5.1 Broader implications
The relationship between increased population structure and pathogen richness
suggests that population structure has at least some potential as being predictive
of high pathogen richness and therefore of a species’ likelihood of being a reser-
voir of a potentially zoonotic pathogen. However, given that it is difficult to meas-
ure population structure and given that the relationship appears to be weak at
best, this trait on its own is unlikely to be useful in predicting zoonotic risk. How-
ever, as a number of other factors are also associated with pathogen richness such
as body mass and to a lesser extent range size as shown here as well as other traits
studied elsewhere (Luis et al. 2013, Turmelle & Olival 2009). Therefore, using a
combination of traits in a predictive (i.e. machine learning) framework has poten-
tial for use in prioritising zoonotic disease surveillance. The main hurdle in this
approach is finding a way to validate models; due to the study effort bias in cur-
rent data, predictive models will also be biased. As unbiased pathogen surveys
such as Anthony et al. (2013) become more common good validation may become
possible. Alternatively, predictive models could be trained on all available — and
therefore biased — data and validated by predicting smaller, unbiased data sets
such as the data collected in Maganga et al. (2014).

The relationship between increased population structure and pathogen rich-
ness also has implications for habitat fragmentation and range shifts due to global
change. In short, habitat fragmentation and range shifts that reduce movement
between populations would be predicted to increase pathogen richness. How-
ever, depending on the mechanisms by which increased population structure
increases pathogen richness this may not be a cause for concern. If the main
mechanism is one that reduces pathogen extinction rates, a newly fragmented
population is unlikely to increase its pathogen richness over any short to medium-
term timescales. If, however, increased population structure actively promotes
the evolution of new pathogen strains or allows the persistence of more virulent
strains (Blackwood et al. 2013, Plowright et al. 2011, Pons-Salort et al. 2014) this
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could have important public health implications. Therefore further studies on
the exact mechanisms by which increased population structure affects pathogen
richness are needed.

2.5.2 Study limitations
Although I have used measures of study effort to try to control for biases in the
viral richness data, this bias could still make the results here unreliable — this
is especially true as study effort is by far the strongest predictor of viral richness
in both data sets. It is hoped that as untargeted sequencing of viral genetic ma-
terial becomes cheaper and more common this bias can be reduced (Anthony et
al. 2013). The strength of the relationship between study effort and known viral
richness also highlights the number of bat-virus host-pathogen relationships yet
to be discovered and the number of virus species that are yet to be described.

I have included a number of explanatory variables to avoid spurious correl-
ations. However, there is little data on bat density or population size. Given that
studies in other mammalian groups have found relationships between host dens-
ity and pathogen richness this would be a useful variable to include in further
analyses (Arneberg 2002, Kamiya et al. 2014, Nunn et al. 2003). Acoustic mon-
itoring is becoming cheaper and less labour intensive and may provide suitable
data for estimating population densities or population sizes for more bat species.
However, it is not clear whether host population density or host population size
is the more appropriate measure with respect to disease dynamics (Begon et al.
2002). Given the importance of geographic range size found here and elsewhere
(Huang et al. 2015, Kamiya et al. 2014, Lindenfors et al. 2007, Nunn et al. 2003, Tur-
melle & Olival 2009) comparative studies may struggle to select between these
three related factors: host population size, population density and geographic
range size.

I have used two measures of population structure and the number of subspe-
cies data set is larger than those used in previous studies. However it is clear that
the gene flow data set is small (𝑛 = 24). This may explain some unexpected results.
While the model averaging approach has given a negative model averaged coeffi-
cient for gene flow, the single-predictor model of gene flow against viral richness
gave a positive coefficient. Furthermore body mass has a negative average coef-
ficient. This is in contrast to the number of subspecies analysis, many studies in
the literature (Gay et al. 2014, Kamiya et al. 2014, Maganga et al. 2014, Turmelle
& Olival 2009) and the single-predictor model. It is not easy to interpret these
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contradictions but it is clear that the results from the gene flow analysis alone
should not be considered strong evidence for a relationship between increased
population structure and pathogen richness. These contradictions also reiterate
the need to use large data sets where possible and the need to use multiple meas-
ures of population structure to promote robust conclusions.

Finally, while comparative studies are a useful tool for examining broad
trends of pathogen richness across large taxonomic groups, they cannot examine
the specific mechanisms that may be underpinning the correlations found. There-
fore, further work is needed to test which mechanisms are actually causing the
relationship between increased population structure and pathogen richness that
I have identified here. A number of mechanisms might be involved. A reduced
rate of pathogen extinction might be caused by a reduction in competition due to
the slow dispersal of competing pathogens. Alternatively, increased population
structure may promote the invasion of new pathogens, by creating localised areas
of low competition or host immunity. One method for testing these mechanisms
would be through mechanistic epidemiological models.

2.5.3 Conclusions
I have used phylogenetic linear models to identify positive relationships between
two measures of population structure (the number of subspecies and effective
levels of gene flow) and viral richness in bats. This study adds to the evidence
that increased population structure may promote pathogen richness. It does not
support the view that factors that increase 𝑅0 will increase pathogen richness.
Using larger data sets and multiple measurements makes the weight of the evid-
ence here stronger than in previous studies. However, caution must still be taken
in interpreting these results as the data is biased and particularly sparse in one
of the analyses.
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Chapter 3

Understanding how population
structure affects pathogen richness
in a mechanistic model of bat
populations

This work was conducted in collaboration with Kate Jones and Hilde Wilkinson-
Herbots.
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3.1 Abstract
An increasingly large proportion of emerging human diseases comes from anim-
als. These diseases have a huge impact on human health, healthcare systems and
economic development. The chance that a new zoonosis will come from any par-
ticular wild host species increases with the number of pathogen species occurring
in that host species. However, the factors that control pathogen richness of wild
animal species remain unclear. Comparative, phylogenetic studies have shown
that host-species traits such as population density, longevity and body size correl-
ate with pathogen richness. Further comparative studies have found correlations
between population structure and pathogen richness. Typically it is assumed
that well-connected, unstructured populations (that therefore have a high basic
reproductive number, 𝑅0) promote the invasion of new pathogens and therefore
increase pathogen richness. However, this assumption is largely untested. In
the presence of inter-pathogen competition, the opposite effect might occur; in-
creased population structure may increase pathogen richness by reducing the
effects of competition. A more mechanistic understanding of how population
structure affects pathogen richness could discriminate between these two broad
hypotheses. I hypothesised that both low dispersal rates and a low number of
connections in a metapopulation network would allow invading pathogens to es-
tablish more easily, thus increasing pathogen richness. I tested these hypotheses
using metapopulation networks parameterised to mimic wild bat populations as
bats have highly varied social structures and have recently been implicated in a
number of high profile diseases such as Ebola, SARS, Hendra and Nipah. I simu-
lated the process of a new pathogen invading into a metapopulation already occu-
pied by an identical pathogen. I varied the dispersal rate, topology of the meta-
population and transmission rate. I found significant evidence that increased
dispersal rate increased the probability that a new pathogen would invade into a
population. I found marginal evidence that network topology affected the prob-
ability that a new pathogen would invade. The assumption that factors causing
high 𝑅0 allow new pathogens to invade and therefore increase pathogen richness
was supported. However, my results contradict many theoretical studies which
predict that increased population structure should promote coexistence of patho-
gens. My results also contradict empirical patterns of pathogen richness with
respect to population structure. Therefore, it is likely that population structure
affects pathogen richness via a different mechanism to the one modelled here.



P    :    32

3.2 Introduction
Over 50% of emerging infectious diseases have an animal source (Jones et al. 2008,
Smith et al. 2014). Zoonotic pathogens can be highly virulent (Lefebvre et al. 2014,
Luby et al. 2009) and can have huge public health impacts (Granich et al. 2015),
economic costs (Knobler et al. 2004) and slow down international development
(World Bank 2014). Therefore understanding and predicting changes in the pro-
cess of zoonotic spillover is a global health priority (Taylor et al. 2001). The num-
ber of pathogen species hosted by a wild animal species affects the chance that
a disease from that species will infect humans (Wolfe et al. 2000). However, the
factors that control the number of pathogen species in a wild animal population
are still unclear (Metcalf et al. 2015); in particular our mechanistic understanding
of how population processes inhibit or promote pathogen richness is poor.

In comparative studies, a number of host traits have been shown to correlate
with pathogen richness including body size (Arneberg 2002, Kamiya et al. 2014),
population density (Arneberg 2002, Nunn et al. 2003) and range size (Bordes &
Morand 2011, Kamiya et al. 2014). A further factor that may affect pathogen
richness is population structure. In comparative studies it is often assumed that
factors that promote fast disease spread should promote high pathogen richness;
the faster a new pathogen spreads through a population, the more likely it is to
persist (Altizer et al. 2003, Morand 2000, Nunn et al. 2003, Poulin 2014, Poulin &
Morand 2000). However, this assumption ignores competitive mechanisms such
as cross-immunity and depletion of susceptible hosts. If competitive mechan-
isms are strong, endemic pathogens in populations structured such that 𝑅0 will
be high will be able to easily out-compete invading pathogens.

Overall, the evidence from comparative studies indicates that increased pop-
ulation structure correlates with higher pathogen richness. This conclusion is
based on studies using a number of measures of population structure: genetic
measures, the number of subspecies, the shape of species distributions and so-
cial group size (Chapter 2, Maganga et al. 2014, Turmelle & Olival 2009, Vitone et
al. 2004). However, there are a number of studies that contradict this conclusion
(Bordes et al. 2007, Ezenwa et al. 2006, Gay et al. 2014). Comparative studies are
often contradictory due to small sample sizes, noisy data and because empirical
relationships often do not extrapolate well to other taxa. Furthermore, multi-
collinearity between many traits also makes it hard to clearly distinguish which
factors are important (Nunn et al. 2015). However, meta-analyses can be used to
combine studies to help generalise conclusions (Kamiya et al. 2014).
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Furthermore, knowing which factors correlate with pathogen richness does
not tell us if, or how, they causally control pathogen richness. This lack of a
solid mechanistic understanding of these processes prevents predictions of how
wild populations will respond to perturbations such as increased human pres-
sure and global change. As habitats fragment we expect wild populations to
change in a number of ways including becoming smaller and less well connec-
ted (Andren 1994, Cushman et al. 2012). As multiple population-level factors
are likely to change simultaneously due to global change, the correlative relation-
ships examined in comparative studies are unlikely to effectively predict future
changes in pathogen richness. Mechanistic models are needed to project how
these highly non-linear disease systems will respond to the multiple, simultan-
eous stressors affecting them.

There are a number of mechanisms by which population structure could in-
crease pathogen richness. Firstly, population structure may reduce competition
between pathogens. In analytical models of well-mixed populations competitive
exclusion has been predicted (Ackleh & Allen 2003, Allen et al. 2004, Bremer-
mann & Thieme 1989, Martcheva & Li 2013, Qiu et al. 2013). In models where
competitive exclusion occurs in well-mixed populations, population structure
has sometimes been shown to allow coexistence (Allen et al. 2004, Garmer et al.
2016, Nunes et al. 2006, Qiu et al. 2013). Alternatively, population structure may
promote the evolution of new strains within a species (Buckee et al. 2004), re-
duce the rate of pathogen extinction (Rand et al. 1995) or increase the probability
of pathogen invasion from other host species (Nunes et al. 2006). These separate
mechanisms have not been examined and it is difficult to see how they could be
distinguished through comparative methods.

Currently, the literature contains very abstract, simplified models (Allen et
al. 2004, Garmer et al. 2016, May & Nowak 1994, Qiu et al. 2013). These cannot
be easily applied to real data. They also do not easily give quantitative predic-
tions of pathogen richness; typically they predict either no pathogen coexistence
(Bremermann & Thieme 1989, Martcheva & Li 2013) or infinite pathogen richness
(May & Nowak 1994). Models that can give quantitive predictions of pathogen
richness in wild populations are more applicable to real-world issues such as
zoonotic disease surveillance. While predicting an absolute value of pathogen
richness for a wild species is likely to be impossible, models that attempt to rank
species from highest to lowest pathogen richness are still useful for prioritising
species for surveillance. This requires a middle ground of model complexity.
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In order to capture this middle ground, I have used metapopulation models.
Unlike two-patch models that are used to add population structure while keep-
ing model complexity to a minumum (Allen et al. 2004, Garmer et al. 2016, Qiu
et al. 2013), the metapopulations used here split the population into multiple sub-
populations. I have used two independant variables that alter population struc-
ture: dispersal rate and metapopulation network topology. I have studied the
invasion of new pathogens as a mechanism for increasing pathogen richness. In
particular I have focused on studying the invasion of a newly evolved pathogen
that is therefore identical in epidemiological parameters to the endemic patho-
gen. Furthermore, this close evolutionary relationship means that competition
via cross-immunity is strong.

The metapopulations were parameterised to broadly mimic wild bat pop-
ulations. Population structure has already been found to correlate with patho-
gen richness in bats (Chapter 2, Gay et al. 2014, Maganga et al. 2014, Turmelle &
Olival 2009). Furthermore, bats have an unusually large variety of social struc-
tures. Colony sizes range from ten to 1 million individuals (Jones et al. 2009) and
colonies can be very stable (Kerth et al. 2011, McCracken & Bradbury 1981). This
strong colony fidelity means they fit the assumptions of metapopulations well.
Bats have also, over the last decade, become a focus for disease research (Calisher
et al. 2006, Hughes et al. 2007). The reason for this focus is that they have been
implicated in a number of high profile diseases including Ebola, SARS, Hendra
and Nipah (Calisher et al. 2006, Li et al. 2005).

Here I show that, given the assumptions of a metapopulation, increased
dispersal significantly increased the probability of invasion of new pathogens.
Furthermore, structured populations nearly always had a lower probability of
pathogen invasion than fully-mixed populations of equal size. The topology of
the network did not strongly affect the probability of pathogen invasion as long
as the population was not completely unconnected. Overall, I found significant
evidence that reduced population structure increases the probability of invasion
of a new pathogen, implying a role for the generation of pathogen richness more
generally.
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3.3 Methods

3.3.1 Two pathogen SIR model
I developed a multipathogen, SIR compartment model with individuals being
classed as susceptible, infected or recovered with immunity (Figure 3.1). Sus-
ceptible individuals are counted in class 𝑆 (see Table 3.1 for a list of symbols and
values used). There are three infected classes, 𝐼1, 𝐼2 and 𝐼12, being individuals in-
fected with Pathogen 1, Pathogen 2 or both respectively. Recovered individuals,
𝑅, are immune to both pathogens, even if they have only been infected with one
(i.e. there is complete cross-immunity). Furthermore, recovery from one patho-
gen moves an individual straight into the recovered class, even if the individual
is infected with both pathogens (Figure 3.1). This modelling choice allows the
model to be easily expanded to include more than two pathogens, though this
study is restricted to two pathogens. The assumption of immediate recovery from
all other diseases is likely to be reasonable. Any up-regulation of innate immune
response will affect both pathogens equally. Furthermore, as the pathogens are
identical, any acquired immunity would also affect both pathogens equally.

The coinfection rate (the rate at which an infected individual is infected with
a second pathogen) is adjusted compared to the infection rate by a factor 𝛼. Low
values of 𝛼 imply lower rates of coinfection. In particular, 𝛼 = 0 indicates no
coinfections, 𝛼 = 1 indicates that coinfections happen at the same rate as first
infections while 𝛼 > 1 indicates that coinfections occur more readily than first
infections.

In the application of long term existence of pathogens it is necessary to in-
clude vital dynamics (births and deaths) as the SIR model without vital dynam-
ics has no endemic state. Birth and death rates (𝜇 and Λ) are set as being equal
meaning the population does not systematically increase or decrease. The popu-
lation size does however change as a random walk. New born individuals enter
the susceptible class. Infection amd coinfection were assumed to cause no extra
mortality as for a number of viruses, bats show no clinical signs of infection (de
Thoisy et al. 2016, Halpin et al. 2011).

The population is modelled as a metapopulation, being divided into a num-
ber of subpopulations (colonies). This model is an intermediate level of com-
plexity between fully-mixed populations and contact networks. The existence of
subspecies, measurements of genetic dissimilarity and ecological studies provide
ample evidence that bat populations are structured to some extent (Burns & Broders
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2014, Kerth et al. 2011, McCracken & Bradbury 1981, Wilson & Reeder 2005).
Therefore a fully mixed population is a large oversimplification. However, try-
ing to study the contact network relies on knowledge of detailed individual be-
haviour which is rarely available.

The metapopulation is modelled as a network with colonies being nodes and
dispersal between colonies being indicated by edges (Figure 3.2). Individuals
within a colony interact randomly so that the colony is fully mixed. Dispersal
between colonies occurs at a rate 𝜉 . Individuals can only disperse to colonies
connected to theirs by an edge in the network. The rate of dispersal is not affected
by the number of edges a colonies has (known as the degree of the colony and
denoted 𝑘). Therefore, the dispersal rate from a colony 𝑥 with degree 𝑘𝑥 to colony
𝑦 is 𝜉/𝑘𝑥. Note this rate is independent of the degree and size of colony 𝑦.

I examined this model using stochastic, continuous-time simulations imple-
mented in R (R Development Core Team 2010). The implementation is avail-
able as an R package on GitHub (Lucas 2015a). The model can be written as a
continuous-time Markov chain. The Markov chain contains the random variables
((𝑆𝑥)𝑥=1…𝑚, (𝐼𝑥,𝑞)𝑥=1…𝑚, 𝑞∈{1,2,12}, (𝑅𝑥)𝑥=1…𝑚). Here, (𝑆𝑥)𝑥=1…𝑚 is a length 𝑚 vector
of the number of susceptibles in each colony. (𝐼𝑥,𝑞)𝑥=1…𝑚,𝑞∈{1,2,12} is a length 𝑚×3
vector describing the number of individuals of each disease class (𝑞 ∈ {1, 2, 12})
in each colony. Finally, (𝑅𝑥)𝑥=1…𝑚 is a length 𝑚 vector of the number of individu-
als in the recovered class. The model is a Markov chain where extinction of both
pathogens species and extinction of the host species are absorbing states. How-
ever, the expected time to reach this state is much larger than the duration of the
simulations.

At any time, suppose the system is in state ((𝑠𝑥), (𝑖𝑥,𝑞), (𝑟𝑥)). At each step
in the simulation we calculate the rate at which each possible event might occur.
One event is then randomly chosen, weighted by its rate

𝑝(event 𝑖) = 𝑒𝑖
∑𝑗 𝑒𝑗

, (3.1)

where 𝑒𝑖 is the rate at which event 𝑖 occurs and ∑𝑗 𝑒𝑗 is the sum of the rates of all
possible events. Finally, the length of the time step, 𝛿, is drawn from an exponen-
tial distribution

𝛿 ∼ Exp ⎛⎜
⎝

∑
𝑖

𝑒𝑖
⎞⎟
⎠

. (3.2)

We can now write down the rates of all events. Assuming asexual reproduc-
tion, that all classes reproduce at the same rate and that individuals are born into
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Figure 3.1 Schematic of the SIR model used. Individuals are in one of five
classes, susceptible (orange, 𝑆), infected with Pathogen 1, Pathogen 2 or both
(blue, 𝐼1, 𝐼2, 𝐼12) or recovered and immune from further infection (green, 𝑅).
Transitions between epidemiological classes occur as indicated by solid ar-
rows. Vital dynamics (births and deaths) are indicated by dashed arrows.
Parameter symbols for transitions are indicated. Note that individuals in 𝐼12
move into 𝑅, not back to 𝐼1 or 𝐼2. That is, recovery from one pathogen causes
immediate recovery from the other pathogen.

the susceptible class we get

𝑠𝑥 → 𝑠𝑥 + 1 at a rate of Λ ⎛⎜
⎝

𝑠𝑥 + ∑
𝑞

𝑖𝑞𝑥 + 𝑟𝑥
⎞⎟
⎠

(3.3)

where 𝑠𝑥 → 𝑠𝑥 + 1 is the event that the number of susceptibles in colony 𝑥 will
increase by 1 (a single birth) and ∑𝑞 𝑖𝑞𝑥 is the sum of all infection classes 𝑞 ∈
{1, 2, 12}. The rates of death, given a death rate 𝜇, and no increased mortality due
to infection, are given by

𝑠𝑥 → 𝑠𝑥 − 1 at a rate of 𝜇𝑠𝑥, (3.4)

𝑖𝑞𝑥 → 𝑖𝑞𝑥 − 1 at a rate of 𝜇𝑖𝑞𝑥, (3.5)

𝑟𝑥 → 𝑟𝑥 − 1 at a rate of 𝜇𝑟𝑥. (3.6)

I modelled transmission as being density-dependent. This assumption was
more suitable than frequency-dependent transmission as I was modelling a dis-
ease transmitted by saliva or urine in highly dense populations confined to caves,
buildings or potentially a small number of tree roosts. I was notably not mod-
elling a sexually transmitted disease (STD) as spillover of STDs from bats to hu-
mans is likely to be rare. Infection of a susceptible with either Pathogen 1 or 2 is
therefore given by

𝑖1𝑥 → 𝑖1𝑥 + 1, 𝑠𝑥 → 𝑠𝑥 − 1 at a rate of 𝛽𝑠𝑥 (𝑖1𝑥 + 𝑖12𝑥) , (3.7)
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𝑖2𝑥 → 𝑖2𝑥 + 1, 𝑠𝑥 → 𝑠𝑥 − 1 at a rate of 𝛽𝑠𝑥 (𝑖2𝑥 + 𝑖12𝑥) , (3.8)

while coinfection, given the coinfection adjustment factor 𝛼, is given by

𝑖12,𝑥 → 𝑖12,𝑥 + 1, 𝑖1𝑥 → 𝑖1𝑥 − 1 at a rate of 𝛼𝛽𝑖1𝑥 (𝑖2𝑥 + 𝑖12𝑥) , (3.9)

𝑖12,𝑥 → 𝑖12,𝑥 + 1, 𝐼2𝑥 → 𝑖2𝑥 − 1 at a rate of 𝛼𝛽𝑖2𝑥 (𝑖1𝑥 + 𝑖12𝑥) . (3.10)

Note that lower values of 𝛼 give lower rates of infection as in Castillo-Chavez et al.
(1989).

The probability of migration from colony 𝑦 (with degree 𝑘𝑦) to colony 𝑥, given

Table 3.1 A summary of all symbols used in Chapters 3 and 4 along with their
units and default values. The justification for parameter values is given in
Section 3.3.2.

Symbol Explanation Units Value

𝜌 Number of pathogens 2
𝑥, 𝑦 Colony index
𝑝 Pathogen index i.e. 𝑝 ∈ {1, 2} for

pathogens 1 and 2
𝑞 Disease class i.e. 𝑞 ∈ {1, 2, 12}
𝑆𝑥 Number of susceptible individuals in

colony 𝑥
𝐼𝑞𝑥 Number of individuals infected with

disease(s) 𝑞 ∈ 1, 2, 12 in colony 𝑥
𝑅𝑥 Number of individuals in colony 𝑥 in

the recovered with immunity class
𝑁 Total Population size 30,000
𝑚 Number of colonies 10
𝑛 Colony size 3,000
𝑎 Area km2 10,000
𝛽 Transmission rate 0.1 – 0.4
𝛼 Coinfection adjustment factor. Proportion 0.1
𝛾 Recovery rate year−1.individual−1 1
𝜉 Dispersal year−1.individual−1 0.001–0.1
Λ Birth rate year−1.individual−1 0.05
𝜇 Death rate year−1.individual−1 0.05
𝑘𝑥 Degree of node 𝑥 (number of colon-

ies that individuals from colony 𝑥 can
disperse to).

𝛿 Waiting time until next event years
𝑒𝑖 The rate at which event 𝑖 occurs year−1
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Figure 3.2 The two network topologies used to test whether network connec-
tedness influences a pathogen’s ability to invade. A) Animals can only dis-
perse to neighbouring colonies. B) Dispersal can occur between any colony.
Blue circles are colonies of 3,000 individuals. Dispersal only occurs between
colonies connected by an edge (black line). The dispersal rate is held con-
stant between the two topologies.

a dispersal rate 𝜉 is given by

𝑠𝑥 → 𝑠𝑥 + 1, 𝑠𝑦 → 𝑠𝑦 − 1 at a rate of
𝜉𝑠𝑦
𝑘𝑦

, (3.11)

𝑖𝑞𝑥 → 𝑖𝑞𝑥 + 1, 𝑖𝑞𝑦 → 𝑖𝑞𝑦 − 1 at a rate of
𝜉 𝑖𝑞𝑦
𝑘𝑦

, (3.12)

𝑟𝑥 → 𝑟𝑥 + 1, 𝑟𝑦 → 𝑟𝑦 − 1 at a rate of
𝜉𝑟𝑦
𝑘𝑦

. (3.13)

Not that the dispersal rate does not change with infection. As above, this is due
to the low virulence of bat viruses. Finally, recovery from any infectious class
occurs at a rate 𝛾

𝑖𝑞𝑥 → 𝑖𝑞𝑥 − 1, 𝑟𝑥 → 𝑟𝑥 + 1 at a rate of 𝛾𝑖𝑞𝑥. (3.14)

3.3.2 Parameter selection
The fixed parameters were chosen to roughly reflect realistic wild bat popula-
tions. The death rate 𝜇 was set as 0.05 per year giving a generation time of 20
years. The birth rate Λ was set to be equal to 𝜇. This yields a population that
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does not systematically increase or decrease. However, the size of each colony
changes as a random walk. Given the length of the simulations, colonies were
very unlikely to go extinct (Figure B.3). The starting size of each colony was set
to 3,000 This is appropriate for many bat species (Jones et al. 2009), especially the
large, frugivorous Pteropodidae that have been particularly associated with recent
zoonotic diseases.

The recovery rate 𝛾 was set to one, giving an average infection duration of
one year. This is therefore a long lasting infection but not a chronic infection. It
is very difficult to directly estimate infection durations in wild populations but
it seems that these infections might sometimes be long lasting (Peel et al. 2012,
Plowright et al. 2015). However, other studies have found much shorter infectious
periods (Amengual et al. 2007). These shorter infections are not studied further
here.

Four values of the transmission rate 𝛽 were used, 0.1, 0.2, 0.3 and 0.4. These
values were chosen to cover the range of behaviours, from very high probabilit-
ies of invasion of the second pathogen, to very low probabilities. All simulations
were run under all four transmission rates as this is such a fundamental para-
meter. The coinfection adjustment parameter, 𝛼, was set to 0.1 so that an indi-
vidual infected with one pathogen is 90% less likely to be infected with another.
This is a rather arbitrary value. However, the rationale of the model was that
the invading species might be a newly speciated strain of the endemic species.
Furthermore, the model assumes complete cross-immunity after recovery from
infection. Therefore cross-immunity to coinfection is likely to be very strong as
well. Some pairs of closely related bat viruses have been found to coinfect indi-
vidual bats less than would be expected by chance (Anthony et al. 2013). This
indicates a level of cross-immunity between these pairs of viruses.

3.3.3 Experimental setup
The metapopulation was made up of ten colonies. Ten colonies was selected as
a trade-off between computation time and a network complex enough that any
effects of population structure could be detected. This value is artificially small
compared to wildlife populations. In each simulation, the naïve population was
seeded with ten sets of 200 infected individuals of Pathogen 1. These groups
were seeded into randomly selected colonies with replacement. For each 200 in-
fected individuals added, 200 susceptible individuals were removed to keep start-
ing colony sizes constant. Pathogen 1 was then allowed to spread until the ini-
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tial, large epidemic had ended. Visual inspection of preliminary simulations was
used to decide on 300,000 events as being long enough for the epidemic to end and
the pathogen to be in an endemic state (Figures B.1 and B.2). After 300,000 events,
five individuals infected with Pathogen 2 were added to one randomly selected
colony. After another 500,000 events the invasion of Pathogen 2 was considered
successful if any individuals were still infected with Pathogen 2. Therefore, if
at least one individual was in class 𝐼2 or 𝐼12 at the end of the simulation, this
was considered an invasion. Again, visual inspection of preliminary simulations
was used to determine that after 500,000 events, if an invading pathogen was still
present, it was well established (Figures B.1 and B.2).

The choice to use a fixed number of events, rather than a fixed number of
years, was for computational convenience. However, this choice creates a risk
of bias as simulations with more events per unit time will last for a shorter time
overall. However, visual inspection of the dynamics of disease extinction (B.2),
and examination of the typical time to extinction implies that this bias is very
weak. For example, of the simulations where extinction occurred, the extinction
occurred more than 50 years before the end of the simulation in 90% of cases.
On a preliminary run of 106 simulations across all combinations of dispersal
and transmission rates, examining the population after 700,000 events instead of
800,000 events gave exactly the same result with respect to the binary state of in-
vasion or no invasion.

3.3.4 Population structure
As a baseline for comparison, I ran simulations of a fully unstructured popula-
tion. These simulations were run with a population of 30,000 so that the total
population size was equal to that of the total metapopulation size in the struc-
tured simulations. I ran 100 simulations at each transmission rate.

Two parameters control population structure in the model: dispersal rate
and the topology of the metapopulation network. The values used for these para-
meters were chosen to highlight the effects of population structure. I selected the
dispersal rates 𝜉 = 0, 0.1, 0.01 and 0.001 dispersals per individual per year. The
probability that an individual disperses at least once in its lifetime is given by
𝜉/ (𝜉 + 𝜇). Therefore, 𝜉 = 0.1 relates to 67% of individuals dispersing between
colonies at least once in their lifetime. Exclusively juvenile dispersal would have
dispersal rates similar to this value. 𝜉 = 0.01 relates to 17% of individuals dis-
persing at least once in their lifetime. This value is relatively close to male-biased
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dispersal, with female philopatry. This therefore relates to a species that does
not habitually disperse. Finally, I ran simulations with no dispersal. Given zero
dispersal, only the colony seeded with Pathogen 2 could ever recieve infections
of the invading pathogen. Therefore, only one colony was simulated for 𝜉 = 0. I
ran 100 simulations for most parameter sets. I ran 150 simulations for 𝜉 = 0.1, 0.01
and 0.001 with 𝛽 = 0.2 and 0.3 as Preliminary simulations indicated that any ef-
fects of population structure would most likely be seen at these values so extra
simulations were run to increase statistical power.

I also altered the topology of the metapopulation network. The network to-
pology was created to be either fully or minimally connected (Figure 3.2). To
model a completely unconnected population the 𝜉 = 0 simulations from above
were used. I again ran 100 simulations for each parameter set.

3.3.5 Statistical analysis
I used generalised linear models (GLMs) with a binary response variable, inva-
sion or not, to test the hypothesis that probability of invasion increased with dis-
persal. Seperate GLMs were fitted for each transmission rate. These tests were
performed both with and without the 𝜉 = 0 results as the complete lack of dis-
persal makes these simulations qualitatively different to the other simulations.
To test whether the different topologies had different probabilities of invasion, I
used Fisher’s exact tests because topology is best described as a categorical vari-
able. As with the 𝜉 = 0 results, these tests were performed both with and without
the completely unconnected topology results. Finally, I also used binomial GLMs
to test the hypothesis that the probability of invasion increased with transmis-
sion rate. Seperate GLMs were fitted for each dispersal rate and network topo-
logy. All statistical analyses were performed using the stats package in R. The
code used for running the simulations and analysing the results is available at
https://github.com/timcdlucas/PhDThesis/blob/master/Chapter2.Rtex.

3.4 Results

3.4.1 Dispersal
In the unstructured population, the second pathogen invaded in 100 out of 100
simulations. This was true at all four transmission rates.

https://github.com/timcdlucas/PhDThesis/blob/master/Chapter2.Rtex
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Figure 3.3 The probability of successful invasion for different A) dispersal rates
and B) network topologies (with network topologies “unconnected”, “min-
imally connected” and “fully connected” as in Figure 3.2). Error bars are 95%
confidence intervals of probability of invasion. 100 simulations were run for
each treatment except 𝛽 = 0.2 in A) which has 150 per treatment. Other
parameters were kept constant at: 𝑚 = 10, 𝜇 = Λ = 0.05, 𝛾 = 1, 𝛼 = 0.1.
When dispersal is varied, the population structure is fully connected. When
network topology is varied, 𝜉 = 0.01.

When the 𝜉 = 0 simulations were included, there was a positive relation-
ship between dispersal rate and invasion probability for 𝛽 = 0.2, 0.3 and 0.4 (Fig-
ure 3.3A, Table B.1). These positive relationships were all significant (GLM. 𝛽 =
0.2: 𝑏 = 12.59, 𝑝 < 10−5. 𝛽 = 0.3: 𝑏 = 12.07, 𝑝 = 0. 𝛽 = 0.4: 𝑏 = 13.44, 𝑝 = 0.03.)
At 𝛽 = 0.1 there was no significant relationship as invasion probaiblity was very
close to zero at all dispersal rates (GLM. 𝑏 = −220.19, 𝑝 = 0.62).

However, when the 𝜉 = 0 simulations were removed, this significant, posit-
ive relationship largely disappeared. At 𝛽 = 0.2, the significant positive relation-
ship remained (GLM: 𝑏 = 7.97, 𝑝 = 0). At all other transmission rates, the probab-
ility of invasion did not significantly change with dispersal rate (GLM. 𝛽 = 0.1: 𝑏
= −1928.77, 𝑝 = 1. 𝛽 = 0.3: 𝑏 = 0.27, 𝑝 = 0.94. 𝛽 = 0.4: 𝑏 = −2.7, 𝑝 = 0.70.)

3.4.2 Network topology
When the completely unconnected topology simulations were included, the prob-
ability of invasion was different across topologies for 𝛽 = 0.2, 0.3 and 0.4 (Fisher’s
exact test. 𝛽 = 0.2: 𝑝 < 10−5. 𝛽 = 0.3: 𝑝 < 10−5. 𝛽 = 0.4: 𝑝 < 10−5). In each
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case, the fully unconnected population had a lower probability of invasion than
the minimally and completely connected topologies (Figure 3.3B, Table B.2). At
𝛽 = 0.1 there was no significant difference (𝑝 = 0.77) and the probability of inva-
sion was close to zero for all topologies (Figure 3.3B).

When the completely unconnected topology simulations were removed, there
were no significant differences between topologies i.e. between the minimally
and fully connected topologies (Figure 3.3B). This was true at all transmission
rates (Fisher’s exact test. 𝛽 = 0.1, 𝑝 = 1.00. 𝛽 = 0.2, 𝑝 = 0.88. 𝛽 = 0.3, 𝑝 = 0.22.
𝛽 = 0.4, 𝑝 = 0.62).

3.4.3 Transmission
Increasing the transmission rate increased the probability of invasion (Figure 3.3).
This was true for all four dispersal values (GLM. 𝜉 = 0: 𝑏 = 19.73, 𝑝 < 10−5.
𝜉 = 0.001: 𝑏 = 26.75, 𝑝 < 10−5. 𝜉 = 0.01: 𝑏 = 29.56, 𝑝 < 10−5. 𝜉 = 0.1: 𝑏 = 24.74,
𝑝 < 10−5.) and both network structures (GLM. Minimally connected: 𝑏 = 30.4,
𝑝 < 10−5. Fully connected: 𝑏 = 30.06, 𝑝 < 10−5).

3.5 Discussion
I have used mechanistic, metapopulation models to test whether increased pop-
ulation structure can promote pathogen richness by facilitating invasion of new
pathogens. I found that dispersal does affect the ability of a new pathogen to
invade and persist in a population. I also found evidence that pathogen inva-
sion was less likely in completely isolated colonies. However, apart from the
completely unconnected network, the topology of the metapopulation network
did not affect invasion probability. Increasing transmission rate quickly reaches
a state where new pathogens always invade as long as there is some dispersal.
Decreasing the transmission rate quickly reaches a state where invasion is im-
possible.

The result that increased population structure increases pathogen richness
supports many existing predictions that increasing 𝑅0 should increase pathogen
richness (Altizer et al. 2003, Morand 2000, Nunn et al. 2003, Poulin 2014, Poulin
& Morand 2000). However, many comparative studies have found the opposite
relationship, with increased population structure increasing pathogen richness
(Chapter 2, Maganga et al. 2014, Turmelle & Olival 2009, Vitone et al. 2004). Fur-
thermore, simple analytical models suggest that population structure should in-
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crease pathogen richness (Allen et al. 2004, Nunes et al. 2006, Qiu et al. 2013) and
I find no evidence of this.

These results suggest that if population structure does in fact affect pathogen
richness, as observed in comparative studies (Chapter 2, Maganga et al. 2014, Tur-
melle & Olival 2009, Vitone et al. 2004), it must occur by a mechanism other than
the one studied here. In this study the hypothesised mechanism for the relation-
ship between population structure and pathogen richness, was that the spread
and persistence of a newly evolved pathogen would be facilitated in highly struc-
tured populations as the lack of movement between colonies would stochastically
create areas of low prevalence of the endemic pathogen. If the invading pathogen
evolved (i.e. was seeded) in one of these areas of low prevalence, invasion would
be more likely. Instead, reduced population structure allowed the new pathogen
to quickly spread outside of the colony in which it evolved. As the mechanism
studied here cannot explain the relationship between population structure and
pathogen richness seen in wild species (Chapter 2, Maganga et al. 2014, Turmelle
& Olival 2009, Vitone et al. 2004), other mechanisms should be studied. Other
mechanisms that should be examined include reduced competitive exclusion of
already established pathogens or increased invasion of less closely related and
less strongly competing pathogens, perhaps mediated by ecological competition
of pathogens (i.e. reduction of the susceptible pool by disease induced mortal-
ity). Furthermore, single pathogen dynamics could have an important role such
as population structure causing a much slower, asynchronous epidemic prevent-
ing acquired herd immunity (Plowright et al. 2011).

I ran simulations of a completely unstructured population as a baseline com-
parison of pathogen invasion probability. However, this unstructured popula-
tion could also be considered one, very large, subpopulation or colony. The fact
that invasion occured 100% of the time in these simulations suggests that colony
size has an important role in pathogen richness. Therefore the interplay between
population structure and colony size should be studied further especially as the
range of colony size in bats is large, ranging from ten to 1 million (Jones et al.
2009) individuals.

My simulations also highlighted the importance of competition for the spread
of a new pathogen. All parameters used corresponded to pathogens with 𝑅0 > 1
(as seen by the consistent spread of Pathogen 1). However, the competition with
the endemic pathogen meant that for some transmission rates the chance of epi-
demic spread and persistence of the second pathogen was close to zero. This
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has implications for human epidemics as well — if there is strong competition
between a newly evolved strain and an endemic strain, we are unlikely to see the
new strain spread, regardless of population structure.

3.5.1 Model assumptions

3.5.1.1 Complete cross-immunity

I have assumed that once recovered, individuals are immune to both pathogens.
Furthermore, when a coinfected individual recovers from one pathogen, it imme-
diately recovers from the other as well. This is probably a reasonable assumption
given that I am modelling a newly evolved strain. However, the rate of recovery
from pathogens in the presence of coinfections has not been well studied. In hu-
mans, the rate of recovery from respiratory syncytial virus was faster in individu-
als that had recently recovered from one of a number of co-circulating viruses
(though coinfected individuals recovered more slowly) (Munywoki et al. 2015).

However, further work could relax this assumption using a model similar to
(Poletto et al. 2015) which contains additional classes for ‘infected with Pathogen
1, immune to Pathogen 2’ and ‘infected with Pathogen 1, immune to Pathogen 2’.
The model here was formulated such that the study of systems with greater than
two pathogens (an avenue for further study) is still computationally feasible. A
model such as used in (Poletto et al. 2015) contains 3𝜌 classes for a system with 𝜌
pathogen species. This quickly becomes computationally restrictive. It might be
expected that there is an upper limit to the total number of pathogen species that
can coexist in a population. In particular, it is possible that once a certain number
of species are endemic in a population, no more pathogens can invade into the
population. This has not been studied in the context of metapopulations.

3.5.1.2 Identical strains

Many papers on pathogen richness have focused on the evolution of pathogen
traits and have considered a trade-off between transmission rate and virulence
(Nowak & May 1994) or infectious period (Poletto et al. 2013). However, here I
am interested in host traits. Therefore we have assumed that pathogen strains
are identical. It is clear however that there are a number of factors that affect
pathogen richness and our focus on host population structure does not imply
that pathogen traits are not important.
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3.5.1.3 Complex social structure and behaviour

With the models here I have aimed to tread a middle ground between the overly
simplistic models employed in analytical studies (Allen et al. 2004) and the full
complexity and variety of true bat social systems (Kerth 2008). The factors that
have not been modelled here include seasonal migration, maternity roosts, hi-
bernation roosts and swarming sites (Cryan et al. 2014, Fleming & Eby 2003,
Kerth 2008, Richter & Cumming 2008). While future models might aim to model
this complexity more fully, the number of parameters that are required to be
estimated and varied becomes very large. Furthermore, not all of these social
complexities exist in all bat species, so in limiting my analysis to the simpler end
of bat social systems it is hoped that the results are more broadly representative
of the order.

Furthermore, I have considered a single host species in isolation. It seems
likely that sympatry in bats and other mammals is epidemiologically important
(Brierley et al. 2016, Luis et al. 2013, Pilosof et al. 2015) but this was beyond the
scope of this study. There is potential for this to be effectively modelled as a
multi-layered network (Funk & Jansen 2010, Wang et al. 2016) and this would
be expected to act to reduce population structure. Conversely, the case of inter-
species roost sharing could be modelled as an additional layer of within-colony,
population structure which would tend to increase population structure.

Finally, many species of bat exhibit strong seasonal birth pulses which are
known to affect disease dynamics (Amman et al. 2012, Hayman 2015, Peel et al.
2014). This would be expected to facilitate the invasion of new pathogen species;
if a new strain evolved or entered the population by migration during a period
of low population immunity, it would have a higher chance of invading and es-
tablishing in the population.

3.5.2 Conclusions
In conclusion I have found evidence that reduced population structure facilitates
the invasion and establishment of newly evolved pathogen species. However,
the direction of the relationship contradicts those found in wild species. This
suggests that if population structure does have a role in shaping pathogen com-
munities, it is unlikely to be by this specific mechanism.
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Chapter 4

A mechanistic model to compare
the importance of interrelated
population measures: host
population size, density and
colony size

This work was conducted in collaboration with Kate Jones and Hilde Wilkinson-
Herbots.
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4.1 Abstract
An increasingly large fraction of emerging diseases come from wild animals and
these diseases have a huge impact on human health. The chance that a new dis-
ease will come from any particularly host species increases with the number of
pathogen species in that host species. However, the factors that control patho-
gen richness in wild populations are still poorly understood. Comparative stud-
ies have found evidence that host density, geographic range size and population
structure are associated with high pathogen richness. Additionally, epidemiolo-
gical theory suggests that host population structure and host population abund-
ance may influence pathogen richness. However, these factors are intrinsically
linked. Host density is population size divided by range size while reducing host
density directly reduces host population size and reduces contacts between indi-
viduals, therefore increasing population structure. In group living species group
size and the total number of groups both contribute to total host population size.
As these factors are all completely interdependent, it is impossible to identify
the causal factors within a comparative frame work. Here I use metapopulation
susceptible-infected-recovered (SIR) models to test whether it is host density per
se that increases the ability of a newly evolved pathogen to invade and persist
in a population as opposed to host group size, population size or range size. I
parameterised these metapopulations to mimic bat populations as bats exhibit a
large range in group (colony) size and geographic range size as well as being as-
sociated with a number of important zoonotic pathogens. I found that increased
population size increased the chance that a new pathogen will invade into a pop-
ulation more than host density. Furthermore, increased group size increased the
probability of pathogen invasion more than the number of groups. This implies
that, in comparative studies, host density may be merely a correlate of group size
or population size. This study helps clarify both the inter-relationships between,
and relative importance of, a number of host, population-level factors affecting
pathogen richness. It also highlights the necessity for studying the mechanisms
underlying pathogen community construction as comparative approaches do not
have the specificity to do so.
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4.2 Introduction
Zoonotic diseases are an increasingly important source of human infectious dis-
eases (Jones et al. 2008, Taylor et al. 2001, Woolhouse & Gowtage-Sequeria 2006).
The chance that a new zoonotic disease will come from a particular host reser-
voir depends on a number of factors including the number of pathogen species it
carries (Wolfe et al. 2000). It is well known that population-level factors such as
host density, range size and population structure have an important role in con-
trolling pathogen dynamics (Anderson & May 1979, Colizza & Vespignani 2007,
May & Anderson 1979, May & Lloyd 2001). However, the relative importance of
these factors in controlling pathogen richness is largely unknown.

With the increase of novel zoonotic pathogens (Jones et al. 2008) much atten-
tion has been devoted to comparatively assessing the factors that are associated
with high or low pathogen richness in wild animal species (Chapter 2, Kamiya
et al. 2014, Luis et al. 2013, Poulin & Morand 2000). Many comparative studies
have examined morphological or life history traits (Kamiya et al. 2014, Luis et al.
2013). However, factors related to host population biology are also expected to
affect disease dynamics and therefore affect pathogen richness.

Host density is commonly included in comparative studies and seems to pro-
mote high pathogen richness (Arneberg 2002, Kamiya et al. 2014, Lindenfors et
al. 2007, Morand & Poulin 1998, Nunn et al. 2003). In contrast, host population
size has rarely been directly studied as a predictor of pathogen richness. Studies
also often test for correlations between pathogen richness and range size (Huang
et al. 2015, Kamiya et al. 2014, Lindenfors et al. 2007, Nunn et al. 2003, Turmelle
& Olival 2009). Overall it seems that species with larger geographic range sizes
have higher pathogen richness (Kamiya et al. 2014). While host population struc-
ture can be difficult to define and measure, a number of studies have found that
increased population structure is associated with increased pathogen richness
(Chapter 2, Maganga et al. 2014, Turmelle & Olival 2009). Finally, many studies
have tested for correlations between pathogen richness and group size, though
results are equivical (Ezenwa et al. 2006, Gay et al. 2014, Nunn et al. 2003, Rifkin
et al. 2012, Vitone et al. 2004).

However, the intrinsic relationships between these variables are rarely dis-
cussed or accounted for in comparative studies. There are two particularly clear
relationships between these variables. Firstly, host density, 𝑑, host population
size, 𝑁, and geographic range size, 𝑎, are, by definition, linked by 𝑑 = 𝑁/𝑎 (See
Table 3.1 for all parameters used). The relationship, 𝑁 ∝ 𝑎, has broad empirical
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support (Blackburn et al. 2006, Borregaard & Rahbek 2010). Secondly, host pop-
ulation size can be decomposed into two components, the number of groups, 𝑚,
and the average size of a group, 𝑛, with 𝑁 = 𝑛. While less clear, geographic
range size and host population structure are also related. The amount of move-
ment between groups is at least partially dependent on the distance between
them (Jenkins et al. 2010, Le Galliard et al. 2012, Schooley & Branch 2009) and
the distance between neighbouring groups decreases with the number of groups
per area, 𝑚/𝑎.

Collinearity between explanatory variables is a common problem in correl-
ative studies. However, this issue is exacerbated when there are clear, causal
relationships between explanatory variables (e.g. an increase in host density will
directly cause an increase in host population size). Therefore, correlative com-
parative studies will be especially poor at identifying which of factors are closely
correlated with pathogen richness. If the aim of correlative studies is to create
predictive models for estimating pathogen richness of wild animal species, these
relationships are not an issue. In each of the above relationships (𝑑 = 𝑁/𝑎 and
𝑁 = 𝑚𝑛), as long as two of three variables are included in a statistical model, all
the variance in the third variable will also be captured.

However, if the aim is to know which factors are causally affecting pathogen
richness, and the mechanisms by which they control pathogen richness, correl-
ative approaches are less useful. Correlative models will be unable to select the
causal factor out of correlated factors. Furthermore, understanding the mech-
anisms by which population factors can affect pathogen richness has a number
of important benefits. Firstly, mechanistic models provide a deeper understand-
ing of the system than correlative approaches. Secondly, mechanistic models are
expected to be more predictive into the future and when extrapolating. The abil-
ity of mechanistic models to extrapolate is particularly important with respect
to global change and its effects on zoonotic disease emergence. Population-level
factors such as host population size and geographic range size, although inter-
related, will respond differently to global change and the response will be spe-
cies specific. Some host species may suffer large range contractions, and there-
fore large falls in population size, while their density remains fairly constant
(Thomas et al. 2004). Other host species might retain their distribution but have
a depressed population density (Craigie et al. 2010). Therefore, only by knowing
which of these interrelated factors controls pathogen richness will we be able to
predict future changes in pathogen richness.
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Theoretical studies have established that a number of host population factors
are important for epidemiological dynamics generally and for the maintenance of
pathogen richness specifically. Host density and structure are well established as
having a central role in pathogen dynamics (Anderson & May 1979, Barthélemy
et al. 2010, Colizza & Vespignani 2007, May & Anderson 1979, Wu et al. 2013).
Host group size is also known to strongly affect disease dynamics with disease
spreading more quickly through populations made up of larger groups (Colizza
& Vespignani 2007). Fewer studies specifically study how these factors affect
pathogen coexistence. A number of studies find that increased host population
structure can promote pathogen coexistence (Allen et al. 2004, Nunes et al. 2006,
Qiu et al. 2013).

While some theoretical studies have examined whether these population-
level factors can promote pathogen richness, none have attempted to distinguish
which might be the most important. Most studies have examined how patho-
gen coexistence depends on pathogen traits such as the transmission rate and
virulence (Alizon 2008, Allen et al. 2004, May & Nowak 1994). This focus is more
relavent to studies of pathogens in humans and how different human pathogens
may coexist. The context of comparing wild host species has been largely ignored.
However, it has been noted that host population size is a more natural measure
than population density and that particularly in comparative settings, popula-
tion size should be preferred (Begon et al. 2002). This preference is due to the
fact that host population size uniquely describes a property of the population
while, for example, a high host density could be produced by a large population
in a medium sized area or a medium sized population in a small area (Begon et al.
2002).

Therefore there is great need for mechanistic models that try to disentangle
the interplay between these many factors: host density, population size, range
size, population structure, group size and the number of groups. Here, I have
used multipathogen, metapopulation models to individually vary these host pop-
ulation parameters. The metapopulations were parameterised to broadly mimic
wild bat populations. I used bat’s as a case study as the size of bat groups (colon-
ies) is very variable and they are often very stable (Kerth et al. 2011, McCracken
& Bradbury 1981). Furthermore, bats are particularly relavent in the context of
zoonotic disease as they are thought to be reservoirs for a number of important,
recent outbreaks (Calisher et al. 2006, Li et al. 2005). I examined how the interre-
lated population factors affect the ability of a newly evolved pathogen to invade
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Table 4.1 Population parameter values used.

Focal Pop. Factor Parameter ×0.25 ×0.5 ×1 ×2 ×4

Colony size 400 400 400 400 400
Number of colonies 20 20 20 20 20

Host Density Range size 2 500 5 000 10 000 20 000 40 000
(Population density) Host density 0.2 0.4 0.8 1.6 3.2

Population size 8 000 8 000 8 000 8 000 8 000

Colony size 100 200 400 800 1 600
Number of colonies 20 20 20 20 20

Colony size Range size 2 500 5 000 10 000 20 000 40 000
(Population size) Host density 0.8 0.8 0.8 0.8 0.8

Population size 2 000 4 000 8 000 16 000 32 000

Colony size 400 400 400 400 400
Number of colonies 5 10 20 40 80

Number of Colonies Range size 2 500 5 000 10 000 20 000 40 000
(Population size) Host density 0.8 0.8 0.8 0.8 0.8

Population size 2 000 4 000 8 000 16 000 32 000

and persist in a population in the presence of strong competition from an en-
demic pathogen strain. I used these simulations to test two specific hypotheses.
First, I tested whether host density or population size more strongly promotes
the invasion of a new pathogen. Secondly, I tested whether the invasion of a
new pathogen is more strongly promoted by colony size or the number of colon-
ies. I found that population size has a much stronger affect on the invasion of a
new pathogen than host density and that increasing population size by increasing
group size promotes pathogen invasion much more than increasing population
size by increasing the number of groups.

4.3 Methods
I used a two-pathogen, metapopulation SIR model to compare the roles of pop-
ulation parameters on pathogen species richness. The multipathogen SIR model
was identical to that in Chapter 3 and an implementation in R (R Development
Core Team 2010) is available as a package on GitHub (Lucas 2015a). Specifically,
I let two identical pathogens — an endemic pathogen and an invading pathogen
— compete and used persistence or not of the Pathogen 2 as my response vari-
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Figure 4.1 The relationship between range size and metapopulation network
structure. Colonies are shown by circles. Colonies that are close enough for
animals to disperse between (i.e. within 100 km of each other) are joined by
a line. Colonies are placed randomly in spaces of various sizes (grey dashed
lines). A and C) the default range size (10,000 km2). B and D) the largest
range size (40,000 km2). A and B) the smallest number of colonies (five). C
and D) the default number of colonies (20). The mean number of connections
per subpopulation, ̄𝑘, is shown for each metapopulation.

able. I tested whether host population size is more important than host density. I
then tested whether colony size or the number of colonies is the more important
component of population size. I used the same fixed parameters as Chapter 3
(Table 3.1) except I used only three values of the transmission rate 𝛽, 0.1, 0.2
and 0.3. All simulations were run under all three transmission rates. The code
used for running all simulations is available at https://github.com/timcdlucas/
PhDThesis/blob/master/Chapter4.Rtex.

In each simulation the host population was seeded with 20 individuals in-

https://github.com/timcdlucas/PhDThesis/blob/master/Chapter4.Rtex
https://github.com/timcdlucas/PhDThesis/blob/master/Chapter4.Rtex
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Figure 4.2 Change in average metapopulation network degree ( ̄𝑘) with increas-
ing range size. Bars show the median, boxes show the interquartile range,
vertical lines show the range and grey dots indicate outlier values. Notches
indicate the 95% confidence interval of the mean. All simulations had 20
colonies, meaning 19 is the maximum value of ̄𝑘.

fected with Pathogen 1 in each colony. Pathogen 1 was then allowed to spread
and reach equilibrium. After 700,000 events, five hosts individuals infected with
Pathogen 2 were added to one randomly selected colony. After another 300,000 events
the invasion of Pathogen 2 was considered successful if any individuals infected
with Pathogen 2 still remained.

The effect of range size on disease dynamics occured through changes in the
metapopulation network. The metapopulation structure was created for each
simulation by randomly placing colonies in a square space (Figure 4.1). This
square space was considered to be the species geographic range, the size of which
was varied. Range size was varied between 2,500 and 40,000 km2. This corres-
ponds to square areas with sides of 50 to 200 km. Dispersal was only allowed to
occur between two colonies if they are within 100 km of each other i.e. they were
then counted as connected nodes in the metapopulation network. The number of
connections each colony has is called its degree, 𝑘. How well connected the meta-
population network is overall is measured by the mean degree, ̄𝑘. The random
placement of colonies in space did not guarantee that the population network
is connected (i.e. made up of a single connected component) but as Pathogen 1
was seeded in all colonies, Pathogen 2 could not be seeded into a fully susceptible
colony. This was considered more realistic than repeatedly resampling the colony
locations until a connected metapopulation population occurred. The threshold
of 100 km was arbitrary but I aimed to maximise the range of ̄𝑘 (Figure 4.2) while
not having many simulations with networks that were not fully connected. Given
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Figure 4.3 Comparison of the effect of colony size, number of colonies and host
density on probability of invasion. The 𝑥-axis shows the relative change
in the default values of each of these factors (×0.25, 0.5, 1, 2 and 4). De-
fault values are: colony number = 20, colony size = 400 and density = 0.8
animals.km−2. Red) population size is altered by changing colony number.
Blue) population size is altered by changing colony size. Yellow) population
density is altered by changing range size. Each point is the mean of 100 sim-
ulations and bars are 95% confidence intervals. Curves are simple logistic
regression fits for each independent variable. Relationships are shown sep-
arately for each transmission value, 𝛽.

this setup, populations with low densities had relatively unconnected metapop-
ulation networks while high density populations had fully connected networks
(Figure 4.2).

4.3.1 Population factors
Three sets of simulations were run (Table 4.1). This set of three simulations was
used to compare two pairs of population factors: i) population size and host dens-
ity, ii) colony size and the number of colonies. The population parameters that
were directly varied were colony size, the number of colonies and range size. In
each case the values these parameters took were their default value multiplied
by 0.25, 0.5, 1, 2 and 4. The default colony size was 400, the default number of
colonies was 20 and the default range size was 10,000 k2m.
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Figure 4.4 Comparison of the effect of host population size on probability of
invasion when population size is altered by changing colony size or colony
number. Relationships are shown separately for each transmission value, 𝛽.
It can be seen that changes in colony size give a much greater increase in
invasion probability than changes in colony number. Note that this is the
same data as Figure 4.3 but with the 𝑥-axis scaled by population size, rather
than relative parameter change.

4.3.1.1 Population size and host density

In the first set of simulations, host density was varied by keeping population
constant while varying range size. Colony size was kept at a constant value of
400 while the number of colonies was fixed at 20 giving a population size of 8000.
The values of range size used were 40,000 , 20,000 , 10,000 , 5,000 and 2,500 km2

which gave density values of 0.2, 0.4, 0.8, 1.6 and 3.2 animals.km−2.
In the second set of simulations, population size was varied by changing

colony size while the number of colonies was kept constant. To keep host density
constant, range size was reduced as population size increased. The values of
colony size used were 100, 200, 400, 800 and 600 while range size was set to 40,000 ,
20,000 , 10,000 , 5,000 and 2,500 km2. This gave population size values of 2,000 ,
4,000 , 8,000 , 16,000 and 32,000 while host density remained at 0.8 hostskm−2.

In the third set of simulations, population size was varied by changing the
number of colonies while colony size was kept constant. Again, to keep host dens-
ity constant, range size was reduced as population size increased. The numbers
of colonies used were 5, 10, 20, 40 and 80 while range size was set to 40,000 , 20,000 ,
10,000 , 5,000 and 2,500 km2. Again, this gave population size values of 2,000 ,
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4,000 , 8,000 , 16,000 and 32,000 while host density remained at 0.8 hostskm−2.

4.3.1.2 Colony size and the number of colonies

To compare colony size and the number of colonies, only the second and third
set of simulations above were used. However, colony size and the number of
colonies were directly used as independent variables instead of using the derived
values for host density or population size. It can be seen that population density
and range size are equivalent in the two sets of simulations. Therefore, the only
difference between these two sets of simulations is the factor used to increase
population size: colony size or the number of colonies.

4.3.2 Statistical analysis
I tested two hypotheses. Firstly I tested the hypothesis that an increase in host
population size creates a stronger increase in invasion probability (of the second
pathogen) than an equal increase in host density. Secondly, I tested the hypo-
thesis that an increase in colony size creates a stronger increase in invasion prob-
ability than a proportionally equal increase in number of colonies. To statistically
test these hypotheses I combined the results from different simulations and fit-
ted multiple logistic regressions, centering and scaling the independent variables.
Specifically, I fitted the model

Invasion = 𝑏1𝑑 + 𝑏2𝑛 + 𝑏3𝑚 + 𝑐 + 𝜖 (4.1)

where 𝑑, 𝑛 and 𝑚 are density, colony size and number of colonies respectively
and 𝑏𝑖 are the regression coefficients. 𝑐 is a fitted intercept and 𝜖 is a binomially
distributed error term. To test the first hypothesis I compared the size (and 95%
confidence intervals) of 𝑏1 to 𝑏2 and 𝑏3. To test the second hypothesis I compared
𝑏2 to 𝑏3.

Logistic regression was also used to test for an affect of transmission rate
at the default parameter setting. Finally, in a small number of simulations both
pathogens went extinct. Logistic regression was used to test whether transmis-
sion rate was associated with these events.

4.4 Results
At the default parameter settings, the probability of invasion and establishment
of the second pathogen, 𝑃(𝐼), was rare (Figure 4.3 and Tables C.1–C.3). These
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proportions significantly increase with transmission rate (GLM: 𝑏 = 0.18, 𝑝 = 0.01).
In 37 simulations, both of the pathogens went extinct. This did not depend

on transmission rate (GLM: 𝑏 = −0.01, 𝑝 = 0.69). However they were all either in
simulations with the smallest colony size (colony size = 100, 29 simulations) or
with the fewest colonies (5 colonies, 8 simulations). Results from these simula-
tions were removed before further analyses.

4.4.1 Host density or population size
To test whether host density or population size had a stronger affect on invasion
probability I compared the regression coefficients of the multiple regressions fit-
ted to simulation results (Figure 4.3). Increasing host population size, either by
increasing colony size or number of colonies, increased the probability of inva-
sion (Table 4.2). The relationship between colony size and invasion is strong and
significant at all transmission rates, while the relationship between colony num-
ber and invasion is weaker and more marginally significant. In contrast, varying
host density does not alter invasion probability. Therefore the simulations sup-
port the hypothesis that population size affects invasion more strongly than host
density.

4.4.2 Colony size or number of groups
To test whether colony size or the number of colonies is the more important com-
ponent of population size, I compared the regression coefficients, 𝑏2 and 𝑏3, of
the multiple regressions fitted to simulation results (Figure 4.4). Increasing either
colony size or the number of colonies increased the probability of invasion but
this affect was much stronger and more statistically significant for colony size
(Table 4.2). Therefore the simulations support the hypothesis that colony size is
the more important component of population size.

4.5 Discussion
Overall, my results suggest that population size promotes pathogen richness sig-
nificantly more than host density in the context of metapopulations or group liv-
ing. Furthermore, the component of population size that is important is colony
size.
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Table 4.2 Regression results comparing effects of colony size, colony number
and density. Coefficients are from multiple logistic regressions with inva-
sion as the dependent variable and all independent variables being scaled
and centred. Colony size and colony number were varied while keeping
density equal while density was varied by changing range size while keep-
ing population size equal. 𝑝 is for the test against the null hypothesis that
𝑏 = 0.

𝛽 Variable Estimate (𝑏) (95% CI) 𝑝
0.1 Intercept −3.52 (−3.87, −3.2) < 10−5

Colony Size 1.07 (0.75, 1.49) < 10−5

Colony Number 0.35 (−0.02, 0.79) 0.08
Density 0.01 (−0.66, 0.52) 0.97

0.2 Intercept −2.84 (−3.12, −2.58) < 10−5

Colony Size 2.11 (1.71, 2.6) < 10−5

Colony Number 0.51 (0.16, 0.95) 0.009
Density −0.31 (−0.96, 0.19) 0.29

0.3 Intercept −2.11 (−2.34, −1.9) < 10−5

Colony Size 2.74 (2.35, 3.16) < 10−5

Colony Number 0.25 (0.04, 0.48) 0.02
Density 0.27 (−0.06, 0.57) 0.09

These results lead to a number of other conclusions. All else being equal, in-
creasing range size (with density remaining constant) will not strongly increase
pathogen richness unless the increased range size promotes larger groups. Fur-
thermore, social species that live in large groups are likely to harbour more patho-
gen species, even if the larger groups require more space and therefore dispersal
between groups is reduced.

The results suggest that, for related, strongly competing strains, the factor
that most strongly allows new pathogens to invade is the number of susceptible
individuals in the local group. As long as there are enough susceptible individu-
als that the new pathogen species persists through the stochastic, early stages
of the epidemic, the new pathogen will persist. As dispersal is a very slow pro-
cess compared to infection, the global pool of susceptibles is not important. This
is probably why increasing the number of colonies did not increase pathogen
invasion rate as quickly as the size of a colony did. Similarly, the global host
density of the species had little effect on pathogen invasion rate. In these simu-
lations, increasing density without increasing population size was only achieved
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by reducing range size; this simply increased the number of connections between
colonies in the metapopulation network. This, in turn, increased the pool of sus-
ceptibles that were within one dispersal of the invading pathogen. However,
again, this effect was very weak compared to the strong changes in local disease
dynamics caused by increasing colony size.

4.5.1 Global change
It is clear that many species are suffering strong population changes due to global
change (Thomas et al. 2004). However these changes might affect range size
(Thomas et al. 2004), population size (Craigie et al. 2010), population connectivity
(Fontúrbel et al. 2014, Rivera-Ortı́z et al. 2015, Wasserman et al. 2013) or group
size (Atwood 2006, Lehmann et al. 2010, Manor & Saltz 2003, Zunino et al. 2007) to
different extents. My results suggest that pathogen communities will respond dif-
ferently depending on which factors are affected most affected by global change.
In short, species suffering reductions in groups size (Atwood 2006, Lehmann et
al. 2010, Manor & Saltz 2003, Zunino et al. 2007) are predicted to experience de-
creases in pathogen richness in the long term and there is some evidence that this
process is occurring (Altizer et al. 2007, Turmelle & Olival 2009). Species that are
experiencing increases in group size (Lehmann et al. 2010) would be expected
to gain new pathogen species. In contrast, species suffering range contractions
(Thomas et al. 2004) and decreases in population size (Craigie et al. 2010) are ex-
pected to experience smaller changes in pathogen richness. However, it should
be noted that these conclusions apply only to the specific mechanism studied
here; the invasion of newly evolved pathogens.

4.5.2 Comparative studies
Many comparative studies measure some aspect of a species population size or
structure, yet it is rarely discussed how these relate. Instead most studies use
the data that are available, without considering a priori how the explanatory vari-
ables are causally related (though statistical correlations between independent
variables is usually considered and dealt with using PCA or by removing colin-
ear variables). Host density is often measured (Arneberg 2002, Lindenfors et al.
2007, Morand & Poulin 1998, Nunn et al. 2003) yet density is directly associated
with population size. This study suggests that it is in fact population size that is
important (in the context of social species as studied here). This suggests that the
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density measures in these comparative studies are in fact proxies for population
size rather than the true causal factor. Similarly, this study suggests that host
range size does not promote pathogen richness by the mechanism studied here,
yet a number of studies have found evidence of this relationship (Kamiya et al.
2014, Nunn et al. 2003). This suggests that either the relationship found in com-
parative studies is in fact due to a correlation with another factor, or that mechan-
isms other than probability of invasion of new pathogens are important. Range
size has been suggested to affect pathogen richness by a number of mechanisms
such as increasing the number of sympatric species and these other mechanisms
should be specifically tested (Luis et al. 2013).

The studies that have specifically tested the effect of group size have in fact
found both positive (Vitone et al. 2004) and negative associations (Gay et al. 2014)
or no relationship (Ezenwa et al. 2006). Meta-analyses suggest that the relation-
ship between social group size and pathogen richness is weak (Rifkin et al. 2012).
However, I have found that group size is the most important population factor.
This suggests that the mechanism studied here — invasion of recently evolved
pathogens — may not the major mechanism by which pathogen richness is cre-
ated in wild populations.

4.5.3 Assumptions and limitation
Being based on the same model as used earlier, the work presented here relies on
many of the same assumptions (see Section 3.5). Furthermore, as a comparison
is being made between the effects of range size and population size, the exact
specifications of how the metapopulation is affected by range size is important. I
have conducted this study at one rate of dispersal, 0.01 dispersals per individual
per year. In practice this relates to only 17% of individuals dispersing in their
lifetime. This low rate of dispersal is expected to exaggerate the effect of range
size; at high rates of dispersal the population is essentially well-mixed, despite
the metapopulation.

Furthermore, there is evidence that as groups get bigger, the within-group
structure increases (Nunn et al. 2015). This has not been modelled here; instead
the subpopulations are assumed to be fully mixed regardless of size. Also, I have
assumed that dispersal only occurs between colonies a certain distance apart.
Based on a priori considerations such as the time and energy required to disperse
long distances this is a reasonable assumption. The exact threshold was chosen
to attempt to maximise the range of ̄𝑘 studied (Figure 4.2). However, a similar
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assumption could be made in other ways. Instead of a threshold distance, indi-
viduals could be expected to disperse in a random direction and stop at the first
colony they encounter; this could create some long distance links in the network
and increase network connectivity, potentially reducing the effects of range size.
Alternatively, the metapopulation could have been modelled as a weighted net-
work with dispersal occurring at a higher rate to nearby colonies. Depending
on the parameterisation of this distance-dispersal relationship this could serve
to increase the affect of range size — by exaggerating dispersal to very nearby
colonies — or decrease the affect of range size by allowing rare, but significant,
global dispersal creating a small-world network structure. Ultimately, the model-
ling choices could increase or decrease the affects of range size relative to colony
size and the number of colonies but I have aimed to make the effect of range size
as strong as possible.

I have used the simple relationships between demographic factors — 𝑑 =
𝑁/𝑎 for example — to illustrate that these are tightly linked. In order to isolate
the effects of these factors I have assumed these simple relationships hold; to
examine density without altering population size I have fixed population size and
manipulated range size. However, in reality, these are likely to covary both within
species across time and also between species. Therefore, while these quantities
are certainly linked, they cannot be assumed to have simple linear relationships
and should not be used as proxies of each other without further examination. For
example, rates and distances of dispersal — which affect the influence of space
— may be related to local density (Marjamäki et al. 2013). Similarly it is unlikely
that a species whose range size decreases will not experience a decrease in total
population size as well; the range contraction is likely to occur over generations
rather than a simple squeezing of the existing individuals into a smaller area.

4.5.4 Conclusions
Overall I have shown that while a number of demographic factors are intrinsically
linked, they have different effects on the rate at which new pathogens will invade.
I found that population size, not density, has the stronger impact on the ability
of a pathogen to invade. Furthermore, species with large groups are likely to
harbour more pathogens than species with many, smaller groups. Due to the
correlations between these factors, they are particularly hard to study within a
comparative framework; this highlights the utility of mechanistic models.
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Chapter 5

A generalised random encounter
model for estimating animal
density with remote sensor data

This work was conducted in collaboration with Elizabeth Moorcroft, Robin Free-
man, Marcus Rowcliffe and Kate Jones and is now published in Methods in Eco-
logy and Evolution (Lucas et al. 2015). The text here is almost completely repro-
duced from Lucas et al. (2015). I formulated and analysed the analytical model.
Elizabeth Moorcroft wrote the code for and carried out the simulations. I led the
writing of the manuscript with contributions from the other coauthors.
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5.1 Abstract
Wildlife monitoring technology is advancing rapidly and the use of remote sensors
such as camera traps and acoustic detectors is becoming common in both the ter-
restrial and marine environments. Current methods to estimate population size
or density require individual recognition of animals or knowing the distance of
the animal from the sensor, which is often difficult. A method without these
requirements, the random encounter model (REM), has been successfully ap-
plied to estimate animal densities from count data generated from camera traps.
However, count data from acoustic detectors do not fit the assumptions of the
REM due to the directionality of animal signals. I developed a generalised REM
(gREM), to estimate absolute population size or density from count data from
both camera traps and acoustic detectors. I derived the gREM for different com-
binations of sensor detection widths and animal signal widths (a measure of dir-
ectionality). I tested the accuracy and precision of this model using simulations
of different combinations of sensor detection widths and animal signal widths,
number of captures, and models of animal movement. I foundnd that the gREM
produces accurate estimates of absolute animal density for all combinations of
sensor detection widths and animal signal widths. However, larger sensor detec-
tion and animal signal widths were found to be more precise. While the model is
accurate for all capture efforts tested, the precision of the estimate increases with
the number of captures. I found no effect of different animal movement models
on the accuracy and precision of the gREM. I conclude that the gREM provides
an effective method to estimate absolute animal densities from remote sensor
count data over a range of sensor and animal signal widths. The gREM is applic-
able for count data obtained in both marine and terrestrial environments, visually
or acoustically (e.g., big cats, sharks, birds, echolocating bats and cetaceans). As
sensors such as camera traps and acoustic detectors become more ubiquitous, the
gREM will be increasingly useful for monitoring unmarked animal populations
across broad spatial, temporal and taxonomic scales.

5.2 Introduction
The density of animal populations is one of the fundamental measures in eco-
logy and conservation and has important implications for a range of issues, such
as sensitivity to stochastic fluctuations (Wright & Hubbell 1983) and extinction
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risk (Purvis et al. 2000). Monitoring animal population changes in response to
anthropogenic pressure is becoming increasingly important as humans rapidly
modify habitats and change climates (Everatt et al. 2014). Sensor technology,
such as camera traps (Karanth 1995, Rowcliffe & Carbone 2008) and acoustic de-
tectors (Acevedo & Villanueva-Rivera 2006, Walters et al. 2012) are widely used
to monitor changes in animal populations as they are efficient, relativity cheap
and non-invasive, allowing for surveys over large areas and long periods (Kessel
et al. 2014, Rowcliffe & Carbone 2008, Walters et al. 2013). However, converting
sampled count data into estimates of density is problematic as detectability of
animals needs to be accounted for (Anderson 2001).

Existing methods for estimating animal density often require additional in-
formation that is often unavailable. For example, capture-mark-recapture meth-
ods (Borchers et al. 2014, Karanth 1995) require recognition of individuals, and
distance methods (Harris et al. 2013) require estimates of how far away individu-
als are from the sensor (Barlow & Taylor 2005, Marques et al. 2011). When indi-
viduals cannot be told apart, an extension of occupancy modelling can be used to
estimate absolute population size (Royle & Nichols 2003). However, as the model
is originally formulated to estimate occupancy, count information is simplified to
presence–absence data. Assumptions about the distribution of individuals (e.g.,
a Poisson distribution) must also be made (Royle & Nichols 2003) which may be
a poor assumption for nonrandomly distributed species. Furthermore repeat, in-
dependent surveys must be performed and the definition of a site can be difficult,
especially for wide-ranging species (MacKenzie & Royle 2005).

The REM method has been successfully applied to estimate animal densit-
ies from camera trap surveys (Zero et al. 2013). However, extending the REM
method to other types of sensors (e.g., acoustic detectors) is more problematic,
because the original derivation assumes a relatively narrow sensor width (up to
𝜋/2 radians) and that the animal is equally detectable irrespective of its heading
(Rowcliffe et al. 2008).

Whilst these restrictions are not problematic for most camera trap makes
(e.g., Reconyx, Cuddeback), the REM cannot be used to estimate densities from
camera traps with a wider sensor width (e.g., canopy monitoring with fish eye
lenses, (Brusa & Bunker 2014)). Additionally, the REM method is not useful in
estimating densities from acoustic survey data as acoustic detector angles are
often wider than 𝜋/2 radians. Acoustic detectors are designed for a range of
diverse tasks and environments (Kessel et al. 2014), which naturally leads to a
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wide range of sensor detection widths and detection distances. In addition to this,
calls emitted by many animals are directional (Blumstein et al. 2011), breaking the
assumption of the REM method.

There has been a sharp rise in interest around passive acoustic detectors in re-
cent years, with a 10 fold increase in publications in the decade between 2000 and
2010 (Kessel et al. 2014). Acoustic monitoring is being developed to study many
aspects of ecology, including the interactions of animals and their environments
(Blumstein et al. 2011, Rogers et al. 2013), the presence and relative abundances
of species (Marcoux et al. 2011), biodiversity of an area (Depraetere et al. 2012),
and monitoring population trends (Walters et al. 2013).

Acoustic data suffers from many of the problems associated with data from
camera trap surveys in that individuals are often unmarked, making capture-
mark-recapture methods more difficult to use (Marques et al. 2013). In some cases
the distance between the animal and the sensor is known, for example, when an
array of sensors is deployed and the position of the animal is estimated by trian-
gulation (Lewis et al. 2007). In these situations distance-sampling methods can
be applied (Buckland et al. 2008). However, in many cases distance estimation is
not possible, for example, when single sensors are deployed, a situation typical in
the majority of terrestrial acoustic surveys (Buckland et al. 2008). In these cases,
only relative measures of local abundance can be calculated, and not absolute
densities. This means that comparison of populations between species and sites
is problematic without assuming equal detectability (Schmidt 2003, Walters et
al. 2013). Equal detectability is unlikely because of differences in environmental
conditions, sensor type, habitat, and species biology.

In this study, I created a generalised REM (gREM) as an extension to the
camera trap model of (Rowcliffe et al. 2008), to estimate absolute density from
count data from acoustic detectors, or camera traps, where the sensor width can
vary from 0 to 2𝜋 radians, and the signal given from the animal can be directional.
I assessed the accuracy and precision of the gREM within a simulated environ-
ment, by varying the sensor detection widths, animal signal widths, number of
captures and models of animal movement. I use the simulation results to recom-
mend best survey practice for estimating animal densities from remote sensors.
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Figure 5.1 Representation of sensor detection width and animal signal width.
The filled square and circle represent a sensor and an animal, respectively;
𝜃, sensor detection width (radians); 𝑟, sensor detection distance; dark grey
shaded area, sensor detection zone; 𝛼, animal signal width (radians). Dashed
lines around the filled square and circle represents the maximum extent of
𝜃 and 𝛼, respectively.

5.3 Methods

5.3.1 Analytical Model
The REM presented by (Rowcliffe et al. 2008) adapts the gas model to count data
collected from camera trap surveys. The REM is derived assuming a stationary
sensor with a detection width less than 𝜋/2 radians. However, in order to apply
this approach more generally, and in particular to stationary acoustic detectors,
we need both to relax the constraint on sensor detection width, and allow for
animals with directional signals. Consequently, we derive the gREM for any de-
tection width, 𝜃, between 0 and 2𝜋 with a detection distance 𝑟 giving a circular
sector within which animals can be captured (the detection zone) (Figure 5.1). Ad-
ditionally, we model the animal as having an associated signal width 𝛼 between
0 and 2𝜋 (Figure 5.1, see Appendix S1 for a list of symbols). We start deriving the
gREM with the simplest situation, the gas model where 𝜃 = 2𝜋 and 𝛼 = 2𝜋.
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5.3.1.1 Gas Model

Following (Yapp 1956), we derive the gas model where sensors can capture anim-
als in any direction and animal signals are detectable from any direction (𝜃 = 2𝜋
and 𝛼 = 2𝜋). We assume that animals are in a homogeneous environment, and
move in straight lines of random direction with velocity 𝑣. We allow that our
stationary sensor can capture animals at a detection distance 𝑟 and that if an an-
imal moves within this detection zone they are captured with a probability of
one; while outside this zone, animals are never captured.

In order to derive animal density, we need to consider relative velocity from
the reference frame of the animals. Conceptually, this requires us to imagine that
all animals are stationary and randomly distributed in space, while the sensor
moves with velocity 𝑣. If we calculate the area covered by the sensor during the
survey period, we can estimate the number of animals the sensor should capture.
As a circle moving across a plane, the area covered by the sensor per unit time
is 2𝑟𝑣. The expected number of captures, 𝑧, for a survey period of 𝑡, with an
animal density of 𝐷 is 𝑧 = 2𝑟𝑣𝑡𝐷. To estimate the density we rearrange to get 𝐷 =
𝑧/2𝑟𝑣𝑡. Note that as 𝑧 is the number of encounters, not individuals, the possibility
of repeated detections of the same individual is accounted for (Hutchinson &
Waser 2007). To estimate population size rather than density, the density is simply
multiplied by the size of the survey area.

5.3.1.2 gREM derivations for different detection and signal widths

Different combinations of 𝜃 and 𝛼 would be expected to occur (e.g., sensors have
different detection widths and animals have different signal widths). For differ-
ent combinations 𝜃 and 𝛼, the area covered per unit time is no longer given by 2𝑟𝑣.
Instead of the size of the sensor detection zone having a diameter of 2𝑟, the size
changes with the approach angle between the sensor and the animal. The width
of the area within which an animal can be detected is called the profile, 𝑝. The
size of 𝑝 depends on the signal width, detector width and the angle that the an-
imal approaches the sensor. The size of the profile (averaged across all approach
angles) is defined as the average profile ̄𝑝. However, different combinations of 𝜃
and 𝛼 need different equations to calculate ̄𝑝.

I have identified the parameter space for the combinations of 𝜃 and 𝛼 for
which the derivation of the equations are the same (defined as sub-models in
the gREM) (Figure 5.2). For example, the gas model becomes the simplest gREM
sub-model (upper right in Figure 5.2) and the REM from (Rowcliffe et al. 2008)
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Figure 5.2 Locations where derivation of the average profile ̄𝑝 is the same for dif-
ferent combinations of sensor detection and animal signal widths. Symbols
within each polygon refer to each gREM submodel named after their com-
pass point, except for Gas and REM which highlight the position of these
previously derived models within the gREM. Symbols on the edge of the
plot are for submodels where 𝛼, 𝜃 = 2𝜋

is another gREM sub-model where 𝜃 < 𝜋/2 and 𝛼 = 2𝜋. I derive one gREM
sub-model SE2 as an example below, where 2𝜋 − 𝛼/2 < 𝜃 < 2𝜋, 0 < 𝛼 < 𝜋 (see
Appendix S2 for derivations of all gREM sub-models). Any estimate of density
would require prior knowledge of animal velocity, 𝑣 and animal signal width, 𝛼
taken from other sources, for example, existing literature (Brinkløv et al. 2011,
Carbone et al. 2005). Sensor width, 𝜃, and detection distance, 𝑟 would also need
to be measured or obtained from manufacturer specifications (Adams et al. 2012,
Holderied & Von Helversen 2003).

5.3.1.3 Example derivation of SE2

In order to calculate ̄𝑝, we have to integrate over the focal angle, 𝑥1 (Figure 5.3a).
This is the angle taken from the centre line of the sensor. Other focal angles are
possible (𝑥2, 𝑥3, 𝑥4) and are used in other gREM sub-models (see Appendix S2).
As the size of the profile depends on the approach angle, we present the deriv-
ation across all approach angles. When the sensor is directly approaching the
animal 𝑥1 = 𝜋/2.
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Starting from 𝑥1 = 𝜋/2 until 𝜃/2+𝜋/2−𝛼/2, the size of the profile is 2𝑟 sin 𝛼/2
(Figure 5.3b). During this first interval, the size of 𝛼 limits the width of the profile.
When the animal reaches 𝑥1 = 𝜃/2 + 𝜋/2 − 𝛼/2 (Figure 5.3c), the size of the profile
is 𝑟 sin(𝛼/2) + 𝑟 cos(𝑥1 − 𝜃/2) and the size of 𝜃 and 𝛼 both limit the width of the
profile (Figure 5.3c). Finally, at 𝑥1 = 5𝜋/2 − 𝜃/2 − 𝛼/2 until 𝑥1 = 3𝜋/2, the width
of the profile is again 2𝑟 sin 𝛼/2 (Figure 5.3d) and the size of 𝛼 again limits the
width of the profile.

The profile width 𝑝 for 𝜋 radians of rotation (from directly towards the sensor
to directly behind the sensor) is completely characterised by the three intervals
(Figure 5.3b–d). Average profile width ̄𝑝 is calculated by integrating these profiles
over their appropriate intervals of 𝑥1 and dividing by 𝜋 which gives

̄𝑝 = 1
𝜋
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(5.1)

= 𝑟
𝜋 (𝜃 sin 𝛼

2 − cos 𝛼
2 + cos (𝛼

2 + 𝜃)) (5.2)

We then use this expression to calculate density

𝐷 = 𝑧/𝑣𝑡 ̄𝑝. (5.3)

Rather than having one equation that describes ̄𝑝 globally, the gREM must
be split into submodels due to discontinuous changes in 𝑝 as 𝛼 and 𝛽 change.
These discontinuities can occur for a number of reasons such as a profile switch-
ing between being limited by 𝛼 and 𝜃, the difference between very small profiles
and profiles of size zero, and the fact that the width of a sector stops increasing
once the central angle reaches 𝜋 radians (i.e., a semi-circle is just as wide as a full
circle). As an example, if 𝛼 is small, there is an interval between Figure 5.3c and
5.3d where the ‘blind spot’ would prevent animals being detected giving 𝑝 = 0.
This would require an extra integral in our equation, as simply putting our small
value of 𝛼 into 5.1 would not give us this integral of 𝑝 = 0.

gREM submodel specifications were done by hand, and the integration was
done using SymPy (SymPy Development Team 2014) in Python (Appendix S3).
The gREM submodels were checked by confirming that: (1) submodels adjacent
in parameter space were equal at the boundary between them; (2) submodels that



A         72

p

A

x  1

= 2r sinp /α 2

p

/α 2

B

p α )-θ+ r cos(

-θ

C

α
D

Figure 5.3 An overview of the derivation of the average profile ̄𝑝 for the gREM
submodel SE2, where (a) shows the location of the profile 𝑝 (the line an an-
imal must pass through in order to be captured) in red and the focal angle,
𝑥1, for an animal (filled circle), its signal (unfilled sector), and direction of
movement (shown as an arrow). The detection zone of the sensor is shown
as a filled grey sector with a detection distance of 𝑟. The vertical black line
within the circle shows the direction the sensor is facing. The derivation
of 𝑝 changes as the animal approaches the sensor from different directions
(shown in b-d), where (b) is the derivation of 𝑝 when 𝑥1 is in the interval
[𝜋

2 , 𝜋
2 + 𝜃

2 − 𝛼
2 ], (c) 𝑝 when 𝑥1 is in the interval [𝜋

2 + 𝜃
2 − 𝛼

2 , 5𝜋
2 − 𝜃

2 − 𝛼
2 ] and (d)

𝑝 when 𝑥1 is in the interval [5𝜋
2 − 𝜃

2 − 𝛼
2 , 3𝜋

2 ], where 𝜃, sensor detection width;
𝛼, animal signal width. The resultant equation for 𝑝 is shown beneath b-d.
The average profile ̄𝑝 is the size of the profile averaged across all approach
angles.

border 𝛼 = 0 had 𝑝 = 0 when 𝛼 = 0; (3) average profile widths ̄𝑝 were between 0
and 2𝑟 and; (4) each integral, divided by the range of angles that it was integrated
over, was between 0 and 2𝑟. The scripts for these tests are included in Appendix
S3 and the R (R Development Core Team 2010) implementation of the gREM is
given in Appendix S4.
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5.3.2 Simulation Model
I tested the accuracy and precision of the gREM by developing a spatially expli-
cit simulation of the interaction of sensors and animals using different combina-
tions of sensor detection widths, animal signal widths, number of captures, and
models of animal movement. One hundred simulations were run where each
consisted of a 7.5 km by 7.5 km square with periodic boundaries. A stationary
sensor of radius 𝑟, 10 m, was set up in the exact centre of each simulated study
area, covering seven sensor detection widths 𝜃, between 0 and 2𝜋 (2/9𝜋, 4/9𝜋,
6/9𝜋, 8/9𝜋, 10/9𝜋, 14/9𝜋, and 2𝜋). Each sensor was set to record continuously
and to capture animal signals instantaneously from emission. Each simulation
was populated with a density of 70 animals km−2, calculated from the equation
in (Damuth 1981) as the expected density of mammals weighing 1 g. This density
therefore represents a reasonable estimate of density of individuals, given that
the smallest mammal is around 2 g (Jones et al. 2009). A total of 3937 individu-
als per simulation were created which were placed randomly at the start of the
simulation. 11 signal widths 𝛼 between 0 and 𝜋 were used (1/11𝜋, 2/11𝜋, 3/11𝜋,
4/11𝜋, 5/11𝜋, 6/11𝜋, 7/11𝜋, 8/11𝜋, 9/11𝜋, 10/11𝜋, 𝜋).

Each simulation lasted for 𝑁 steps (14400) of duration 𝑇 (15 minutes) giving
a total duration of 150 days. The individuals moved within each step with a dis-
tance 𝑑, with an average speed, 𝑣. The distance, 𝑑, was sampled from a normal
distribution with mean distance, 𝜇𝑑 = 𝑣𝑇, and standard deviation, 𝜎𝑑 = 𝑣𝑇/10,
where the standard deviation was chosen to scale with the average distance trav-
elled. An average speed, 𝑣 = 40 km day−1, was chosen based on the largest day
range of terrestrial animals (Carbone et al. 2005), and represents the upper limit
of realistic speeds. At the end of each step, individuals were allowed to either re-
main stationary for a time step (with a given probability, 𝑆), or change direction
where the change in direction has a uniform distribution in the interval [−𝐴, 𝐴].
This resulted in seven different movement models where: (1) simple movement,
where 𝑆 and 𝐴 = 0; (2) stop-start movement, where (i) 𝑆 = 0.25, 𝐴 = 0, (ii) 𝑆 = 0.5,
𝐴 = 0, (iii) 𝑆 = 0.75, 𝐴 = 0; (3) correlated random walk movement, where (i) 𝑆 = 0,
𝐴 = 𝜋/3, (ii) 𝑆 = 0, 𝐴 = 2𝜋/3, iii) 𝑆 = 0, 𝐴 = 𝜋. Individuals were counted as they
moved into the detection zone of the sensor per simulation.

I calculated the estimated animal density from the gREM by summing the
number of captures per simulation and inputting these values into the correct
gREM submodel. The accuracy of the gREM was determined by comparing the
true simulation density with the estimated density. Precision of the gREM was
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determined by the standard deviation of estimated densities. I used this method
to compare the accuracy and precision of all the gREM submodels. As these
submodels are derived for different combinations of 𝛼 and 𝜃, the accuracy and
precision of the submodels was used to determine the impact of different values
of 𝛼 and 𝜃.

The influence of the number of captures and animal movement models on
accuracy and precision was investigated using four different gREM submodels
representative of the range 𝛼 and 𝜃 values (submodels NW1, SW1, NE1, and SE3,
Figure 5.2). From a random starting point I ran the simulation until a range of
different capture numbers were recorded (from 10 to 100 captures), recorded the
length of time this took, and estimated the animal density for each of the four sub-
models. These estimated densities were compared to the true density to assess
the impact on the accuracy and precision of the gREM. I calculated the coefficient
of variation in order to compare the precision of the density estimates from sim-
ulations with different expected numbers of captures. The gREM also assumes
that individuals move continuously with straight-line movement (simple move-
ment model) and I therefore assessed the impact of breaking the gREM assump-
tions. I used the four submodels to compare the accuracy and precision of a
simple movement model, stop-start movement models (using different average
amounts of time spent stationary), and random walk movement models. Finally,
as the parameters (𝛼, 𝛽, 𝑟 and 𝑣) are likely to be measured with error, I compared
true simulation densities to densities estimated with parameters with errors of
0%, ±5% and ±10%, for all gREM submodels.

5.4 Results

5.4.1 Analytical model
The equation for ̄𝑝 has been newly derived for each submodel in the gREM, ex-
cept for the gas model and REM which have been calculated previously. How-
ever, many models, although derived separately, have the same expression for ̄𝑝.
Figure 5.4 shows the expression for ̄𝑝 in each case. The general equation for dens-
ity, 5.3, is used with the correct value of ̄𝑝 substituted. Although more thorough
checks are performed in Appendix S3, it can be seen that all adjacent expressions
in Figure 5.4 are equal when expressions for the boundaries between them are
substituted in.
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Figure 5.4 Expressions for the average profile width, ̄𝑝, given a range of sensor
and signal widths. Despite independent derivation within each block, many
models result in the same expression. These are collected together and
presented as one block of colour. Expressions on the edge of the plot are
for submodels with 𝛼, 𝜃 = 2𝜋.

5.4.2 Simulation model

5.4.2.1 gREM submodels

All gREM submodels showed a high accuracy, i.e., the median difference between
the estimated and true values was less than 2% across all models (Figure 5.5).
However, the precision of the submodels do vary, where the gas model is the
most precise and the SW7 sub model the least precise, having the smallest and
the largest interquartile range, respectively (Figure 5.5). The standard deviation
of the error between the estimated and true densities is strongly related to both
the sensor and signal widths (Appendix S5), such that larger widths have lower
standard deviations (greater precision) due to the increased capture rate of these
models.

5.4.2.2 Number of captures

Within the four gREM submodels tested (NW1, SW1, SE3, NE1), the accuracy
was not strongly affected by the number of captures. The median difference
between the estimated and true values was less than 15% across all capture rates
(Figure 5.6). However, the precision was dependent on the number of captures
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Figure 5.5 Simulation model results of the accuracy and precision for gREM
submodels. The percentage error between estimated and true density for
each gREM sub model is shown within each box plot, where the white line
represents the median percentage error across all simulations, boxes repres-
ent the middle 50% of the data, whiskers represent variability outside the up-
per and lower quartiles with outliers plotted as individual points. Notches
indicate 95% confidence intervals. Box colours correspond to the expressions
for average profile width ̄𝑝 given in Figure 5.4.

across all four of the gREM submodels, where precision increases as number of
captures increases, as would be expected for any statistical estimate (Figure 5.6).
For all gREM submodels, the the coefficient of variation falls to 10% at 100 cap-
tures.

5.4.2.3 Movement models

Within the four gREM submodels tested (NW1, SW1, SE3, NE1), neither the ac-
curacy or precision was affected by the average amount of time spent stationary.
The median difference between the estimated and true values was less than 2%
for each category of stationary time (0, 0.25, 0.5 and 0.75) (Figure 5.7). Altering
the maximum change in direction in each step (0, 𝜋/3, 2𝜋/3, and 𝜋) did not affect
the accuracy or precision of the four gREM submodels (Figure 5.7).

5.4.2.4 Impact of parameter error

The percentage error in the density estimates across all parameters and gREM
submodels shows a similar response for under and over estimated parameters,



A         77

NE1 NW1 SE3 SW1

0

100

200

1
0

4
0

7
0

1
0
0

1
0

4
0

7
0

1
0
0

1
0

4
0

7
0

1
0
0

1
0

4
0

7
0

1
0
0

Captures

P
er

ce
n

t 
E

rr
o

r

Figure 5.6 Simulation model results of the accuracy and precision of four gREM
submodels (NW1, SW1, SE3 and NE1) given different numbers of captures.
The percentage error between estimated and true density within each gREM
sub model for capture rate is shown within each box plot, where the white
line represents the median percentage error across all simulations, boxes
represent the middle 50% of the data, whiskers represent variability out-
side the upper and lower quartiles with outliers plotted as individual points.
Notches show the 95% confidence interval. Sensor and signal widths vary
between submodels. The numbers beneath each plot represent the coeffi-
cient of variation. The colour of each box plot corresponds to the expressions
for average profile width ̄𝑝 given in Figure 5.4.

suggesting the accuracy is reasonable with respect to parameter error (Appendix
S6). The impact of parameter error on the precision of the density estimate var-
ies across gREM submodels and parameters, where 𝛼 shows the largest variation
including the largest values. However, in all cases the percentage error in the
density estimate is not more than 5% greater than the error in the parameter es-
timate (Appendix S6).

5.5 Discussion

5.5.1 Analytical model
I have developed the gREM such that it can be used to estimate density from
acoustic sensors and camera traps. This has entailed a generalisation of the gas
model and the REM in (Rowcliffe et al. 2008) to be applicable to any combination
of sensor width 𝜃 and signal directionality 𝛼. I emphasise that the approach is
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Figure 5.7 Simulation model results of the accuracy and precision of four gREM
submodels (NW1, SW1, SE3 and NE1) given different movement models
where (a) average amount of time spent stationary (stop-start movement)
and (b) maximum change in direction at each step (correlated random walk
model). The percentage error between estimated and true density within
each gREM sub model for the different movement models is shown within
each box plot, where the white line represents the median percentage error
across all simulations, boxes represent the middle 50% of the data, whiskers
represent variability outside the upper and lower quartiles with outliers plot-
ted as individual points. Notches in boxplots show the 95% confidence for
the median. The simple model is represented where time and maximum
change in direction equals 0. The colour of each box plot corresponds to the
expressions for average profile width ̄𝑝 given in Figure 4.

robust to multiple detections of the same individual. I have used simulations to
show, as a proof of principle, that these models are accurate and precise.

There are a number of possible extensions to the gREM which could be de-
veloped in the future. The original gas model was formulated for the case where
both animals and sensor are moving (Hutchinson & Waser 2007). Indeed any
of the models which have animals that are equally detectable in all directions
(𝛼 = 2𝜋) can be trivially expanded by replacing animal speed 𝑣 with 𝑣 + 𝑣𝑠 where
𝑣𝑠 is the speed of the sensor. However, when the animal has a directional call
the extension becomes less simple. The approach would be to calculate again
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the mean profile width. However, for each angle of approach, one would have
to average the profile width for an animal facing in any direction (i.e., not ne-
cessarily moving towards the sensor) weighted by the relative velocity of that
direction. There are a number of situations where a moving detector and an-
imal could occur, e.g., an acoustic detector towed from a boat when studying
porpoises (Kimura et al. 2014) or surveying echolocating bats from a moving car
(Jones et al. 2011).

Interesting but unstudied problems impacting the gREM are firstly, edge ef-
fects caused by sensor trigger delays (the delay between sensing an animal and
attempting to record the encounter) (Rovero et al. 2013), and secondly, sensors
which repeatedly turn on an off during sampling (Jones et al. 2011). The second
problem is particularly relevant to acoustic detectors which record ultrasound
by time expansion. Here ultrasound is recorded for a set time period and then
slowed down and played back, rendering the sensor ’deaf’ periodically during
sampling. Both of these problems may cause biases in the gREM, as animals can
move through the detection zone without being detected. As the gREM assumes
constant surveillance, the error created by switching the sensor on and off quickly
will become more important if the sensor is only on for short periods of time. I re-
commend that the gREM is applied to constantly sampled data, and the impacts
of breaking these assumptions on the gREM should be further explored.

5.5.2 Accuracy, Precision and Recommendations for Best Practice
Based on our simulations, I believe that the gREM has the potential to produce
accurate estimates for many different species, using either camera traps or acous-
tic detectors. However, the precision of the gREM differed between submodels.
For example, when the sensor and signal width were small, the precision of the
model was reduced. Therefore when choosing a sensor for use in a gREM study,
the sensor detection width should be maximised. If the study species has a nar-
row signal directionality, other aspects of the study protocol, such as length of
the survey, should be used to compensate.

The precision of the gREM is greatly affected by the number of captures. The
coefficient of variation falls dramatically between 10 and 60 captures and then
after this continues to slowly reduce. At 100 captures the submodels reach 10%
coefficient of variation, considered to be a very good level of precision and better
than many previous studies (Foster & Harmsen 2012, O’Brien et al. 2003, Thomas
& Marques 2012). The length of surveys in the field will need to be adjusted so
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that enough data can be collected to reach this precision level. Populations of fast
moving animals or populations with high densities will require less survey effort
than those species that are slow moving or have populations with low densities.

I found that the sensitivity of the gREM to inaccurate parameter estimates
was both predictable and reasonable (Appendix S6), although this varies between
different parameters and gREM submodels. Whilst care should be taken in para-
meter estimation when analysing both acoustic and camera trap data, acoustic
data poses particular problems. For acoustic surveys, estimates of 𝑟 (detection
distance) can be measured directly or calculated using sound attenuation models
(Holderied & Von Helversen 2003), while the sensor angle is often easily meas-
ured (Adams et al. 2012) or found in the manufacturer’s specifications. When
estimating animal movement speed 𝑣, only the speed of movement during the
survey period should be used. The signal width is the most sensitive parameter
to inaccurate estimates (Appendix S6) and is also the most difficult to measure.
While this parameter will typically be assumed to be 2𝜋 for camera trap surveys,
fewer estimates exist for acoustic signal widths. Although signal width has been
measured for echolocating bats using arrays of microphones (Brinkløv et al. 2011),
more work should be done on obtaining estimates for a range of acoustically sur-
veyed species.

5.5.3 Limitations
Although the REM has been found to be effective in field tests (Rowcliffe et al.
2008, Zero et al. 2013), the gREM requires further validation by both field tests
and simulations. For example, capture-mark-recapture methods could be used
alongside the gREM to test the accuracy under field conditions (Rowcliffe et al.
2008). While I found no effect of the movement model on the accuracy or pre-
cision of the gREM, the models I have used in our simulations to validate the
gREM are still simple representations of true animal movement. Animal move-
ment may be highly nonlinear and often dependent on multiple factors such as
behavioural state and existence of home ranges (Smouse et al. 2010). Therefore
testing the gREM against real animal data, or further simulations with more com-
plex movement models, would be beneficial.

The assumptions of our simulations may require further consideration, for
example, I have assumed an equal density across the study area. However, in a
field environment the situation may be more complex, with additional variation
coming from local changes in density between sensor sites. Athough unequal
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densities should theoretically not affect accuracy (Hutchinson & Waser 2007), it
will affect precision and further simulations should be used to quantify this ef-
fect. Additionally, I allowed the sensor to be stationary and continuously de-
tecting, negating the triggering, and non-continuous recording issues that could
exist with some sensors and reduce precision or accuracy. Finally, in the sim-
ulation animals moved at the equivalent of the largest day range of terrestrial
animals (Carbone et al. 2005). Slower speed values should not alter the accuracy
of the gREM, but precision would be affected since slower speeds produce fewer
records. The gREM was both accurate and precise for all the movement models
I tested (stop-start movement and correlated random walks).

A feature of the gREM is that it does not fit a statistical model to estimate
detection probability as occupancy models and distance sampling do (Barlow
& Taylor 2005, Marques et al. 2011, Royle & Nichols 2003). Instead it explicitly
models the process, with animals only being detected if they approach the sensor
from a suitable direction. Other processes that affect detection probability could
be included in the model to improve realism.

5.5.4 Implications for ecology and conservation
The gREM is applicable for count data obtained either visually or acoustically in
both marine and terrestrial environments, and is suitable for taxa including echo-
locating bats (Walters et al. 2012), songbirds (Buckland & Handel 2006), whales
(Marques et al. 2011) and forest primates (Hassel-Finnegan et al. 2008). Many
of these taxa contain critically endangered species and monitoring their popula-
tions is of conservation interest. For example, current methods of density estim-
ation for the threatened Franciscana dolphin (Pontoporia blainvillei) may result in
underestimation of their numbers (Crespo et al. 2010). In addition, using gREM
may be easier than other methods for measuring the density of animals which
may be useful in quantifying ecosystem services, such as songbirds with a known
positive influence on pest control (Jirinec et al. 2011).

The gREM will aid researchers to study species with non-invasive methods
such as remote sensors, which allows for large, continuous monitoring projects
with limited human resources (Kelly et al. 2012). The gREM is also suitable for
species that are sensitive to human contact or are difficult or dangerous to catch
(Thomas & Marques 2012). As sensors such as camera traps and acoustic detect-
ors become more ubiquitous, the gREM will be increasingly useful for monitor-
ing unmarked animal populations across broad spatial, temporal and taxonomic
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scales.
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Chapter 6

Discussion
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6.1 Overview
In this thesis I examined the importance of population structure and size on the
accumulation of pathogen richness. I used bats as a case study throughout due
to their interesting and varied social structure (Kerth 2008) and their association
with a number of important, recent zoonoses (Field et al. 2001, Halpin et al. 2011,
Leroy et al. 2005, Li et al. 2005). I have studied the role of these population factors
using empirical, comparative approaches and simulation studies in order to both
examine the specific, epidemiological mechanisms involved in a controlled and
interpretable in silico environment, while also being able to link these results back
to real-world data.

In Chapter 2 I tested the hypothesis that bat species with more structured
host populations harbour more virus species. I tested this hypothesis with two
measurements of host population structure: the number of subspecies (a novel
measure and the largest data set yet used to test this hypothesis) and gene flow.
With both measures I found that, after controlling for phylogeny and study bias,
a positive relationship between population structure and pathogen richness was
very likely in the best model. While the results from Chapter 2 suggest that
there is a relationship between population structure and pathogen richness, com-
parative studies like these cannot identify which specific mechanisms maintain
high pathogen richness. I therefore used simulations to test whether population
structure (specifically network topology and dispersal rate) could allow a newly
evolved pathogen to invade and persist in the presence of strong competition
from an established, endemic pathogen (Chapter 3). However, I found the op-
posite relationship to Chapter 2; I found that decreasing host population struc-
ture increased the rate of pathogen invasion. In Chapter 4 I used the same model
as Chapter 3 to test whether host population size or density more strongly pro-
moted pathogen invasion and establishment and whether a pathogen invaded
more easily into a population comprising many small colonies or fewer big colon-
ies. I found that population size had a much stronger effect than density on the
probability of pathogen invasion and that colony size had a much stronger effect
than the number of colonies. Theory (Anderson & May 1979, May & Anderson
1979), previous literature (Kamiya et al. 2014, Morand & Poulin 1998, Nunn et al.
2003) and Chapters 3 and 4 suggested that population size (either local group size
or global population size) strongly influences the dynamics of disease and patho-
gen richness. However, this variable was not included in the empirical study in
Chapter 2 as there are very few estimates of population size for bats and colony
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counts are time consuming and costly (Kloepper et al. 2016). However data from
acoustic camera trap surveys are increasingly available (Jones et al. 2011). To
make the estimation of population sizes easier, for bats and other acoustic detect-
able animals, I developed a general method for estimating population size and
density from acoustic detectors or camera traps (Chapter 5).

6.2 Comparison to the literature
There is a common assumption that factors that increase 𝑅0 should increase patho-
gen diversity (Morand 2000, Nunn et al. 2003). However, my results imply a
more nuanced relationship. In Chapter 3 I found that reduced global popula-
tion structure promoted the invasion of new pathogen species. In Chapter 4, I
found that while global host population density — which affected population
structure — had an effect on invasion rate, group size had a much stronger effect.
In contrast, in Chapter 2, I found the opposite relationship, that in wild bat pop-
ulations, increased host population structure promotes pathogen richness. One
interpretation of this is that there are two distinct phases to pathogen competi-
tion. When a new pathogen first enters a population, many contacts (i.e. a highly
connected population) allows the pathogen to spread and avoid stochastic extinc-
tion. However, after this initial spread, host population structure may enable the
pathogen to persist for longer. There is a positive empirical relationships between
pathogen richness and host population structure (Chapter 2, Turmelle & Olival
(2009), Maganga et al. (2014)) and population structure and range size (Kamiya
et al. 2014, Nunn et al. 2003) while in contrast the evidence for a positive rela-
tionship between pathogen richness and group size is equivocal (Ezenwa et al.
2006, Rifkin et al. 2012). This contrast suggests that population structure in wild
species affects the latter stages of pathogen dynamics, enabling pathogen persist-
ence, more than it affects the initial invasion of pathogens. Little research has so
far been conducted contrasting these different processes and examining which
mechanisms could promote high pathogen richness at each scale.

6.3 Other mechanisms controlling pathogen richness
Colony size has been found to have both a negative relationship (Gay et al. 2014)
and no relationship (Turmelle & Olival 2009) with parasite richness in previous
comparative studies using relatively small data sets. However, in Chapter 4 I
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found that colony size is particularly important for promoting pathogen rich-
ness. I did not include colony size in my comparative analysis (Chapter 2) for
three reasons. Firstly, the focus of the chapter was broad-scale population struc-
ture. Secondly, there was a lack of previously published, strong evidence of a
relationship between colony size and pathogen richness (Turmelle & Olival 2009).
Finally, there is a considerable lack of data on colony size and I was aiming for
a large sample size. However, given the results of Chapter 4, filling these data
gaps would be a useful avenue for further research. In particularly, testing the
relative effects of population density and colony size would be a useful test of the
model used in Chapter 4.

In this thesis I have only examined one mechanism by which population-
level factors may affect pathogen richness. I have only examined the ability of a
newly evolved pathogen (i.e. a pathogen identical to an endemic pathogen and
in the presence of strong competition) to invade and persist. However, there are
a number of other mechanisms that could equally strongly affect pathogen rich-
ness in the wild. Closely related to the mechanism studied here is the case of
pathogens invading from other host species. These pathogens are likely to have
different epidemiological parameters (transmission rate, virulence, recovery rate)
to the endemic pathogen as modelled in May & Nowak (1994) for example. Fur-
thermore, the competition between pathogens is expected to be less strong. Al-
ternatively, host population traits could affect the rate of pathogen extinction.
Once a number of pathogens are established in a population, there is still likely
to be occasional extinctions, especially in the presence of inter-pathogen compet-
ition (Kapusinszky et al. 2015). A number of population factors could affect this
rate. It is expected that large populations will experience slower rates of patho-
gen loss as stochastic extinction will be more rare. Furthermore, populations with
strongly varying disease prevalences are likely to have higher rates of pathogen
extinction. Higher rates of pathogen extinction are likely to occur in populations
where epidemic cycles are common (Altizer et al. 2006). After a large epidemic,
the number of susceptible individuals in the population will be low due to im-
munity, host death or low birth rates induced by infection (Hethcote 1994, Scott
& Lewis 1987). While the number of susceptibles is low, stochastic extinction is
more likely. This effect will be exacerbated in the case where an epidemic cycle
is synchronous across the whole population as is the case in unstructured popu-
lations (Duke-Sylvester et al. 2011, McKenzie et al. 2001). Structured populations
with asynchronous epidemic cycles may experience local pathogen extinction but
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rarely global extinction; this pattern of local extinction and recolonisation has
been well studied in the ecological literature (Grenfell et al. 1995, Hanski 1998,
Levin 1974), but less so in the epidemiological literature.

6.4 Predictive modelling
I have found evidence, both empirical and theoretical, that demographic para-
meters can influence pathogen richness. However it seems likely that this effect
alone is not strong enough to be a useful predictor of viral richness with respect to
surveillance for zoonotic diseases. While there is potential for population struc-
ture and colony size to be useful variables when combined with other variables
in a predictive framework, the biases in all pathogen richness data sets makes
these approaches difficult. However, as more unbiased data is collected — as in
Anthony et al. (2013) and Anthony et al. (2015) — or using much larger pathogen
data sets — such as Wardeh et al. (2015) — predictive models may become a more
viable tool. Furthermore, the method provided in Chapter 5 makes the collection
of population size data more feasible over broad taxonomic, spatial or temporal
scales, further increasing the potential of predictive models.

One approach to dealing with the biases in the data would be to use small,
unbiased pathogen richness data sets as test data while using the large, biased
data sets as training data. This use of data that predicts a related but different
measure is known as domain adaptation (Daumé 2009, Daumé & Marcu 2006).
As pathogen richness will be measured on different scales in these data sets, steps
will have to be taken to make the information in the larger data sets applicable to
the smaller data sets. It might be possible to predict a species to pathogen rich-
ness quantile or broad pathogen richness classes (i.e. “high pathogen richness”
and “low pathogen richness”). This may be informative enough for advising
policy and prioritising species for zoonotic surveillance. Alternatively, a subset
of the small unbiased data sets could be used to create a simple model to rescale
predictions from the model trained on the large data set so that it is applicable to
the small data set (Daumé 2009).

While predictive models should be built, forecasting changes in pathogen
richness and zoonotic risk will be difficult. However, the mechanistic under-
standing obtained by the theoretical chapters here can suggest how pathogen
richness may respond to global change and other population stressors. Firstly,
when global change acts to reduce group size (Atwood 2006, Lehmann et al. 2010,
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Manor & Saltz 2003, Zunino et al. 2007) pathogen richness is expected to de-
crease. Conversely, in species where group size is increasing (Lehmann et al.
2010), pathogen richness is expected to increase. Species suffering range contrac-
tions (Thomas et al. 2004) and decreases in population size (Craigie et al. 2010) are
expected to experience smaller changes in pathogen richness despite these being
the more commonly studied effects of global change. This suggests that further
research should study in more detail the effects of climate change on social group
size.

6.5 Bat social structure
It is important to note that I have ignored much of the social complexity found
in bats. Information on these other social behaviours was not explicitly included
in the empirical study in Chapter 2. Furthermore, in Chapters 3 and 4 I have
modelled bat populations as a metapopulation where the only social structure
is the grouping of individuals into subpopulations. There is dispersal between
these subpopulations but otherwise they are static. Firstly, I have not modelled
the creation of new colonies, or the disbanding of colonies (Metheny et al. 2008).
Especially in the face of habitat destruction, it is likely that the number of colonies
of a species will be decreasing. Furthermore, in some species, colonies are likely
to be more fluid, with groups joining and splitting (August et al. 2014, Kerth
& Van Schaik 2012). Secondly, there are a number of behaviours common in
bats, particularly in temperate regions, that has been excluded from these models.
For example, many species have different types of colonies — maternity colonies,
mating colonies and hibernation colonies (Kerth 2008). Epidemiological dynam-
ics are likely to be altered by the physiological differences in bats while in these
different colony types but also due to their role in population structure (Blehert
2012, George et al. 2011, Langwig et al. 2015, Webber et al. 2016). The extent to
which the individuals move together when switching between these colony types
is largely unknown (Baerwald & Barclay 2016, Kurta & Murray 2002) but if there
is a large degree of mixing during the transition between colony types, then there
will be considerably less population structure overall. Similarly, swarming beha-
viour — the coming together of many bats from different colonies — is likely to
decrease epidemiological population structure (Kerth & Van Schaik 2012).

Furthermore, many bat species, both temperate and tropical, are migrat-
ory (Fleming & Eby 2003, Hutterer et al. 2005, Krauel & McCracken 2013, Popa-
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Lisseanu & Voigt 2009). Again, it is largely unknown whether colonies travel to-
gether during migration (Baerwald & Barclay 2016). It is therefore also unknown
whether colony structure is similar before and after migration (Carter & Wilkin-
son 2013) though Kurta & Murray (2002) find that individuals do not migrate
together. There is also little data on whether parameters, such as inter-colony
dispersal rate, are constant before and after migration. Even if colonies remain
fairly constant during migration, the spatial relationships may be different; colon-
ies that were far apart in one area could subsequently be near neighbours after
migration. However, migratory status has been included in previous comparat-
ive analyses and not been found to be a strong predictor of pathogen richness
(Maganga et al. 2014, Turmelle & Olival 2009).

Another potentially important factor that has been ignored here is roost shar-
ing by different bat species (de Thoisy et al. 2016, López-Roig et al. 2014, Maganga
et al. 2014, Pons-Salort et al. 2014, Serra-Cobo et al. 2002). If the species are very
similar in most epidemiological factors, this could potentially be sensibly mod-
elled by ignoring species identity and treating the whole population as one. How-
ever, it is more likely that there will be fewer close contact events between indi-
viduals of different species even if they roost share. It is also likely that species
will have different dispersal patterns between colonies. Therefore, more complex
models such as overlay network models might be needed in order to effectively
model these populations (Funk & Jansen 2010, Marceau et al. 2011). Roost shar-
ing and the amount of sympatry has been included in comparative studies of
bat pathogen richness (Maganga et al. 2014) but was not found to correlate with
pathogen richness.

Finally, birth and deaths have been modelled here as occurring randomly
through time but many bat species have very tightly controlled birth pulses (Di-
etrich et al. 2015, George et al. 2011, Greiner et al. 2011, Porter & Wilkinson 2001).
This has important epidemiological consequences; there will be a pulse of sus-
ceptible individuals each year with very few new susceptibles during the rest of
the year (Dietrich et al. 2015). Models of these population dynamics have found
that birth pulses can drive pathogen extinction (Peel et al. 2014). Hayman (2015)
found that certain Filoviruses were less likely to persist in bat species with an an-
nual birth pulse than a biannual birth pulse. In other mammals, birth pulses have
also been shown to reduce synchrony of dynamics (Duke-Sylvester et al. 2011).

Overall, there is much complexity that could be added to epidemiological
models of bats. However, there is little data for many species which makes para-
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meterisation difficult. Furthermore, as these factors differ between species, try-
ing to make general models that apply across the order is difficult. Further work
should include specific, detailed models of well studied species and further ex-
amination of how important these various factors might be.

6.6 Conclusions
Overall my studies suggest that population size and structure have an important
role in controlling pathogen richness. However, my two studies on population
structure give contradictory results and so the exact mechanisms by which these
effects occur are still not clear. I have found that population size and colony size
are particularly important for controlling pathogen richness in the case of closely
related, strongly competing pathogens. I have also provided a tool to facilitate
the estimation of population sizes in echolocating bats and other mammals.
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Table A.2 Model selection results for number of subspecies analysis. ̄AICc
is the mean AICc score across 50 resamplings of the null random variable.
ΔAICc is the model’s ̄AICc score minus min( ̄AICc). 𝑤 is the Akaike weight
and can be interpreted as the probability that the model is the best model (of
those in the plausible set). ∑ 𝑤 is the cumulative sum of the Akaike weights.
log(Scholar)*NSubspecies implies the interaction term between study effort
and number of subspecies.

Model ̄AICc ∆AICc 𝑤 ∑ 𝑤

log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) 882.33 0.00 0.38 0.38
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) 883.71 1.39 0.19 0.57
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) + rand 884.56 2.24 0.12 0.70
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies 885.47 3.14 0.08 0.78
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(RangeSize) 885.51 3.18 0.08 0.86
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(RangeSize) + rand 886.27 3.94 0.05 0.91
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + rand 886.28 3.95 0.05 0.96
log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) 889.26 6.93 0.01 0.97
log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) + rand 890.13 7.80 0.01 0.98
log(Scholar) + NSubspecies + log(Mass) 890.66 8.34 0.01 0.99
log(Scholar) + NSubspecies + log(Mass) + rand 891.59 9.26 0.00 0.99
log(Scholar) + NSubspecies 892.30 9.98 0.00 0.99
log(Scholar) + NSubspecies + log(RangeSize) 892.31 9.98 0.00 1.00
log(Scholar) + NSubspecies + log(RangeSize) + rand 893.15 10.82 0.00 1.00
log(Scholar) + NSubspecies + rand 893.19 10.86 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) 897.19 14.86 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) + rand 898.05 15.72 0.00 1.00
log(Scholar) + log(Mass) 898.36 16.03 0.00 1.00
log(Scholar) + log(RangeSize) 899.13 16.80 0.00 1.00
log(Scholar) 899.20 16.87 0.00 1.00
log(Scholar) + log(Mass) + rand 899.26 16.94 0.00 1.00
log(Scholar) + log(RangeSize) + rand 899.95 17.63 0.00 1.00
log(Scholar) + rand 900.06 17.73 0.00 1.00
NSubspecies + log(Mass) + log(RangeSize) + rand 906.60 24.27 0.00 1.00
NSubspecies + log(Mass) + log(RangeSize) 907.03 24.70 0.00 1.00
NSubspecies + log(RangeSize) 914.05 31.73 0.00 1.00
NSubspecies + log(RangeSize) + rand 914.85 32.52 0.00 1.00
NSubspecies + log(Mass) 920.11 37.79 0.00 1.00
NSubspecies + log(Mass) + rand 921.06 38.73 0.00 1.00
NSubspecies 923.37 41.04 0.00 1.00
NSubspecies + rand 924.26 41.94 0.00 1.00
log(Mass) + log(RangeSize) 924.61 42.28 0.00 1.00
log(Mass) + log(RangeSize) + rand 924.68 42.35 0.00 1.00
log(RangeSize) 931.53 49.20 0.00 1.00
log(RangeSize) + rand 932.35 50.02 0.00 1.00
log(Mass) 941.11 58.78 0.00 1.00
log(Mass) + rand 942.07 59.75 0.00 1.00
Intercept only 943.72 61.39 0.00 1.00
rand 944.64 62.31 0.00 1.00
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Figure A.1 Logged number of references on Google Scholar and PubMed, with
a fitted phylogenetic linear model. Colours indicate family. (pgls: 𝑡 = 19.32,
df = 194, 𝑝 < 10−5).
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Table A.3 Model selection results for effective gene flow analysis. ̄AICc is the
mean AICc score across 50 resamplings of the null random variable. ΔAICc
is the model’s ̄AICc score minus min( ̄AICc). 𝑤 is the Akaike weight and can
be interpreted as the probability that the model is the best model (of those
in the plausible set). ∑ 𝑤 is the cumulative sum of the Akaike weights.

Model ̄AICc ∆AICc 𝑤 ∑ 𝑤

log(Scholar) + Gene Flow + log(Mass) 70.57 0.00 1.00 1.00
log(RangeSize) 104.66 34.09 0.00 1.00
log(Mass) 105.62 35.06 0.00 1.00
Gene Flow + log(Mass) 107.45 36.88 0.00 1.00
rand 110.97 40.40 0.00 1.00
log(Mass) + rand 113.96 43.40 0.00 1.00
Gene Flow + log(Mass) + rand 116.98 46.41 0.00 1.00
Gene Flow + rand 118.94 48.37 0.00 1.00
log(Scholar) + log(Mass) + rand 120.29 49.72 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + rand 122.68 52.11 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) + rand 124.08 53.52 0.00 1.00
log(Scholar) + rand 125.67 55.10 0.00 1.00
log(RangeSize) + rand 126.07 55.50 0.00 1.00
log(Scholar) + log(Mass) 126.52 55.95 0.00 1.00
log(Scholar) 126.62 56.05 0.00 1.00
log(Mass) + log(RangeSize) + rand 127.51 56.94 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) 128.01 57.44 0.00 1.00
log(Scholar) + log(RangeSize) 128.11 57.54 0.00 1.00
log(Scholar) + log(RangeSize) + rand 128.94 58.38 0.00 1.00
log(Scholar) + Gene Flow 129.13 58.56 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + log(RangeSize) + rand 129.14 58.57 0.00 1.00
log(Scholar) + Gene Flow + rand 129.18 58.61 0.00 1.00
Gene Flow + log(RangeSize) + rand 129.29 58.72 0.00 1.00
log(Mass) + log(RangeSize) 129.50 58.93 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + log(RangeSize) 130.80 60.24 0.00 1.00
log(Scholar) + Gene Flow + log(RangeSize) 130.92 60.35 0.00 1.00
Gene Flow + log(Mass) + log(RangeSize) + rand 131.18 60.61 0.00 1.00
Gene Flow + log(Mass) + log(RangeSize) 131.85 61.28 0.00 1.00
log(Scholar) + Gene Flow + log(RangeSize) + rand 132.59 62.02 0.00 1.00
Gene Flow + log(RangeSize) 133.12 62.56 0.00 1.00
Gene Flow 135.79 65.22 0.00 1.00
Intercept only 136.23 65.66 0.00 1.00
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Figure A.2 The effect of the interaction term on the estimated relationship
between number of subspecies and pathogen richness. The area of the circle
shows the number of bat species at each discrete value. The black line shows
the estimated regression slope at the median value of study effort while the
blue and yellow lines show the estimated slope at the upper and lower quart-
iles and maximum and minimum values of study effort respectively.
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Figure A.3 The distribution of viral richness on the alternate phylogeny. The
phylogeny is from Jones et al. (2005) (version 2) pruned to include all spe-
cies used in either the number of subspecies or gene flow analysis. Dot size
shows the number of known viruses for that species and colour shows family.
The red scale bar shows 25 million years.
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Figure A.4 The relative weight of evidence that each explanatory variable is in
the best model for explaining viral richness using the phylogeny from (Jones
et al. 2005). The probability that each variable is in the best model (amongst
the models tested) is shown for A) the number of subspecies analysis and
B) the effective gene flow analysis. The boxplots show the variation of the
results over 50 resamplings of the uniformly random “null” variable. The
thick bar of the boxplot shows the median value, the interquartile range is
represented by a box, vertical lines represent range, and outliers are shown
as filled circles. The red “Random” box is the uniformly random variable.
Population structure (number of subspecies and effective gene flow), shown
in yellow, is likely to be in the best model in both analyses.
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Table A.4 Model selection results for number of subspecies analysis using
phylogeny from (Jones et al. 2005). ̄AICc is the mean AICc score across 50
resamplings of the null random variable. ΔAICc is the model’s ̄AICc score
minus min( ̄AICc). 𝑤 is the Akaike weight and can be interpreted as the prob-
ability that the model is the best model (of those in the plausible set). ∑ 𝑤
is the cumulative sum of the Akaike weights. log(Scholar)*NSubspecies im-
plies the interaction term between study effort and number of subspecies.

Model ̄AICc ∆AICc 𝑤 ∑ 𝑤

log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) 756.44 0.00 0.21 0.21
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) 756.90 0.46 0.17 0.38
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies 757.64 1.19 0.12 0.49
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(Mass) + rand 758.04 1.59 0.09 0.59
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(RangeSize) 758.35 1.90 0.08 0.67
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + rand 758.79 2.34 0.07 0.73
log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) 759.28 2.83 0.05 0.79
log(Scholar)*NSubspecies + log(Scholar) + NSubspecies + log(RangeSize) + rand 759.50 3.06 0.05 0.83
log(Scholar) + NSubspecies + log(Mass) 759.92 3.47 0.04 0.87
log(Scholar) + NSubspecies + log(Mass) + log(RangeSize) + rand 760.33 3.89 0.03 0.90
log(Scholar) + NSubspecies 760.76 4.31 0.02 0.92
log(Scholar) + NSubspecies + log(Mass) + rand 760.99 4.54 0.02 0.94
log(Scholar) + NSubspecies + log(RangeSize) 761.34 4.90 0.02 0.96
log(Scholar) + NSubspecies + rand 761.83 5.39 0.01 0.98
log(Scholar) + NSubspecies + log(RangeSize) + rand 762.42 5.98 0.01 0.99
log(Scholar) + log(Mass) + log(RangeSize) 765.17 8.73 0.00 0.99
log(Scholar) + log(Mass) 765.74 9.29 0.00 0.99
log(Scholar) 766.00 9.55 0.00 0.99
log(Scholar) + log(Mass) + log(RangeSize) + rand 766.21 9.76 0.00 1.00
log(Scholar) + log(RangeSize) 766.49 10.05 0.00 1.00
log(Scholar) + log(Mass) + rand 766.78 10.33 0.00 1.00
log(Scholar) + rand 767.04 10.60 0.00 1.00
log(Scholar) + log(RangeSize) + rand 767.54 11.10 0.00 1.00
NSubspecies + log(Mass) + log(RangeSize) 778.19 21.74 0.00 1.00
NSubspecies + log(Mass) + log(RangeSize) + rand 779.22 22.78 0.00 1.00
NSubspecies + log(RangeSize) 784.68 28.23 0.00 1.00
NSubspecies + log(RangeSize) + rand 785.76 29.31 0.00 1.00
NSubspecies + log(Mass) 789.77 33.32 0.00 1.00
log(Mass) + log(RangeSize) + rand 790.42 33.98 0.00 1.00
log(Mass) + log(RangeSize) 790.49 34.04 0.00 1.00
NSubspecies + log(Mass) + rand 790.85 34.41 0.00 1.00
NSubspecies 792.53 36.09 0.00 1.00
NSubspecies + rand 793.64 37.19 0.00 1.00
log(RangeSize) 796.89 40.44 0.00 1.00
log(RangeSize) + rand 797.96 41.52 0.00 1.00
log(Mass) 804.51 48.06 0.00 1.00
log(Mass) + rand 804.78 48.33 0.00 1.00
Intercept only 806.58 50.13 0.00 1.00
rand 807.66 51.22 0.00 1.00
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Table A.5 Model selection results for effective gene flow analysis using phylo-
geny from (Jones et al. 2005). ̄AICc is the mean AICc score across 50 res-
amplings of the null random variable. ΔAICc is the model’s ̄AICc score
minus min( ̄AICc). 𝑤 is the Akaike weight and can be interpreted as the
probability that the model is the best model (of those in the plausible set).
∑ 𝑤 is the cumulative sum of the Akaike weights.

Model ̄AICc ∆AICc 𝑤 ∑ 𝑤

log(Mass) + log(RangeSize) 106.05 0.00 1.00 1.00
log(Scholar) + log(Mass) + rand 119.34 13.30 0.00 1.00
Gene Flow + log(Mass) 120.15 14.11 0.00 1.00
log(Mass) + rand 122.83 16.78 0.00 1.00
log(Mass) 123.09 17.04 0.00 1.00
log(Scholar) + log(Mass) 124.22 18.18 0.00 1.00
Gene Flow + log(Mass) + log(RangeSize) + rand 124.52 18.48 0.00 1.00
log(Mass) + log(RangeSize) + rand 124.68 18.64 0.00 1.00
rand 125.42 19.37 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) + rand 125.69 19.64 0.00 1.00
log(Scholar) + rand 126.04 19.99 0.00 1.00
Gene Flow + log(Mass) + rand 126.52 20.48 0.00 1.00
log(Scholar) 126.56 20.52 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + rand 126.90 20.86 0.00 1.00
log(Scholar) + log(RangeSize) + rand 127.83 21.78 0.00 1.00
log(Scholar) + log(RangeSize) 127.96 21.91 0.00 1.00
log(Scholar) + log(Mass) + log(RangeSize) 128.01 21.96 0.00 1.00
Gene Flow + log(RangeSize) + rand 128.07 22.02 0.00 1.00
Gene Flow + rand 128.37 22.33 0.00 1.00
log(RangeSize) + rand 129.02 22.98 0.00 1.00
log(Scholar) + Gene Flow 129.09 23.04 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) 129.18 23.13 0.00 1.00
log(Scholar) + Gene Flow + rand 130.46 24.42 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + log(RangeSize) 130.80 24.76 0.00 1.00
log(Scholar) + Gene Flow + log(RangeSize) 130.81 24.76 0.00 1.00
log(Scholar) + Gene Flow + log(RangeSize) + rand 130.89 24.84 0.00 1.00
log(RangeSize) 131.22 25.17 0.00 1.00
Gene Flow + log(Mass) + log(RangeSize) 131.85 25.80 0.00 1.00
log(Scholar) + Gene Flow + log(Mass) + log(RangeSize) + rand 132.97 26.93 0.00 1.00
Gene Flow + log(RangeSize) 133.17 27.12 0.00 1.00
Gene Flow 135.91 29.86 0.00 1.00
Intercept only 136.23 30.18 0.00 1.00
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Table A.6 Estimated variable weights (probability that a variable is in the best
model) and their estimated coefficients for both number of subspecies and
gene flow analyses using phylogeny from (Jones et al. 2005). The coefficients
for the number of subspecies variable are also separated for models with and
without the interaction term because this term strongly changes the coeffi-
cient and because the coefficient can only be usefully interpreted when es-
timated without the interaction. However, there are no weights for these
separated terms as they are not directly compared in the model selection
framework.

Number of Subspecies Gene flow

Variable 𝑃𝑟 Coefficient 𝑃𝑟 Coefficient

Number of subspecies
Total 0.99 0.35
Models without interaction term 0.5
Models with interaction term 0.38

Number of subspecies*log(Scholar) 0.78 0.50

Gene flow 0.00 −0.9

log(Scholar) 1.00 1.01 0.00 3.17
log(Mass) 0.62 0.47 1.00 −0.4
log(Range size) 0.45 0.33 1.00 3.9
Random 0.29 -0.00 0.00 0.2
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Appendix B

Appendix: Understanding how
population structure affects
pathogen richness in a mechanistic
model of bat populations
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Figure B.1 Two examples (A and B) of a successful invasion plotted on a logged
𝑦-axis. The lines are coloured such that blue represents susceptibles, brown
represents individuals infected with one pathogen (the two seperate brown
lines are Pathogen 1 and 2), black represents co-infected individuals and yel-
low represents recovered and immune individuals. Pathogen 2 is seeded
after 300,000 events (approximately 30 years). Simulations are run on a fully-
connected network. Parameter values are: dispersal rate = 0.1, transmission
rate = 0.2. All other parameters are as stated in Table 3.1.
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Figure B.2 Two examples (A and B) of an unsuccessful invasion plotted on a
logged 𝑦-axis. The lines are coloured such that blue represents susceptibles,
brown represents individuals infected with one pathogen (the two separate
brown lines are Pathogen 1 and 2), black represents co-infected individu-
als and yellow represents recovered and immune individuals. Pathogen 2
is seeded after 300,000 events (approximately 30 years). It can be seen that
after seeding Pathogen 2, there is a very short period before extinction as op-
posed to a long fade out of disease. Simulations are run on a fully-connected
network. Parameter values are: dispersal rate = 0.1, transmission rate = 0.2.
All other parameters are as stated in Table 3.1.
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Figure B.3 Two examples (A and B) of the change in colony sizes throughout a
simulation (note the truncated 𝑦-axis). The size of each colony changes as a
random walk. However, given the length of the simulations, there is little
risk of colonies going extinct or becoming very large. Birth and death rate
are equal and set to 0.05, giving a generation time of 20 years. The metapop-
ulation network is fully-connected and the dispersal rate is 0.1 per year. The
starting colony size is 3,000
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Table B.1 Raw data for dispersal simulations. The relevant parameters are
shown along with the number of invasions and the number of simulations.
𝛽 is the transmission rate.

𝛽 Dispersal Invasions Sims

0.1 0.000 0 100
0.1 0.001 1 101
0.1 0.010 0 100
0.1 0.100 0 99
0.2 0.000 4 100
0.2 0.001 42 126
0.2 0.010 41 126
0.2 0.100 63 123
0.3 0.000 47 100
0.3 0.001 113 125
0.3 0.010 113 126
0.3 0.100 112 124
0.4 0.000 75 100
0.4 0.001 96 100
0.4 0.010 98 100
0.4 0.100 96 100

Table B.2 Raw data for topology simulations. The relevant parameters are
shown along with the number of invasions and the number of simulations.
𝛽 is the transmission rate.

𝛽 Topology Invasions Sims

0.1 Unconnected 0 100
0.1 Minimally 1 101
0.1 Fully 1 99
0.2 Unconnected 4 100
0.2 Minimally 30 100
0.2 Fully 28 100
0.3 Unconnected 47 100
0.3 Minimally 94 100
0.3 Fully 88 100
0.4 Unconnected 75 100
0.4 Minimally 97 100
0.4 Fully 99 100
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Appendix C

Appendix: A mechanistic model to
compare the importance of
interrelated population measures:
host population size, density and
colony size

Table C.1 Raw data for range size simulations. The population parameters
are shown along with the number of invasions and the number of simula-
tions. Note that simulations where both pathogens went extinct have been
removed (100 simulations were originally run for each parameter set). 𝛽 is
the transmission rate, 𝑛 is colony size, 𝑚 is the number of colonies and 𝑁 is
the total population size.

𝛽 𝑛 𝑚 Area (×1000 km2) 𝑁 (×1000) Density (km−2) Invasions Sims

0.1 400 20 2.5 8 3.2 2 100
0.1 400 20 5.0 8 1.6 3 100
0.1 400 20 10.0 8 0.8 2 100
0.1 400 20 20.0 8 0.4 3 100
0.1 400 20 40.0 8 0.2 2 100
0.2 400 20 2.5 8 3.2 3 100
0.2 400 20 5.0 8 1.6 3 100
0.2 400 20 10.0 8 0.8 1 100
0.2 400 20 20.0 8 0.4 4 100
0.2 400 20 40.0 8 0.2 1 100
0.3 400 20 2.5 8 3.2 3 100
0.3 400 20 5.0 8 1.6 3 100
0.3 400 20 10.0 8 0.8 3 100
0.3 400 20 20.0 8 0.4 5 100
0.3 400 20 40.0 8 0.2 9 100
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Table C.2 Raw data for colony size simulations. The population parameters
are shown along with the number of invasions and the number of simula-
tions. Note that simulations where both pathogens went extinct have been
removed (100 simulations were originally run for each parameter set). 𝛽 is
the transmission rate, 𝑛 is colony size, 𝑚 is the number of colonies and 𝑁 is
the total population size.

𝛽 𝑛 𝑚 Area (×1000 km2) 𝑁 (×1000) Density (km−2) Invasions Sims

0.1 100 20 2.5 2 0.8 4 88
0.1 200 20 5.0 4 0.8 5 100
0.1 400 20 10.0 8 0.8 2 100
0.1 800 20 20.0 16 0.8 0 100
0.1 1600 20 40.0 32 0.8 55 100
0.2 100 20 2.5 2 0.8 3 92
0.2 200 20 5.0 4 0.8 6 100
0.2 400 20 10.0 8 0.8 0 100
0.2 800 20 20.0 16 0.8 39 100
0.2 1600 20 40.0 32 0.8 95 100
0.3 100 20 2.5 2 0.8 1 91
0.3 200 20 5.0 4 0.8 4 100
0.3 400 20 10.0 8 0.8 7 100
0.3 800 20 20.0 16 0.8 67 100
0.3 1600 20 40.0 32 0.8 100 100

Table C.3 Raw data for number of colonies simulations. The population para-
meters are shown along with the number of invasions and the number of
simulations. Note that simulations where both pathogens went extinct have
been removed (100 simulations were originally run for each parameter set).
𝛽 is the transmission rate, 𝑛 is colony size, 𝑚 is the number of colonies and
𝑁 is the total population size.

𝛽 𝑛 𝑚 Area (×1000 km2) 𝑁 (×1000) Density (km−2) Invasions Sims

0.1 400 5 2.5 2 0.8 0 97
0.1 400 10 5.0 4 0.8 0 100
0.1 400 20 10.0 8 0.8 2 100
0.1 400 40 20.0 16 0.8 2 100
0.1 400 80 40.0 32 0.8 7 100
0.2 400 5 2.5 2 0.8 2 99
0.2 400 10 5.0 4 0.8 1 100
0.2 400 20 10.0 8 0.8 0 100
0.2 400 40 20.0 16 0.8 3 100
0.2 400 80 40.0 32 0.8 11 100
0.3 400 5 2.5 2 0.8 1 96
0.3 400 10 5.0 4 0.8 2 100
0.3 400 20 10.0 8 0.8 7 100
0.3 400 40 20.0 16 0.8 15 100
0.3 400 80 40.0 32 0.8 17 100
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Appendix D

Appendix: A generalised random
encounter model for estimating
animal density with remote sensor
data
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D.1 Table of symbols

Table D.1 List of symbols used to describe the gREM and simulations. ‘-’ means
the quantity has no units.

Symbol Description Units

𝜃 Sensor width rad
𝛼 Animal signal width rad
𝑥𝑖 Focal angle, 𝑖 ∈ {1, 2, 3, 4} rad
𝑟 Detection distance m
̄𝑝 Average profile width m

𝑝 A specific profile width m
𝑣 Velocity m s−1

𝑡 Time s
𝑧 Number of detections -
𝐷 Animal density m−2

𝑇 Step length s
𝑁 Number of steps per simulation -
𝑑 Distance moved in a time step m
𝑆 Probability of remaining stationary -
𝐴 Maximum turning angle rad
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D.2 Supplementary methods

D.2.1 Introduction
These supplementary methods derive all the models used. For continuity, the
gas model derivation is included here as well as in the main text. The calculation
of all integrals used in the gREM is included in the Python script S3.

D.2.2 Gas model
Following (Yapp 1956), we derive the gas model where sensors can capture anim-
als in any direction and animal signals are detectable from any direction (𝜃 = 2𝜋
and 𝛼 = 2𝜋). We assume that animals are in a homogeneous environment, and
move in straight lines of random direction with velocity 𝑣. We allow that our
stationary sensor can capture animals at a detection distance 𝑟 and that if an an-
imal moves within this detection zone they are captured with a probability of
one, while animals outside the zone are never captured.

In order to derive animal density, we need to consider relative velocity from
the reference frame of the animals. Conceptually, this requires us to imagine that
all animals are stationary and randomly distributed in space, while the sensor
moves with velocity 𝑣. If we calculate the area covered by the sensor during the
survey period we can estimate the number of animals the sensor should capture.
As a circle moving across a plane, the area covered by the sensor per unit time is
2𝑟𝑣. The number of expected captures, 𝑧, for a survey period of 𝑡, with an animal
density of 𝐷 is 𝑧 = 2𝑟𝑣𝑡𝐷. To estimate the density, we rearrange to get 𝐷 = 𝑧/2𝑟𝑣𝑡.

D.2.2.1 gREM derivations for different detection and signal widths

Different combinations of 𝜃 and 𝛼 would be expected to occur (e.g., sensors have
different detection widths and animals have different signal widths). For differ-
ent combinations 𝜃 and 𝛼, the area covered per unit time is no longer given by
2𝑟𝑣. Instead of the size of the sensor detection zone having a diameter of 2𝑟, the
size changes with the approach angle between the sensor and the animal. For
any given signal width and detector width and depending on the angle that the
animal approaches the sensor, the width of the area within which an animal can
be detected is called the profile, 𝑝. The size of the profile (averaged across all
approach angles) is defined as the average profile ̄𝑝. However, different combin-
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Figure D.1 The location of the focal angles 𝑥𝑖∈[1,4]. 𝑥1 is used in SE and NE
models (including the gas model). 𝑥2 – 𝑥4 are used in NW and SW models.
The sector shaped detection region is shown in grey. Animals are filled black
circles and the animal signal is an unfilled sector. The animals direction of
movement is indicated with an arrow. The profile 𝑝 is shown with a red
line. A) Animal is directly approaching the sensor at 𝑥1 = 𝜋

2 . B) Animal is
directly approaching the sensor at 𝑥2 = 𝜋

2 . 𝑥2 then decreases until the profile
is perpendicular to the edge of the detection region. C) When the profile is
perpendicular to the edge of the detection region, 𝑥3 = 𝜃. D) 𝑥4 measures
the angle between the left side of the detection region and the profile.

ations of 𝜃 and 𝛼 need different equations to calculate ̄𝑝. This ̄𝑝 is the only thing
that changes

We have identified the parameter space for the combinations of 𝜃 and 𝛼 for
which the derivation of the equations are the same (defined as sub-models in
the gREM) (Figure 5.2). For example, the gas model becomes the simplest gREM
sub-model (upper right in Figure 5.2) and the REM from (Rowcliffe et al. 2008) is
another gREM sub-model where 𝜃 < 𝜋/2 and 𝛼 = 2𝜋.

Models with 𝜃 = 2𝜋 are described first (the gas model described above and
SE1). Then models with 𝜃 > 𝜋 are described (NE then SE). Finally models with
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𝜃 < 𝜋 (NW then SW) are described.

D.2.3 Model SE1
SE1 is very similar to the gas model except that because 𝛼 ≤ 𝜋 the profile width is
no longer 2𝑟 but is instead limited by the width of the animal signal. We therefore
get a profile width of 2𝑟 sin(𝛼/2) instead.

̄𝑝SE1 = 1
𝜋

3𝜋
2

∫
𝜋
2

2𝑟 sin (𝛼
2) d𝑥1 (D.1)

̄𝑝SE1 =2𝑟 sin (𝛼
2) (D.2)

This profile is integrated over the interval [𝜋
2 , 3𝜋

2 ] which is 𝜋 radians of rotation
starting with the animal moving directly towards the sensor (Figure D.1A).

D.2.4 Models NE1–3
When the detection zone is not a circle, we have more complex profiles and need
to explicitly write functions for the width of the profile for every approach angle.
We then use these functions to find the average profile width ̄𝑝 for all approach
angles by integrating across all 2𝜋 angles of approach and dividing by 2𝜋.

There are three submodels within quadrant NE (Figure 5.2). Note that NE1
covers the area 𝛼 = 2𝜋 as well as the triangle below it as these two models are
specified exactly the same, rather than happening to have equal results.

These models have up to five profiles.

1. The profile width starts, from 𝑥1 = 𝜋
2 as 2𝑟.

2. At 𝑥1 = 𝜃/2, the right hand side of the profile cannot be 𝑟 wide as the corner
of the ‘blind spot’ limits its size to being 𝑟 cos(𝑥1 − 𝜃/2) wide (Figure D.2A).

3. The third profile is only found in NE3. If 𝛼 < 4𝜋 −2𝜃, then at 𝑥1 = 𝜃/2+𝜋/2,
when the profile is perpendicular to the edge of the blind spot, the whole
right side of the profile is invisible to the sensor (Figure D.2B). This gives a
profile size of just 𝑟.

4. At some point, the sensor can detect animals once they have passed the
blind spot giving a profile width of 𝑟 + 𝑟 cos(𝑥1 + 𝜃/2) (Figure D.2C). From
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/2α
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-θ
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Figure D.2 Three of the integrals in NE models. The sector shaped detection
region is shown in grey. Animals are filled black circles and the animal signal
is an unfilled sector. The animals direction of movement is indicated with
an arrow. The profile 𝑝 is shown with a red line. Dashed red lines indicate
areas where animals cannot be detected. A) The second integral in NE with
width 𝑟 + 𝑟 cos(𝑥1 − 𝜃/2). B) The third integral in NE3. 𝛼/2 is labelled. As
it is small, animals to the right of the detector cannot be detected. (c) After
further rotation, 𝛼/2 is now bigger than the angle shown and animals to the
right of the detector can again be detected.

L

R

Figure D.3 The second integral in SE. The right side of the profile (𝑝𝑅) is limited
by the size of the sensor region while the left side of the profile (𝑝𝐿) is limited
by the size of the signal width. The full profile has width 𝑝 = 𝑟 sin(𝛼/2) +
𝑟 cos(𝜃/2−𝑥1). The sector shaped detection region is shown in grey. Animals
are filled black circles and the animal signal is an unfilled sector. The animals
direction of movement is indicated with an arrow. The profile 𝑝 is shown
with a red line.

𝑥1 = 𝜋, if the animal signal is wide enough to be detected in this area, this is
the wider profile. This then defines the split between NE1 and NE2. In NE1,
with 𝛼 > 3𝜋 −𝜃, the animal signal is wide enough that at 𝑥1 = 𝜋 the animal
can immediately be detected past the blind spot and so this profile is used.
In NE2, with 𝛼 < 3𝜋 − 𝜃, the latter profile is reached at 5𝜋/2 − 𝜃/2 − 𝛼/2.
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5. Finally, common to all three models, at 𝑥1 = 2𝜋 − 𝜃/2 the profile becomes
a full 2𝑟 once again.

D.2.4.1 Model NE1

Submodel NE1 exists within the area bounded by 𝛼 ≤ 2𝜋, 𝜃 ≤ 2𝜋 and 𝛼 ≥ 3𝜋 − 𝜃
(Figure 5.2). It has four profiles; it does not include the 𝑟 profile at 𝑥1 = 𝜋 (profile
described in point (3) in Section D.2.4). Furthermore, 𝜃 is wide enough that the
𝑟 + 𝑟 cos(𝑥1 + 𝜃/2) profile starts at 𝜋. This then gives us

̄𝑝NE1 = 1
𝜋

⎛⎜⎜⎜⎜
⎝

𝜃
2

∫
𝜋
2

2𝑟 d𝑥1 +
𝜋
∫
𝜃
2

𝑟 cos (𝜃
2 − 𝑥1) + 𝑟 d𝑥1

+
2𝜋− 𝜃

2

∫
𝜋

𝑟 cos (𝜃
2 + 𝑥1) + 𝑟 d𝑥1 +

3𝜋
2

∫
2𝜋− 𝜃

2

2𝑟 d𝑥1
⎞⎟⎟⎟⎟
⎠

(D.3)

̄𝑝NE1 = 𝑟
𝜋 (𝜃 + 2 sin (𝜃

2)) (D.4)

D.2.4.2 Model NE2

Model NE2 is bounded by 𝛼 ≤ 3𝜋 − 𝜃, 𝛼 ≥ 4𝜋 − 2𝜃 and 𝛼 ≥ 𝜋 (Figure 5.2). It is
the same as NE1 except that the third profile starts at 5𝜋/2 − 𝜃/2 − 𝛼/2 instead of
at 𝜋 which is reflected in the different bounds in the second and third integral.

̄𝑝NE2 = 1
𝜋

⎛⎜⎜⎜⎜
⎝

𝜃
2

∫
𝜋
2

2𝑟 d𝑥1 +
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2 − 𝛼
2

∫
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2
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2 − 𝑥1) + 𝑟 d𝑥1

+
2𝜋− 𝜃

2

∫
5𝜋
2 − 𝜃

2 − 𝛼
2

𝑟 cos (𝜃
2 + 𝑥1) + 𝑟 d𝑥1 +

3𝜋
2

∫
2𝜋− 𝜃

2

2𝑟 d𝑥1
⎞⎟⎟⎟⎟
⎠

(D.5)

̄𝑝NE2 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + cos (𝛼
2 + 𝜃)) (D.6)

D.2.4.3 Model NE3

Model NE3 is bound by 𝛼 ≤ 4𝜋 − 2𝜃, 𝛼 ≥ 𝜋 and 𝜃 ≥ 𝜋 (Figure 5.2). It is the same
as NE2 except that it contains the extra profile with width 𝑟 (third integral).
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̄𝑝NE3 = 1
𝜋
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∫
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2𝑟 d𝑥1 +
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2

∫
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𝑟 cos (𝜃
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2𝑟 d𝑥1
⎞⎟⎟⎟⎟
⎠

(D.7)

̄𝑝NE3 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.8)

D.2.5 Models SE2–4
Quadrant SE contains three submodels excluding SE1 (Figure 5.2). The differ-
ences between these three models are similar to the differences between the mod-
els in NE. There are four possible profiles.

1. As 𝛼 is less than 𝜋 the profile is smaller than 2𝑟, even when the sensor width
is a full diameter. The profile width starts as 2𝑟 sin(𝛼/2).

2. Similar to NE, at a certain point the blind spot of the sensor area limits the
profile width on one side. This gives a profile width of 𝑟 sin(𝛼/2)+𝑟 cos(𝑥1−
𝜃/2) (Figure D.3).

3. Also similar to NE, there can be a point where the right side of the profile
is 0 giving a profile width of 𝑟 sin(𝛼/2).

4. If 𝛼 ≤ 2𝜋 −𝜃, then at 𝑥1 = 𝜃/2+𝜋/2+𝛼/2 the profile width becomes 0. This
inequality distinguishes between SE3 and SE4.

5. The third profile 𝑟 sin(𝛼/2) starts at 𝜃/2 + 𝜋/2 while at 5𝜋/2 − 𝛼/2 − 𝜃/2 the
profile returns to size 2𝑟 sin(𝛼/2). If 𝜃/2 + 𝜋/2 ≥ 5𝜋/2 − 𝛼/2 − 𝜃/2 we go
straight into the 2𝑟 sin(𝛼/2) profile and miss the 𝑟 sin(𝛼/2) profile. SE2 and
SE3 are separated by this inequality which simplifies to 𝛼 ≤ 4𝜋 − 2𝜃.

D.2.5.1 Model SE2

SE2 is bounded by 𝛼 ≥ 4𝜋 − 2𝜃, 𝛼 ≤ 𝜋 and 𝜃 ≤ 2𝜋 (Figure 5.2). As 𝛼 ≥ 4𝜋 − 2𝜃,
there is no 𝑟 sin(𝛼/2) profile. As 𝛼 ≤ 4𝜋 − 2𝜃, the profile returns to 2𝑟 sin(𝛼/2)
rather than going to 0. These integrals relate to profiles (1), (2) and (5) in Section
D.2.5.
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̄𝑝SE2 = 1
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(D.9)

̄𝑝SE2 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + cos (𝛼

2 + 𝜃)) (D.10)

D.2.5.2 Model SE3

SE3 is bounded by 4𝜋 − 2𝜃 ≤ 𝛼 ≤ 4𝜋 − 2𝜃 and 𝛼 ≤ 𝜋 (Figure 5.2). Therefore there
is a 𝑟 sin(𝛼/2) profile but no 0𝑟 profile. This relates to profiles (1), (2), (3) and (5)
above.
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𝜋
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(D.11)

̄𝑝SE3 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.12)

D.2.5.3 Model SE4

Finally SE4 is bounded by 𝛼 ≤ 4𝜋 − 2𝜃, 𝛼 ≤ 𝜋 and 𝜃 ≤ 𝜋 (Figure 5.2). It is the
same as SE3 except that the profile becomes 0 rather than returning to 2𝑟 sin(𝛼/2).
This relates to profiles (1), (2), (3) and (4) above though profile (4) with width 0
is not shown.
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(D.13)
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x4
+ x  - 4π θ

A B

Figure D.4 The second and fourth profiles of NW1. The left side of of both pro-
files is of width 𝑟 while the right side differs. A) The right side of the profile
is 𝑟 cos(𝜋+𝑥4 −𝜃) = −𝑟 cos(𝜃−𝑥4) B) The right side is 𝑟 cos(𝜋−𝑥4) = −𝑟 cos 𝑥4
respectively. In both images the sector shaped detection region is shown in
grey. Animals are filled black circles and the animal signal is an unfilled
sector. The animals direction of movement is indicated with an arrow. The
profile 𝑝 is shown with a red line.

̄𝑝SE4 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.14)

D.2.6 Model NW1
NW1 is the first model with 𝜃 < 𝜋. Whereas previously the focal angle has always
been 𝑥1, we now use different focal angles. 𝑥2 and 𝑥3 correspond to 𝛾1 and 𝛾2 in
(Rowcliffe et al. 2008) while 𝑥4 is new. They are described in Figure D.1B – D.

There are five different profiles in NW1.

1. 𝑥2 has an interval of [𝜋/2, 𝜃/2] which is from the angle of approach being
directly towards the sensor until the profile is parallel to the left hand radius
of the sensor sector (Figure D.1B). During this interval the profile width is
2𝑟 sin (𝜃/2) sin(𝑥2) which is calculated using the equation for the length of
a chord . Note that while rotating anti-clockwise (as usual) 𝑥2 decreases in
size.
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2. From here, we examine focal angle 𝑥4 (note that 𝑥3 is used in later models,
but is not relevant here). The left side of the profile is a full radius while
the right side is limited to −𝑟 cos(𝑥4 − 𝜃) (Figure D.4A).

3. At 𝑥4 = 𝜃 − 𝜋/2, the profile is perpendicular to the edge of the sensor area.
Here, the right side of the profile is 0𝑟 giving a profile size of 𝑟.

4. When 𝑥4 = 𝜋/2 the angle of approach is from behind the sensor, but we
can once again be detected on the right side of the sensor (Figure D.4B).
Therefore the width of the profile is 𝑟 − 𝑟 cos(𝑥4).

5. Finally, we have the 𝑥2 profile, but from behind.
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∫
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𝑟 d𝑥4 +
𝜃

∫
𝜋
2

𝑟 − 𝑟 cos (𝑥4) d𝑥4 +
𝜋
2

∫
𝜃
2

2𝑟 sin (𝜃
2) sin (𝑥2) d𝑥2

⎞⎟⎟⎟⎟
⎠

(D.15)

̄𝑝NW1 = 𝑟
𝜋 (𝜃 + 2) (D.16)

D.2.7 Models NW2–4
The models NW2–4 have the five potential profiles in NW1 but not all profiles
occur in each model, and the angle at which transitions occur are different. Fur-
thermore, there is one extra profile possible.

1. When approaching the sensor from behind, there is a period where the
profile is 𝑟 wide as in NW1 profile (3).

2. At some point after profile (1) animals to the right of the sensor can be
detected again. If this occurs in the 𝑥4 region, the profile width becomes
𝑟 − 𝑟 cos(𝑥4) as in NW1.

3. However, as 𝛼 is now less than 2𝜋, animals to the right of the sensor may
be undetectable until we are in the second 𝑥2 region. In this case, when we
first enter the second 𝑥2 region, the profile has a width of 𝑟 cos(𝑥2 − 𝜃/2).
This occurs only if 𝛼 ≤ 3𝜋 − 2𝜃. This inequality is found by noting that
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α
A

π θ-
B

Figure D.5 Profile sizes when an animal approaches from behind in models
NW2–4. If 𝛼 is relatively large, animals can be detected when approaching
from behind. Otherwise animals cannot be detected. The sector shaped de-
tection region is shown in grey. Animals are filled black circles and the an-
imal signal is an unfilled sector. The animals direction of movement is indic-
ated with an arrow. A) If 𝛼/2 is less than 𝜋 − 𝜃/2, as is the case here, then
the width of the profile when an animal approaches directly from behind is
zero. B) If 𝛼/2 > 𝜋 − 𝜃/2 the profile width from behind is 2𝑟 sin (𝜃/2) sin(𝑥2).

animals to the right of the sensor can be detected again at 𝑥4 = 3𝜋/2 − 𝛼
but the 𝑥2 region starts at 𝑥4 = 𝜃. The new profile in 𝑥2 will only occur
if 𝜃 < 3𝜋/2 − 𝛼/2 which is rearranged to find the inequality above. This
defines the boundary between NW2 and NW3.

4. As 𝛼 ≤ 2𝜋 it is possible that when the angle of approach is from directly
behind the sensor the animal will not be detected at all. This is the case
if 𝛼/2 ≤ 𝜋 − 𝜃/2 (Figure D.5). This inequality (simplified as 𝛼 ≤ 2𝜋 − 𝜃)
defines the boundary between NW3 and NW4.

D.2.7.1 Model NW2

NW2 is bounded by 𝛼 ≥ 3𝜋 − 2𝜃, 𝛼 ≤ 2𝜋 and 𝜃 ≤ 𝜋 (Figure 5.2).
NW2 has all five profiles as found in NW1. However, the change from the 𝑟

profile (third integral) to the 𝑟 − 𝑟 cos(𝑥4) profile (fourth integral) occurs at 𝑥4 =
3𝜋/2 − 𝛼/2 instead of at 𝑥4 = 𝜃.
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(D.17)

̄𝑝NW2 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.18)

D.2.7.2 Model NW3

NW3 is bounded by 𝛼 ≤ 3𝜋 − 2𝜃, 𝛼 ≥ 2𝜋 − 𝜃 and 𝜃 ≥ 𝜋/2 (Figure 5.2).
NW3 does not have the fourth integral from NW2 as animals are not detect-

able to the right of the sensor until after the 𝑥4 region has ended and the 𝑥2 region
has begun. Therefore the second 𝑥4 integral has an upper limit of 𝜃 and the profile
after has a width of 𝑟 cos(𝑥2 − 𝜃/2) and is integrated with respect to 𝑥2. The final
integral starts at 𝑥4 = 3𝜋/2−𝛼/2−𝜃/2 and has the full width of 2𝑟 sin(𝑥2) sin(𝜃/2).
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(D.19)

̄𝑝NW3 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.20)

D.2.7.3 Model NW4

Finally, NW4 is bounded by 𝛼 ≥ 𝜋, 𝜃 ≥ 𝜋/2 and 𝛼 ≤ 2𝜋 − 𝜃 (Figure 5.2). NW4
is the same as NW3 except that the final profile width is zero and this profile is
reached at 𝛼/2 + 𝜃/2 − 𝜋/2.
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(D.21)
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̄𝑝NW4 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.22)

D.2.8 Model REM
REM is the model from (Rowcliffe et al. 2008). It has 𝛼 = 2𝜋 and 𝜃 ≤ 𝜋/2 (Fig-
ure 5.2). It has three profile widths, two of which are repeated, once as the animal
approaches from in front of the sensor and once as the animal approaches from
behind the sensor.

1. Starting with an approach direction of directly towards the sensor, and ex-
amining focal angle 𝑥2, the profile width is 2𝑟 sin(𝑥2) sin(𝜃/2).

2. When the profile is perpendicular to the radius on the right hand of the
sector sensor region, we instead examine 𝑥3 where the profile width is
𝑟 sin(𝑥3).

3. At 𝑥3 = 𝜋/2 the profile becomes simply 𝑟 and this continues for 𝜃 radians
of 𝑥4.

4. The 𝑥3 profile is then repeated with an approach direction from behind the
sensor.

5. Finally the 𝑥2 profile is repeated, again with an approach direction from
behind the sensor.
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(D.23)

̄𝑝REM = 𝑟
𝜋 (𝜃 + 2) (D.24)
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D.2.9 Models NW5–7
In the models NW5–7, the sensor has 𝜃 ≤ 𝜋/2 as in the REM. As 𝛼 ≥ 𝜋 a lot of
the profiles are similar to the REM. Specifically, the first three profiles are always
the same as the first three profiles of the REM. This is because when an animal
is moving towards the sensor, the 𝛼 ≥ 𝜋 signal is no different to a 2𝜋 signal.
However, when approaching the sensor from behind, things are slightly different.
The animal can only be detected by the sensor if the signal width is large enough
that it can be detected once it has passed the sensor.

1. Starting with an approach direction of directly towards the sensor, and ex-
amining focal angle 𝑥2, the profile width is 2𝑟 sin(𝑥2) sin(𝜃/2).

2. When the profile is perpendicular to the radius edge of the sector sensor
region, we instead examine 𝑥3 where the profile width is 𝑟 sin(𝑥3).

3. At 𝑥3 = 𝜋/2 the profile becomes simply 𝑟 and this continues for 𝜃 radians
of 𝑥4.

4. If 𝛼 ≤ 2𝜋 + 2𝜃, the animal becomes undetectable during this profile when
𝑥3 has decreased in size to 𝜋 − 𝛼/2. This inequality marks the boundary
between NW7 and NW6.

5. If instead 𝛼 ≥ 2𝜋+2𝜃 then the animal does not become undetectable during
the 𝑥3 focal angle. Instead the profile has width greater than zero for the
whole of the 𝑥3 angle. The 𝑥2 profile starts with width 𝑟 cos(𝑥2 − 𝜃/2) as
only animals approaching to the left of the sensor are detectable.

6. During this second 𝑥2 profile the signal width needed for animals to be
detected to the left of the detector is increasing while the angle needed for
animals to be detected to the right of the detector is decreasing. Therefore,
either the left side becomes undetectable, making both sides undetectable
(this occurs if 𝛼 ≤ 2𝜋 − 𝜃 as in NW6)

7. or the right becomes detectable (if 𝛼 ≥ 2𝜋 − 𝜃 as in NW5), making both
sides detectable and giving a profile width of 2𝑟 sin(𝑥2) sin(𝜃/2).

D.2.9.1 Model NW5

NW5 is bounded by 𝛼 ≥ 2𝜋 − 𝜃, 𝛼 ≤ 2𝜋 and 𝜃 ≤ 𝜋/2 (Figure 5.2).
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It is the same as REM except that it includes the extra profile in 𝑥2 (the fifth
integral) where only animals approaching to the left of the profile are detected.
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(D.25)

̄𝑝NW5 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.26)

D.2.9.2 Model NW6

NW6 is bounded by 𝛼 ≤ 2𝜋 − 𝜃, 𝛼 ≥ 2𝜋 + 2𝜃 and 𝜃 ≤ 𝜋/2 (Figure 5.2).
NW6 is the same NW5 except that as 𝛼 ≤ 2𝜋 −𝜃, animals that approach from

directly behind the detector are not detected. Therefore at 𝑥2 = 𝛼/2+𝜃/2−𝜋/2 the
profile width goes to zero and therefore the last integral in NW5 is not included.
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(D.27)

̄𝑝NW6 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.28)

D.2.9.3 Model NW7

NW7 is bounded by 𝛼 ≥ 2𝜋 + 2𝜃, 𝛼 ≥ 𝜋 and 𝜃 ≥ 0 (Figure 5.2).
It is similar to NW6 but does not include the last integral as during the 𝑥3

profile, at 𝑥3 = 𝜋−𝛼/2 the signal width is too small for any animals to be detected,
so the profile width goes to zero.
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α
A

θ
B

Figure D.6 The first profile in SW models is limited by either 𝛼 or 𝛽 depending
on whether 𝛼 < 𝛽. The sector shaped detection region is shown in grey.
Animals are filled black circles and the animal signal is an unfilled sector.
The animals direction of movement is indicated with an arrow. A) As 𝛼/2 <
𝜃/2 the profile width is limited by the signal width rather than the sensor
region. The profile width is 2𝑟 sin (𝛼/2). B) As 𝛼/2 > 𝜃/2 the profile width
is limited by the sensor region, not the signal width. The profile width is
2𝑟 sin (𝜃/2) sin(𝑥2).

̄𝑝NW7 = 1
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(D.29)

̄𝑝NW7 = 𝑟
𝜋 (𝜃 − cos (𝛼

2) + 1) (D.30)

D.2.10 Model SW1–3
The models in SW1–3 are described with the two focal angles used in models
NW2–4, 𝑥2 and 𝑥4. As 𝛼 ≤ 𝜋 an animal can never be detected if it is approach-
ing the detector from behind. This makes these models simpler in that they go
through the 𝑥2 and 𝑥4 profiles only once each.

There are five potential profile sizes.

1. At the beginning of 𝑥2, with an approach direction directly towards the
sensor, the parameter that limits the width of the profile can either be the
sensor width, in which case the profile width is 2𝑟 sin (𝜃/2) sin(𝑥2).
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2. Or the signal width can be the limiting parameter, in which case the profile
width is instead 2𝑟 sin(𝛼/2) (Figure D.6)

3. The next potential profile in 𝑥2 has a width of 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2) as
the right side of the profile is limited by the width of the sensor region while
the left side is limited by the signal width. However, the angle at which the
profile starts depends on whether the first profile was 1) or 2) above. If
the first profile is profile 1) then the profile is limited on both sides by the
sensor region and then the left side of the profile becomes limited by the
signal width. This happens at 𝑥2 = 𝜋/2 − 𝛼/2 + 𝜃/2. If however the first
profile was 2) then the first profile is limited by the signal width. We move
into the new profile when the right side of the profile becomes limited by
the sensor region. This occurs at 𝑥2 = 𝜋/2 + 𝛼/2 − 𝜃/2.

4. In the 𝑥4 region the left side of the profile is always 𝑟 sin(𝛼/2) while the right
side is either 0, giving a profile of 𝑟 sin(𝛼/2).

5. Or limited by the sensor giving a profile of size 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥4 − 𝜃).

D.2.10.1 Model SW1

SW1 is bounded by 𝛼 ≥ 𝜃, 𝛼 ≤ 𝜋 and 𝜃 ≤ 𝜋 (Figure 5.2).
As 𝛼 is large the first profile is limited by the size of the sensor region giving

it a width of 2𝑟 sin (𝜃/2) sin(𝑥2). It is the only one of the three SW models to start
in this way. Later on, still with 𝑥2 as the focal angle the left side of the profile
does become limited by the signal width. So at 𝑥2 = 𝜋/2 − 𝛼/2 + 𝜃/2 the profile
width becomes 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2).

As we enter the 𝑥4 region, the profile remains limited by the signal on the left
and by the sensor on the right, giving a profile width of 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥4 − 𝜃).
Finally, at 𝑥4 = 𝜃 − 𝜋/2 the right side of the profile becomes zero and the profile
is width is 𝑟 sin(𝛼/2).
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(D.31)

̄𝑝SW1 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.32)
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D.2.10.2 Model SW2

SW2 is bounded by 𝜃 ≥ 𝜋/2, 𝛼 ≤ 𝜃 and 𝛼 ≥ 2𝜃 − 𝜋 (Figure 5.2).
SW2 is largely similar to SW1. However, as 𝛼 ≤ 𝜃 the first profile is limited by

𝛼 and not by the detection region. Therefore the first profile has width 2𝑟 sin(𝛼/2).
This also means the transition to the second profile occurs at 𝑥2 = 𝜋/2+𝛼/2−𝜃/2
instead of 𝑥2 = 𝜋/2 − 𝛼/2 + 𝜃/2.
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(D.33)

̄𝑝SW2 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.34)

D.2.10.3 Model SW3

SW3 is bounded by 𝛼 ≤ 2𝜃 − 𝜋 and 𝜃 ≤ 𝜋 (Figure 5.2).
SW3 is similar to SW2 except that the profile does not become limited by

sensor at all during the the 𝑥4 regions. Therefore, at 𝑥4 = 0 the profile is still of
width 2𝑟 sin(𝛼/2). Only at 𝑥4 = 𝜃 − 𝜋/2 − 𝛼/2 does the profile become limited on
the right by the sensor region.
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(D.35)

̄𝑝SW3 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.36)
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π θ-
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Figure D.7 Description of two profiles in SW models. The sector shaped detec-
tion region is shown in grey. Animals are filled black circles and the animal
signal is an unfilled sector. The animals direction of movement is indicated
with an arrow. The profile 𝑝 is shown with a red line. Dashed red lines in-
dicate areas where animals cannot be detected. A) At 𝑥4 = 0, if 𝛼/2 < 𝜋/2−𝜃
then 𝛼/2 is too small for an animal to be detected at all during the 𝑥4 profile
(shown with dashed red). This inequality simplifies to 𝛼 < 𝜋 − 2𝜃. B) The
right of the profile is limited by the signal width, not the sensor. On the left,
the profile is limited by the sensor and not the signal. Overall the profile
width is 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2).

D.2.11 Model SW4–9
As 𝛼 < 𝜋, animals approaching the sensor from behind can never be detected, so
unlike REM, the second 𝑥2 and 𝑥3 profiles are always zero. The six models are
split by three inequalities that relate to the models as follows.

1. Models with 𝛼 ≤ 𝜋 −2𝜃 have no 𝑥4 profile. This is because at 𝑥4 = 0, the sig-
nal width is already too small to be detected as can be seen in Figure D.7A
where 𝛼/2 < 𝜋/2 − 𝜃 which simplifies to give the previous inequality.

2. Models with 𝛼 ≤ 𝜃 are limited by 𝛼 in the first, 𝑥2 region (Figure D.6), rather
than being limited by 𝜃. Therefore this first profile is of width 2𝑟 sin(𝛼/2)
rather than 2𝑟 sin(𝜃/2) sin(𝑥2).

3. Finally, models with 𝛼 ≤ 2𝜃 have a second profile in 𝑥2 where to one side of
the sensor 𝛼 is the limiting factor of profile width, while on the other side
𝜃 is (Figure D.7B). This gives a width of 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2). This
profile does not occur in models with 𝛼 ≥ 2𝜃.
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D.2.11.1 Model SW4

SW4 is bounded by 𝛼 ≤ 𝜃, 𝛼 ≥ 𝜋 − 2𝜃 and 𝜃 ≤ 𝜋/2 (Figure 5.2). Therefore it
does contain a 𝑥4 profile, starts with an 𝛼 limited profile and does contain the
𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2) profile in 𝑥2.
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(D.37)

̄𝑝SE4 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.38)

D.2.11.2 Model SW5

SW5 is the only model with a tetrahedral bounding region. It is bounded by 𝛼 ≥ 𝜃,
𝛼 ≥ 𝜋 − 2𝜃, 𝛼 ≤ 2𝜃 and 𝜃 ≤ 𝜋/2 (Figure 5.2). Therefore it does contain a 𝑥4 profile,
but starts with a 𝜃 limited profile. It does contain the 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2)
profile in 𝑥2.
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̄𝑝SW5 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.40)

D.2.11.3 Model SW6

SW6 is bounded by 𝛼 ≥ 𝜋 − 2𝜃, 𝛼 ≥ 2𝜃 and 𝛼 ≤ 𝜋 (Figure 5.2). It starts with a 𝜃
limited profile and has a 𝑥4 profile. However, it does not contain the 𝑟 sin(𝛼/2) −
𝑟 cos(𝑥2 + 𝜃/2) profile.
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̄𝑝SW6 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.42)

D.2.11.4 Model SW7

SW7 is bounded by 𝛼 ≤ 𝜋 − 2𝜃, 𝛼 ≤ 𝜃 and 𝛼 < 0 (Figure 5.2). Therefore it does not
contain a 𝑥4 profile. It starts with an 𝛼 limited profile and contains the 𝑟 sin(𝛼/2)−
𝑟 cos(𝑥2 + 𝜃/2) profile in 𝑥2.
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̄𝑝SW7 = 𝑟
𝜋 (𝜃 sin (𝛼
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2) + 1) (D.44)

D.2.11.5 Model SW8

SW8 is bounded by 𝛼 ≤ 𝜋 − 2𝜃, 𝛼 ≥ 𝜃 and 𝛼 ≤ 2𝜃 (Figure 5.2). It starts with a
𝜃 limited profile. It does contain the 𝑟 sin(𝛼/2) − 𝑟 cos(𝑥2 + 𝜃/2) profile in 𝑥2 but
does not have a 𝑥4 profile.
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(D.45)

̄𝑝SW8 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.46)



A: A       
 163

D.2.11.6 Model SW9

Finally, SW9, the last model, is bounded by y 𝛼 ≤ 𝜋 − 2𝜃, 𝛼 ≥ 2𝜃 and 𝜃 ≥ 0
(Figure 5.2). Therefore it starts with a 𝜃 limited profile. However it does not
contain the extra 𝑥2 profile nor a 𝑥4 profile.
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(D.47)

̄𝑝SW9 = 𝑟
𝜋 (𝜃 sin (𝛼

2) − cos (𝛼
2) + 1) (D.48)
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D.3 Supplementary information: Simulation model
results of the gREM precision
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Figure D.1 Simulation model results of the gREM precision given a range of
sensor and signal widths, shown by the standard deviation of the error
between the estimated and true densities. Standard deviations are shown
from deep red to pink, representing high to low values between 0.483 × 10−6

to 3.74 × 10−6.
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D.4 Supplementary information: Impact of parameter
error

Model Number
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Figure D.2 Model sensitivity (for all gREM submodels) to error in estimates of
A) signal width 𝛼, B) sensor width 𝜃, C) detection distance 𝑟 and D) animal
movement speed 𝑣. Estimates are -10% (red), -1% (orange), 0% (grey), +1%
(green) and +10% (blue) of the true parameter value. The black dashed line
indicates zero error in density estimates. The error bars 95% confidence in-
tervals across all simulations.
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Appendix E

Colophon

This thesis was set using LATEX, XƎLATEX and BibLATEX. The formatting is defined
by the phdthesis class by Robert Stanley. The TeX Gyre Pagella typeface is used in
the main text while Lato Light and Lato Black are used in the figures. Chapters
2, 3 and 4 are entirely reproducible knitr documents (Xie 2015). Code for the
simulations in Chapter 5 is not combined into a knitr document but code for cre-
ating figures is. All code is available on Github at https://github.com/timcdlucas/
PhDThesis. Plots were created with a combination of Inkscape, ggplot2 (Wickham
2009), palettetown (Lucas 2015b), ggtree (Yu 2015), cowplot (Wilke 2015) and base R
(R Development Core Team 2010). References were handled with JabRef (JabRef
Development Team 2015).

https://github.com/robjstan/latex-phdthesis
http://yihui.name/knitr/
https://github.com/timcdlucas/PhDThesis
https://github.com/timcdlucas/PhDThesis
www.inkscape.org
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