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Abstract

The stochastic trajectory-based (Lagrangian) approach has gained increasing

importance and sophistication in atmospheric transport and dispersion modelling

over the last few decades. State-of-the-art Lagrangian particle dispersion model

(LPDMs) are used to compute trajectories of a large number of ‘marked’ particles

and numerically simulate the dispersion of a pollutant (passive tracer) in the turbu-

lent atmosphere. In this thesis, we mainly investigate the stochastic formulation and

behaviour of LPDMs in the context of the turbulent atmospheric boundary layer

(ABL).

A random flight model (RFM) is a type of LPDM that describes the paths of

particles of an air pollutant in a turbulent flow, given a statistical knowledge of

the random velocity field. Operational RFMs such as FLEXPART have not taken

advantage of modern developments of numerical methods for stochastic differential

equations. Chapter 2 of this thesis aims to determine whether current numerical

schemes used in operational atmospheric dispersion modelling can be improved. Sev-

eral commonly used numerical schemes are investigated in a simple one-dimensional

dispersion model describing the vertical turbulence in the ABL. Eulerian Fokker-

Planck equation (FPE) solutions with the required level of accuracy are used to

validate the performance of the RFM numerical schemes. The results allow for op-

timal time-step selection and recommendations to be made for use in operational

models.
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Abstract iii

RFMs are known to have a finite Lagrangian decorrelation time. Another class of

LPDMs are the random displacement models (RDMs), which are essentially the zero

decorrelation time limit of the RFMs. In Chapter 3, the problem of shear dispersion

in the ABL is revisited, with the aim to improve understanding of how and why

the behaviour of RFMs can differ to the RDMs. First, the effective horizontal

diffusivity is examined for a tracer in the long-time dispersion in the RFM. Second,

with ‘poison gas release’ problems in mind, a large-deviation approach is used to

understand in greater detail the behaviour of the concentration in the tails of the

distribution. Results are verified by solving the LPDM equations numerically for a

large ensemble of particles.

Chapter 4 discusses methods of kernel density estimation for the optimal con-

struction of particle concentration fields from the trajectory distributions. We

demonstrate these methods on a two-dimensional advection-diffusion model (equiv-

alent to the RDM) in a chaotic advection flow. Some well-known techniques of

bandwidth selection are briefly discussed and a new approach in constructing a

kernel density estimator is developed.
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Chapter 1

Introduction

Overview: This introductory chapter provides the reader with an overall view

of this thesis. An overview of a simple atmospheric dispersion problem is sketched,

as well as the two basic types of reference frames to look at it. More emphasis will

be put on the Lagrangian perspective, when Lagrangian models are used and why

they are needed. Next a brief mathematical introduction to the theory of stochastic

differential equations (SDEs) is given, including the complementary probabilistic

approach to stochastic processes represented by Fokker-Planck equation and its

relatives. An introduction to the two basic types of Lagrangian stochastic models

used to simulate dispersion in the turbulent ABL follows, namely random flight

models (RFMs) and random displacement model (RDMs), as well their formulation.

After that we take a closer look at why the two models are useful and what flow

situations they could be used for. Finally the concept of variance reduction for rare-

events in stochastic simulations are briefly discussed, most notably on the splitting

method known as Go-with-the-winners (GWTW). The scope of the research will be

briefly discussed, and to conclude the chapter an outline for the rest of the thesis

will be given.



Chapter 1. Introduction 2

1.1 The atmosphere

The earth’s atmosphere consists of a number of layers, that differ according to the

air constituents and temperature profiles (i.e. stratification). Figure 1.1 shows a plot

of how the temperature varies with height altitude in the atmosphere. In general, the

air grows progressively less dense as we move upward from the troposphere through

the stratosphere and the mesosphere to the thermosphere. In the upper reaches

of the thermosphere, the air is extremely thin with gas molecules being separated

from each other by large distances as compared with the troposphere. Atmospheric

dispersion models are mainly used in the troposphere and stratosphere, and are

particularly important in the atmospheric boundary layer where three-dimensional

turbulence is most prevalent.

1.1.1 Atmospheric boundary layer

The atmospheric boundary layer (ABL) is defined as “the part of the troposphere

that is directly influenced by the presence of the earth’s surface, and responds to

surface forcings with a timescale of about an hour or less” (Stull, 1988). Its depth is

typically less than 1 km and varies depending on the local meteorology. Turbulence

is ubiquitous within the boundary layer and is responsible for efficiently dispersing

pollutants and other constituents of the atmosphere. Therefore it plays a crucial

role in modulating the weather (temperature, humidity, wind strength, air quality,

etc) that we see and experience on the surface.

Turbulence in the ABL can be visualised in the form of irregular swirls called

eddies. These eddies have two primary causes: mechanical and thermal, which

determine the structure of the ABL, that itself evolves with the diurnal (daily)

cycle. Large eddy thermals consists of warm air that rises and cold air to sink due

to buoyancy forces, for example from solar heating of the ground during sunny days.

Mechanical eddies are generated by wind shear, which can be caused by frictional
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Figure 1.1: Vertical change in average global atmospheric temperature. Variations
in the way temperature changes with height indicates the atmosphere is composed
of four different layers as labeled above. (Source: PhysicalGeography.net)
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drag on the surface roughness of the ground or turbulent wakes from obstacles that

deflect the flow, such as trees and buildings. Mechanical turbulence can also take

place even if the air is in stable stratification due to the dynamically unstable flow

causing the formation and breakdown of waves in the air known as Kelvin-Helmholtz

waves. In addition, ABL turbulence may also interact with a large-scale mean flow

that is influenced by the Earth’s rotation or Coriolis force.

Over land surfaces in particular, the ABL turbulence has a well defined structure

influenced by the diurnal cycle of surface heating and cooling, and the presence of

clouds. The typical diurnal cycle of the ABL over land is illustrated in Figure 1.2.

The three major components of the ABL can be summarised in the following

(i) Unstable conditions occur in the daytime when there is strong surface heating

from the sun, which produces thermal instability or convection in the form

of vigorous thermal updrafts and downdrafts. The region which is strongly

dominated by convective motions is often referred to the convective boundary

layer or mixed layer. The stable layer at the top, called entrainment zone acts

as a lid to the rising thermals and thus restrains the domain of turbulence.

(ii) In contrast, the stable conditions occur mostly at night, the turbulence level

decrease with height in response to the surface cooling. The top of the stable

ABL, z = h is not as sharply defined as the top of the convective layer, but

there is a general agreement that h should be the height where turbulence

drops to negligible levels.

(iii) In the absence of thermal processes, the ABL is said to be neutral which

takes place in windy conditions with a complete cloud cover. This condition is

sometimes referred to as the Ekman ABL because of the zero buoyancy effects

and the dominant turbulence are driven by the frictional and Coriolis forces

(see for e.g. §2.12 of Vallis, 2006).

As mentioned above, this chapter serves to provide the reader an overall sketch of
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the main motivations of this thesis. More comprehensive descriptions of the ABL

physical turbulence and flows can be found in the books of Stull (1988); Garratt

(1994); Kaimal and Finnigan (1994).

Figure 1.2: Well defined structure of the atmospheric boundary layer in the typical
diurnal cycle, adapted from Stull (1988, Fig. 1.7).

1.1.2 Atmospheric dispersion models

Atmospheric dispersion modelling refers to the mathematical description for the

transport of particulates or air pollutants in the atmosphere. The term dispersion

is used to describe the combination of diffusion (due to turbulent eddy motion) and

advection (due to the wind) that occurs near the Earth’s surface.

Many models have been developed to stimulate large-scale transport of atmo-

spheric tracers, with a number of potential practical applications at very different

scales. These studies are highly significant in efforts of protecting and managing

the ambient air quality. An important application of these models is the forecast

of volcanic ash clouds in the atmosphere which is vital in the efforts to control air
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traffic after major volcanic eruptions. Some examples of these events include Ice-

landic Grimsvötn volcano (e.g. Witham et al., 2007), Mount Okmok and Kasatochi

(D’Amours et al., 2010) in the United States, Icelandic Eyjafjallajökull (e.g. Lang-

mann et al., 2012; Devenish et al., 2011), and more recently, the eruptions of 2014

Mount Sinabung in Indonesia and 2016 Calbucco in Chile. Other important motiva-

tions for the development of atmospheric models were the nuclear reactor accidents

of the 1986 Chernobyl (Hiroaki and Masamichi, 2008) and the 2011 Fukushima Dai-

ichi (Stohl et al., 2012), which highlighted the need to be able to estimate long-range

transport and dispersion in a timely and flexible way.

In recent years, trajectory modelling of atmospheric dispersion, often referred

to as Lagrangian particle dispersion models (LPDMs, hereafter) have become in-

creasingly important owing to its simplicity in concept and applicability to complex

problems in which more conventional approaches cannot be applied, e.g. Gaussian

puff models describing plume dispersion (Weil and Brower, 1984). The stochastic

technique is typically implemented in the form of a numerical Monte Carlo method,

which uses a large number of hypothetical particles to simulate the transport and

dispersion of atmospheric pollutants. The particles are continuously traced in time

and space and their population represents the plume structure. Because particle

paths are computed independently, Lagrangian simulations can be parallelised with

minimal effort. LPDMs are the natural and most powerful tool to describe a wide

range of atmospheric dispersion events. Some examples of widely used LPDMs in-

clude FLEXible PARTicle dispersion (FLEXPART) model (Stohl et al., 2005), and

Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003).

Some models even have hybrid capabilities that combine plume and particle charac-

teristics, such as the UK Met Office’s Numerical Atmospheric dispersion Modelling

Environment (NAME) (Jones et al., 2007), and TAPM (Hurley et al., 2005).

In the present day, state-of-the-art LPDMs are used in transport and dispersion

applications ranging from micrometeorological to global scales. A few examples of
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LPDM applications have already been mentioned above, namely predicting the haz-

ards of volcanic ash clouds (Stohl et al., 2011; Devenish et al., 2011; D’Amours et al.,

2010) and modelling of nuclear accident scenarios (Stohl et al., 2012). Other variants

of the LPDMs are also applied in atmospheric dispersion areas, such as establish-

ing the relationship between emissions of pollutants and air quality downstream

(Cassiani et al., 2012), the determination of constraints on chemical emissions via

inverse modelling (Seibert and Frank, 2004; Stohl et al., 2010), modelling concen-

tration fluctuations for e.g. through micromixing techniques (Cassiani et al., 2005),

and non-passive tracers; such as buoyant plumes (Das and Durbin, 2005) and heavy

gases (Anfossi et al., 2010). More fundamentally, applications of LPDMs have been

extended from air pollution studies to other topics that are used to address key sci-

entific questions concerning the nature of transport in the atmosphere such as the

exchange between the troposphere and stratosphere (Legras et al., 2005; Berthet

et al., 2007), including how transport might be influenced by a changing global cli-

mate (James et al., 2003a,b). Recently, the model NAME has been used to model

the dispersion of wind-borne viruses such as the Bluetongue and Schmallenberg

viruses, which are believed to be spread by midges (UK Met Office).

In this study, we will restrict to models of passive material, i.e. neutrally buoyant

and non-reactive tracer particles. We have preferred to focus on the Lagrangian

modelling of the short range transport (order of ≤ 100 km) of passive tracer in the

ABL where the turbulence is inhomogeneous (in the vertical direction z, if not in

x and y), possibly non-stationary, and characterised by having a large Reynolds

number, Re = Uh/ν (where U is a characteristic velocity, h is the ABL height, and

ν is the kinematic viscosity of air).
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1.1.3 Lagrangian perspective and its advantages

The concentration of a passive tracer c(x, t) released into the air may therefore

be described by the advection-diffusion equation, which is a second-order partial

differential equation (PDE, hereafter) of parabolic type, which has the form

∂c

∂t
+ (u · ∇) c−∇ · (κ · ∇c) = s(x, t). (1.1)

Here u(x, t) is a known smooth incompressible velocity field, κ(x, t) is a symmetric

diffusivity tensor and s(x, t) a source term. There are generally two different meth-

ods of solving this dispersion problem: Eulerian and Lagrangian. The Eulerian

solves eq. (1.1) directly on a fixed spatial grid, using deterministic numerical meth-

ods (e.g. finite element, finite difference and spectral methods). The Lagrangian

method on the other hand follows the trajectories of particles through space at every

time step (using stochastic methods or Monte-Carlo simulations), and allows obser-

vation of fluctuations in the path of the particles. Figure 1.3 depicts a schematic

example of the Eulerian (left panel) and Lagrangian (right panel) methods of a fluid

flow in the numerical model.

(a) Eulerian (b) Lagrangian

Figure 1.3: Representative examples of the frame of reference using (a) the grid-
based Eulerian model, and (b) particle tracking in the Lagrangian model.
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Air parcels simulation in Lagrangian models is the most natural way for deal-

ing with atmospheric flows, as the air in the atmosphere is comprised of molecules

being transported. The availability of trajectory information from Lagrangian sim-

ulations may serve as key knowledge in addressing scientific question, as illustrated

throughout the literature (see the monograph of Lin et al., 2013, for examples).

Also, the Lagrangian models offer several advantages over the Eulerian schemes.

Among others (Lin et al., 2013), these advantages include:

1) Lagrangian models are computational efficient, especially for problems where

the tracer does not occupy the whole model domain (Spivakovskaya et al., 2005).

Since the particles are independent, parallel computing can be used to increase

efficiency.

2) In the Lagrangian model, since the movement of a constant total number of

particles are tracked, mass conservation follows automatically. While Eulerian

schemes may not conserve mass (Brasseur et al., 1999).

3) Lagrangian schemes are numerically stable in which the integration time-step is

to be determined by accuracy considerations alone. On the other hand Eulerian

schemes operate with a necessary limitation of the largest time-step for stability,

i.e. the Courant-Friedrichs-Lewy criterion (Courant et al., 1967).

4) The advection step in Eulerian schemes tend to smooth out scalar gradients due

to limited grid resolution and inevitable artificial numerical diffusion (Wohltmann

and Rex, 2009). By contrast in the grid-less Lagrangian advection step, numerical

diffusion is minimized and steep gradients in tracer concentrations are preserved.

A shortcoming of Lagrangian models is that, because particle represent fixed

masses of tracer, an additional procedure in reconstructing from particle distribution

to concentration field is required. Established methods in statistics include the

kernel density estimation (see for e.g. Silverman, 1986; Wand and Jones, 1994),
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where its applications in atmospheric problems are well-explored (e.g. Yamada and

Bunker, 1988; Uliasz, 1994). The computational cost of Lagrangian models can

also be significant, particularly when large particle ensembles are required to get

an accurate estimate of the concentration. However with the advances in computer

technology and the possibilities of efficient parallel computing today, this is becoming

less and less of a problem as better strategies are being developed to overcome these

drawbacks.

1.2 Background to stochastic differential

equations

Lagrangian models are formulated using stochastic differential equations (SDEs,

hereafter). For example, a one-dimensional SDE can be written in the form

dXt = a(Xt, t) dt+ b(Xt, t) dBt, (1.2)

where Xt is a stochastic variable, a(Xt, t) and b(Xt, t) are arbitrary functions. The

function a(Xt, t) represents a deterministic or averaged drift term, and b(Xt, t) is

(generally) a space-time dependent intensity for the noisy, diffusive term. A thor-

ough introduction to the theory of stochastic calculus can be found in Øksendal

(2007, §§2-4) and Kloeden and Platen (1992, §§2-3) and in the context of our math-

ematical modelling, we briefly outline the random term Bt, known as the Brownian

motion (sometimes called Wiener process).

Brownian motion is a term (named after Robert Brown, in 1827) used to de-

scribe the phenomenon of the erratic motion of a grain of pollen on a water surface

due to its being continually bombarded by water molecules. Wiener process was

named after Norbert Wiener, who developed a formal mathematical description of
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the continuous-in-time stochastic process behind this phenomenon. In general, a

standard Brownian motion (or Wiener Process) Bt has the following properties:

(i) B0 = 0; with probability 1,

(ii) 〈Bt〉 = 0,

(iii) Var(Bt −Bs) = t− s,

for all 0 ≤ s ≤ t, where 〈·〉 denotes the average mean or expectation value. Bt can

be described as a Markov process, which is defined as a stochastic process that has

zero memory of the past and a future that is a function of the present and some

statistical rule for the transition. Therefore it follows that the increments of the

Brownian motion, dBt are jointly independent and that dBt ∼ (dt)1/2.

The SDE (1.2) can be re-written as a stochastic integral equation

Xt = Xt0 +

∫ t

t0

a(Xs, s) ds+

∫ t

t0

b(Xs, s) dBs, for 0 ≤ t0 ≤ t ≤ ∞. (1.3)

The first integral on the right-hand side is a regular Riemann-Stieltjes integral and

the second is a so-called stochastic integral, which can be interpreted in many ways.

The two most studied interpretations of the evaluation of this integral are those

of Itô (1951) and Stratonovich (1967). For example in the one-dimensional case,

assume 〈|b(x, t)|2|〉 < ∞ for all t ∈ [0, T ] and let P be a partition of [0, T ], where

0 = t0 < t1 < . . . < tn = T . The stochastic integral can be defined as the mean

square limit ∫
P
b(x, t) dBt = lim

∆t→0

n−1∑
i=0

b(x, si)
(
Bti+1

−Bti

)
, (1.4)

with ∆t = maxi(ti+1 − ti) and si ∈ [ti, ti+1]. The limit that defines the integral

depends on where si is taken to lie in interval [ti, ti+1], and this leads to the two



Chapter 1. Introduction 12

different stochastic calculi:

Itô calculus: si = ti

Stratonovich calculus: si = 1
2

(ti + ti+1)

It turns out that the Itô sense provides the easiest way for theoretical calculations

because we can obtain simple formulas for the first two moments of the Itô integral

and the SDE based on the integral yields a diffusion process as a solution (Arnold,

1974). Practical numerical calculations involving increments ∆t and ∆Bt are also

simpler with the Itô integral. For these reasons we will only concern ourselves with

Itô processes in this thesis and thus assume that all the SDEs considered here-in-

after are Itô.

1.2.1 Itô’s formula

More importantly, a result that follows from the so-called chain rule for Itô

calculus in finding the derivative of a given (smooth) function f(Xt, t) of a random

variable Xt, is the Itô’s lemma or Itô’s formula.

Lemma 1.2.1 (Itô’s formula) Assume that Xt is a drift-diffusion process satis-

fying the Itô process

dXt = a(Xt, t) dt+ b(Xt, t) dBt,

and f(Xt, t) is a twice-differentiable function, then

df(Xt, t) =

(
∂f

∂t
+ a

∂f

∂x
+

1

2
b2 ∂

2f

∂x2

) ∣∣∣∣
(Xt,t)

dt+

(
b
∂f

∂x

) ∣∣∣∣
(Xt,t)

dBt.
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Naturally, this formula can be extended to higher dimensions in which an n-dimensional

stochastic variable vector Xt satisfies the matrix-vector SDE system,

dXt = a(Xt, t) dt+ b(Xt, t) dBt, (1.5)

where a(Xt, t) = (a1, . . . , an) is the drift vector, b(Xt, t) is an n×m diffusion matrix

and Bt denotes an m-dimensional Brownian motion. Similar to Itô’s formula for

the one-dimensional example above, the multi-dimensional Itô’s formula for a given

function f(Xt, t) is

df(Xt, t) =

(
∂f

∂t
+ a†∇f +

1

2
Tr
(
b b† (∇∇f)

))
dt+

(
∇f † b

)
dBt, (1.6)

where “Tr” denotes the trace or sum of the diagonal components of the inscribed

matrix. Details of the Ito’s lemma derivation and justification can be found in the

books of Kloeden and Platen (1992, §3.3) and Øksendal (2007, §4).

1.2.2 Fokker-Planck equation

The Fokker-Planck equation (FPE, hereafter) or sometimes known as the mas-

ter equation (see Van Kampen, 2007; Gardiner, 2009, for e.g.), is an advection-

diffusion type PDE that describes the time-evolution of the probability density

function (PDF), p(x, t) of a stochastic process Xt. Considering the one dimen-

sional example above, where Xt satisfies the SDE (1.2), its transition probability

density p(x, t
∣∣x0, t0) is propagated according to the FPE

∂p

∂t
= − ∂

∂x
(a(x, t) p) +

1

2

∂2

∂x2

(
b2(x, t) p

)
, (1.7)

p(x0, t0) = δ(x−X0).



Chapter 1. Introduction 14

More generally in the multi-dimensional case for example the SDE (1.5), the FPE

for the PDF p(x, t) of the n-dimensional particle random displacements Xt is found

to be

∂p(x, t)

∂t
= −

n∑
i=1

∂

∂xi
(ai(x, t) p(x, t)) +

1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
(Dij(x, t) p(x, t)) , (1.8)

where

Dij(x, t) =
m∑
k=1

bik(x, t)bjk(x, t),

is the diffusion tensor. Note that variations of the FPEs in more dimensions will

provide similar results, see for e.g. Equation (1.24). In the language of statistics, an

invariant measure of a stochastic process is a measure on Rn that does not change

under the flow of the random variable. The FPE offers a way to find such a measure

and in atmospheric applications, the invariant measure is simply the steady state

solution of the FPE, i.e. ∂p/∂t = 0.

In order to solve parabolic PDEs such as (1.1) using stochastic methods, one

must find the stochastic representation of (1.1), which means finding the SDE which

has the Fokker-Planck equation given by eq. (1.1). To provide the reader a clear

understanding of this concept, we demonstrate the use of the FPE in a simple

diffusion problem to follow.

1.2.2.1 A simple example

As an example, we show two different ways of solving a diffusion equation. Let’s

consider a simple one-dimensional diffusion only (no advection) model of a tracer

cloud in a channel with a constant diffusion coefficient κ. The PDE describing the

evolution of the tracer concentration, with initial condition x = 0 at time t = 0, is

given by
∂c

∂t
= κ

∂2c

∂x2
, where c(x, 0) = δ(x). (1.9)
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This equation can be solved analytically, and the exact solution is known to be the

heat kernel

c(x, t) =
1√

4πκ t
exp

(
−x2

4κ t

)
, (1.10)

assuming that the domain is infinite. This solution can also be obtained by

(i) numerically discretizing the diffusion eq. (1.9), or

(ii) using a stochastic approach.

For the stochastic method (ii) of this example, we look at the classical Brownian

motion process which can be used to model diffusion as suggested by Einstein in

1905, where the particle positions are randomly disturbed as follows

dXt = σ dBt, where X(0) = X0. (1.11)

Here dBt is the increment of standard Brownian motion and σ is the constant

diffusion term. The FPE (1.7) that describes the probability density p(x, t) of the

positions of particles evolving in time, is given by

∂p

∂t
=

1

2
σ2 ∂

2p

∂x2
, (1.12)

p(x, 0) = δ(x−X0).

The concentration c(x, t) can be described as the probability that a particle ends

up in position x and time t, which is equivalent to the definition of the probability

density p(x, t). Substituting σ =
√

2κt and that p(x, t) = c(x, t), it can be concluded

that (1.12) describes the same diffusion process of eq. (1.9) and therefore they have

the same solution

p(x, t) =
1√

2πσ2
exp

(
−x2

2σ2

)
, (1.13)

= N (0, σ2),
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with N (0, σ2) being the normal distribution of mean zero and variance equatl to

σ2. It can be said that (1.11) is consistent with (1.9), with FPE (1.12) being the

Eulerian alternative to the Lagrangian SDE (1.11).

1.3 Lagrangian particle dispersion mod-

els

As already noted above, LPDMs adopt the study of stochastic random motion

of particles as they are advected by a given turbulent flow. For this reason the

Lagrangian approach provides the most natural and simple way of formulating the

turbulent dispersion in the ABL than the Eulerian approach. Rodean (1996) pub-

lished a comprehensive monograph on LPDMs and another notable review written

in the same year was by Wilson and Sawford (1996). Lagrangian modelling of mean

dispersion in the turbulent ABL normally involves releasing a large number of parti-

cles corresponding to different flow realizations with suitable initial conditions, such

as a point source. Throughout this thesis, we consider the so-called one-particle

modelling, in which the motion of each particle is completely independent of that of

other particles. The calculated trajectory distribution simulates the source plume

and can be used to compute mean dispersion quantities, such as average concentra-

tion.

In this section, we give a detailed formulation of the two commonly used LPDMs

in the context of the turbulent ABL. We use the acronyms RFM and RDM; for

the random flight model and the random displacement model respectively. In the

RDM, the particle trajectory is the vector sum of random incremental changes in

displacement plus contributions from the mean wind. By contrast in the RFM,

the stochastic incremental changes in particle velocity are integrated in time to

define the particle trajectory in space. Note that higher order models in which the
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stochastic incremental changes in acceleration are integrated to obtain velocity and

displacement are not considered here. The random incremental changes in RDMs are

a model for advection by the eddy field, which is unrealistic for times smaller than

the Lagrangian velocity decorelation timescale. This motivates the introduction of

RFMs, in which the random incremental changes capture a finite decorrelation time.

Therefore RFMs give a more realistic representation of eddy velocities and they can

be used to deal with more general initial conditions, e.g. plumes with non-zero

initial velocities.

Before the early development of the LPDMs in the framework for turbulent

dispersion, Taylor (1921) published his pioneering work presenting an exact La-

grangian solution for rate of spread of tracer in unbounded, stationary homogeneous

turbulence. His analysis showed that the near-field (small time) behaviour of the

root-mean-square particle displacement (as measured by the standard deviation of

displacement) is proportional to travel time t, whereas the far-field (large time)

behaviour is proportional to t1/2. The latter represents the diffusive behaviour in

which the size of the plume is larger than the size of the dominant turbulent eddies.

Taylor’s (1921) results therefore proves that the classic “eddy diffusion” paradigm

based on the Fickian theory of molecular diffusion (equivalent to the RDM) are able

to represent the far-field, but not the near-field in which the plume size is small

compared to the size of the dominant turbulent eddies. In contrast, the RFM for

an idealized field of homogeneous and stationary turbulence reproduces the analyt-

ical forms of both near- and far-field behaviours of tracer dispersions. Ever since

its derivation, Taylor’s (1921) result has served to guide turbulent dispersion mod-

elling, however its scope for application to complex real-world flows was limited. See

the work of Thomson and Wilson (2013) for a comprehensive account of the his-

tory of Lagrangian stochastic modelling for turbulent dispersion, where the authors

discuss how the early computational LPDMs started to extend to non-idealized,

non-stationary and inhomogeneous turbulence in the lower atmosphere.
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1.3.1 The well-mixed criterion

The basis for the derivation and checking consistency of LPDMs in inhomoge-

neous turbulence (turbulence statistics depend on height) was first laid by Thomson

(1987). Thomson demonstrated that the random forcing of the stochastic models

must be Gaussian and developed a set of rigorous criteria that the LPDM must

satisfy. Most importantly, he showed that if one of the criteria is satisfied the rest

will be satisfied too. This criterion is known as the well-mixed condition (WMC,

hereafter): “if the particles are well-mixed in velocity-position space, they should

remain so” (Thomson, 1987).

In simple terms, the WMC means that in a bounded region away from the source,

if the distribution of particles become well mixed, then it should remain so for all

subsequent times. Particles are said to be well mixed when the joint distribution

of the particles matches the assumed distribution for all the particles in the at-

mosphere in both position and velocity space. In probability terms, the invariant

measure of the stochastic process should equal the pre-defined ‘atmospheric’ dis-

tribution of particles in the air, which is taken here to be homogeneous Gaussian

distribution. An example of a well-mixed scenario in the ABL could be the steady

stable boundary layer over the Antarctic Continent during the long winter nighttime

where the diurnal cycle is absent (Garratt, 1994).

As will be seen below, Thomson’s (1987) WMC leads to a unique one-dimensional

LPDM, and provided the variables in each dimension are assumed to be indepen-

dent of those in the other dimensions a unique three-dimensional model can be con-

structed too. However the WMC could also lead to a non-unique multi-dimensional

solution if there is a dimensional interdependence of variables, and two distinct

models satisfying the WMC with the same flow could yield significantly different

dispersion predictions (Sawford and Guest, 1988).
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1.3.2 Random flight model (RFM)

In the most general formulation of the RFM, the position and velocity (Xt,Ut)

of a particle in three-dimensional space Xt = (Xt, Yt, Zt) can be described by the

following SDE

dUt = a(Xt,Ut, t) dt+ b(Xt,Ut, t) dBt, (1.14)

where a is the drift term and b is the diffusion tensor. Ut is the turbulent velocity

component at time t and Bt is the multi-dimensional Brownian motion (or Wiener

process) with mean zero and variance dt, with each component being independent

of other components and uncorrelated in time. Simultaneous to (1.14), the particle

positions are calculated from

dXt = Ut dt. (1.15)

As will be shown, the choice of a and b in (1.14) is restricted by the assumptions

made about the pdf of Xt and Ut in the atmospheric background. Here we assume

Gaussian turbulence, meaning that the background atmospheric distribution of air

(known as the invariant measure in probability terms) is chosen to be Gaussian in

this case. This model choice is strictly valid only for stable and neutral conditions,

which are the two ABL profiles that will be considered in this thesis. Under convec-

tive (or unstable) conditions, turbulence is skewed and so this assumption is violated

(Cassiani et al., 2015).

As often presented in atmospheric dispersion models, it is assumed that changes

of flow properties in the horizontal and in time are sufficiently slow and therefore

can be neglected. For this reason and for the purpose of derivation of the La-

grangian models in this section, we will consider only one-dimensional dispersion in

the vertical motion (Zt,Wt).

As a starting point, consider the homogeneous isotropic Gaussian turbulence
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where the Langevin equation describes the vertical velocity Wt at time t is given by

dWt = −Wt

τw
dt+ bw dξt, (1.16)

where ξt is the random process in the vertical velocity. Here the initial velocity

condition is sampled from a Gaussian distribution with zero mean and variance

equal to the variance of the turbulent velocity σ2
w = 〈W 2

t 〉 (i.e. W0 ∼ N (0, σ2
w)).

From Taylor’s (1921) analysis mentioned above, he showed that the rate of increase

in time of the ensemble mean spread, measured by the variance of the displacement

σ2
z = 〈Z2

t 〉, is given exactly by

dσ2
z

dt
= 2

∫ t

0

〈Wt′Wt′+ξ〉 dξ ≡ 2σ2
w

∫ t

0

Rww(ξ) dξ,

where Rww(ξ) is the Lagrangian velocity autocorrelation function, and denoting the

Lagrangian decorrelation time as

τw =

∫ ∞
0

Rww(ξ) dξ. (1.17)

Note that an alternate definition for τw (Tennekes, 1979) can be expressed in terms

of the Kolmogorov constant C0 and turbulence kinetic energy dissipation rate ε,

τw =
2σ2

w

C0ε
.

By squaring and taking the ensemble average of eq. (1.16), and applying statis-

tical properties of the velocity Wt and the ξt, and finally evaluating the resulting

integral we get

〈W 2
t 〉 = 〈W 2

0 〉 e−2 t/τw +
b2
w τw
2

(
1− e−2 t/τw

)
.

As σ2
w = 〈W 2

t 〉 = 〈W 2
0 〉, an expression for the vertical diffusion term in homogeneous
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conditions is found to be

b2
w =

2σ2
w

τw
, (1.18)

where τw is the Lagrangian decorrelation time-scale as defined in eq. (1.17).

We now proceed to the main SDEs in the framework for developing the RFM

equations for the stochastic variables (Zt,Wt)

dWt = aw(Zt,Wt, t) dt+ bw(Zt,Wt, t) dBt

dZt = Wt dt. (1.19)

Consider now the complementary approach to the SDE (1.19), i.e. the correspond-

ing FPE describing the time-evolution of the probability density p(z, w, t) of the

stochastic variables (Zt,Wt)

∂p

∂t
= − ∂

∂z
(w p)− ∂

∂w
(aw(z, w, t) p) +

1

2

∂2

∂w2

(
b2
w(z, w, t) p

)
, (1.20)

and denote pe(z, w) as the density distribution for all particles of the air which has

assumed Gaussian velocity statistics given by

pe ∼
1√

2πσ2
w

exp

(
− w2

2σ2
w

)
, (1.21)

where σw is the standard deviation of the vertical velocity. It should be emphasised

that the Gaussian distribution pe (1.21) is the steady state of eq. (1.24). The solution

pe also known as the invariant measure of (1.25), can be thought as the physical

distribution of particles in the background atmosphere in position-velocity space.

With the prescribed bw and pe from (1.18) and (1.21) respectively, the determin-

istic term aw can be determined by applying the WMC (defined in §1.3.1). Imposing

the WMC leads to p = pe, which satisfies the FPE (1.20). By taking the fact that
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∂pe/∂t = 0 and integrating with respect to w, we get

aw pe =
1

2

∂

∂w

(
b2
w pe

)
−
∫ w

−∞

∂

∂z
pe(z, w

′)w′ dw′. (1.22)

Introducing the chosen diffusion term (1.18) into the first term on the right-hand

side of (1.22) and inserting the pre-defined pe distribution (1.21) into the second

term, gives

aw(z, w, t) = − w
τw

+ σw
∂σw
∂z

+
w2

σw

∂σw
∂z

, (1.23)

which is a unique definition of aw in the vertical one-dimensional model. Subse-

quently we can use the results (1.18) and (1.23) to redefine the FPE (1.20) as

∂p

∂t
= − ∂

∂w

((
− w
τw

+
1

2

(
1 +

(
w

σw

)2
)
∂σ2

w

∂z

)
p

)
+

∂2

∂w2

(
σ2
w

τw
p

)
. (1.24)

Therefore following the standard stochastic procedure, the vertical RFM equations

describing the dispersion in the ABL are defined as

dWt =

(
−Wt

τw
+

1

2

(
1 +

W 2
t

σ2
w

)
∂σ2

w

∂z

)
dt+

(
2σ2

w

τw

)1/2

dBt, (1.25a)

dZt = Wt dt, (1.25b)

which are a set of SDEs that are integrated simultaneously to obtain the displace-

ment Z(t). Physically, it is easy to understand most of the terms in (1.25). Equa-

tion (1.25b) is a standard trajectory equation, whereas (1.25a) resembles Ornstein-

Uhlenbeck process (see §3.8.4 of Gardiner, 2009, for e.g.), or random walks in

quadratic potential wells, which in spatially homogeneous turbulence would result in

Wt having ‘red noise’ frequency spectra. The additional term in (1.25a) is necessary

for the model to be well-mixed as discussed above.



Chapter 1. Introduction 23

1.3.2.1 Change of variables and nondimensionalisation

From the derived RFM equations (1.25), we can obtain a more convenient set of

SDEs using Itô’s lemma (see theorem 1.2.1) and the change of variables Ωt = Wt/σw,

given by

dΩt =

(
−Ωt

τw
+
∂σw
∂z

)
dt+

(
2

τw

)1/2

dBt, (1.26)

dZt = Ωt σw dt.

The new form of LPDM equations (1.26) has a relatively simple FPE for probability

density p(ω, z, t) of trajectories in (ω, z)-space

∂p

∂t
= −∂ (ωσwp)

∂z
− ∂

∂ω

((
− ω

τw
+
∂σw
∂z

)
p

)
+

1

τw

∂2p

∂ω2
, (1.27)

where ω = w/σw explicitly. It is often much simpler to view the eq. (1.27) as a

non-dimensional equation given that ω is already a non-dimensional variable. The

new rescaled variables are listed in the following table

Variable Description Dimensions Rescaled variable

z vertical height L z̃ = z/h

t time T t̃ = t/T

σw velocity standard deviation L T−1 σ̃w = σw/u∗

τL decorrelation time-scale T τ̃w = τw/TL

Here h denotes the ABL height, u∗ the surface friction velocity, TL the Lagrangian

time scale, and L and T are the length and time scales. Inserting these rescaled

variables into (1.27), the non-dimensionalized model for p̃(z̃, ω, t̃) is found to be

TL
T

∂p̃

∂t̃
=

1

τ̃w

∂

∂ω

(
−ω p̃+

∂p̃

∂ω

)
− ε ∂σ̃w

∂z̃
p̃− ε ∂

∂z̃
(ω σ̃w p̃) , (1.28)
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where ε is the non-dimensional parameter such that ε = u∗ TL/h. In physical terms,

ε can be thought as the time scale ratio between the Lagrangian time scale and

the diffusive time scale, i.e. ε2 = TL/TD. The Lagrangian time scale TL can be

understood as the length of time at which a particle ceases to “remember” its initial

velocity, and diffusive time scale TD is the typical time that a particle takes to be

transported across the ABL height h due to diffusion. Subsequently, a natural time

scale for the system of (1.28) is T = h/u∗, which leads to the non-dimensional FPE

∂p̃

∂t̃
=

1

ε τ̃w

∂

∂ω

(
−ωp̃+

∂p̃

∂ω

)
− ∂σ̃w

∂z̃
p̃− ∂

∂z̃
(ωσ̃w p̃) . (1.29)

Two distinct behaviours of the particles can be brought to the fore by taking

the limits ε2 � 1 (diffusive) and ε2 → ∞ (ballistic). The former behaviour is

equivalent to taking the limit of zero Lagrangian decorrelation time (τw → 0) of

the RFM, often known as the RDM or eddy diffusion model, which is discussed

in greater detail below. In contrast, the latter ‘ballistic’ limit refers to a (bizarre)

regime where particles retain their velocity for very long times.

The distinction between the two behaviours above is demonstrated in Figure 1.4

where the paths of five independent particles are tracked by solving the correspond-

ing SDEs to the non-dimensional FPE (1.29) when the appropriate ε-limits are

taken. The ε2 � 1 limit in the left panel shows particles moving haphazardly as one

would expect to see in a random walk. By contrast in the right panel, the ε2 � 1

limit illustrates the “memory-dominated” spread in which the distance travelled

by a particle increases almost linearly in one direction with time, analogous to the

ballistic motion of bullets.
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Diffusive limit: ε = 0.05
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Ballistic limit: ε = 10

Figure 1.4: Trajectories of five particles illustrating the two ε limit behaviours,
from z0 = 0.5 initial release. Left panel: diffusive paths with a small ε limit,
ε = 0.05. Right panel: ballistic paths with a large ε limit, ε = 10.

1.3.3 The diffusion limit: random displacement

model (RDM)

Here we will show that the RDM is the zero correlation time limit or the diffu-

sion limit of the RFM. In the RDM, the SDE for the displacement of a particle is

integrated directly without the need to calculate the particle’s velocity. For simplic-

ity, we consider again the one dimensional (vertical) diffusion in the ABL. Under

the distinguished limit in which the Lagrangian decorrelation time vanishes and the

variance of the velocity fluctuations tend to infinity, the two RFM equations (1.25a)

and (1.25b) can be combined and transformed into one equation for the random dis-

placement Z(t) only. The following description of the mathematical transformation

from the RFM to the RDM equation is adapted from Rodean (1996, see §6.3).

Starting with the RFM equations (1.25) for the stationary inhomogeneous Gaus-
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sian turbulence, we can be rewrite the W -equation (1.25a) in terms of W/σw,

d

(
Wt

σw

)
=

(
− Wt

σwτw
+
∂σw
∂z

)
dt+

(
2

τw

)1/2

dBt, (1.30a)

and for convenience we repeat the Z-equation (1.25b) for this section too,

dZt = Wt dt. (1.30b)

We will formally deal with the required limits by rescaling the turbulence

τw = α T (z), σw = β Σ(z). (1.31)

In order for the turbulence to retain its characteristics, the conditions that τw(z)→ 0

with t fixed and t/τw(z)→∞ with τw fixed, are equivalent to taking the following

limits on the rescaling constants (de Baas and Troen, 1989)

α→ 0, β →∞ such that αβ2 = K(constant), (1.32)

which will guarantee that the eddy diffusivity κ(z) = σ2
w(z)τw(z) remains an invari-

ant function of z. Inserting (1.31) into eq. (1.30a), integrating the result and then

multiplying throughout by αβ, we get

α

(
Wt

Σ
− W0

Σ

)
=

∫ t

0

((
−Wt

ΣT
+ αβ2 dΣ

dz

)
dt+

(
2αβ2

T

)1/2

dBt

)
. (1.33)

Because the velocity Wt is bounded in the statistical sense under the conditions

(1.32), therefore the term Wt/Σ − W0/Σ on the left-hand side of (1.33) remains

bounded in the “mean square” sense for all time. The left-hand side then vanishes

when α→ 0 as required in (1.32). We proceed by combining (1.32) and (1.33) with



Chapter 1. Introduction 27

the result that

∫ Zt

z0

dZ ′t
Σ(Z ′t)T (Z ′t)

=

∫ t

0

(
K

dΣ

dz
dt+

(
2K

T

)1/2

dBt

)
, (1.34)

where the left-hand side is obtained by substituting the SDE (1.30b) and z0 is the

release point. Following closely from Rodean (p. 29 of 1996), we differentiate both

sides using the rules of Itô calculus to convert (1.34) back into a SDE,

dZt
ΣT
− 1

2

(
dZt
ΣT

)2
d

dz
(ΣT ) = K

dΣ

dz
dt+

(
2K

T

)1/2

dBt. (1.35)

This is of the quadratic equation for dZt of the form A(dZt)
2 +B(dZt) +C = 0,

where we set

A =
1

2
(ΣT )−1 d

dz
(ΣT ), B = −1, C = (ΣT )

(
K

dΣ

dz
dt+

(
2K

T

)1/2

dBt

)
,

which means that we can select the root dZt =
(
1− (1− 4AC)1/2

)
/2A. To prepare

the solution to the quadratic equation (1.35), we expand (1−4AC)1/2 in the infinite

series

(1− 4AC)1/2 = 1− 4AC

2
− (4AC)2

8
− . . . ,

and retain only the first three terms to get the solution dZt = C + AC2. This is

done in accord with the rules of Itò calculus that terms involving 〈dBt〉2 be retained,

because

(dt)2 = 0, 〈dBt dt〉 = 0, and 〈dBt〉2 = dt.
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Applying these results, we obtain

dZt = (ΣT )

(
K

dΣ

dz
dt+

(
2K

T

)1/2

dBt

)
+ ΣK

d (ΣT )

dz
dt,

=

(
2KΣT

dΣ

dz
+KΣ2 dT

dz

)
dt+ (ΣT )

(
2K

T

)1/2

dBt.

Substituting K = αβ2 and transforming back into their turbulence statistics (1.31),

we finally obtain the following SDE for the RDM

dZt =
∂

∂z
(κw) dt+ (2κw)1/2 dBt, (1.36)

where κw(z) = σ2
w(z)τw(z) is the diffusivity term. Finally the FPE that describes

the evolution of the particle density distribution p(z, t) that is consistent with the

RDM equation (1.36) is found to be

∂p

∂t
=

∂

∂z

(
κw

∂p

∂z

)
. (1.37)

Other derivations of the RDM are also available, for e.g. see the papers of Durbin

(1983) and Boughton et al. (1987) who determined the drift and diffusion terms by

checking the consistency of the FPE under the eddy diffusion closure.

1.3.4 Applicability of RFMs and RDMs

Going back to Taylor’s (1921) results as mentioned in the beginning of this

section, in which he showed the diffusion rate in two asymptotic limits:

〈Z2
t 〉 =

σ
2
w t

2, t� τw (near-field),

2κw t, t� τw (far-field).

(1.38)

Because of the limiting conditions imposed in the transformation from eq. (1.25)



Chapter 1. Introduction 29

to eq. (1.36): τw → 0 with t fixed and t → ∞ with τw fixed, the time scales for

which the RDM is applicable are much greater than the local decorrelation time, i.e.

t � τw, which is exactly the far-field regime above. This is when the dispersion is

dominated by the diffusion term and the spread of the the particle concentration is

slower and grows only as t1/2. In the near-field t� τw, the dispersion is dominated

by the drift term (persistence in the particle velocities) and the concentration grows

linearly with time t.

As highlighted above, the RDMs are able to model the far-field accurately and

on the other hand, RFMs can capture the physics of the turbulence in the near-field

regime (close to the sources where turbulence is non-diffusive) and also in the far-

field regime further from the source. This is one of the fundamental advantages of

the RFM, in which it provides a more realistic model representation of the turbu-

lent velocity fluctuations. Moreover, RFMs can capture effects due to non-Gaussian

velocity statistics in unstable ABL conditions, and are valid for all time scales (ex-

cept below the Kolmogorov timescale, where viscosity becomes relevant; (Monin and

Yaglom, 1977)).

Nevertheless, the RDM has the appeal of its simple implementation in integrat-

ing only one equation for displacement. RDMs can generally be integrated with

longer time-steps than RFMs, because in RFMs the time-step is limited by the local

Lagrangian time-scale (i.e. ∆t � τw). This has been shown to be a required con-

dition to resolve the turbulent velocity fluctuations in the RFM. In this case, the

RDM becomes the more convenient and flexible option than RFMs.

To help the reader gain better understanding of the behaviour of the RFM and

RDM, Figure 1.5 shows a graphic illustration of the typical particle paths of each

model. Here six particles are released from the same locations in a (X,Z) domain,

and each coloured line represents each particle trajectory plotted in time. The

particles can be seen to independently experience the random walk (RDM) process

(1.36) in the left panel and the short time t � τw behaviour of the RFM process
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(1.25) in the right panel.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Distance (x/h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t
(z
/h

)

RDM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Distance (x/h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t
(z
/h

)

RFM

Figure 1.5: The typical paths of six independent two-dimensional trajectories in
the diffusive limit or RDM (left panel) and with finite (τu, τw) limit in the LPDM
(right panel).

1.3.5 Turbulence parameterisations

In order to select a specific LPDM suitable for realistic ABL conditions, it is

necessary to use suitable profiles for (i) variance of the turbulent velocity fluctua-

tions (e.g. σ2
w), and (ii) the local Lagrangian decorrelation time-scale (e.g. τw). The

inputs are generally assumed as functions of z (for inhomogeneous flows) and their

gradients are continuous, and they are also assumed to be horizontally homogeneous.

Lagrangian stochastic models have traditionally been driven by semi-empirical pa-

rameterisations of flow and turbulence quantities, often involving similarity rela-

tionships (see §12 of Rodean, 1996). Such parameterisations are constantly under

development based on new and better observational studies.

For the purposes of the present work, we will use empirical turbulence parame-

terisations for the stable (black shaded area of the diurnal cycle in Figure 1.2) and
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neutral ABL conditions only. The situation in the unstable or convective boundary

layer is more complex as the vertical velocity statistics are non-Gaussian due to the

organised motion consisting of updrafts and downdrafts (see e.g. Cassiani et al.,

2015). To capture the essential physics of the convective ABL therefore requires a

considerably more complicated test case, hence the convective ABL is not consid-

ered here. For simplicity, stationary (time-independent) turbulence profiles are used

here which is a reasonable approximation in most circumstances, as ABL turbulent

statistics tend to evolve on a time-scales longer than the homogenisation timescale

h/u∗. In light of the diurnal cycle (Figure 1.2), temporal variations of the ABL

height h can be adapted into our non-dimensionalised time scale h/u∗, where u∗ is

the surface friction velocity.

Profiles of turbulent (σu, σv, σw) and (τu, τv, τw) for the stable and neutral ABL

used here are adapted from Hanna (1982), which have been obtained through em-

pirical fits to observed data. They are derived from boundary layer parameters

ABL height h and friction velocity u∗, as listed in the following table. Here-in-after

we consider nondimensionalised models throughout under the domain 0 ≤ z̃ ≤ 1

where z̃ = z/h (see §1.3.2.1 for details) and drop the tildes for convenience. Here

subscripts u and v denote the along-wind and the cross-wind components, w refer

to the vertical component of the turbulent velocities, and f is the Coriolis parame-

ter (typically ∼ 10−4 rad/s). In the practical implementation of our study models,

minor modifications are taken in practice to the spatial domain as Hanna’s (1982)

scheme does not always yield smooth profiles, especially at the ABL top and bottom

boundaries.
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Condition σ(z) τ(z)

Stable

σu = 2.0 (1− z)

σv = σw

σw = 1.3 (1− z)

τu = 0.15 z1/2/σu

τv = 0.07 z1/2/σv

τw = 0.1 z4/5/σw

Neutral

σu = 2.0 exp (−2z/ε)

σv = σw

σw = 1.3 exp (−2z/ε)

τu = τv = τw

τw =
z

2σw(1 + 15z/ε)

The nondimensional profiles of the velocity standard deviation σ(z) and Lagrangian
decorrelation time-scale τ(z) suitable for (i) a stable ABL, and (ii) a neutral ABL
(e.g. Hanna, 1982). The non-dimensional parameter ε = u∗/fh is a boundary layer
Rossby number.

1.3.6 The boundary conditions

An important issue that a modeller must encounter in using the stochastic dis-

persion models is the boundary condition problem: How do we treat the particle

trajectories near the boundaries of the ABL? The following discussion is concerned

with the boundaries at the bottom (z = 0), that generally corresponds to the land

or water surface, and the top (z = h) of the turbulent ABL, for the dimensional

model eq. (1.24).

There are a few papers in the literature that discussed the boundary conditions

in great detail, Rodean (1996, §11) gives a comprehensive historical review of the

few above-mentioned papers. One paper worthy of study is that of Wilson et al.

(1993), who found that the perfect reflection algorithm is exactly consistent with

the WMC in the one-dimensional model for homogeneous Gaussian turbulence (for

the lengthy mathematical analysis, see the appendix to chapter 11 of Rodean, 1996).

Another pioneering work is by Thomson et al. (1997) in which they extended the

reflection algorithms to the case where there is a discontinuity in turbulence levels
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across an interface such as the ABL top. In the RFM (1.24), boundary conditions

consistent with perfect reflection above are

p(w, 0, t) = p(−w, 0, t), p(w, h, t) = p(−w, h, t), (1.39)

where z = 0 corresponds to the ground surface and z = h is a non-penetrable

inversion layer at the top of the ABL. In probabilistic terms, this is equivalent to

the reflection condition Wt → −Wt being applied at the boundaries in solving the

SDEs (1.25).

In the numerical simulation of the RFM (1.25), the reflection condition can be

explicitly implemented in the following algorithm. If a particle travels from an

allowed state (Ztj ,Wtj , tj) to a forbidden state (Z∗,W ∗, tj + ∆t) on the other side

of the boundaries, i.e. below Z = 0 or above Z = h, then

(a) Ztj+∆t must be reflected back into the domain, at an appropriate distance above

Z = 0 or below Z = h, and

(b) the velocity direction is reversed, Wtj+∆t = −W ∗.

Provided that the discrete time-step is kept sufficiently small, specifically ∆t �

τw(z) throughout the flow, the WMC is approximately met to an acceptable level

of accuracy.

1.4 Rare-event simulation

Suppose we are interested in the concentration of a tracer at a single location

in our model. There are many possible applications of this scenario, for instance,

consider an unexpected volcanic eruption in a ‘source’ location, and suppose that we

are only interested in the concentration of ash clouds in the area of an airport or a

flight corridor (the ‘receptor’). Alternatively, the source could be a poison chemical
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release and the receptor an isolated population centre. For practical reasons a grid-

based Eulerian model designed to calculate the full spatial solution of the tracer

concentration, is evidently inefficient. A Lagrangian model on the other hand will

offer greater efficiency in certain flow set ups, provided that a sufficient number of

trajectories reach the receptor region. In the examples described above, it is more

likely that only a few percentage of the simulated trajectories will end up in the

target area or in other words, the flow of particles from source to receptor is weak

in a certain sense. This is known as a rare-event simulation in statistics.

1.4.1 Variance reduction

Importance sampling is a variance reduction technique developed for Monte

Carlo simulation or SDEs (see for e.g. Kloeden and Platen, 1992; Øksendal, 2007).

It is based on the concept that the trajectories are steered in the direction of the

rare-event by adjusting the particle paths and correcting the resultant output by

weighing them with suitable likelihood ratios. These methods are well-understood

and widely used in mathematical finance and statistical physics. In the context of

atmosphere-ocean advection-diffusion problems, importance sampling methods were

used in simple parallel flows, to obtain far-field concentrations in Taylor dispersion

problems (Haynes and Vanneste, 2014). However importance sampling can turn out

to be a more difficult problem especially in complex model systems.

More recently, Esler (2015) developed a robust adaptive trajectory algorithm for

problems in the chaotic advection regime, based on the ‘splitting’ method known as

the ‘go-with-the-winners’ (GWTW) (Grassberger, 1997, 2002). Roughly speaking,

the idea behind the splitting method is to clone the trajectories that approach the

receptor region of interest and let the others die. We give a brief introduction to the

GWTW method in the following section and also extend the method to the RFM

of the turbulent ABL dispersion in Chapter 3. More modern splitting method can
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be found in the paper of Cérou and Guyader (2007) for example.

Suppose our interest is in the expected value that a pollutant tracer ends up

in a receptor region R at time t = T , denoted by µ. Let IR(Xt) be the indicator

function of the event that particle X
(i)
t reaches region R at time t,

IR(Xt) =

1 X
(i)
t ∈ R,

0 otherwise.

(1.40)

Therefore the expected value µ is µ = E (IR(XT )). There are several available

approaches to evaluate this expectation, one option is to simulate N independent

trajectories forward in time to time t = T . Since we are only interested in the

expectation, a weak order numerical scheme for SDEs (for e.g. Euler-Maruyama

(Maruyama, 1955)) can be used to obtain solutions of the random variable XT , and

subsequently use the estimator

µ̃ =
1

N

N∑
i=1

IR(X
(i)
T ), (1.41)

often called the naive Monte-Carlo (NMC) estimator, which is just the average mean

of N independent simulations of the random variable IR(XT ) from the forward

Monte-Carlo method. The strong law of large numbers ensures that µ̃→ µ almost

surely as N →∞.

However for the scenarios described above when µ is small, most samples of

IR(XT ) would be zero, while rare samples equaling one would be observed. This

means N would have to be quite large for a reliable estimate of small µ, which can
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be shown explicitly using the statistical error i.e. the variation in the mean,

(∆µ̃)2 ≈ 1

N
Var (IR(XT )) ,

≈ 1

N

2∑
j=1

P (Ij(XT )) (Ij(XT )− µ)2 ,

≈ 1

N

(
p(1− p)2 + (1− p)p2

)
∆µ̃ ≈

√
p(1− p)

N
, (1.42)

where p is the probability the tracer ensemble XT reaches the region R, and µ =∑
j Ij(XT )P (Ij(XT )) = p. In particular, the width of the confidence interval,

[µ̃±∆µ̃] decreases only with order N−1/2 as N → ∞. Hence, in order to obtain

sufficiently small confidence intervals it is important to begin with a small variance

(i.e. p(1 − p)) in the random variable IR(XT ). This is a big drawback of the for-

ward simulation method, which leads to the second possibility of constructing other

estimators which have nearly the same expectation, but smaller variance.

One way to construct such an estimator will be described in the next section

which involves a modified Monte Carlo process X̃t and correcting weights Θt. The

weights are chosen strategically so that their expectation value is the same as that

of IR(XT ), i.e.

E
(

ΘT IR(X̃T )
)

= E (IR(XT )) . (1.43)

1.4.2 Grassberger’s GWTW branching process

The go-with-the-winners (GWTW) splitting method (Grassberger, 1997, 2002)

can be described as a branching process that is applied to the trajectory ensemble

{X(i)
t , i = 1, . . . , N} at discrete time intervals. Initially, trajectories are assigned

weight Θ0 evaluated depending on the SDE problem at hand. The ensemble for

the SDE is then integrated forwards from t = 0 and subsequently, the GWTW
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trajectory weights Θt are updated according to the following algorithm at branching

time tj = j∆t (j = 1, 2, 3, . . .). The implementation of the algorithm proceeds as

follows:

(a) Each trajectory in the ensemble is assigned a score S
(i)
tj using a scoring algorithm.

The trajectories are then ordered in a sequence by decreasing score.

(b) Considering the last N/2 trajectories in the sequence (i.e. trajectories with the

lowest scores), we call the trajectory with the mth lowest score a ‘loser’ if its

score is less than one-third of the score with the mth highest score. Count the

total number of losers and denote it by L.

(c) The weights of the L loser trajectories are then, either doubled Θtj → 2Θtj

or set to zero Θtj → 0, randomly with probability one-half. The W (≈ L/2)

trajectories with scores zero are then removed from the ensemble.

(d) The W trajectories with the highest scores or the first W trajectories in the

ordered sequence, are called the ‘winners’. Each winner X
(k)
tj is then cloned

where an additional trajectory is created: X
(l)
tj = X

(k)
tj , and each clone will have

half the weight of its parent, i.e. Θtj/2.

A schematic diagram of the algorithm steps (a) − (d) for choosing the typical

loser and winner trajectories in the ordered sequence at branching time tj, is shown

in Figure 1.6 below. Variance reduction of the score distribution {S(i)
tj , i = 1, . . . , N}

occurs here because a loser trajectory (red) is identified if their score is less than

around half of the ensemble average score, and will either be doubled in score or

removed completely. Any trajectory with a score much greater than two or three

times the ensemble mean will be identified as the winner (green), and split into two

trajectories with each clone having half of its weight. The two clones will subse-

quently follow different Brownian motions in the next integration time. The same

number of winners being cloned and losers being removed in the algorithm ensures
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that the number of trajectories N in the ensemble is kept constant. Moreover, im-

plementing the steps (a)− (d) at sufficiently frequent time intervals in the GWTW

process X̃t will ultimately ensure that the distribution of all scores St remain within

a factor of two or so of the ensemble mean 〈St〉. Crucially, this is achieved without

changing the overall expectation value of the process as is required in (1.43).

Winners (≈ L/2) Losers (L)

High scores Low scores

Split and half Θt Remove or double Θt

Figure 1.6: The GWTW splitting method for selecting the L losers and the W (≈
L/2) winner trajectories according to their decreasing score sequence. Losers are
either removed or doubled in weight with probability one-half and the winners are
split with half the original weight.

The difficulty of using this method is the choice of scoring algorithm which

drives the effectiveness of the GWTW process. An ideal scoring algorithm at time

t suggested by Esler (2015, Eq. (3.21)) is

St = Θt c
∗(Xt, t),

which is simply the product of the trajectory weight and the local value of the

adjoint solution of the FPE.
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1.5 Scope and outline of thesis

In this introductory chapter we discussed the background theory that leads to

the formulation of two types of LPDMs which are widely used to model single par-

ticle dispersion in the turbulent ABL, namely the RFM and RDM. Depending on

the relative importance of accuracy versus efficiency of computation, an educated

decision on the choice of model should be made based on the discussions above.

As already stated, the success of Lagrangian approach has reached a wide range

of dispersion applications, and this has led to its further development including

hybrid models that take advantage of the capabilities of both Lagrangian and Eu-

lerian approaches, to enhance computational efficiency in operational systems e.g.

HYSPLIT (Draxler et al., 1997) and NAME (Jones et al., 2007). However, there is

always scope for further developments, including research on parameterisations of

turbulent statistics or on boundary condition algorithms.

In Chapter 2, we contribute to the development of LPDMs in the aspect of as-

sessing the stochastic numerical methods of RFMs for operational use in the context

of the turbulent ABL dispersion. A series of one-dimensional turbulent ABL test

problems are introduced and a rigorous methodology for the evaluation of integra-

tion schemes for Lagrangian models is presented. The FPE is solved numerically

using a finite-difference discretisation in physical space, and a Hermite function ex-

pansion in velocity space. Numerical convergence errors in the FPE solutions are

shown to be much less than the statistical error associated with a practical-sized en-

semble (N = 106) of trajectory solutions, hence the former can be used to validate

the latter. The test problems are then used to evaluate commonly used integra-

tion schemes. The results allow for optimal time-step selection for each scheme

at a required level of accuracy, consequently recommendations are made for use in

operational models.

The aim of of Chapter 3 is to improve understanding of how and why the be-
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haviour of RFMs in the ABL can differ from simpler RDMs (or eddy diffusivity

models). To demonstrate this, we examine the shear disperion, sometimes known as

Taylor-Aris dispersion (Taylor, 1953; Aris, 1956) that develops over the depth of the

ABL after the tracer homogenization (well-mixed) period in the long-time disper-

sion. Saffman’s (1962) analysis for the bounded one-dimensional vertical diffusion

becomes relevant for understanding the effective horizontal diffusivity in the ABL

over a period of a few hours. Next, we look at the evolution of the behaviour of

concentrations in the tails of a distribution which can be described mathematically

by large deviation theory. The large deviation results are verified by solving the

LPDM equations numerically for a large ensemble of particles. Turbulent statistics

relevant to stable and neutral boundary layer conditions are considered.

Chapter 4 discusses methods of kernel density estimation for the estimation of

particle concentrations in trajectory models. In this chapter we consider a simple

two-dimensional RDM to describe the advection-diffusion flow in a chaotic advection

regime. We have selected this model because the easily implemented numerical

method to solve its Eulerian FPE provides very accurate solutions for the particle

concentration, which can be used to assess our kernel density methods from the

Lagrangian trajectory models. Some well-known techniques of bandwidth selection

are briefly discussed, and then a new approach using Green’s function to construct

a more accurate kernel density estimator is proposed.

The concluding Chapter 5 describes an overview of the achievements in this

dissertation. A discussion of the presented results as well as some recommendations

and future improvements can also be found in this chapter. Hermite polynomial

(also known as Gram-Charlier type A) expansions are used to simplify the numerical

methodology of our problems in this thesis, a list of some useful formulas are moved

to Appendix A.
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Quantitative Evaluation of

numerical schemes for RFMs

2.1 Introduction

Although the numerical analysis of solution techniques for SDEs (e.g. Kloeden

and Platen, 1992; Milstein and Tretyakov, 2004) is a mature subject in mathematics,

RFMs have not, generally speaking, exploited developments in the subject, and are

typically formulated using numerical schemes adapted from those used for ordinary

differential equations (see e.g. Stohl et al., 2005). Validation of RFMs has focussed

instead on direct comparison with observational data (Stohl et al., 1998; Ryall and

Maryon, 1998). Our contention is that observational comparison, while clearly a

necessary aspect of model development, will be insufficient if any uncertainty exists

concerning the accuracy of the numerical solution of the underlying equations. The

aim of this chapter is to introduce a rigorous framework for the testing and evaluation

of numerical schemes for RFMs. This chapter is a slightly extended version of our

published paper in the Geoscientific Model Development (Mohd. Ramli and Esler,

2016).

41
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The framework is based on a standard one-dimensional dispersion model problem

(Rodean, 1996; Wilson and Sawford, 1996), modelling the vertical dispersion of

air parcels in the ABL. Vertical profiles of turbulent statistics representative of

both stable and neutral conditions will be considered, and the RFM equations will

be of the ‘well-mixed’ class (Thomson, 1987), meaning that long time probability

distribution of the solutions (the invariant measure of the SDEs) is given by a pre-

specified ‘atmospheric’ distribution (taken here to be uniform in physical space and

Gaussian in velocity space). Hence the model problem, while idealised, captures key

elements of the physics of dispersion in the stable and neutral ABL.

Our approach to evaluating a given RFM numerical scheme is to cross-validate

its performance against a numerical solution of the corresponding FPE (see e.g.

Gardiner, 2009). The FPE describes the time evolution of the probability density

function (pdf) of the stochastic process, and is formulated in position-velocity space,

so in the context of the current problem of dispersion in one spatial dimension, is a

partial differential equation in 2+1 dimensions. Note that in three spatial dimensions

in which the FPE is a 6+1 dimensional PDE, it will be computationally impractical

in most circumstances to obtain accurate solutions to the FPE, and consequently

RFMs will be the only practical tool to solve the problem.

A solution method based on a Hermite function expansion is introduced in order

to obtain accurate solutions of the FPE with computational efficiency. Evaluation

of the RFM scheme proceeds by a comparison of pdfs in an appropriate error norm,

where the RFM pdf is generated from an ensemble of solutions, using the kernel

density method (e.g. Silverman, 1986; Wand and Jones, 1994). The performance of

various schemes are evaluated, as a function of time-step ∆t, including the textbook

(basic) Euler-Maruyama scheme, the second-order and third-order weak Runge-

Kutta scheme of Platen (see §15.1 of Kloeden and Platen, 1992), the ‘small-noise’

second-order Runge-Kutta method of Honeycutt (Honeycutt, 1992), the ‘long time-

step’ scheme used operationally in FLEXPART (Stohl et al., 2005) and a suggested
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improvement to this last scheme.

The outline of this chapter is as follows. In §2.2, the SDEs describing the evo-

lution of particle trajectories in the RFM are introduced, together with the corre-

sponding FPE. A numerical solution scheme for the FPE is described and solutions

are obtained and benchmarked for a number of test cases. In §2.3, the methodology

for using the FPE solution to assess specific numerical schemes for the RFM is pre-

sented, and in §2.4 this methodology is then applied to specific schemes discussed

above. In §2.5 the consequences of our findings are discussed and conclusions are

drawn.

2.2 The model problem

2.2.1 RFM formulation

Consider a horizontally homogeneous turbulent ABL of uniform density, with a

vertical velocity distribution that is Gaussian with zero mean and standard deviation

σw(z), and which has a Lagrangian decorrelation time-scale τw(z). The canonical

SDE model (e.g. Rodean, 1996; Wilson and Sawford, 1996) for one-dimensional ver-

tical dispersion in the ABL is exactly as eq. (1.25) and repeated here for convenience:

dWt =

(
−Wt

τw
+

1

2

(
1 +

(
Wt

σw

)2
)
∂σ2

w

∂z

)
dt+

(
2σ2

w

τw

)1/2

dBt, (2.1)

dZt = Wt dt.

Here we use Wt and Zt to denote the vertical velocity and height of a given air

parcel at time t. Both are stochastic variables, with each individual realisation

determined by that of the Brownian (or Wiener) process Bt. Further σw = σw(Zt)

and τw = τw(Zt) are the values of σw(z) and τw(z) local to the parcel.

In operational RFMs, such as FLEXPART, appropriate vertical profiles for σw(z)
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and τw(z) are specified based on empirical fits to observations of different ABL con-

ditions, as discussed in chapter 1.3.5. The equation set (2.1) is typically augmented

with reflecting boundary conditions at the Earth’s surface and at the ABL top (see

Thomson et al., 1997, for detailed discussion of the top boundary condition). For

definiteness, for our test-case runs, the initial velocity for (2.1) at t = 0 is sampled

from a normal distribution W0 ∼ N (0, σ2
w(z0)) and, for ease of comparison to the

FPE results below, the initial position is sampled from a distribution Z0 ∼ N (z0, σ
2
z)

centred on an initial height z0 with standard deviation σz.

For the purposes of numerical solution, it is more convenient (e.g. see §3.1 of

Rodean, 1996) to use Itô’s lemma to express (2.1) in terms of the variables Ωt =

Wt/σw(Zt) and Zt, leading to

dΩt =

(
−Ωt

τw
+
∂σw
∂z

)
dt+

(
2

τw

)1/2

dBt, Ω0 ∼ N (0, 1) (2.2)

dZt = Ωtσw dt, Z0 ∼ N (z0, σ
2
z).

The simpler form (2.2) is exactly equivalent to (2.1). Moreover, the FPE of (2.2) has

a considerably simpler form than the corresponding FPE of (2.1), a fact which will

prove useful below. It is simplest to view equation (2.2) as a non-dimensional equa-

tion, given that in particular Ωt is already a non-dimensional variable. The natural

non-dimensionalisation has length, velocity and timescales of ABL height h, surface

friction velocity u∗, and h/u∗ respectively. Under this non-dimensionalisation, the

spatial domain for (2.2) is 0 ≤ Zt ≤ 1.

To specify our test-case problems it is necessary to choose suitable (non-dimensional)

profiles for σw(z) and τw(z). Here we choose to focus on three such profiles, two of

which are widely used (Hanna, 1982; Stohl et al., 2005) empirical fits to observed

statistics in stable and neutral conditions respectively. The third has τw(z) con-

stant and a linear profile for σw(z), and is used to demonstrate a new RFM scheme

introduced below. The details of the profiles used are given in Table 2.1 and plot-
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ted in Figure 2.1. The profiles of the vertical velocity variances σ2
w(z) and their

spatial derivatives dσ2
w/dz are also plotted in Figure 2.2. These terms appear in

(2.1) which ensure that the particles become well-mixed in the domain over time, as

discussed in §1.3.1. Here we modify the profiles of turbulent statistics for the stable

and neutral ABL conditions, introduced in chapter 1.3.5 as σ̄w(z) and τ̄w(z), where

Zm(z) = zb + z(1− 2zb) and zb = 0.05 are chosen to avoid singular behaviour at the

ABL top and bottom. This is necessary because in Hanna’s original profiles either

σw → 0 or τw → 0 as z → 0, 1 with neither type of behaviour being physical.

In §2.4 large ensembles of numerical solutions of equation (2.2) will be calcu-

lated using different numerical integration schemes. The accuracy of each numerical

scheme, as a function of time-step ∆t, will be assessed by comparison with the

corresponding solution of the FPE, to be detailed next.

σw(z) τw(z) Modified σ̄w(z) Modified τ̄w(z)

Constant τw 0.5 (1 + z) Constant – –

Stable 1.3 (1− z)
0.1z4/5

σw
σw(Zm(z)) τw(Zm(z))

Neutral 1.3 exp (−2z/ε)
z

2σw(1 + 15z/ε)
σw(Zm(z)) τw(Zm(z))

Table 2.1: The non-dimensional profiles of σw(z) and τw(z) suitable for (i) a constant
τw profile, (ii) a stable ABL, and (iii) a neutral ABL (e.g. Hanna, 1982). The non-
dimensional parameter ε = u∗/fh is a boundary layer Rossby number (the value
ε = 0.8 is taken in the test case). For the purposes of numerical stability (see text), in
practice the modified profiles σ̄w(z) and τ̄w(z) are used, where Zm(z) = zb+z(1−2zb)
is chosen to avoid singular behaviour at the boundaries (zb = 0.05).
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Figure 2.1: Vertical profiles of vertical velocity fluctuations σ̄w(z) (left panel) and
vertical velocity Lagrangian decorrelation time τ̄w(z) (right panel) used in the test-
case problems (see Table 2.1). The dimensions for σ̄w and τ̄w are frictional velocity
u∗ and h/u∗ respectively, where h is the ABL height.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
σ2
w

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t
(z
/h

)

Contant τw
Stable
Neutral

-6 -5 -4 -3 -2 -1 0 1
dσ2

w/dz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t
(z
/h

)

Contant τw
Stable
Neutral

Figure 2.2: Vertical profiles of vertical velocity variances σ̄2
w(z) (left panel) and

their derivatives dσ̄2
w/dz (right panel) used in the test-case problems (see Table 2.1).
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2.2.2 FPE formulation

Following the standard procedure in stochastic calculus, (e.g. §3.4.1 of Gar-

diner, 2009), the FPE which describes the time evolution of the probability density

p(ω, z, t) of (Ωt, Zt) in (2.2) can be obtained as

∂p

∂t
= −∂ (ωσwp)

∂z
− ∂

∂ω

((
− ω

τw
+
∂σw
∂z

)
p

)
+

1

τw

∂2p

∂ω2
. (2.3)

Explicitly, here ω = w/σw. The initial conditions consistent with those given in

eq. (2.2) are (for σz � 1 and z0 not near the boundaries)

p(ω, z, 0) =
1

2πσz
exp

(
−ω

2

2
− (z − z0)2

2σ2
z

)
. (2.4)

The FPE (2.3) also requires boundary conditions at z = 0, 1 which are consistent

with the reflecting boundary conditions for the RFM. The boundary conditions

consistent with reflection are

p(ω, 0, t) = p(−ω, 0, t), p(ω, 1, t) = p(−ω, 1, t). (2.5)

which in probabilistic terms is equivalent to the reflection condition Ωt → −Ωt being

applied at the boundaries. Wilson et al. (1993) found that this perfect reflection

algorithm is exactly consistent with the ‘well-mixed constraint’ in homogeneous

Gaussian turbulence (see also the appendix of §11 of Rodean, 1996).

Equations (2.3)-(2.5) constitute a well-defined initial-value problem which is suit-

able for numerical solution. An important quantity obtained from the solution

p(ω, z, t) is the physical concentration of parcels given by

c(z, t) =

∫ ∞
−∞

p(ω, z, t) dω. (2.6)

In general, tracer concentrations and the marginal probability given in eq. (2.6)
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can differ by a normalisation constant. The concentration c(z, t) will be our main

benchmark quantity in §2.4 below.

2.3 Numerical solution of the FPE

2.3.1 The Hermite expansion for the FPE

The non-dimensionalised FPE (2.3) is a hypo-elliptic differential equation defined

on R× [0, 1]. Our approach to its numerical solution is to seek a solution based on

the following Hermite polynomial expansion

p(ω, z, t) =
1√
2π

∞∑
k=0

Ck(z, t) Hek(ω) e−ω
2/2. (2.7)

Here the functions Ck(z, t) denote the projection, at the vertical level and time

(z, t), of p(ω, z, t) onto the (probabilists’) Hermite function Hek(ω)e−ω
2/2/
√

2π where

Hek(ω) is the Hermite polynomial defined by

Hek(ω) = (−1)k eω
2/2 dk

dωk
e−ω

2/2. (2.8)

Notice that it follows that the particle concentration (2.6) satisfies c(z, t) = C0(z, t).

Before inserting the expansion (2.7) into the FPE (2.3) it is helpful to rewrite

the FPE in the form

∂p

∂t
=

1

τw

(
∂2p

∂ω2
+ ω

∂p

∂ω
+ p

)
− ∂

∂ω

(
∂σw
∂z

p

)
− ∂ (ωσwp)

∂z
. (2.9)

In this form the Hermite function identity (A.3) can be used to evaluate the first

term on the right-hand side. Further, the second and third terms on the right-

hand side can be simplified using the derivative and recursion formulae for Hermite

polynomials (A.6)-(A.7). After some working the result is (using the convention
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C−1 ≡ 0)

∞∑
k=0

Hek(ω)e−ω
2/2

(
∂Ck
∂t

+
k

τw
Ck + (k + 1)

∂

∂z
(σwCk+1) + σw

∂Ck−1

∂z

)
= 0. (2.10)

Using the orthogonality property of Hermite functions (A.4) it follows that

∂C0

∂t
= − ∂

∂z
(σwC1)

∂Ck
∂t

= − k

τw
Ck − (k + 1)

∂

∂z
(σwCk+1)− σw

∂Ck−1

∂z
, for k ≥ 1. (2.11)

The system (2.11) constitutes an infinite system of coupled 1+1 dimensional first-

order partial differential equations for the coefficients Ck. For a numerical solution

this series can be truncated as we describe below.

The initial conditions for (2.11) are easily obtained from (2.4) using the orthog-

onality property,

C0(z, 0) =
1√

2πσz
exp

(
−(z − z0)2

2σ2
z

)
, Ck(z, 0) = 0 (for k ≥ 1). (2.12)

The boundary conditions can be obtained using the symmetry Hek(ω) = (−1)k Hek(−ω).

Substituting the expansion (2.7) into the boundary condition (2.5), it follows that

∑
k odd

Ck(z, t)Hek(ω)
e−ω

2/2

√
2π

= 0, at z = 0, 1, (2.13)

and consequently

Ck(0, t) = Ck(1, t) = 0, for k odd. (2.14)

It may seem surprising that the even equations have no boundary condition and the

odd equations take two boundary conditions. However, as the system (2.11) consists

of first-order PDEs it is clear that the total number of boundary conditions will be

correct, provided that the series is truncated at k = K odd.
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It is worth noting that the series (2.11) can also be truncated at K = 0 by using

an (approximate) quasi-stationary balance in the k = 1 equation of the form

C1 = −σwτw
∂C0

∂z
, (2.15)

which results in the diffusion equation

∂C0

∂t
=

∂

∂z

(
σ2
wτw

∂C0

∂z

)
,

∂C0

∂z
(0, t) =

∂C0

∂z
(1, t) = 0. (2.16)

It is well known that the RFM (2.1) can be approximated by a random walk (‘random

displacement’ or RDM) model (see §1.3.3 for details)

dZt =
∂

∂z

(
σ2
wτw
)

dt+
(
2σ2

wτw
)1/2

dBt (2.17)

Equation (2.16) is simply the FPE of the RDM model (2.17), with the diffusivity κ of

the RDM being κ = σ2
wτw. Note that the RDM model can be derived formally from

the RFM in the distinguished limit of a short decorrelation time, σw →∞, τw → 0

with σ2
wτw = κ finite (for e.g. §6.3 of Rodean, 1996). It is much easier to obtain

accurate solutions of (2.17), compared to (2.1) at relatively large time-steps; hence,

an interesting question concerns when exactly it is preferable to solve (2.17) rather

than (2.1). This question is best answered by quantifying the difference between the

solution of (2.16) and (2.11) and using this difference as a benchmark for assessing

the errors in RFM calculations, as will be done in §2.4 below.

2.3.2 The numerical method and benchmark so-

lutions

Based on the analysis above, (2.3) can be solved numerically by integrating

the system (2.11) with boundary conditions (2.14), truncated at k = K odd.
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Our approach is to use a standard finite-difference discretisation with Nz grid

points, equally spaced with ∆z = 1/Nz, on a staggered cell-centred grid (i.e.

zi = (i− 1/2) ∆z, for i = 1, . . . , Nz) in order to apply the boundary conditions

at z = 0, 1 systematically, described as follows.

The FPE (2.3) is solved numerically by integrating (2.11) using the central finite

difference method

∂Ck
∂t

(zi) = − k

τ(zi)
Ck(zi)− (k + 1)

σw(zi+1)Ck+1(zi+1)− σw(zi−1)Ck+1(zi−1)

2∆z

− σw(zi)
Ck−1(zi+1)− Ck−1(zi−1)

2∆z
. (2.18)

Careful treatment is necessary at the boundaries. For k odd, the physical boundary

conditions Ck(0, t) = Ck(1, t) = 0 imply the following substitutions for the values at

the virtual points at z = z0 and z = zNz+1,

Ckodd
(z0) = −Ckodd

(z1)

Ckodd
(zNz+1) = −Ckodd

(zNz).

For k even, the equation itself with k odd requires

Ckeven(z0) = Ckeven(z1)

Ckeven(zNz+1) = Ckeven(zNz).

These substitutions allow the right-hand side of eq. (2.18) to be expressed as a

NzK×NzK matrix equation and completes the discretisation. The MATLAB source

code of the FPE solver can be found online via GitHub and by searching for the

repository “MRE FPE solver” (https://github.com/nhramli/MRE-FPEsolver.git).

The set (2.11) are stiff and a naive solution method would have the time-step

∆t bounded above by ∆t . Minzτw(z)/K, i.e. the timescale of exponential decay
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of the highest Hermite function mode. However, considerably longer time-steps

can be used if an exponential time-stepping scheme is chosen. Our choice is the

‘Exponential Time-Differencing fourth-order Runge-Kutta’ (ETDRK4) scheme of

Kassam and Trefethen (2005), with the ‘linear’ operator in that scheme taken to be

first term on the right-hand side of (2.11) only, because it is this first term that is

responsible for the stiffness of (2.11).

To obtain our benchmark solutions of (2.11) and therefore (2.3), tests of the

convergence of the solutions as both ∆t and ∆z are decreased and K is increased,

have been performed. For all three case studies, it was found to be adequate to take

K = 19 to obtain fully converged solutions, because the Hermite series was found

to converge rapidly i.e. |C19| . 10−16 everywhere in the domain. Comparison of a

sequence of solutions with ∆z = 1/Nz with Nz = 27, 28, ..., 212 revealed quadratic

convergence with ∆z as expected for our scheme. Fig. 2.3 shows the relative error

Ej(t), with reference to the next-highest resolution solution, in the L2-norm for the

mean concentration c(z, t) at fixed times, for the two test cases. That is,

Ej(t) =

(∫ 1

0

(
Cj

0(z, t)− Cj+1
0 (z, t)

)2
dz

)1/2

(2.19)

where Cj
0(z, t) denotes the solution with Nz = 2j. First convergence in L2-norm

(second-order in L1-norm) is evident from the slope of the graphs in Fig. 2.3. For

example, typical numerical errors at Nz = 212 (highest resolution) are E12(t1) =

9.7 × 10−5 (stable boundary layer at t1 = h/u∗) and 1.3 × 10−4 (neutral bound-

ary layer at t1 = 3h/u∗) respectively. The numerical accuracy above is sufficient

for benchmarking our RFM solutions, because the statistical error associated with

reasonable-sized ensembles (N = 106) of the RFM is of order E(t1) ≈ 10−2, as will

be discussed below.

Figure 2.4 shows snapshots of the particle concentration c(z, t) for each of the

three FPE benchmark solutions described above. The left panel shows the constant
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τw case, middle panel shows the stable ABL case and the right panel the neutral

ABL. In all three cases particles are initialised close to z = z0 = 1/2 and disperse to

become well-mixed throughout the ABL at late times. The neutral and stable cases

differ in that mixing is rather more rapid (in terms of the dimensional timescale

h/u∗) for the stable case compared to the neutral case. Also, in the neutral case

mixing is relatively slow towards the top the ABL where the amplitude of turbulent

fluctuations decays exponentially.

Grid resolution ∆z
10-3 10-2
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el
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e
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r
E j
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10-3

Stable

Neutral

Slope=1

Nz = 212
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Nz = 29

Nz = 28

Nz = 27

Figure 2.3: Relative error Ej (see eqn. 2.19) of the FPE solutions as a function of
grid resolution ∆z = 2−j for j = 7, 8, ..., 12 for the two test-case problems. Stars:
stable ABL (Ej(t = 1)). Squares: neutral ABL (Ej(t = 3)).
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Figure 2.4: Snapshots of particle concentration c(z, t) from the numerical FPE
solutions for the three test-case problems. Left: Constant τw (t = 0, 1, 1.5, 2h/u∗).
Center: Stable ABL (t = 0, 1, 2, 4h/u∗). Right: Neutral ABL (t = 0, 3, 6, 12h/u∗).
For clarity c(z, 0)/4 is plotted (instead of c(z, 0)) for the initial condition at t = 0
in both panels.

2.4 Evaluation of numerical schemes for

RFMs

In this section, a range of textbook, commonly used and new numerical schemes

for RFMs will first be introduced, and then evaluated using the FPE solutions

described above as a benchmark. The task is somewhat simplified because the

equation set (2.2) is time-independent (autonomous). Note that it may be necessary

to modify some of the schemes described below if an ABL with time-dependent

statistics is to be modelled with the same formal accuracy (see the model problem

studied in Chapter 4, for e.g.).

In the terminology of SDE numerical schemes, we are able to use ‘weak’ schemes

(convergent in probability) in addition to ‘strong’ schemes (convergent in path),

because we are primarily interested in the concentration of particles, which can be

obtained from the pdf p(ω, z, t). In our type of model application, we are par-

ticularly interested in convergence in the weak sense, so that is what we will pay
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most attention to when investigating the different numerical schemes. By definition

(Kloeden and Platen, 1992), the discrete approximation Zt using a given scheme is

said to converge with weak order β to the solution Zt of (2.2) as ∆t→ 0 if for each

positive polynomial g, there exists a positive constant k, such that

|〈g(Zt)〉 − 〈g(Zt)〉| ≤ k (∆t)β.

The rate of convergence of a scheme, as measured by the quantities which depend

on the pdf such as the concentration c(z, t), with respect to the time-step ∆t is

known as its ‘weak’ order (see e.g. chapter 9 of Kloeden and Platen, 1992). The

weak order is the relevant measure of comparison between schemes for our study,

and should not be confused with the ‘strong’ order of a scheme, which refers to the

rate of convergence of solution paths with respect to specific stochastic realisations.

It is important to note, however, that it is by no means obvious that a given

scheme will attain its formal weak order when solving (2.2). This is because the

assumptions under which the weak order of each scheme is derived are not met in the

case of (2.2) because of the reflection boundary conditions. It is therefore necessary

to solve (2.2) explicitly to assess each scheme.

2.4.1 RFM numerical schemes

Tables 2.2 - 2.3 summarise the SDE numerical schemes to be investigated. The

first, most obvious scheme to test is the Euler-Maruyama (E-M) scheme (Maruyama,

1955), i.e. the simplest and lowest order time-stepping scheme for SDEs. Next, as

with ordinary differential equations (ODEs), it is possible to construct schemes with

higher orders of formal accuracy in the spirit of Runge-Kutta schemes for ODEs.

Here we test the performance of Platen’s ‘explicit order 2.0 weak scheme’ (EX-

PLICIT 2.0) and ‘explicit order 3.0 weak scheme’ (EXPLICIT 3.0) (see chapter 15

of Kloeden and Platen, 1992). In common with schemes for ODEs, higher order
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schemes are somewhat more complicated to implement, and are more computation-

ally expensive per time-step ∆t. The advantage, however, is that the schemes have

weak order ∆t2 (EXPLICIT 2.0) and ∆t3 (EXPLICIT 3.0) compared to ∆t for E-M.

A single candidate from a second class of schemes, the so-called ‘small-noise’

schemes, to be investigated is the HON-SRKII scheme of Honeycutt (1992). Small-

noise schemes typically have the same weak order (∆t) as E-M (see e.g. discussion

in §3 of Milstein and Tretyakov, 2004), but the schemes are designed so that the

leading-order error depends on the ‘noise amplitude’ in the equation, which in many

practical situations is sufficiently small that higher-order convergence is observed

in practice (at least for intermediate length time-steps, see discussion below). The

HON-SRKII scheme will be shown below to converge with global error ∼ ∆t2 in

this intermediate time-step regime.

A third class of schemes to be investigated are designed to work well with long

time-steps. Such schemes are of interest operationally, because the practical advan-

tages of calculating large ensembles efficiently are thought to outweigh the disadvan-

tage of loss of accuracy due to time-stepping errors. The model FLEXPART (Stohl

et al., 2005), for example, switches between using E-M and a long time-stepping

scheme due to Legg and Raupach (1982, LEGGRAUP). It is of some interest to

verify that long time-stepping schemes such as LEGGRAUP do indeed outperform

E-M at operationally relevant values of ∆t. In fact, we review the derivation of the

LEGGRAUP scheme in the next section, and show that additional care is needed

to couple the velocity and position equations. A corrected scheme (LONGSTEP) is

derived and is then compared with the schemes listed above in §2.4.2.

2.4.1.1 Derivation of LONGSTEP scheme

Here we derive a new long time-step scheme LONGSTEP. The scheme is designed

to give acceptable results when integrating eq. (2.2) using time-steps ∆t & Min τ(z),

for use in operational models. The starting point for the scheme is the velocity
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update equation for the LEGGRAUP scheme (see Table 2.2)

Ωn+1 = Rn Ωn + σ′n τn(1−Rn) +
(
1−R2

n

)1/2
∆n, (2.20)

where τn = τ(Zn), σ′n = (∂σw/∂z)(Zn), Rn = exp (−∆t/τn) and ∆n ∼ N (0, 1) is

a random variable drawn from a Gaussian distribution with zero mean and unit

variance. This scheme is obtained by first transforming (2.2) using Itô’s lemma to

obtain

d
(
Ωte

t/τ
)

= et/τ
∂σw
∂z

dt+ et/τ
(

2

τ

)1/2

dBt.

If both τ and ∂σw/∂z are taken to be constant (i.e. σw(z) = σ0 +σ′0z) , this equation

can be integrated to give

Ωt = Ω0 e−t/τ + σ′0 τ(z)
(
1− e−t/τ

)
+

(
2

τ

)1/2 ∫ t

0

e(s−t)/τ dBs. (2.21)

Stochastic integrals of the form

∫ t

0

f(s) dBs ∼ N
(

0,

∫ t

0

f(s)2 ds

)
,

hence the final term in (2.21) can be replaced by a Gaussian random variable to

give

Ωt = Ω0 e−t/τ + σ′0 τ
(
1− e−t/τ

)
+ α1(t) ∆1, (2.22)

where ∆1 ∼ N (0, 1) and α1(t) =
(
1− e−2t/τ

)1/2
. Equation (2.20) used by LEG-

GRAUP follows immediately from this solution.

The point where our analysis departs from that of Legg and Raupach (1982) is

in the derivation of the position update. Under the approximation of linear σw the

position equation of (2.2) is

dZt = Ωt (σ0 + σ′0 Zt) dt, (2.23)
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which, applying Itô’s lemma, can be written as

d (log (σ0 + σ′0 Zt)) = σ′0 Ωt dt (2.24)

and integrated to obtain

1

σ′0
(log (σ0 + σ′0 Zt)− log (σ0 + σ′0 Z0)) =

∫ t

0

Ωs ds. (2.25)

The update equation used in LEGGRAUP, i.e. from Table 2.2,

Zn+1 = Zn + σnΩn dt (2.26)

would be correct (only in the limit σ′0 → 0) in the event that Ωs were a deterministic

variable in the interval 0 ≤ s ≤ t. However, Ωs is a stochastic variable, hence it is a

very crude approximation (error O(t)) to replace the integral on the right-hand side

of (2.25) by Ω0t (which leads to the update eq. (2.26)). Instead, the integral needs

to be considered carefully, as follows.

To evaluate the stochastic integral on the right-hand side of eq. (2.25) integral

we can insert the solution (2.21) for Ωs to obtain

∫ t

0

Ωs ds = Ω0 τ
(
1− e−t/τ

)
+σ′0 τ

2

(
t

τ
− 1 + e−t/τ

)
+

(
2

τ

)1/2 ∫ t

0

∫ s

0

e(q−s)/τ dBq ds,

(2.27)

The final term can be evaluated following a switch in the order of integration

∫ t

0

∫ s

0

e(q−s)/τ dBq ds =

∫ t

0

∫ t

q

e(q−s)/τ ds dBq = τ

∫ t

0

(
1− e(q−t)/τ) dBq = τ 3/2 α2(t) ∆̂2.

(2.28)

where ∆̂2 ∼ N (0, 1) and

α2(t) =

(
t

τ
− 2

(
1− e−t/τ

)
+

1

2

(
1− e−2t/τ

))1/2

.
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The issue for implementation is that the Gaussian random variables ∆1 and ∆̂2 are

not independent. In fact, they have covariance given by

E(∆1∆̂2) ≡ β(t) =

√
2

τ 2 α1(t) α2(t)

∫ t

0

e(s−t)/τ (1− e(s−t)/τ) ds =

(
1− e−t/τ

)2

√
2α1(t) α2(t)

.

Independent random variables can be introduced by writing

∆̂2 = β(t) ∆1 +
(
1− β(t)2

)1/2
∆2, (2.29)

where ∆1 and ∆2 are independent with ∆1,∆2 ∼ N (0, 1).

The explicit solution of (2.25) can therefore be written

Zt = Z0 exp (σ′0S0) +
σ0

σ′0
(exp (σ′0S0)− 1) , where (2.30)

S0 = Ω0τ
(
1− e−t/τ

)
+ σ′0τ

2

(
t

τ
− 1 + e−t/τ

)
+ 21/2α2(t)

(
β(t) ∆1 + (1− β(t))1/2 ∆2

)
The scheme LONGSTEP, given explicitly in Table 2.2, consists of the LEGGRAUP

velocity update (2.20), and a position update obtained from the solution (2.30) by

linearizing σw about the current position Zn. Similar to E-M, LONGSTEP converges

with weak error ∼ ∆t, however it is designed to perform better at long time-steps

as is tested in §2.4.2.

2.4.1.2 RFM numerical boundary conditions

In the numerical implementation of RFM eq. (2.2), the reflection condition Ωt →

−Ωt is applied at the bottom and top of the ABL, where Zt = 0 and Zt = 1

respectively. This means that perfect reflection at the boundaries is also assumed

for the Zt computation.

(i) At the end of every time step of the numerical scheme tj = j∆t (j = 1, 2, 3, . . .),

any ‘illegal’ particle (Ω∗tj , Z
∗
tj

) that crosses the boundaries, i.e. below Z = 0 or
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Scheme Algorithm Reference and
Notes

E-M Ωn+1 = Ωn + Fn ∆t + (2/τn)
1/2

∆Bn

Zn+1 = Zn + Ωnσn ∆t
Maruyama (1955)

EXPLICIT 2.0

Ωn+1 = Ωn + 1
2

(
Fn + Fµ

)
∆t + 1

2

(
(2/τn)

1/2
+ (2/τµ)

1/2
)

∆Bn

Zn+1 = Zn + 1
2

(
Ωnσn + Ωµσµ

)
∆t

Ωµ = Ωn + Fn ∆t + (2/τn)
1/2

∆Bn,

Zµ = Zn + Ωnσn ∆t

Sec. 15.1 of Kloeden and

Platen (1992)

HON-SRKII

Ωn+1 = Ωn + 1
2

(
Fn + Fµ

)
∆t + (2/τn)

1/2
∆Bn

Zn+1 = Zn + 1
2

(
Ωnσn + Ωµσµ

)
∆t

Ωµ = Ωn + Fn ∆t + (2/τn)
1/2

∆Bn,

Zµ = Zn + Ωnσn ∆t

Honeycutt (1992)

LEGGRAUP
Ωn+1 = Rn Ωn + σ

′
n τn(1− Rn) +

(
1− R2

n

)1/2
∆n

Zn+1 = Zn + σn Ωn ∆n

Rn = e
−∆t/τn

Legg and Raupach

(1982)

LONGSTEP

Ωn+1 = Rn Ωn + σ
′
n τn(1− Rn) +

(
1− R2

n

)1/2
∆n

Zn+1 = Zn + σn
σ′n

(
exp

(
σ
′
n Sn

)
− 1

)
Rn = e

−∆t/τn

Sn = Ωnτn

(
1− e

−∆t/τn
)

+ σ
′
nτ

2
n

(
∆t
τn
− 1 + e

−∆t/τn
)

+ 2
1/2

α2n(t)
(
βn ∆1n + (1− βn)

1/2
∆2n

)
βn =

(1−Rn)2

21/2 α1nα2n
, α1n = (1− Rn)

1/2

α2n =
(

∆t
τn
− 2 (1− Rn) + 1

2

(
1− R2

n

))1/2

See §2.4.1.1

Table 2.2: The RFM numerical schemes investigated in §2.4. Here ∆t is the time-
step, ∆Bn ∼ N (0,∆t), ∆n ∼ N (0, 1) and σi = σw(Zi), τn = τw(Zn). The drift
function is denoted by Fi = −Ωi/τw(Zi) + σ′w(Zi) where i = n, µ.
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Scheme Algorithm Reference and
Notes

EXPLICIT 3.0

Ωn+1 = Ωn + Fn ∆t + (2/τn)
1/2

∆Bn

+ 1
2

(
F

+
ζ + F

−
ζ −

3
2
Fn − 1

4

(
F̃

+
ζ + F̃

−
ζ

))
∆t

+
(

1√
2

(
F

+
ζ − F

−
ζ

)
− 1

4

(
F̃

+
ζ − F̃

−
ζ

))
ζ∆Cn (2/∆t)

1/2

+ 1
6

(
Fn + Fu − F+

ζ − F
+
ρ

) (
(ζ + ρ) ∆Bn (∆t)

1/2
+ ∆t + ζ ρ

(
(∆Bn)

2 −∆t
))

Zn+1 = Zn + Ωnσn ∆t

+ 1
2

(
σζ

(
Ω

+
ζ + Ω

−
ζ

)
− 3

2
Ωnσn − 1

4
σ̃ζ

(
Ω̃

+
ζ + Ω̃

−
ζ

))
∆t

+

(
σζ√

2

(
Ω

+
ζ + Ω

−
ζ

)
−
σ̃ζ
4

(
Ω̃

+
ζ − Ω̃

−
ζ

))
ζ∆Cn (2/∆t)

1/2

+ 1
6

(
Ωnσn + Ωuσu − σζ

(
Ω

+
ζ + Ω

−
ρ

)) (
(ζ + ρ) ∆Bn (∆t)

1/2
+ ∆t + ζ ρ

(
(∆Bn)

2 −∆t
))

Ω
±
φ = Ωn + Fn ∆t± (2/τn)

1/2
(∆t)

1/2
φ

Zφ = Zn + Ωnσn ∆t

Ω̃
±
φ = Ωn + 2Fn ∆t± (2/τn)

1/2
(2 ∆t)

1/2
φ

Z̃φ = Zn + 2 Ωnσn ∆t

Ωu = Ωn +
(
Fn + F

+
ζ

)
∆t + (2/τn)

1/2
(ζ + ρ) (∆t)

1/2

Zu = Zn +
(
Ωnσn + Ω

+
ζ σζ

)
∆t

where φ = ζ, ρ and P (ζ = ±1) = P (ρ = ±1) = 1
2

Sec. 15.2 of Kloeden and

Platen (1992)

Table 2.3: EXPLICIT 3.0 scheme tested in §2.4, with τn = τw(Zn), and σi =
σw(Zi), σ̃φ = σw(Z̃φ), where i = n, u, φ. The drift function is denoted by Fi =
−Ωi/τw(Zi) + σ′w(Zi) or F̃φ = −Ω̃i/τw(Z̃φ) + σ′w(Z̃φ). Here ∆t is the time step and
we use two correlated Gaussian random variables ∆Bn ∼ N (0,∆t) and ∆Cn ∼
N (0, (∆t)3/3), with E(∆Bn∆Cn) = (∆t)2/2.
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above Z = 1, will be reflected back into the domain and its velocity direction

is reversed, i.e. Ωtj = −Ω∗tj .

(ii) Higher-order schemes involve intermediate time-steps. Our treatment of in-

termediate time-steps is as follows. First, the z-domain is extended to z ∈

(−∞,∞), by repeated reflection of the σw(z) and τ(z) profiles in the bound-

aries. In this extended domain, all intermediate time-steps are completed

according to the algorithm in question. Then, at the end of the completed

time-step reflection, as detailed above, takes the particle back into the z ∈ [0, 1]

domain where necessary. The domain extension device thus uniquely deter-

mines an unambiguous treatment of reflection of particles near the boundaries

in the higher weak order schemes EXPLICIT 2.0, HON-SRKII, EXPLICIT 3.0

detailed in Tables 2.2 and 2.3.

2.4.1.3 Measured error

The method used to compare the results from a particular scheme, at fixed time-

step ∆t, to the particle concentration c(z, t) obtained from the numerical solution of

the FPE, is as follows. First, a large ensemble (typically N = 106) of trajectories is

calculated using the scheme under investigation. Next, the density of particles ĉ is

reconstructed from the resulting ensemble {Z(i)
t , i = 1, ..., N} using kernel density

estimation

ĉ(z, t;hb) =
1

Nhb

N∑
i=1

K

(
z − Z(i)

t

hb

)
+ ‘image terms’. (2.31)

Here hb > 0 is a (small) smoothing parameter known as the bandwidth, and ‘image

terms’ refer to contributions from the images of trajectories, introduced to satisfy the

boundary conditions. The function K(·) is the kernel function, and is non-negative

with zero mean and has unit integral. Here we use a Gaussian kernel. Details,

including how the optimal bandwidth hb = h∗ is chosen in practice, are given in

Chapter 4.
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The error associated with a given scheme, at time-step ∆t, is measured by the

L2-norm

‖c− ĉ‖2 =

(∫ 1

0

(
c(z, t)− ĉ(z, t;h∗)

)2
dz

)1/2

. (2.32)

In practice the error (2.32) is effectively bounded below by the so-called statistical

error, which is defined to be the expected value of ‖c − ĉ‖2 in the event that the

ensemble {Z(i)
t , i = 1, ..., N} were sampled from the exact distribution c(z, t) itself.

It is important to emphasise that it is not possible, using our method, to investigate

schemes with errors below the statistical error. The statistical error can of course be

reduced by using a larger ensemble N , but convergence is slow as the dependency

is N−1/5, as discussed in Chapter 4 of the thesis.

In the results below, in the interests of reproducibility, the error is presented as

a function of the fixed time-step ∆t for each scheme. However, the schemes have

different computational costs per time-step, which will depend on both the method

of implementation of each algorithm, and on the machine used for the simulations.

To give a rough idea of representative computational costs, in Table 2.4 the relative

cost, measured with reference to the E-M scheme is shown for our calculations.

Following best practice in large operational calculations (see e.g. Stohl et al., 2005),

the random numbers used to simulate the Wiener processes are pre-calculated so

the costs of their generation are not included in the comparison.
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Scheme Relative computational time
E-M 1.0

EXPLICIT 2.0 2.0
EXPLICIT 3.0 5.8
HON-SRKII 1.9
LEGGRAUP 1.2
LONGSTEP 1.5

Table 2.4: Computational clock times, measured relative to the E-M scheme, for
all of the schemes detailed in Tables 2.2–2.3. The calculations are for N = 106

trajectories, with time-step ∆t = 10−3h/u∗ and integration time h/u∗, The compu-
tational times are obtained by taking the average of times elapsed in seconds from
several simulations, coded in MATLAB, on a MacBook Pro with no other programs
running.

Another possible computational saving comes from the use of variable time-steps.

To test whether or not a significant computational saving is easily attainable, we

have made some calculations in which ∆t ∝ τw (the local Lagrangian decorrelation

time). Error results of E-M and HON-SRKII schemes with variable time-steps are

shown in Fig. 2.5. For each scheme tested, the use of variable time-steps was found to

lead to a computational saving of a factor of around two to three compared to fixed

time-steps, with the schemes otherwise performing as detailed below. More details

and derivation of variable time-stepping schemes can be found in the literature (see

for examples Szepessy et al., 2001; Burrage and Burrage, 2003; Burrage et al., 2004).
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Figure 2.5: L2-error against average time-steps ∆t u∗/h of the E-M and HON-
SRKII schemes detailed in Table 2.2, using fixed time-steps ∆t versus variable time-
steps (i.e. ∆t ∝ τw(z)). Results are calculated from N = 106 trajectories in the
stable case with integration time h/u∗.

2.4.2 Results

The main results, showing the performance of the six schemes described in Ta-

bles 2.2 - 2.3 over a wide range of time-steps ∆t, are shown in Figs. 2.6- 2.8. Fig-

ure 2.6- 2.8 detail the results for the constant τw test case, the stable ABL test

case and the neutral ABL test case respectively (see Table 2.1). In each figure, the

L2-error (2.32) is plotted as a function of non-dimensional time-step ∆t u∗/h. Log-

arithmic scales are used so that lines of constant slope corresponds to the observed

order of the schemes. Blue lines with slopes 1, 2 and 3 are plotted for reference.

The statistical error, which is the lowest possible error that can be measured for a

given scheme, is plotted as a solid black line in each panel.

Also plotted on Figures 2.6 - 2.8, as a dotted black line, is the L2-norm difference

‖c − C0‖2 between the concentration field c(z, t) obtained from the solution of the

FPE (2.3) and C0(z, t) obtained from the diffusion equation (2.16). The dotted
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black line marks an important boundary on each panel. If the time-step ∆t is such

that the error of a given scheme lies above this line, then it is preferable to solve

the RDM (2.17) in place of (2.2), because (at fixed ∆t) the numerical error for the

former is more easily controlled.

Figure 2.6 shows results for the constant τw test-case at time t = 1h/u∗ (see

Figure 2.4 and Table 2.1 for details). The lowest order schemes, LEGGRAUP (blue

circles) and E-M (black squares) are seen to realise their formal weak order ∆t.

EXPLICIT 2.0 (red hexagons) and HON-SRKII (green solid triangles) have weak

order ∆t2, whereas EXPLICIT 3.0 (blue triangles) has weak order ∆t3 as expected.

The best performing scheme for this particular case is the new scheme LONGSTEP

(purple diamonds) derived in §2.4.1.1. The rationale for LONGSTEP is that there is

a conceptual error in the derivation of LEGGRAUP, which results in its performance

at large ∆t being no better than E-M. When this error is corrected in LONGSTEP,

the performance is better than even EXPLICIT 3.0. LONGSTEP in effect uses

exact solutions of the RFM equations for constant τw and linear σw, meaning that

if the same calculations had been performed in an infinite domain, the numerical

error would be zero. In the constant τw test case, errors in LONGSTEP arise only

from the reflection boundary conditions at z = 0, 1. However, LONGSTEP does

not fare well in the remaining two test-cases to be described next.

Figure 2.7 shows results for the stable ABL test case at intermediate time t =

h/u∗ (upper panel) and at late time t = 4h/u∗ (lower panel), when the concentration

is almost well-mixed across the ABL (see Figure 2.4). The results are similar to

those of the constant τw case, except LONGSTEP (purple diamonds) now performs

as poorly as E-M. Both E-M and LONGSTEP outperform LEGGRAUP. It was

not found to be possible to obtain acceptable solutions for EXPLICIT 3.0 using

time-steps longer than ∆t = 0.02h/u∗ because of problems with reflective boundary

conditions.

Figure 2.8 shows the results for the neutral ABL case at intermediate time
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t = 3h/u∗ (upper panel) and at late time t = 12h/u∗ (lower panel). In this

case the performance of LONGSTEP and LEGGRAUP are comparable, but with

the E-M scheme performing better than both, except at very long time-steps where

LEGGRAUP having slightly better accuracy at long time-steps. As for the previ-

ous test cases EXPLICIT 3.0 (blue triangles) scheme gives the lowest errors (weak

order ∆t3), and EXPLICIT 2.0 (red hexagons) along with HON-SRKII (green solid

triangles) perform consistently well with weak order ∆t2.

The typical time-step used by operational models such as FLEXPART (Stohl

et al., 2005) is 900s in the ‘long time-step’ or ‘global’ mode. This is equivalent

to 0.09 − 9 h/u∗ under our unit of time non-dimensionalisation, given that h =

100 − 1000 m is the ABL height and u∗ = 0.1 − 1 ms−1 is surface friction velocity.

According to our results in Figures 2.7 and 2.8, the time-step range 0.09 − 9 h/u∗

are too long and will show very small error difference between schemes, well above

the L2-norm difference ‖c − C0‖2 error. At this point, the results are sufficiently

inaccurate that it is better to use the RDM (2.17).
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ĉ∥
2

Constant τ at t = h/u∗
E-M
EXPLICIT 2.0
EXPLICIT 3.0
HON-SRKII
LEGGRAUP
LONGSTEP
Slope = 1
Slope = 2
Slope = 3

statistical error

∥c− C0∥2

Figure 2.6: L2-error (2.32) as a function of non-dimensional time-step ∆t u∗/h for
the constant τw = 0.1 test-case with N = 106 ensemble integrated at time t = h/u∗.
The LONGSTEP scheme (purple diamonds) gives the best results in this case. Blue
lines of slopes 1, 2 and 3 are plotted for reference.
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ĉ∥
2

Stable at t = h/u∗
E-M
EXPLICIT 2.0
EXPLICIT 3.0
HON-SRKII
LEGGRAUP
LONGSTEP

10-3 10-2

Time-step (∆t u∗/h)

10-2

10-1

100

E
rr
or

∥c
−

ĉ∥
2

Stable at t = 4 h/u∗
E-M
EXPLICIT 2.0
EXPLICIT 3.0
HON-SRKII
LEGGRAUP
LONGSTEP

statistical error

statistical error

∥c− C0∥2

Figure 2.7: L2-error (2.32) as a function of non-dimensional time-step ∆t u∗/h for
the stable ABL test case integrated at intermediate time t = h/u∗ (upper panel)
and at late time t = 4h/u∗ (lower panel). From left to right, blue lines of slopes 1, 2
and 3 are plotted for reference.
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Figure 2.8: L2-error (2.32) as a function of non-dimensional time-step ∆t u∗/h for
the neutral ABL test case integrated at intermediate time t = 3h/u∗ (upper panel)
and at late time t = 12h/u∗ (lower panel). From left to right, blue lines of slopes 1
and 2 are plotted for reference.
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To give an impression of where the particle concentration errors are accumulat-

ing, Figure 2.9 shows snapshots of particle density ĉ(z, t) for the stable ABL case, at

t = h/u∗. Results are shown for each scheme when a long time-step ∆t = 0.05h/u∗

is used (left panel) and a moderate time-step ∆t = 0.007h/u∗ (right panel). The

errors in the long time-step case are large and are largely due to issues with the

reflection of trajectories at the surface (z = 0). Numerical accuracy requires that

∆t � τw, which is evidently violated close to the boundary where τw(z) is small

(see Fig. 2.1). Errors due to reflection are particularly acute for the higher order

schemes (such as EXPLICIT 2.0 and HON-SRKII) that require the treatment of

an intermediate step(s). See the discussion in §2.4.1.2 for how this step is imple-

mented. The stable boundary layer case, where τw decays most rapidly near the

z = 0 boundary, is the case which appears to be the most sensitive to the treatment

of reflection there.
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Figure 2.9: Snapshots of reconstructed particle density ĉ(z, t) for the stable ABL
case at time t = h/u∗, shown at each scheme. Left: when long time-step ∆t =
0.05h/u∗ is used and errors due to boundary conditions dominate. Right: when
moderate time-step ∆t = 0.007h/u∗ is used.
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2.5 Conclusions

The main contribution of this chapter is to introduce a protocol for the quantita-

tive assessment of SDE numerical schemes, applied to the problem of dispersion in

an idealised atmospheric boundary layer, as modelled by RFMs. Accurate solutions

of the Fokker-Planck equation (FPE (2.3)) are used to benchmark the distribution

obtained from an ensemble of RFM solutions obtained using a particular scheme

with a fixed time-step ∆t. By using the FPE solution, our protocol avoids the pos-

sibility of the RFMs exhibiting spurious convergence to an incorrect distribution as

∆t→ 0 (e.g. by a poor treatment of reflection boundary conditions), and the FPE

provides independent verification of the correctness of a specific implementation.

The convergence results obtained in our model test problems are valuable be-

cause, due to the importance of reflection of particles from the surface and top of the

boundary layer, it is not possible to rely on the formal convergence rates of different

SDE schemes (as given by e.g. Kloeden and Platen, 1992). All of the schemes tested

attain their formal convergence rates at early times in the model test problem, i.e.

before reflection becomes important, and thereafter are limited to an extent by the

details of how reflection is implemented (§2.4.1.2).

Our results allow the following recommendations to be made, for consideration

by operational modellers:

1. For our test problems, the best results with respect to accuracy as a function of

∆t were obtained with the weak order ∆t3 scheme EXPLICIT 3.0. However,

this scheme is time-consuming to implement and more expensive per step

compared to the weak order ∆t2 schemes investigated, so the gains associated

with it are marginal. A good compromise between ease-of-implementation,

flexibility and accuracy is the ‘small-noise’ scheme of Honeycutt (1992, here

HON-SRKII). Formally, the weak order of HON-SRKII is just ∆t, i.e. the same

as Euler-Maruyama. However, the scheme designed so that at fixed ∆t, in the
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limit of small-noise the weak error scales with ∆t2 (e.g. Chap. 3 of Milstein and

Tretyakov, 2004). Although the boundary layer dispersion problems examined

here are not formally ‘small-noise’ problems, our results show clearly that

they behave as such in a practical implementation. As a consequence HON-

SRKII scheme performs at least as well as the formally weak order ∆t2 scheme

EXPLICIT 2.0 (which in fact has a very similar implementation for the specific

RFM problem we have examined here).

2. The ‘long-step’ scheme due to Legg and Raupach (1982, here LEGGRAUP),

which is used operationally for global integrations of trajectories in FLEX-

PART (for example), should be avoided. LEGGRAUP does not significantly

outperform Euler-Maruyama at any time-step for any of the three profiles we

have studied. The reason for this is a conceptual error in its derivation, which

we have corrected here in the development of a new scheme LONGSTEP, see

§2.4.1.1. LONGSTEP performs very well in the case of τw(z) =constant, but

no better than LEGGRAUP for other τw(z) profiles, hence we do not recom-

mend it for operational use either.

3. Global calculations often require the use of long time-steps for reasons of

computational efficiency. For such calculations, we recommend switching to

the random displacement model (2.17), rather than solving the RFM equations

(2.2). The reason for this recommendation is apparent in Figures 2.6 - 2.8

where the numerical error for all of the schemes investigated is seen to exceed

the difference between RDM and RFM solutions when the time-step ∆t &

0.02h/u∗. Given that the unit of time in our non-dimensionalisation is T =

h/u∗, where h = 100−1000 m is boundary layer height and u∗ = 0.1−1 ms−1

is surface friction velocity, for a typical T ≈ 1000s errors will be minimized by

using the RDM whenever a time-step ∆t & 20 s is required.

Naturally, the recommendations above are based only on the limited set of
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schemes which we have studied. It is to be hoped that the protocol and test

cases introduced here will be helpful to other researchers developing and testing

novel methods for RFMs. A key challenge in such development will be the careful

treatment of reflection boundary conditions, including their generalisation to more

complex physical situations (e.g. Wilson and Flesch, 1993; Thomson et al., 1997;

Wilson and Yee, 2007).



Chapter 3

Shear dispersion in the turbulent

atmospheric boundary layer

3.1 Introduction

Shear dispersion, sometimes referred to as Taylor or Taylor-Aris dispersion, de-

scribes a fundamental process in fluid dynamics. It was first recognised by Taylor

(1953) who investigated the dispersion of a passive tracer by laminar Poiseuille flow

through a pipe, then later by Aris (1956) who treated the same problem but used

a different analytical approach. The main feature of shear dispersion is that the

rate dispersal of a tracer in the of along-flow (longitudinal) direction is influenced,

not by the direct diffusion acting in the along-flow direction, but by the diffusion in

the across-flow (lateral) direction acting simultaneously with the shear in the flow.

More interestingly, the dominant term in the effective diffusivity in the along-flow

direction is found to be inversely proportional to the across-flow diffusivity. This

is because when the across-flow diffusivity is weak, individual fluid particles expe-

rience coherent differential advection by the shear flow for long periods, compared

to when the across-flow diffusivity is strong. On the other hand, in the limit of

74
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strong across-flow diffusivity the particles experience (non-dispersive) advection by

the mean flow only.

Shear dispersion in the context of ABL flows has long been recognised. The

classic paper of Saffman (1962) derived analytical solutions for two idealized prob-

lems of vertical diffusion in the atmosphere. The first problem is bounded to a fixed

boundary layer height where a no-flux boundary condition is imposed and the sec-

ond problem is unbounded. Subsequent researchers (e.g. Smith, 1965; Tyldesley and

Wallington, 1965; Taylor, 1982; Smith, 2005) have mainly focussed on the paradigm

presented by the second solution, which is relevant to the early stages of a tracer

release problem in which a near-Gaussian tracer plume or puff spreads freely in the

vertical, interacting only with the surface.

The present work1, by contrast, is motivated in part by the desire to under-

stand shear dispersion in state-of-the-art LPDMs such as FLEXPART (Stohl et al.,

2005) and NAME (Jones et al., 2007). In these models a no-flux (or particle reflec-

tion) boundary condition is imposed at the top of ABL as in Saffman’s (1962) first

problem above. After a time period of the order of h/u∗ where h is the boundary

layer height and u∗ the surface friction velocity, particle concentrations become ho-

mogenised in the vertical. Shear dispersion over the ABL depth then follows after

this homogenisation period. Since h/u∗ in the ABL is typically of the order of tens

of minutes, the practical relevance of Saffman’s (1962) first problem to the horizon-

tal spread of tracers released in the ABL is evident over a period of a few hours.

Figure 3.1 shows a diagram of turbulent tracer dispersal in a LPDM with spatially

non-uniform turbulence statistics (e.g. Lagrangian decorrelation time and velocity

fluctuations) interacting with a shear flow in a bounded model of the ABL.

Figure 3.2 displays snapshots in time of an ensemble of trajectories in one of the

RFM calculations. The first panel shows the ensemble scatterplot at t = 0.2 h/u∗

1Based on this chapter, a paper co-written with J.G. Esler is to be submitted to the Quarterly
Journal of the Royal Meteorological Society.
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just before the particle distribution become vertically homogenised (or well-mixed)

in the second panel after t = 2 h/u∗. In this chapter, we will be interested in the

horizontal spread of the tracer particles as measured by the variance 〈(Xt−〈Xt〉)2〉1/2

(where the angle brackets denote ensemble average) in the late time t = 20 h/u∗

evolution, indicated in the third panel.

z = h
reflecting b.c.

z = 0

Particle release

Shear flow

Turbulent eddies

Figure 3.1: Schematic example of spatially varying ABL turbulent statistics in
a shear dispersion flow. The particle diffusion is bounded at the top of the ABL
(z = h) and at the bottom ground surface (z = 0).
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Figure 3.2: Scatterplots of an ensemble of trajectories in the stable ABL case. First
panel: early time t = 0.2 h/u∗ snapshot. Second panel: particles become wel-mixed
at intermediate time t = 2 h/u∗. Third panel: snapshot at late time t = 20 h/u∗
when shear dispersion ensues. The measure of interest is the horizontal variance
〈(Xt − 〈Xt〉)2〉1/2 which translates to the central region of the particle distribution.
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Saffman’s (1962) main result for the ABL one-dimensional problem with a height-

dependent isotropic diffusivity κ(z) and shear flow u(z), after the homogenization

period described above, is as follows. The vertical mean concentration

[c](x, t) =

∫ h

0

c(x, z, t) dz,

evolves according to the one-dimensional advection-diffusion equation

∂t[c] + [u] ∂x[c] = κeff ∂
2
xx[c], (3.1)

where [·] here denotes the average over the vertical depth of the ABL. Saffman’s

(1962) result for the effective diffusivity κeff is found to be

κeff =

[
F 2

κ
+ κ

]
, where F (z) =

∫ z

0

(u(z̄)− [u]) dz̄. (3.2)

In practice κeff is dominated by the first term on the right-hand side which depends

on the the inverse of the eddy diffusivity κ(z), as expected by the discussion above.

In the present work, we shall examine the application of Saffman’s (1962) first

solution to the shear dispersion process in the LPDMs designed for the ABL (e.g.

FLEXPART and NAME). Specifically, we will address the following aspects:

1. The effect on κeff when RFMs are used instead of RDMs. Both FLEXPART

and NAME are RFMs, which are stochastic models of the turbulent diffusion

that include a finite Lagrangian decorrelation time for the turbulent velocity

field. However the results of Saffman (1962) apply directly only to RDMs,

which correspond to both the limit of zero decorrelation time of the RFM

(e.g. Rodean, 1996), and the standard advection-diffusion model.

2. The difference between the large-deviation behaviour of the RFM and that of

the RDM. Large deviation theory studies the evolution of the low concentra-
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tions seen in the tails of a spreading cloud of parcels (Haynes and Vanneste,

2014), and can be important in estimating the time-scale on which a threshold

concentration is met at a given location downstream.

The two questions above will be answered by comparing analytical, semi-analytical

and numerical results. In §3.2, the RFM and RDM models are introduced, and

the large-deviation analysis of the RDM (Haynes and Vanneste, 2014) is briefly de-

scribed. In §3.3, we extend the large-deviation approach to the RFM, and analytical

and numerical methods to obtain the effective horizontal diffusivity are discussed.

In §3.4, a numerical approach using the Hermite function expansion to solve the

eigenvalue problem which arises in the large-deviation theory is presented and nu-

merical results for the large-deviation rate function. In §3.5, the predictions of §3.3

are compared with numerical calculations of large ensembles of tracer particles in

both the RFM and RDM. The differences between the two models are investigated in

both stable and neutral ABL conditions. To further validate our results, a GWTW

splitting method is implemented using our large-deviation predictions in rare-event

simulations in §3.6. Finally in §3.7, conclusions are drawn.

3.2 Model and background

In the LPDMs to be investigated, we consider two-dimensional turbulent ABL

of uniform density, and a given air parcel is moving along the (x, z)-axes with a

parallel shear flow u = (u(z), 0). For the purposes of this work, the LPDMs are

non-dimensional, with length, velocity and time scales of boundary layer height h,

surface friction velocity u∗ and h/u∗ respectively. Under this scaling, the spatial

domain for the LPDMs is 0 ≤ z ≤ 1. The vertical mean of the horizontal velocity

flow [u(z)] is assumed to be zero,

[u] =

∫ 1

0

u(z) dz = 0, (3.3)
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which allows us to work in a frame following the mean of the ensemble of particle

trajectories.

For most of the numerical results below, we have chosen a horizontal velocity

flow to be linear in the vertical direction, i.e. u(z) = U0(z − 0.5) which is displayed

in Figure 3.3 below. Note that this picture is the Galilean transformation of the

shear flow in accord with the ensemble mean frame of reference mentioned above.

The mean velocity profile u(z) will typically have a large magnitude (measured in

units of u∗), i.e. the parameter U0 = Umax − Umin, where Umax and Umin are the

maximum and minimum physical velocities respectively, is usually O(10) or greater.

z = 1

z = 0

u(z)

Figure 3.3: The zero mean of the horizontal velocity profile for u(z) = U0(z−0.5).

3.2.1 The random flight model

Consider the RFM which is defined by the following set of SDEs describing the

time evolution of the position (X,Z) and eddy velocity (U,W ) of a single fluid

parcel in a turbulent boundary layer with Gaussian velocity statistics. Note for

simplicity in this chapter, we drop the subscripts t from (Xt, Zt, Ut,Wt) to denote



Chapter 3. Shear dispersion in the turbulent ABL 81

the stochastic variables at time t (unless specified otherwise).

dU =
−U
τu

dt+

(
2σ2

u

τu

)1/2

dBu,

dW = −W
τw

dt+
1

2

(
1 +

(
W

σw

)2
)

d(σ2
w)

dz
dt+

(
2σ2

w

τw

)1/2

dBw, (3.4)

dX = (u(z) + U) dt,

dZ = W dt,

where (Bu, Bw) are the two-dimentional Brownian (or Wiener) processes, with sub-

scripts u and w referring to the horizontal and vertical directions respectively. The

turbulent statistics are specified by the turbulent velocity scales (σu(z), σw(z)), and

Lagrangian decorrelation times (τu(z), τw(z)). The mean horizontal velocity flow is

u(z) = U0(z − 0.5) discussed above.

The physical interpretation and discussion of the different terms in (3.4) is given

in §1.3.2. Equation (3.4) is essentially that used in FLEXPART (Stohl et al., 2005)

and NAME (Jones et al., 2007) to model dispersion in the ABL. Following these

models, reflection boundary conditions are used at the model boundaries at z =

0, 1. Physically, reflection at the boundary layer top (z = 1) is (at least partially)

justified when the ABL has locally developed a sharp gradient in buoyancy, forming

an interface across which there is a large decrease in the intensity of turbulence.

See Wilson et al. (1993) and Thomson et al. (1997) for discussion, including the

possibility of more sophisticated boundary conditions.

Following Rodean (1996) and also discussed in §2.2, it is easier to work with

scaled velocities (Λ,Ω) = (U/σu(Z),W/σw(Z)) which following application of Itô’s
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lemma, satisfy

dΛ = −Λ

τu
dt+

(
2

τu

)1/2

dBu,

dΩ =

(
− Ω

τw
+

dσw
dz

)
dt+

(
2

τw

)1/2

dBw, (3.5)

dX = (u+ Λσu) dt,

dZ = Ωσw dt.

For ease of comparison with the FPE, the initial positions, are sampled from the

Gaussian distribution of mean (x0, z0) and standard deviation (σx, σz), and the

initial scaled velocities are sampled from the standard normal distribution,

X0 ∼ N (x0, σ
2
x), Z0 ∼ N (z0, σ

2
z), Λ0 ∼ N (0, 1), Ω0 ∼ N (0, 1). (3.6)

The complimentary approach to the system of SDEs such as (3.5) is to con-

sider the corresponding FPE (see §1.2.2 for the standard procedure) that describes

the evolution of the joint probability density p(x, z, λ, ω, t) of stochastic variables

(X,Z,Λ,Ω), which is found to be

pt + ((λσu + u) p)x + (ωσwp)z + (σ′wp)ω = τ−1
u (∂λ + λp)λ + τ−1

w (∂ω + ω p)ω . (3.7)

Here the subscripts denote partial derivatives, σ′w ≡ dσw/dz and explicitly, λ = u/σu

and ω = z/σw. It should be emphasised that

pe = constant× exp

(
−1

2

(
λ2 + ω2

))
, (3.8)

is the steady solution of (3.7). The solution pe, or in the language of probability

theory the invariant measure of (3.4), is interpreted physically as the distribution

of particles in the background atmosphere in position-velocity space. As already
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discussed in §1.3.1, the WMC of Thomson (1987) corresponds to ensuring that

the invariant measure of the system of SDEs being solved corresponds to a notional,

pre-specified distribution pe, which is determined by the statistics of the background

atmosphere.

The initial conditions consistent with those specified in (3.6) are therefore given

by

p(λ, ω, x, z, 0) =
1

4π2σxσz
exp

(
−λ

2 + ω2

2
− (x− x0)2

2σ2
x

− (z − z0)2

2σ2
z

)
. (3.9)

Moreover, the boundary conditions for FPE (3.7) at z = 0, 1 must also be exactly

consistent with the WMC, as discussed in the introductory §1.3.6. Hence the perfect

reflection boundary conditions can be written in the form

p(λ, ω, x, 0, t) = p(λ,−ω, x, 0, t), p(λ, ω, x, 1, t) = p(λ,−ω, x, 1, t). (3.10)

3.2.2 RFM non-uniqueness

In his seminal paper introducing the WMC, Thomson (1987) showed that, while

the WMC leads to a unique RFM in one-dimension, in two or more dimensions the

RFM is not unique. This means that two distinct RFMs could satisfy the WMC

for the same flow but exhibit significantly different dispersion behaviours. Specific

solutions illustrating this non-uniqueness for Gaussian inhomogeneous turbulence

were first given by Sawford and Guest (1988).

Borgas et al. (1997) explored the non-uniqueness problem in a 3-D model ap-

propriate to homogeneous axisymmetric Gaussian turbulence without reflectional

symmetry, which was found to lead to significant reduction of dispersion and spi-

ralling of particle trajectories about the axis of symmetry. Subsequent researchers

introduced more general and tractable measures to quantify the rotation of trajec-

tories, for e.g. Wilson and Flesch (1997) considered the mean rate of rotation of
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velocity fluctuation vector in two dimensions and Sawford (1999) presented the cross

product of particle velocity and acceleration which is related to the area swept out

by the velocity vector. For example, the model (3.5) can be replaced by

dΛ =

(
−Λ

τu
+

Ω

τr

)
dt+

(
2

τu

)1/2

dBu,

dΩ =

(
− Ω

τw
+

Λ

τr
+

dσw
dz

)
dt+

(
2

τw

)1/2

dBw, (3.11)

dX = (u+ Λσu) dt,

dZ = Ωσw dt.

Here the rotation time-scale τr controls the ‘spin rate’ of particles with respect to

an axis in the y-direction (i.e. perpendicular to the (x, z) plane). Note that both

positive and negative values of τr are permissible.

The RFM (3.11) which is discussed more in detail in the paper to be submitted

based on this chapter, also has the invariant measure (3.8) and therefore cannot

be objectively distinguished from (3.5). We have chosen to investigate the RFM

(3.5) in this thesis as it arguably the simplest 2-D model that is consistent with the

turbulent ABL dispersion problem.

3.2.3 The random displacement model and its large-

deviation behaviour

As reviewed earlier in the thesis (§1.3.3), the simpler RDM is well-known as

the diffusion limit or an approximation of the RFM, in the distinguished limit of

short decorrelation time τi → 0, and large velocity fluctuations σi → ∞, in which

κi = σ2
i τi (here i = u,w) is finite and non-zero. The SDE system (3.5) can be
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transformed into

dX = u dt+ (2κu)
1/2 dBu

dZ = κ′w dt+ (2κw)1/2 dBw, (3.12)

where κ′w ≡ dκw/dz. The corresponding FPE of RDM equation (3.12) is simply the

advection-diffusion PDE

ct + u cx = κucxx + (κw cz)z , (3.13)

where we have identified the joint pdf of (X,Z) in (3.12) with the particle concen-

tration c(x, z, t). The effective diffusivity result (3.1) can be obtained from (3.13)

by finding the equations for moments of c (Aris, 1956; Saffman, 1962), or by apply-

ing the method of homogenisation (Majda and Kramer, 1999; Pavliotis and Stuart,

2008).

The effective diffusivity does not, of course, give the full picture of the long-time

dispersion of tracer particles according to (3.12). In certain problems, for example

the point release of a highly toxic substance, the quantity of interest can be the

time taken for the tracer concentration to first reach a given (low) threshold at a

particular location. The evolution of the relatively low concentrations in the tails

of the spreading cloud of particles are described mathematically by large deviation

theory. Recently, Haynes and Vanneste (2014) considered the large deviation statis-

tics for (3.13), focussing on classic Taylor-Aris dispersion problems (Couette flow,

plane Poiseuille flow and pipe Poiseuille flow). The main point is that, while in

the central region (where x2/t ∼ O(1)) the evolution of [c] is well-described by the

effective diffusivity model (3.1), in the tails of the distribution (where x/t ∼ O(1))

the concentration c(x, z, t) can be shown, using for example a WKBJ expansion
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(Haynes and Vanneste, 2014), to satisfy

c(x, z, t) ∼ t−1/2φ(z, ξ) e−tg(ξ), where ξ = x/t. (3.14)

Equation (3.14) has the characteristic large-deviation decay rate, which is con-

trolled primarily by the so-called rate function g(ξ). If the effective diffusivity

model were valid everywhere, we would have g0(ξ) = ξ2/4κeff . However, Haynes

and Vanneste (2014) showed that in a range of simple shear flows, at larger values

of ξ, g(ξ) is in fact larger than its quadratic approximation g0(ξ), indicating that the

tracer decays significantly more in the tail regions than predicted by the effective

diffusivity model. In particular, when ξ takes values outside of the range of veloci-

ties of the shear flow (Umin, Umax), g(ξ) increases sharply and tracer concentrations

fall away rapidly outside the interval Umint < x < Umaxt.

The function φ in (3.14) determines the vertical structure of the local concen-

tration profile, as experienced by an observer travelling at constant speed ξ = x/t.

φ(z, ξ) can be obtained by solving the eigenvalue problem

(
u q + κu q

2
)
φ+ κ′w φz + κw φzz = f(q)φ. (3.15)

Notice that at small values of q, which correspond to the central region, the eigen-

value f(q) is small and φ ≈ const., consistent with the standard Taylor dispersion

analysis.

3.3 Large deviation behaviour in the RFM

The above discussion raises the question of whether the above picture changes

when the turbulent dispersion model (3.5) is used in place of the advection-diffusion

model (3.12). To answer this question, we have used a WKBJ approach to calculate

the rate function for (3.7) numerically, and compare with the corresponding results
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of Haynes and Vanneste (2014) for (3.13).

To find the leading-order WKBJ solution, we apply and extend the methods

presented in the paper of Haynes and Vanneste (2014) to the FPE (3.7) by seeking

the ansatz

p(x, z, λ, ω, t) ∼ t−1/2φ(z, λ, ω, ξ) e−tg(ξ), (3.16)

where g(ξ) is the rate function (Touchette, 2009) and ξ = x/t as above. Conservation

of the total mass – the spatial integral of (3.16) – imposes a positive and convex

g(ξ) having a single minimum at zero, i.e.

g(0) = 0, g′(0) = 0. (3.17)

Substituting (3.16) into the FPE (3.7), and retaining only the leading order terms

gives

((u+ λσu) q)φ− (ωσwφ)z − (σ′wφ)ω + τ−1
u (φλ + λφ)λ + τ−1

w (φω + ωφ)ω = f(q)φ,

(3.18)

where σ′w ≡ dσw/dz, and

q = ∂g/∂ξ, f(q) = q ξ − g, (3.19)

and the function φ(z, λ, ω, ξ) satisfies boundary conditions with perfect reflection,

φ(0, λ, ω, ξ) = φ(0, λ,−ω, ξ),

φ(1, λ, ω, ξ) = φ(1, λ,−ω, ξ). (3.20)

As in the diffusion equation problem studied by Haynes and Vanneste (2014), equa-

tions (3.18)-(3.20) constitute a family of eigenvalue problems for φ(z, λ, ω, t) param-

eterised by q with eigenvalue f(q). Using the numerical scheme described in §3.4

below, f(q) is solved (numerically) as the principal eigenvalue, that is, the eigenvalue
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with the largest real part. The rate function g(ξ) is then recovered by the Legendre

transform relation between convex functions g(ξ) and f(q) from (3.19),

f(q) = sup
ξ

(q ξ − g(ξ)) and g(ξ) = sup
q

(ξ q − f(q)) . (3.21)

Notice that the second relation in (3.21) implies a one-to-one map between parameter

q and the physical variable ξ = x/t of the form

ξ = df/dq.

The eigenfunction φ of (3.18) associated with f(q) can therefore be equivalently

thought of as a function of ξ, as in (3.16), or of q, as in (3.18).

3.3.1 Effective diffusivity in the RFM

The main purpose of this subsection is to investigate the effective horizontal

diffusivity for particles released in the RFM in the large-time limit. First of all, the

probability density p(x, z, λ, ω, t) in the ansatz (3.16) can be written as a Taylor

expansion of the rate function g(ξ) about ξ = 0,

p(x, z, λ, ω, t) ≈ t−1/2φ(z, λ, ω, ξ) exp

(
−t
(
g(0) + ξ g′(0) +

ξ2

2
g′′(0)

))
. (3.22)

Noting that g(0) = g′(0) = 0 as justified in (3.17), and that ξ = x/t, the large-

deviation form above has a simple relationship with the effective diffusivity given

by

p(x, z, λ, ω, t) ≈ t−1/2 exp

(
−x

2

2t
g′′(0)

)
≈ t−1/2 exp

(
− x2

4κeff t

)
, (3.23)

where the second equation is obtained from the quadratic approximation g0(ξ). As

a result we can identify that

κeff =
1

2 g′′(0)
. (3.24)
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However in practice, it is more convenient to infer κeff directly from f(q), without

the need to carry out the Legendre transform explicitly to find g(ξ). Due to the

Legendre transform definition in (3.21), f(q) at small q is determined by g(ξ) at small

ξ, and vice versa. Hence it can be deduced that f(q) also has a single minimum

property at zero, i.e. f(0) = f ′(0) = 0, so we expect that f(q) also be quadratic

near q = 0. From the first relation of (3.21), f(q) can be approximated by a Taylor

expansion in g(ξ) about q = 0,

f(q) ≈ sup
ξ

(
q ξ − ξ2

2
g′′(0)

)
=

q2

2 g′′(0)
+O(q3), (3.25)

which results in the inverse relation f ′′(0) = 1/g′′(0), a standard result for Legendre

transform (Touchette, 2009), and therefore we obtain

κeff =
f ′′(0)

2
. (3.26)

Alternatively, the effective horizontal diffusivity can be calculated directly from

an ensemble of solutions Xt of (3.5). In the long time limit t � 1, if Xt obeys the

diffusion law the particle concentration from an initial point source can be described

as a fundamental solution or heat kernel,

c(x, z, t) ≈ 1√
4πκefft

exp

(
− x2

4κefft

)
,

which is essentially a Gaussian distribution. Based from the above, we can identify

the variance of the horizontal distribution is σ2
x = 2κefft and the effective diffusivity

can be obtained using

κeff = lim
t→∞

1

2t
〈(Xt − 〈Xt〉)2〉, (3.27)

where 〈·〉 is the ensemble average.
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3.3.2 Analytical solution

In order to calculate κeff analytically in the RFM, we use the method of ho-

mogenisation (Majda and Kramer, 1999; Pavliotis and Stuart, 2008) in which we

introduce two parameters. First, ε = h/L is the ratio of the ABL depth to the hori-

zontal length scale of the cloud particles. Second, δ = hτ/u∗ is the ratio of a typical

Lagrangian decorrelation time τ to the reference timescale h/u∗, introduced earlier

as the typical timescale on which vertical homogenisation occurs in the turbulent

ABL. Based on the above, we seek solutions of (3.7) of the form p = p(x̄, z, λ, ω, t̄)

where x̄ and t̄ are long time and space scales satisfying

x̄ = εx, t̄ = ε2t. (3.28)

Further, the turbulent statistics σi and τi are rescaled as follows

σi = δ−1Σi, τi = δ2Ti. (3.29)

Notice that this scaling preserves the relationship with the diffusivity, since σ2
i τi =

Σ2
iTi = κi. As explained in the introduction, diffusive behaviour applies to the late-

time, large-scale stage of a point release experiment, hence ε � δ � 1 appears to

be the most interesting tractable regime. The primary expansion to be inserted into

(3.7) is therefore

p =
∞∑
j=0

εjpj(x̄, z, λ, ω, t̄). (3.30)

The perturbative calculation is detailed in Appendix B. There, it is shown that

p0 = P (x̄, t̄) exp
(
−1

2
(λ2 + ω2)

)
,

where P (x̄, t̄) is the undetermined function of the ‘long’ space and time variables
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(x̄, t̄), and

p1 =
∞∑
k=0

Hek(ω)
(
Ck(z) + λDk(z)

)
Px̄(x̄, t̄) exp

(
−1

2
(λ2 + ω2)

)
.

At order ε2, the following solvability condition is found,

∫
D

(
p0t̄ + up1x̄ + δ−1λΣup1x̄

)
dz dλ dω = 0,

where the integral is over the domain {D : (λ, ω) ∈ R2, z ∈ [0, 1]}. Evaluating this

integral, one obtains the one-dimensional diffusion equation

Pt̄ = κeffPx̄x̄, (3.31)

and the main analytical result for the effective diffusivity is given by

κeff =

[
F 2

κw
+ κw

(
F

σw

)′2
− κw

2

(
κw
σw

(
F

σw

)′)′2]
+

[
κu +

κwτu
τu + τw

(
κu
σu

)′2]
, (3.32)

where as before, [·] denotes the the vertical average over the boundary layer, and

F (z) is the integral of the mean wind profile as in (3.2).

The first average part of (3.32) can be interpreted as an expansion in δ2, including

three terms of O(1), O(δ2) and O(δ4) respectively, and with terms of O(δ6) neglected.

The leading term is identical to the first term in Saffman’s result (3.2), with the

remaining terms giving the corrections due to the finite decorrelation times in the

RFM (3.4). It is notable that the dominant correction, given by the second term in

(3.32), is always positive. Consequently, at least for small δ, the effective horizontal

diffusivity will always be greater in the RFM compared to its RDM limit. The

leading correction term in the second part of (3.32) is also positive definite, showing

that shear dispersion is always increased in the RFM compared with the RDM.
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3.4 Numerical method for the eigenvalue

problem

In this section, an efficient algorithm for the solution of the non-dimensonalszed

eigenvalue problem (3.18) is presented. Our approach is to seek a Hermite polyno-

mial expansion for φ(z, λ, ω) (we have suppressed the ξ-dependency in this expres-

sion as ξ (through q) has the role of a parameter in the eigenvalue problem),

φ(z, λ, ω) =
1

2π

∞∑
k=0

∞∑
l=0

Ck,l(z, ξ) Hek(ω) Hel(λ) e−(λ2+ω2)/2. (3.33)

where Hek(ω) and Hel(λ) are the Hermite polynomials defined by eq. (A.1) in Ap-

pendix A. Before inserting the expansion (3.33) into the eigenvalue problem (3.18)

it is helpful to rewrite the eigenvalue problem in the form

τ−1
u Lλφ+ τ−1

w Lωφ− (ωσwφ)z − (σ′wφ)ω + ((u+ λσu) q)φ = f(q)φ, (3.34)

where e.g. the linear operators

Lω = ∂2
ω + ω∂ω + 1, and Lλ = ∂2

λ + λ∂λ + 1.

Using the Hermite polynomial identities given in Appendix A, the resulting ex-

pression can be rearranged into a single summation of the form (3.33). Using the

orthogonality, the system can then be reduced to a doubly-infinite set of coupled

ordinary differential equations for the {Ck,l},

u q Ck,l + σu q (Ck,l−1 + (l + 1)Ck,l+1)− σw ∂zCk−1,l

− (k + 1) ∂z (σw Ck+1,l)−
(
k τ−1

w + l τ−1
u

)
Ck,l = f(q)Ck,l, (3.35)
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where k, l ≥ 0, and the convention Ck,−1 ≡ 0 and C−1,l ≡ 0 is used. The system

(3.35) can be truncated at a finite (k, l) = (K,L), and discretised using Nz points

in z, resulting in a matrix eigenvalue problem of dimension NzKL×NzKL, whose

numerical implementations are detailed below.

3.4.1 Boundary conditions and implementation

The boundary conditions can be obtained using the the symmetry Hek(ω) =

(−1)kHek(−ω). Substituting the expansion (3.33) into the boundary conditions

(3.20), at z = 0, 1, can be shown to be

Ck,l(0, ξ) = Ck,l(1, ξ) = 0, for k odd. (3.36)

This means that the k-even equations have no boundary conditions and k-odd take

two boundary conditions, which will add up to the correct number of boundary

conditions provided that the series is truncated at k = K odd.

The solution to system (3.35) involves solving the eigenvalue problem type

A c = f(q) c, (3.37)

where A is a square matrix of dimension NzKL×NzKL. A standard finite-difference

discretisation is used, with Nz equally spaced grid-points with ∆z = 1/Nz, on a

staggered cell-centred grid (i.e. zi = (1−1/2)∆z, for i = 1, . . . , Nz) in order to apply

the boundary conditions (3.36) at z = 0, 1 systematically. In this discretisation, c

are eigenvectors of length NzKL with entries corresponding to Ck,l(zi).

There are two MATLAB built-in eigenvalue/vector solvers available namely

‘eig’ (Anderson et al., 1999) and ‘eigs’ (Lehoucq et al., 1998). Both routines

are based on the QR-algorithm, a numerical eigenvalue algorithm that performs the

QR-decomposition of a matrix into an orthogonal matrix and an upper triangular
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matrix. The first routine ‘eig’ is suited to generalised problems with matrices

of realistic sizes that fit well into memory, but not to large non-symmetric sparse

matrices. On the other hand, the ‘eigs’ routine uses specialised methods that are

more appropriate for large problems where only a limited subset of the eigenval-

ues/vectors are required. Therefore the principal eigenvalue f(q) for a given value

of q and eigenvectors c solutions of eigenvalue problem (3.37) are suitably calculated

using the MATLAB command:

[c,f] = eigs(A,1,’lr’).

However it can become computationally expensive to calculate sensible values

of f(q) of large matrices of NzKL × NzKL elements. Accurate computations of

f(q) are expected to rely on a large selection of numerical parameters such as a

sufficiently large number of grid-points Nz, truncations K and L, and a suitable

tolerance for eigenvalue convergence at certain values of q. There are several ways

to optimise the MATLAB routine. One method that has been used successfully is

a multi-grid method, in which low resolution (in Nz) solutions are interpolated to

provide initial guesses for higher resolution calculations.

Table 3.1 shows the convergence of eigenvalue solutions f(q) of (3.35) as the

Nz resolution increases, for all the test-cases detailed in Table 3.2. Based on the

calculations, the f(q) values start to converge to 2 significant figures with Nz ≥ 64.

Not shown in the table, we also found that increasing the truncation values above

K ≥ 3 and L ≥ 2 do not make any difference in the calculated f(q). The following

Figure 3.4 shows the resulting φ(z) plots in each case at resolutions Nz = 64, 128

where the eigenvalue solutions are correctly converged.

Another technique that has been exploited is the method of continuation, where

the solution from the previous q calculation is used as an initial guess of the next q

calculation, provided that parameter interval ∆q is sufficiently small.
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Nz q = 0.2 q = 2
8 0.0919 3.455
16 0.0898 3.406

Constant 32 0.0893 3.395
64 0.0892 3.392
128 0.0892 3.391
8 0.208 4.126
16 0.200 4.106

Stable 32 0.198 4.054
ABL 64 0.197 4.034

128 0.197 4.030
8 0.345 4.294
16 0.333 4.397

Neutral 32 0.331 4.353
ABL 64 0.330 4.342

128 0.330 4.340

Table 3.1: Table of numerical eigenvalue results f(q) using (3.35) for q = 0.2 near
the central region and q = 2 farther out. Results are listed for (i) constant, (ii)
stable ABL, and (iii) neutral ABL cases detailed in Table 3.2.
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Figure 3.4: Eigenfunctions φ as a function of ABL height z/h for q = 0.2, 2
(dashed and solid black lines) and for q = −0.2, − 2 (dashed and solid grey lines),
using resolutions Nz = 64, 128 and truncated at K = 5, L = 4.
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3.4.2 Turbulent statistics

In the results to follow, we apply our ideas to three test-case problems; namely

the constant case, the stable ABL and the neutral ABL, as detailed in Table 3.2

below. The first case has idealized constant profiles for σ(z) and τ(z), and used

to demonstrate the numerical solutions of the eigenvalue problem introduced above.

The last two ABL profiles are empirical fits to observed statistics (Hanna, 1982; Stohl

et al., 2005) for the stable and neutral conditions in the ABL, respectively (see §1.1.1

for details). As practiced earlier in Chapter 2, for the purpose of numerical stability,

we modify slightly the profiles of Hanna (1982) to σi(Zm(z)) and τi(Zm(z)), where

Zm(z) = zb + z(1− 2zb) and zb = 0.05 are chosen. The non-dimensional parameter

ε = u∗/fh in the neutral ABL profile is a boundary layer Rossby number.

Condition Hanna (1982) profile Modified profile

Constant
σu = σw = 1

τu = τw = 0.1
−

Stable

σu = 2.0 (1− z)

σw = 1.3 (1− z)

τu = 0.15 z1/2/σu

τw = 0.1 z4/5/σw

σ̄(z) = σ(Zm(z))

τ̄(z) = τ(Zm(z))

Neutral

σu = 2.0 exp (−2z/ε)

σw = 1.3 exp (−2z/ε)

τu = τw

τw =
z

2σw(1 + 15z/ε)

σ̄(z) = σ(Zm(z))

τ̄(z) = τ(Zm(z))

Table 3.2: The non-dimensional profiles of the velocity standard deviation σ(z) and
Lagrangian decorrelation time-scale τ(z) suitable for (i) a constant profile, (ii) a
stable ABL, and (iii) a neutral ABL (e.g. Hanna, 1982).
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3.5 Numerical results

In this section, the large deviation results (3.18) for the RFM are discussed. Our

main numerical results include effective horizontal diffusivity κeff(δ) and the rate

function g(ξ). To understand more completely how the RFM and RDM differ, we

reintroduce parameter δ from (3.29) as an ‘interpolation’ parameter for the input

turbulence profiles as follows:

σi = δ−1 Σi and τi = δ2 Ti, (i = u,w), (3.38)

where Σi and Ti are the turbulent velocity fluctuations and decorrelation time pro-

files, respectively from the test-cases detailed in Table 3.2. The new profiles σi and

τi in (3.38) generate a family of interpolated models, with δ as a free parameter.

Here the limit δ → 0 corresponds to the RDM (3.12), and δ = 1 gives the RFM

(3.5) with velocity decorrelation times appropriate to the ABL. Models with δ in

the range 0 < δ < 1 are more ‘diffusive’ and than the ABL, and those with δ > 1

are more ‘ballistic’ in the sense discussed in §1.3.2.1.

3.5.1 RFM-RDM hybrid model

The aim of this subsection is to validate our numerical approach of using the

Hermite polynomial expansion method to solve the eigenvalue problem and subse-

quently aid in the development of numerical strategies required to calculate the large

eigenvalue problem in (3.18). In this process, we found it helpful to first consider a

simpler model with only three stochastic variables, which will involve less expensive

computations of the associated eigenvalue problem.

Motivated by the physical intuition that suggests that finite decorrelation times

are likely to be more important in the vertical than in the horizontal, we consider
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the ‘RFM-RDM hybrid model’,

dΩ =

(
− Ω

τw
+

dσw
dz

)
dt+

(
2

τw

)1/2

dBw, (3.39)

dX = u dt+ (2κu)
1/2 dBu,

dZ = Ωt σw dt,

which is obtained by taking the diffusive limit in the x-direction only (i.e. τu →

0, σu → ∞, σ2
uτu = κu), where κu(z) is the horizontal diffusivity term. The

large-deviation results will therefore be based on the corresponding FPE for joint

probability density p(ω, x, z, t),

pt + (u p)x − (κu p)xx = τ−1
w (pω + ωp)ω − (σ′w p)ω − (ω σw p)z , (3.40)

with boundary conditions at z = 0, 1,

p(ω, x, 0, t) = p(−ω, x, 0, t) and p(ω, x, 1, t) = p(−ω, x, 1, t).

Based on our analysis for large deviation approximation above, the eigenvalue

problem for φ(ω, z, ξ) from (3.40) can be reduced to a relatively simpler system of

eigenvalue problems,

(
u q + κu q

2 − k

τw

)
Ck − σw∂zCk−1 − (k + 1)∂z (σwCk+1) = f(q)Ck, (3.41)

for k ≥ 0, with boundary conditions Ck(0, ξ) = Ck(1, ξ) = 0, for k odd. If the

system (3.41) is truncated at k = K (odd), the linear operator on the left-hand side

can be discretised into a matrix of dimensions Nz(K + 1) × Nz(K + 1) including

the k = 0 equation of (3.41). Based on our tests in Table 3.1, correct convergence

of f(q) solutions using (3.41) can be obtained using lower resolutions (specifically

Nz = 30 and K = 3) than those obtained using (3.35), hence accurate results are
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computed directly without the use of optimisation strategies such as the multi-grid

method or continuation method described above.

In the large deviation results below, the RFM-RDM hybrid model (3.39) for the

constant and (modified) stable cases are examined. The main results are shown in

the top row panels of Figure 3.5 where the effective horizontal diffusivity κeff are

plotted as a function of the interpolation parameter δ (recall that δ → 0 corresponds

to the RDM, δ = 1 gives the RFM with the ABL profiles detailed in Table 3.2, and

other values of δ interpolate between the two models). The blue curve indicates

κeff obtained from the calculated f(q) in the eigenvalue problem (3.41) using the

formula (3.26), which is explicitly written as

κeff = lim
∆q→0

f(∆q)

(∆q)2
. (3.42)

Numerical κeff statistics from SDE ensemble solutions of the hybrid model (3.39)

(black diamond symbols) and the RDM (3.12) (solid green squares) are also plot-

ted. The ensemble of LPDM solutions are obtained using the numerical scheme

EXPLICIT 2.0 (see Table 2.2 for details) at sufficiently small time-steps ∆t as rec-

ommended in Chapter 2 of this thesis. Here κeff is measured by the time derivative

of the horizontal displacement variance (3.27) of SDE ensemble size N = 106 so-

lutions. Late integration times at t = 15, 50 for the constant and stable ABL

profiles, respectively are obtained to ensure that the particle distribution is passed

the well-mixed state or homogenisation period. The κeff results show good agree-

ment between the eigenvalue problem and the SDE ensemble, and hence confirms

the validity of our numerical approach for solving the eigenvalue problem detailed

in §3.4, at least in the simpler hybrid RFM-RDM model.

To complete this short subsection, we include the large deviation results obtained

from the eigenvalue problem (3.41) such as the rate function g(ξ) as a function of

the large deviation velocity ξ = x/t, shown in the middle row. The rate functions
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in blue are numerically obtained by taking the Legendre transform (3.21) of the

solution f(q) from eq. (3.41), using the corresponding input parameters at δ = 1.

This is compared with g(ξ) solutions calculated similarly for the RDM (3.15) in red

dashed curves and the quadratic approximation g0(ξ) = ξ2/4κeff in black dashed

curves. The minimum and maximum flow speeds, Umin and Umax are also plotted

for reference. The bottom row of Figure 3.5 shows the relationship between ξ and

q, of (δ = 1) hybrid model and (δ = 0) RDM, determined from their numerical

Legendre transforms.

The result is that for all cases, both the hybrid model and RDM have g(ξ) larger

than its quadratic approximation g0(ξ), as discussed above and shown in the paper

of Haynes and Vanneste (2014). The near identical g(ξ) curves obtained suggest that

the large-deviation behaviour is extremely similar between the RDM and the hybrid

model, at least near the central region. In the subsection below we will discuss the

result in more detail and also determine if the same result holds for the full RFM

model.
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Figure 3.5: Large-deviation results for the RFM-RDM hybrid model (3.39), for
test-cases of constant profile (left column) and modified stable ABL profile (right
column) from Table 3.2. First row: the effective diffusivity κeff plotted as a function
of the model interpolation parameter δ. Second row: the rate function g(ξ) obtained
from the Legendre transform of the numerical eigenvalue f(q). Third row: a map
between large-deviation parameter q and velocity ξ = x/t derived from the numerical
eigenvalue f(q) solution of (3.41).
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3.5.2 Large deviation RFM results

In this subsection, we proceed with the main large deviation results of the RFM

(3.5) by extending the numerical scheme used in the calculations for the hybrid

RFM-RDM model. The following numerical adaptations to the solver are required:

1. The left-hand side of (3.18) is discretised into a matrix of dimensions Nz(K +

1)(L+ 1)×Nz(K + 1)(L+ 1), including the k = 0 and l = 0 equations. Here

we have chosen the parameters Nz = 100, K = 7 and L = 5.

2. Effective diffusivity κeff is calculated from (3.42) using a finite value of ∆q in

practice. This value must be chosen carefully, because truncation errors from

the eigenvalue solver give inaccurate numerical results at very low ∆q. We

found that ∆q = 10−2, 10−3, 10−4 are adequate for the constant, stable ABL

and neutral ABL cases, respectively.

3. To compute the eigenvalue problem efficiently, low resolution solutions of Nz =

20 or 40 are used to interpolate initial eigenvector {Ck,l} guesses for the higher

resolution (Nz = 100) calculations.

For the SDE ensemble solution calculated from the LPDMs, the final integration

times to capture the large deviation behaviour vary in each test-case, and explicitly

we have used t = 15, 50, 200, for the constant (idealised), stable ABL and neutral

ABL cases, respectively (see Table 3.2).

First of all, we show the numerical results obtained from the eigenvalue problem

(3.18) in Figure 3.6 for the three test cases examined. The results include the

eigenvalue function f(q) in the top row and the rate function g(ξ) calculation in the

middle row. For the constant profile in the leftmost column, the RDM result (δ = 0,

red dashed curves) is seen to underestimate the horizontal diffusion rate of the RFM

(δ = 1, solid blue curves), leading to an underestimate of f(q) and an overestimate of

g(ξ), near the outers regions (i.e. ξ → Umin, Umax). The concentration distributions
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Figure 3.6: Large-deviation results for the constant profile, (modified) stable ABL
and (modified) neutral ABL cases (see Table 3.2 for details) in the RFM. First
row: the eigenvalue f(q) obtained by numerical solution of the eigenvalue problem
(3.18) (solid blue line) is compared with the RDM eigenvalue problem (3.15) (red
dashed line). Second row: the rate function g(ξ) obtained by Legendre transform
of the eigenvalue problem (3.18) solution f(q) (solid blue curves) is compared with
those of the RDM (3.15) (red dashed curves). Their corresponding quadratic ap-
proximations g0(ξ) are also plotted (black dashed curves). Third row: percentage
difference between g(ξ) in the RFM compared to the RDM (calculated as 100(RDM-
RFM)/RFM).
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for neutral ABL case (rightmost column) are slightly skewed, with g(ξ) increasing

faster for ξ < 0 compared to ξ > 0. This corresponds to smaller concentrations

predicted near the ground where the velocity ξ is large and negative, compared to

the upper domain towards the ABL top where ξ is large and positive.

The f(q) results for the RDM (δ = 0) are seen to be remarkably identical for all

q in the stable and neutral ABL cases. However, close inspection shows in fact that

there is a range of values of ξ > 0, for which the diffusive behaviour overestimates the

g(ξ) in the stable and neutral ABL cases. This can be observed clearly in the bottom

row of Figure 3.6, which displays the plotted g(ξ) percentage difference between the

RFM (δ = 1) and RDM (δ = 0) for all profiles and also shows that the small

differences found in κeff (dark red star symbols) are not typical of the differences

in g(ξ) everywhere. In fact, both the stable and neutral ABL profiles have g(ξ)

significantly larger (≥ 20%) for the RDM, towards ξ = Umax. This highlights the

fact that the outcome of using realistic Lagrangian decorrelation times in the RFM

is to enhance transport into the tail regions, with the largest effect being in the

downstream tail.

Finally in Figure 3.7, the effective horizontal diffusivity κeff of the interpolated

models (3.38) is plotted as a function of interpolation parameter δ. The κeff(δ)

provides a quantitative interpolation between the RDM (δ = 0) and the RFM with

the ABL profiles detailed in Table 3.2 (δ = 1) in the large deviation regime. Here

the numerical κeff obtained from the eigenvalue solutions f(q) from the eigenvalue

problem (3.35) using the formula (3.26) (blue solid lines) is compared with the SDE

ensemble solution statistics (red diamond symbols) using the formula (3.27). The

asymptotic solutions of κeff (3.32) (black dotted lines) are also plotted here, which

shows excellent agreement with the eigenvalue calculations and the SDE ensemble

statistics, at least in the interpolation between the RDM and RFM (0 < δ < 1).

The difference in κeff between the physical RFMs (δ = 1) and their RDM limit

(δ = 0) is rather small, in fact just 9.08%, 2.74% and 0.76% for the constant, stable
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Figure 3.7: The effective horizontal diffusivity κeff as a function of interpolation
parameter δ obtained from the numerical solutions of the eigenvalue problems (3.15)
and (3.18) (solid blue curve), compared with the SDE ensemble statistics of (3.5)
and (3.12) (red diamond symbols). Analytical results (3.32) are also shown (black
dotted line).

and neutral profiles. The κeff values for the range 1 < δ < 2 are also plotted to

show the interpolation between the RFM and the more ‘ballistic’ models in the sense

discussed in §1.3.2.1.

3.6 Rare-event simulation

In order see if the large-deviation results obtained above are accurate, we shall

consider a scenario where we want to make a measurement of particle concentration

in a specific region at a late time after the particle release. If the region in question

is outside of the central region illustrated in Figure 3.2, the problem is one of rare-

event simulation introduced in §1.4. Here the direct Monte-Carlo (DMC) sampling

using the RFM does not provide a reliable estimate of the concentration quantity

as the concentrations are controlled by rare realisations which are not sampled sat-

isfactorily.

To remedy this, a splitting technique can be used to improve the computational
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efficiency of the calculations. For the purposes of this work, we have implemented

a version of Grassberger’s (2002) go-with-the-winners (GWTW) branching process

introduced in §1.4.2. The challenge in any implementation of GWTW is to find

an appropriate method of assigning scores St to trajectories, so that the ‘winners’

correspond to trajectories likely to end up in the region of interest, and ‘losers’

are those that will not. As discussed in §1.4.2, Esler (2015) showed that the ideal

scoring system is based on the (unknown) adjoint problem solution. Based on this

insight, we can use the predictions of large-deviation theory for the shear disper-

sion problem to approximate the adjoint solution, and use the approximation to

drive the GWTW algorithm here. In doing so, we improve significantly on GWTW

calculations reported in Haynes and Vanneste (2014, Appendix B.1).

Suppose we are interested in the particle concentration reaching the infinite

region R = {X ≥ X0, Z ∈ [0, 1]} at a late time t = T , the corresponding value of the

velocity ‘ray’ is ξ0 = X0/T . The following expansion of the particle concentration

c(x, z, λ, ω, t) can be obtained by Taylor expanding the large deviation form (3.16)

about |ξ − ξ0| � 1,

c(x, z, λ, ω, t) ≈ t−1/2 (φ(z, λ, ω, ξ0) + . . .) e−t(g(ξ0)+g′(ξ0)ξ+...) ∝ e−q x, (3.43)

where q = g′(ξ0) is the corresponding large deviation parameter for ξ0. The adjoint

of (3.7) (sometimes known as the ‘retro-transport’ equation, see for e.g. Hourdin

and Talagrand (2006)), c∗(x, z, λ, ω, t) can be physically interpreted as a measure

of the proportion of a fluid parcel at (x, z) with scaled velocity (λ, ω) that will

subsequently arrive in the (suitably-weighted) receptor region R (in the stochastic

representation this can be interpreted as a probability). In the current problem,

it can be shown that the adjoint PDE is simply the forward PDE (3.7) with the

velocity field reversed (see Flesch et al., 1995, for example). Hence by symmetry,
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the adjoint problem will have

c∗(x, z, λ, ω, t) ∝ eq(x−X0),

which adapting the scoring algorithm from Esler (2015), suggests the GWTW scor-

ing:

St = Θt c
∗(x, z, λ, ω, t) = Θt exp(q Xt). (3.44)

In the following results, we have compared the DMC (3.5) with the GWTW im-

portance sampling technique using the scoring strategy (3.44). The calculations are

all for the stable ABL (see Table 3.2 for details), with parameters given in Figure 3.6

at time T = 20. Several GWTW calculations are performed with the scoring param-

eter q in (3.44) being varied (q = 0.5, 1.0, 1.5). We know from the discussion above

that each value of q is related to a particular ‘speed’ ξ = x/t through the Legendre

transform relationship. Consequently we expect the trajectories in each GWTW

calculation to be centred on location moving with speed ξ0 = 1.94, 2.15, 2.25,

respectively. Figure 3.8 shows that this is in fact the case.

Table 3.3 lists the statistical mean estimates of the particles reaching the region

R = {X ≥ ξ0T, Z ∈ [0, 1]}, {Xi} sampled by the DMC and {X̃i} by GWTW

branching process at time T = 20. The computational saving due to using GWTW

is given in column 3, and is calculated as the ratio of the variance of the two methods:

Var(IR(X ≥ ξ0T ))/Var(ΘT IR(X̃ ≥ ξ0T )),

where IR is the indicator function defined as

IR(Xt) =

1 X
(i)
t ∈ R,

0 otherwise.

The saving factor is seen to improve as q increases, provided that some DMC tra-
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Figure 3.8: Particle positions at T = 20, using the DMC (3.5) (first panel), com-
pared with those of GWTW branching process for q = 0.5 (second panel), q = 1.0
(third panel), and q = 1.5 (fourth panel). The blue particles indicate trajectories
having ΘT ≥ 1, yellow 10−3 > ΘT > 10−4, orange 10−4 > ΘT > 10−5 and red
ΘT < 10−5.
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jectories still reach the receptor region R.

q DMC GWTW Saving factor

0.1 (7.603± 0.0254)× 10−2 (7.601± 0.098)× 10−2 7

0.2 (1.257± 0.0129)× 10−2 (1.251± 0.019)× 10−2 46

0.3 (3.156± 0.079)× 10−3 (3.106± 0.002)× 10−3 999

0.4 (9.780± 0.276)× 10−4 (9.934± 0.020)× 10−4 185

0.5 (3.560± 0.225)× 10−4 (3.613± 0.009)× 10−4 664

0.6 (1.410± 0.216)× 10−4 (1.470± 0.002)× 10−4 7789

0.7 (6.500± 1.107)× 10−5 (6.229± 0.010)× 10−5 12545

0.8 (2.900± 0.430)× 10−5 (2.806± 0.006)× 10−5 5900

0.9 (1.200± 0.339)× 10−5 (1.313± 0.004)× 10−5 6190

1.0 (4.000± 1.871)× 10−6 (6.396± 0.007)× 10−6 68838

Table 3.3: Table of results of mean estimate for DMC (3.5) 〈IR(X ≥ ξ0T )〉 (here IR
is the indicator function), against the estimate 〈ΘT IR(X̃ ≥ ξ0T )〉 of the GWTW
trajectories, using the q-parameter scoring (3.44). The ensemble solutions are cal-
culated in the stable ABL case is used here at time T = 20 with N = 106.

3.7 Conclusions

In this chapter, the long-time dispersion behaviour of LPDMs are discussed in the

context of two-dimensional shear dispersion in the ABL. The key results obtained

from our analysis are summarised in the following.

1. The effective diffusivity κeff governing the horizontal spread of particles in

the ABL, is found to differ by only a few percent between the use of RFM
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(3.5) and its RDM approximation (3.12). The RFM effective diffusivity is

invariably slightly larger, as illustrated by our analytical, semi-analytical and

numerical results in Figure 3.7, for all the test cases examined. From the

analytical expression for the κeff in the RFM found in (3.32), the dominant

term is dominated by the integral of F 2/κw just as predicted in Saffman’s

(1962) analysis for the RDM.

2. The second key result is the large deviation rate function (g(ξ) above) which

controls the evolution of the tracer concentration in the tail regions of the cloud

of particles. In the test-cases that are relevant in the stable and neutral ABL

conditions, the large deviation rate functions between the RFM and RDM

are found to be quite identical except in the positive tail regions where the

RFM exhibits increased transport (reduced rate function g(ξ)) compared to

the RDM (see Figure 3.6). This means that the large deviation rate function

becomes more sensitive to the use of RDM approximation in the positive tail

region.

Overall, our results show that the RDM (3.12) shows an excellent job of modelling

late-time shear dispersion in the turbulent boundary layer, because the effective

diffusivity and large-deviation statistics of the RDM are so close to those of the

more realistic RFM (3.5), at least under typical stable and neutral ABL conditions.

The analytical κeff equation (3.32) could even be used as the basis for correcting the

diffusivities in the RDM to agree with the RFM more closely. The results found in

this chapter lend further support to the results found in Chapter 2, which suggests

that the cheaper and more easily implemented RDM can be used without significant

loss of accuracy in one-dimensional problems.



Chapter 4

Kernel density methods

4.1 Introduction

In this chapter we are interested in the problem of obtaining tracer concentration

fields c(x, t) from an ensemble of trajectory positions {X(i)
t , i = 1, . . . , N}. This

problem has been widely considered in the atmosphere-ocean science (for examples

Rotach et al., 1996; de Haan, 1999; Spivakovskaya et al., 2007) and it is also an

important component of operational LPDMs such as FLEXPART (for e.g. see §8

of Stohl et al., 2005).

Essentially the problem to be addressed is very similar to that of density esti-

mation in statistics (e.g. Rosenblatt, 1956; Parzen, 1962; Scott, 2015), which uses

methods of nonparametric statistics to reconstruct a sample of observed data into a

probability density function (pdf). There are several methods of density estimation

used in statistics that may be adapted to the atmospheric LPDMs. Traditionally,

the concentration field was determined by crude box counting methods which en-

tail counting the number of particles in a uniform rectangular volume (see Luhar

and Britter, 1989; Borgas and Sawford, 1994; Rotach et al., 1996, for examples).

Using any density estimation method for the concentration field can be shown to
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cause either over-smoothed predictions (having a large bias) or too noisy (large vari-

ance). These effects can be minimised by increasing the number of particles N (e.g.

de Haan, 1999), but with the consequential growth of computation time.

Efficiency of the density estimation problem can be significantly improved by

using a more sophisticated method than the crude density estimation method above,

namely the kernel density estimation (KDE, hereafter) (Silverman, 1986; Wand

and Jones, 1994). Its application in atmosphere-ocean problems is not new; for

examples, in idealised oceanic transport problems (Spivakovskaya et al., 2007) and

in stochastic models for atmospheric meteorology (Boughton et al., 1987; Yamada

and Bunker, 1988; Uliasz, 1994). The kernel density estimator works by weighting

each particle by a smooth kernel function so that the probability represented by

each particle becomes continuously spread out in space. The recognised multivariate

kernel density estimator for a tracer concentration is given in the form of

ĉ(x, t;H) =
1

N |H|1/2
N∑
i=1

K
(
H−1/2

(
x−X(i)

t

))
, (4.1)

where H is the bandwidth (d× d) matrix which is symmetric and positive definite,

and d denotes the dimension. The kernel function K(·) ≥ 0 satisfies

∫
Rd
K(s) ds = 1.

Note that in general, the tracer concentration and the marginal probability density

can differ by a normalisation constant. The resulting concentration estimations

are only moderately sensitive to the shape of the kernel but they are critically

dependent on the bandwidths. Bandwidth selection will therefore be a major theme

of this chapter as the bandwidth H can be chosen to jointly minimise the bias and

variance of the KDE.

The aim of the present chapter is to develop numerical strategies for an accurate
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estimations of c(x, t) from the ensemble of SDE solutions of the LPDM. Specifically,

more information can be obtained in a SDE problem than just a static density. We

can go beyond standard KDE methods by exploiting the fact that we are solving a

dynamic problem. Hence we can introduce a new class of methods, which we will call

the dynamic KDE (DKDE). The starting point of DKDE is the Green’s function

representation of the solution to the Fokker-Planck (in this chapter, this will be

the advection-diffusion equation). The Green’s function for a short-time interval is

then approximated by considering the leading order WKBJ series solution of the

advection-diffusion equation, under the assumption that the diffusivity parameter

is small (see Ottino, 1990; Balkovsky and Fouxon, 1999, for examples).

To demonstrate these methods, we will consider a model problem describing a

two-dimensional advection-diffusion flow which is equivalent to a random displace-

ment model (RDM). The model problem to be investigated is selected to highlight

some keys features of observed flows in practical atmosphere-ocean fluid transport

systems. An important feature is the ‘chaotic advection’ or Batchelor regime, i.e. the

exponential divergence of nearby trajectories of the underlying deterministic flow.

In this model problem, the Pèclet number Pe is relatively high and the advection-

diffusion equation is solved in a periodic horizontal channel bounded by sidewalls.

The flow prescribed is a uniform current superimposed a linear combination of two

waves propagating with different frequencies, which has been used to explore chaotic

advection in geophysical flows dominated by Rossby waves (Pierrehumbert, 1991;

Haynes et al., 2007; Esler, 2015). This specific flow is also found to exhibit transport

barriers that separate regions of strong mixing (see Haynes et al., 2007, for details),

typically observed in geophysical flows such as stratospheric night jet, edge of polar

vortices, extratropical tropopause and in oceanic current systems. Here we will con-

sider practical quantities that correspond to weak transport across the barriers or

when there is no existing formal barrier, as was recently investigated by Esler (2015)

using methods of importance sampling in the stochastic model problem. Further-
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more, the chosen model problem is particularly suitable for investigating methods

of KDE because very high accuracy numerical solutions of the advection-diffusion

equation (or the PDE solutions) are available using a relatively easy-to-implement

spectral method. In more general problems, global PDE solutions are expensive to

obtain and (typically) less accurate, while the Lagrangian approach will offer more

benefits (see the list given in §1.1.3 for example). However in this model problem,

the easily accessible PDE solutions will act to benchmark the distributions of the

Lagrangian solutions, and more fundamentally to guide in the development of new

KDE strategies.

The outline of this chapter is as follows. In §4.2 the model problem is described

and the numerical methods for calculating the benchmark PDE solutions. The

stochastic representation of the advection-diffusion is introduced as a RDM, followed

by a chosen non-autonomous numerical scheme (Tocino and Ardanuy, 2002) to solve

the RDM. Both PDE and RDM solutions are then presented. In §4.3 the two

dimensional kernel density method by Silverman (1986) is applied to the model

problem and is then reviewed by analysing the L2-norm error results. In §4.4 a

new strategy of constructing the KDE using the Green’s function approximation is

developed and assessed using the benchmark PDE solutions. Finally, conclusions

are drawn in §4.6.

4.2 The model problem

Consider a model problem in which the evolution of the concentration of a pas-

sive tracer c(x, t) where x = (x, y) is the position vector in the two-dimensional

coordinates, is described by the advection-diffusion equation,

∂c

∂t
+ (u · ∇) c = ∇ · (κ · ∇c) , (4.2)
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with initial condition

c(x, 0) = exp (−|x− x0|/Ws)
2 , (4.3)

where x0 is the release position and Ws is the width parameter of the initial blob.

Here u(x, t) is a given smooth incompressible velocity field and κ(x, t) is a sym-

metric diffusivity tensor.

The domain D taken to be periodic in the x direction and is bounded by the

sidewalls in the y direction, with dimensions 2π × π. No-flux boundary conditions

are applied on the boundaries ∂D (i.e. on the sidewalls y = 0, π)

n · κ · ∇c = 0, on ∂D. (4.4)

The velocity field given by u = −∇× ψ k is specified by the streamfunction

ψ(x, t) = −0.5y + sinx sin y + ε sin(x− ct) sin 2y, (4.5)

with the amplitude and phase speed of the second wave taken to be ε = 0.6 and

c = 0.3, respectively. The diffusivity tensor is given by κ = κ(y) I, where I is the

identity matrix and

κ(y) = κ (1 + α cos 2y). (4.6)

The specific initial condition is centred on x0 = (π, π/4)† and with horizontal

scale Ws = 0.05. We are interested in the behaviour at very low diffusivity κ =

2 × 10−4, which can be identified with the inverse of the flow Pèclet number Pe =

UL/K, where U,L and K are the dimensional magnitudes for flow speed, length and

diffusivity scales respectively. Hence, the Pèclet number here is large i.e. Pe = 5000.

The relevance of this flow for large-scale transport in the atmosphere is the regime

known as the chaotic advection or ‘Batchelor turbulence’, where the particles paths

that are initially nearby each other separate exponentially in time. This phenomenon

particularly applies to regions where the flow is dominated by stratification and
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rotation, i.e. the large-scale flow in the troposphere and stratosphere away from the

ABL and regions of active convection (Haynes, 2011).

4.2.1 Numerical discretisation

The numerical method in solving (4.2) is a standard spectral method using

Fourier transform, adapted from Esler (2015) but extended here to a more gen-

eral diffusion κ. The spectral method is based on a simple spectral representation

c(x, y, t) = Re

(
M∑

k=−M

N∑
l=0

Akl(t)e
ikx cos(ly)

)
, (4.7)

where the complex coefficients are constrained so that {Akl} = {A∗kl}, because

c(x, y, t) is real. Expanding the advection and diffusion terms into PDE (4.2), pro-

duces the set of linear ODEs:

dAkl
dt

= −ik
2
Akl +

k − l
4

(Ak−1,l−1 − Ak+1,l+1) +
k + l

4
(Ak−1,l+1 − Ak+1,l−1)

+
ε(2k − l)

4

(
e−iωtAk−1,l−2 − eiωtAk+1,l+2

)
+
ε(2k + l)

4

(
e−iωtAk+1,l−2 − eiωtAk+1,l−2

)
− κ(k2 + l2)Akl −

κα

2
(k2 + l2 − 2l)Ak,l+2 −

κα

2
(k2 + l2 + 2l)Ak,l−2 (4.8)

for which it is understood that Ak,−1 = Ak,−2 = 0. The numerical concentra-

tion c(x, y, t) can then be obtained by time-stepping the set of ODEs (4.8) using

a standard fourth-order Runge-Kutta scheme. For the Pèclet number Pe = 5000,

Esler (2015) has shown that high accuracy is possible with resolution threshold of

512×256 wavenumbers. The solution converges rapidly because the power spectrum

of c decays exponentially at scales below Ld = K/U , hence the numerical solution

is spectrally accurate provided that Ld is resolved.

The Lagrangian stochastic methods described below will be verified against the

numerical concentration solution of (4.2). Very accurate solutions are not usually
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available for most other problems and thus making this model an ideal test bed

for the KDE methods for estimating the probability density from the Lagrangian

sample solutions.

4.2.2 Stochastic representation

The Lagrangian stochastic model corresponding to (4.2) is essentially in the

form of random walk model or RDM (see chapter 1.3.3 for introduction). The SDE

representing this RDM is chosen in order that the probability density p(x, t) of

the random variable Xt evolves in time according to the FPE that is identical to

(4.2). The standard method of deriving an SDE from a given FPE (or vice versa)

is outlined in §1.2.2. The SDE in the case of (4.2) is found to be

dXt = (u(Xt, t) +∇ · κ(Xt, t)) dt+ (2κ(Xt, t))
1/2 · dBt, X0 ∼ N (x0,W

2
S/2),

(4.9)

where Xt = (Xt, Yt) are the stochastic vector variable explicitly, dBt are the incre-

ments of a two-dimensional Brownian (Wiener) process, and the square root of a

symmetric positive-definite tensor κ follows the standard definition. Note that in

practice, the probability density of the specified initial particle position X0 in (4.9)

must be multiplied by the normalising constant πW 2
s , as p(x, 0) = c(x, 0)/πW 2

s .

Consequently, at subsequent times the respective distributions must also be in di-

rect proportion, i.e. p(x, t) = c(x, t)/πW 2
s .

The flow in (4.9) is time-dependent, and the corresponding SDE (4.9) is there-

fore described as non-autonomous. As a result, a more sophisticated time-stepping

scheme, compared to those used in Chapter 2 is required. A suitable second-order

Runge-Kutta time-stepping scheme for non-autonomous SDE (4.9) is that of Tocino

and Ardanuy (2002, §6). Note that the Tocino-Ardanuy scheme (TA-RK2, here-

after) is ‘weak’ in the sense that it converges only in probability as time-step is
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reduced, as opposed to being ‘strong’ in the sense of converging pathwise. The weak

convergence is nevertheless appropriate for our investigation of the kernel density

methods for this problem, because we are interested in convergence of the concen-

tration field which is proportional to the pdf p(x, t). The simplified version for the

implementation of their scheme in this case is detailed as follows. Denoting the drift

and diffusion terms of the SDE (4.9) as a and b respectively, i.e.

a(Xn, tn) = u(Xn, tn) +∇ · κ(Xn, tn), (4.10)

b(Xn, tn) = (2κ(Xn, tn))1/2 ,

where Xn ≡ Xtn is the stochastic variable at time tn = n∆t, ∆t is the time-step,

the TA-RK2 is found to be

Xn+1 = Xn +
∆t

2
(a(Xn, tn) + a(Xµ1 , tn + ∆t)) +R(Xn, tn)

+
∆Bn

2

(
b(Xn, tn) +

1

4
b(Xµ1 , tn + ∆t) +

3

4
b(Xµ2 , tn + ∆t)

)
, (4.11)

with supporting values as intermediate steps

Xµ1 = Xn + a∆t+ b ∆Bn, (4.12)

Xµ2 = Xn + a∆t− 1
3
b ∆Bn, (4.13)

Here Nt is the number of time-steps and Xn (n = 1, . . . , Nt) is the numerical ap-

proximation of the stochastic variable X(tn) at tn = n∆t, where ∆t = t/Nt is the

time-step. R(Xn, tn) = (R1, R2)† is the remainder vector

R1

R2

 =

1
2

√
2κ
(√

2κ
)′

(∆By
n∆Bx

n − V12) + 1
6
2κ
(√

2κ
)′′

∆t∆Bx
n

1
2

√
2κ
(√

2κ
)′

(∆By
n∆By

n + V22)

 , (4.14)

where superscript primes denote derivatives with respect to y, ∆Bx
n and ∆By

n are
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discrete increments of the Brownian (Wiener) process in the x and y coordinate

respectively. The two-point distributed random variables Vij where i, j = 1, 2 are

sampled from

P (Vij = ∆t) =
1

2
= P (Vij = −∆t), if j > i,

where Vii = −∆t, and Vij = −Vji, if j > i.

The same boundary conditions as in (4.2) are implemented in the TA-RK2

scheme, i.e. imposing periodicity in the Xn trajectories between X = 0 and X = 2π,

as well as perfect reflection of the Y trajectories at the side walls Y = 0, π. In com-

parison tests with the PDE solution (4.8), using the kernel density method described

below, a time-step of ∆t = 10−3 was found to be adequate to ensure that the nu-

merical error was significantly less than the statistical error when using N = 105

particles. It is immediately evident in Figure 4.1 that the scatter plot distribution

of Xt follows that of c(x, t) as expected. The diffusivity parameter used in this

simulation is α = 0.8 in (4.6).

The RDM simulation only provides discrete trajectory information {X(i)
t } (where

i = 1, . . . , N) which can be reconstructed to obtain their continuous probability den-

sity function using density estimation methods. The traditional density estimation

method used by atmospheric modellers is the box counting method, which has nor-

malised concentration at a specific location and time (x, t) given by

C(x, t) =
πW 2

s Nx

N∆x2
, (4.15)

where Nx is the number of particles in a square grid box around x, N the total

number of particles and ∆x length of each square box. Figure 4.2 shows comparisons

with the PDE solutions with the box counting reconstructions of the RDM ensemble

solutions obtained from Figure 4.1. As expected, the concentrations are too noisy
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Figure 4.1: Snapshots from the PDE spectral method solution of (4.2) (left column)
versus the scatterplot of N = 105 ensemble of solutions Xt of the RDM (4.9), for
times t = 0, 25, 50. The quantity contoured for the PDE solution is c(x, t) with
contour interval 10−0.5 (see colour map). The initial conditions for both solutions
are sampled from the same Gaussian distribution and plotted in the top row.
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and important trajectories in the centre of cloud get over-smoothed especially at

t = 50 (bottom right panel).

Figure 4.2: Snapshots from the PDE spectral method solution of (4.2) (left column)
versus the box counting estimations (4.15) of the RDM (4.9), for times t = 0, 25, 50.

4.3 Kernel density estimation

As highlighted above, the density estimation method can be greatly improved

by using the KDE (Silverman, 1986; Wand and Jones, 1994). The KDE spreads out
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the mass of each particle across a small interval surrounding its position, thus the

concentration at a given time ĉ(x, t) is estimated as the sum of contributions from

all the particles. As a starting point to our KDE methods for the advection-diffusion

problem above, we will use circular symmetric kernels in (4.1), corresponding to the

restriction

H =

h2
b 0

0 h2
b

 ,
(see e.g. Silverman, 1986, Eq. (4.1)). The result is the single bandwidth KDE

estimator

ĉ(x, t;hb) =
πW 2

s

Nh2
b

N∑
i=1

K

(
x−X(i)

t

hb

)
+ “image terms”, (4.16)

where “image terms” denote the reflection or images of trajectories from the bound-

aries and we recall that c(x, t) = (πW 2
s ) × p(x, t). The (small) bandwidth hb > 0

here determines the size of the kernel. Various functional forms can be chosen for

the kernel K(·), usually the kernel function is chosen to be a density function that

has zero mean. A practical choice of kernel which is used throughout in this thesis

is the Gaussian kernel

KG(x) = (2π)−d/2 exp

(
−1

2
xTx

)
, (4.17)

with d = 2 in the current application. The Gaussian kernel has the advantage of

being simple to work with, but the disadvantage of not having compact support and

other choices are used in applications.

4.3.1 Bandwidth selection and MISE

The main challenge in KDE is to choose the optimal bandwidth hb = h∗ that

will result in the most accurate reconstruction of the pdf. In order to evaluate
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the accuracy of a given KDE reconstruction, it is necessary to choose a measure of

error between the true value of c(x, t) and the estimator ĉ(x, t). The most common

measured criterion is the expectation value of ||c − ĉ||22, i.e. the square of the L2-

error norm, which was first discussed in §2.4.1.3 in this thesis. In the literature of

statistics (Silverman, 1986; Wand and Jones, 1994), this is often referred to as the

mean integrated square error (abbreviated MISE):

MISE(t) = E
(∫
D

(ĉ− c)2 dx

)
, (4.18)

=

∫
D

(E (ĉ)− c)2 dx+

∫
D

Var (ĉ) dx,

where E(·) denotes the expectation value. In the second line, the MISE is decom-

posed into integrated square bias and the integrated variance following §2.3 of Wand

and Jones (1994). It will be shown later that there is a trade-off: between the first

and second terms of (4.18), which are known as the bias and variance respectively.

The bias can be reduced at the expense of increasing the variance, and vice versa.

Numerically, we can use the definition of MISE (4.18) to determine the optimal

bandwidth h∗ by selecting the bandwidth that minimises the numerical MISE (or

L2-error norm, ||c− ĉ||22). This is shown in Figure 4.3 in which the MISE results of

the KDE reconstruction of N = 106 sized ensemble solutions from (4.9), are plotted

as a function of bandwidth hb.



Chapter 4. Kernel density methods 125

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

bandwidth (hb)

0.5

1

1.5

2

2.5

3

3.5

M
IS
E

||c
−
ĉ|
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Figure 4.3: Numerical MISE (4.18) as a function of bandwidth hb, using Silverman
KDE (4.16) from a sample of N = 106 trajectory solutions of (4.9) at time t =
50. The black dash lines indicate the optimal bandwidth and optimal asymptotic
bandwidth, h∗ and hopt respectively.

A lot of the literature on density estimation deal with asymptotic properties

of the various methods, which can provide some intuition about the way that the

methods behave and may also be of significant practical use. An asymptotic formula

for the MISE, referred to as the asymptotic mean integrated square error (AMISE)

and valid in the limit of small hb, can be found as follows (e.g. Silverman, 1986,

§4.3.1). The formula for AMISE in d dimensions is

AMISE(t) =
1

4
h4
b α

2
K I +

βK
Nhdb

, (4.19)

where βK =

∫
D
K(x)2 dx, αK =

∫
D
|x|2K(x) dx.

Here constants βK and αK are properties of the symmetric kernel function, and

I =
∫
D (∇2c)

2
dx is a functional that depends on the curvature of the true function

c(x, t).

A very interesting property of (4.19) is that the integrated square bias (first
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term on the right-hand side) does not depend on the sample size N directly, but

does depend on the bandwidth hb. In practice, the aim is to choose hb as a function

of N , and then the bias will depend indirectly on N via its dependence on hb. In

(4.19), the bias is asymptotically proportional to h4
b , but taking hb small would lead

to an increase to the leading term of the integrated variance (second term) since

this term is proportional to h−db . Hence to minimise the AMISE, as N → ∞ the

bandwidth should vary in such a way that each component of the MISE are reduced.

As pointed out above, this is known as the variance-bias trade-off.

Therefore the ideal estimate can be obtained by taking the value of hb that min-

imises the AMISE expression (4.19). We refer this minimum as the asymptotically

optimal bandwidth hopt, which can be easily calculated by differentiating (4.19) and

setting the derivative equal to zero,

hd+4
opt =

d βK
α2
KNI

. (4.20)

By inserting (4.20) into (4.19), the smallest possible AMISE for our estimation of c

using a kernel function K is found to be

min
hb

AMISE(t) = cK I
d/(d+4)N−4/(d+4), (4.21)

where cK =

(
1

4
d4/(d+4) + d−d/(d+4)

)
β4/(d+4)α2d/(d+4).

Returning to our two-dimensional advection-diffusion problem (4.2) (i.e. d = 2),

and using the Gaussian kernel function (4.17) results in the following parameter

values

βKG =
1

4π
and αKG = 2.

Therefore from equations (4.20) and (4.21), the asymptotic bandwidth hopt and

AMISE for the estimation of the particle concentration c(x, t) in (4.2) using the
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KDE (4.16) are given as follows

hopt = (8π)−1/6I−1/6N−1/6, AMISE(t) =
3

4
π−2/3 I1/3N−2/3, (4.22)

where I =
∫
D (∇2 c(x, t))

2
dx is the measure of curvature or roughness of the func-

tion c(x, t) from (4.2). The expressions (4.22) provide the rate of convergence of the

optimal bandwidth and the minimum AMISE, respectively, to zero as the sample

size gets large N → ∞. Under these stated assumptions, the best obtainable rate

of convergence of the MISE of the KDE estimator (4.16) in d = 2 dimension is of

order N−2/3.

In Figure 4.3, the numerical MISE is plotted as a function of bandwidth hb using

the Silverman KDE (4.16) from the RDM ensemble solution of N = 106 at time

t = 50. The values of optimal bandwidth h∗ = 0.0148 obtained by minimising the

numerical MISE (4.18) and the asymptotic bandwidth hopt = 0.0196 from (4.22)

are also indicated with black dashed lines. The close gap between the two optimal

bandwidth values suggests that the hopt formula in (4.22) can be used as a reliable

guide to determine the optimal bandwidth, without repeating the KDE calculations

over a range of hb to find the minimum numerical MISE. Note that this method

of selecting optimal bandwidth could be implemented for any type of model and

has been used successfully in the preceding chapters, provided that a reasonable

estimate of the integral I, which measures the roughness of the true function c(x, t),

is available. In the current application the hopt and AMISE dependence on I is

rather slow, i.e. −1/6 and 1/3, respectively.

Figure 4.4 shows comparisons with the PDE spectral solutions with KDE recon-

structions, ĉ(x, t, hopt) of the RDM ensemble solutions of size N = 105 generated

from (4.9) at times t = 0 (top row), t = 25 (middle row) and t = 50 (bottom

row). The contour plots show good agreement by eye, but the quality of the recon-

structions may not be adequate for particular problems that require very accurate
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estimates of the particle concentrations (for e.g. in importance sampling methods,

Esler, 2015).

Figure 4.4: PDE solutions versus Silverman kernel density reconstructions
ĉ(x, t;hopt) from ensemble solutions of the RDM (4.9) with N = 105. The quantity
contoured are c(x, t) (left column) and ĉ(x, t;hopt) (right column), for t = 0, 25, 50,
with contour interval 10−0.5 (see colour map).

Because the Silverman KDE (4.16) applied here use equally sized kernels in all

directions, the best obtainable results can still appear too noisy or undersmoothed,

especially for cases where the spread of the trajectories is much greater in one of

the direction than the others. An appropriate fix for this flaw is to use kernels of
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varying sizes and orientation, such as the diagonal bandwidth matrix,

H =

h2
1 0

0 h2
2

 ,
or the full bandwidth matrix,

H =

 h2
1 h12

h12 h2
2

 .
This brings us to a new method in constructing the KDE method to follow; where

the shape and size of the kernel function are determined based on approximate

fundamental solutions of the PDE (4.2).

4.4 Dynamic kernel density estimation

In this section, we proceed by introducing a variant on the KDE method that

exploits the fact we are solving SDEs. As a starting point, consider the well-known

Green’s function representation of the solution of (4.2)

c(x, t) =

∫
D
c(x′, t−∆t1) G(x, t,x′, t−∆t1) dx′, (4.23)

where ∆t1 is small and G is the exact Green’s function solution of the PDE (4.2),

also known as the ‘propagator’ in the language of probability. G is an unknown

function in 4 + 2 dimensions. Dynamic KDE (DKDE) depends upon taking the

unbiased infinite variance solution at t−∆t1,

c(x, t−∆t1) =
πW 2

s

N

N∑
i=1

δ(x−X(i)
t−∆t1

), (4.24)
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and then propagating forwards using an approximation to the Green’s function

G0(x, t,X
(i)
t−∆t1

, t−∆t1). Note that by definition,

Eδ(x−X(i)
t−∆t1

) = p(x, t−∆t1).

Therefore from (4.23), the proposed DKDE is in the form

Ĉr(x, t) =
πW 2

s

N

∫
D

N∑
i=1

δ(x−X(i)
t−∆t1

) G0(x, t,x′, t−∆t1) dx′,

=
πW 2

s

N

N∑
i=1

G0(x, t,X
(i)
t−∆t1

, t−∆t1). (4.25)

In contrast to (4.18), the bias in (4.25) is no longer a direct consequence of

smoothing by the kernel function, but is instead due to the error associated with

approximating G by G0. Here G0 takes the role of the kernel and the bias can be

written as

EĈr − c =

∫
D
c(x′, t−∆t1) (G0(x, t,x′, t−∆t1)−G(x, t,x′, t−∆t1)) dx′. (4.26)

The main question now is, what approximate Green’s function solution G0 do

we take? The answer depends on the governing equations of the model that is

being examined. In the following section, we derive the approximate G0 from the

advection-diffusion problem (4.2) introduced in this chapter.

4.4.1 Approximate Green’s function in advection-

diffusion

Considering the PDE of the advection-diffusion problem (4.2) and focusing on

the chaotic advection regime, it is more convenient to work with the non-dimensional
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equation

(∂t + u · ∇x)C = ε∇x · (κ · ∇xC) , C(x, 0) = δ(x− x0), (4.27)

where the parameter ε = Pe−1 � 1 is the inverse of the large Pèclet number and C

is a function of the scaled coordinates (x, t) → (x, t)/ε. The aim of this section is

to derive the approximate Green’s function solution of the eq. (4.27), while taking

advantage of the fact that ε � 1. First of all note that a unique central trajectory

x̃ can be defined as the solution to the characteristic equation including the drift

term
dx̃(t)

dt
= u(x̃, t) +∇x · κ(x̃, t), x̃(0) = x0. (4.28)

Under the assumption that |x− x̃(t)| = O(ε1/2) and t = O(1), the solution to PDE

(4.27) in the vicinity of the central trajectory x̃(t), can be sought as a WKBJ series

solution in the form

C = C0(X, t) + ε1/2C1(X, t) + . . . , where X = ε−1/2(x− x̃(t)). (4.29)

Under the change of variables it follows that

∇x → ε1/2∇ and ∂t → ∂t − ε−1/2
(
u(x̃(t), t) + ε−1/2∇ · κ(x̃, t)

)
· ∇.

For convenience ∇ here denotes the gradient operator with respect to X, and con-

sequently eq. (4.27) becomes

(
∂t + ε−1/2 (u(x, t)− u(x̃, t)) · ∇

)
C = ∇ ·

((
κ(x, t) + ε−1κ(x̃, t)

)
· ∇C

)
. (4.30)
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Using the fact that ε � 1 and x = x̃ + ε1/2X, we Taylor expand the velocity field

u(x, t) and the diffusion tensor κ(x, t) to give

u(x, t) = u(x̃, t) + ε1/2 (X · ∇u) (x̃, t) +
ε

2
(XX : ∇∇u) (x̃, t) + . . .

κ(x, t) = κ(x̃, t) + ε1/2 (X · ∇κ) (x̃, t) + . . .

and then inserting the series into (4.30), we obtain the following PDE at leading

order O(ε0),

∂tC0 + (X · Γ · ∇)C0 − (κ̃ : ∇∇C0) = 0. (4.31)

Here Γ(t) and κ̃(t) are the velocity gradient and diffusion tensor evaluated at the

location of the central trajectory x̃, respectively i.e.

Γ(t) = ∇u(x̃(t), t) and κ̃(t) = κ(x̃(t), t).

With the solution of a diffusion equation or heat kernel in mind, we proceed by

seeking a Gaussian solution for C0 of (4.31),

C0(X, t) =
1

2π
|Σ|−1/2 exp

(
−1

2
X ·Σ−1 ·X

)
, (4.32)

where Σ(t) is the covariance matrix of the Gaussian ‘blob’. In preparation for the

next step, we note that

∂tC0 = −1

2

(
Σ−1 : Σt

)
C0 −

1

2

(
X ·Σ−1

t ·Σ
)
C0,

(X · Γ · ∇)C0 = −
(
X · Γ ·Σ−1 ·X

)
C0,

(κ̃ : ∇∇)C0 =
(
X ·Σ−1 · κ̃ ·Σ−1 ·X

)
C0 −

(
Σ−1 : κ̃

)
C0, (4.33)

where Σt denotes the time derivative of Σ. Subsequently, we substitute Gaussian
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solution (4.32) into (4.31) and equate the quadratic terms only to give

−Σ−1
t −

(
Γ ·Σ−1 + Σ−1 · Γ†

)
− 2 Σ−1 · κ̃ ·Σ−1 = 0,

noting that X ·A ·X = 0 =⇒ A+A† = 0. Upon using Σ−1
t = −Σ−1 ·Σt ·Σ−1,

and pre- and post-multiplying by Σ gives the result

dΣ

dt
= 2 κ̃+ Σ · Γ + Γ† ·Σ, Σ(0) = 0, (4.34)

which is a matrix-valued ordinary differential equation (ODE) that can be simulta-

neously integrated with the ODE (4.28), in order to obtain a full covariance matrix

Σ(t) solution. This solution will induce the elliptic shape of the Gaussian blob

C0(X, t) in (4.32) oriented in the direction of the central trajectory or characteris-

tics solution of (4.27). The circular approximation in (4.33) leads to a simpler ODE

in the form
dΣ

dt
= 2 κ̃, (4.35)

producing a diagonal covariance matrix solution which will shape a circular Gaussian

blob in (4.32). Figure 4.5 below shows contour plot examples of the the Gaussian

blob C0 placed as a kernel weight around one particle. The left panel illustrates the

circular shaped kernel density using equation (4.35) and the elliptic shaped kernel

using equation (4.34) in the right panel.

Furthermore, at the next order term in the expansion of (4.30), the equation will

have the form

∂tC1 +(X · Γ · ∇)C1−(κ̃ : ∇∇)C1 = −∂tC0−
1

2
XX : Π·∇C0 +∇·(X ·Λ · ∇C0) ,

(4.36)
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Figure 4.5: Shapes of the Green’s function kernel G0 spread on one particle. Panel
(a) shows the circular kernel using (4.35) and (b) the elliptic kernel using (4.34).

where Π and Λ are the third order tensors

Π = ∇∇u(x̃, t), Λ = ∇κ(x̃, t).

For the purpose of this work, we will not attempt to solve the higher order equation

above but instead, we will deal with just derived key ODEs (4.28), (4.34) and (4.35)

in the construction of the new DKDE (4.25), as described below.

4.4.2 DKDE algorithm

Returning to the newly proposed KDE in (4.25), we can make the approximation

G0(x, t,x0, t−∆t1) = C0(x− x0,∆t1),

where Σ(∆t1) is the solution of (4.34) or (4.35), and x̃(∆t1) the solution of (4.28).

For particle concentration estimation from an ensemble solution of size N and final

time t = T , we follow the algorithm below:

Step 1 Integrate the RDM equations (4.35) using the preferred numerical scheme

for e.g. TA-RK2 (4.11) up to integration time t = T −∆t1, and generate an
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ensemble of solutions {X(i)

T−∆t1
, i = 1, . . . , N}.

Step 2 Integrate the following system of ODEs, using any standard integration

method (e.g. fourth-order Runge-Kutta) to obtain the trajectory solution

x̃(∆t1) and covariance matrix Σ(∆t1) in the short time interval t = ∆t1,

dx̃

dt
= u(x̃, t) +∇ · κ(x̃, t), x̃(0) = X

(i)

T−∆t1
, (4.37a)

dΣ

dt
= 2κ(x̃, t) + Σ · Γ + Γ† ·Σ, (Elliptic)

or
dΣ

dt
= 2κ(x̃, t), (Circular) (4.37b)

where Σ(0) = 0.

Step 3 Apply the following DKDE to reconstruct the trajectory ensemble x̃(∆t1)

into a smooth particle concentration estimation Ĉr, using C0 in (4.32) as the

kernel function:

Ĉr(x, T ; Σ) =
πW 2

s

2πN
|Σ(∆t1)|−1/2

× exp

(
−1

2
(x− x̃(∆t1)) ·Σ−1(∆t1) · (x− x̃(∆t1))

)
. (4.38)

In the algorithm steps 1 − 3 above, the DKDE (4.38) works by spreading smooth

Gaussian blobs C0 around the particles x̃(∆t1) which follow the shape and direction

of trajectory information obtained from Σ in (4.37), to form the continuous particle

concentration estimate Ĉr(x, T ; Σ) at time T . By switching off the diffusion term

in the short end time interval [T −∆t1, T ] in step 2, the DKDE (4.38) is allowed to

deterministically solve the diffusion equation in the stated time interval. More im-

portantly, by approximating the Green’s function G0 in (4.25) with the leading order

WKBJ series solution of the PDE (4.27), the bandwidth matrix Σ is appropriately

orientated according to local trajectory of the particles. Consequently, the associ-

ated integrated bias (4.26) is expected to reduce without increasing the integrated
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variance in the MISE.

4.5 Numerical results

An effective operation of the DKDE algorithm requires the selection of a large

number of numerical parameters such as a sufficiently large ensemble size N , a

short integration time-step ∆t in the numerical scheme to attain the required level of

accuracy (below the statistical error), as well as an appropriate switch time T−∆t1 in

the stochastic simulation. In the numerical result to follow, we have used numerical

parameters N = 106, and ∆t = 10−3, at time t = 50. Note that the choice of ∆t1

determining the switch time in the DKDE reconstruction depends on the ensemble

size N . The reason for this is that ∆t1 directly controls the size of the Gaussian

kernel or bandwidth, and the optimal bandwidth depends on the number of particles

N . For the purpose of presenting the new method numerically, we obtain the optimal

∆t1 for each ensemble of solutions with size N by selecting the value that minimises

the numerical MISE. In future work a more detailed treatment will present a method

for selecting ∆t1 in order to minimise AMISE, by analogy with methods for the

optimal selection of bandwidths in KDE, discussed in §4.3.1.

The contour plots of kernel density reconstructions using the KDE, ĉ(x, t;hopt)

(4.16) and DKDE, Ĉr(x, t; Σ) (4.38) are compared with the PDE solution in Fig-

ure 4.6. Due to kernel weights in the DKDE reconstructions (panels (c) and (d))

having different sizes and shapes for each particle, it can be seen that the DKDE

yield more continuous estimations than that of the KDE in panel (b). Moreover,

the elliptic DKDE ((d)) is visually the least noisy and also appears to provide the

closest estimate to the PDE solution (panel (a)) as contour lines are appropriately

smoothed without masking the important trajectories.
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Figure 4.6: Contour plots of the benchmark PDE solution at t = 50 versus the
kernel density reconstructions from ensembles of solutions of (4.9) with N = 5×105.
(a) PDE solution using the spectral method (4.8). (b) KDE using the asymptotic

optimal bandwidth ĉ(x, t;hopt) described in §4.3. (c) DKDE Ĉr(x, t; Σ) described

in 4.4.2 using the circular kernel. (d) DKDE Ĉr(x, t; Σ) using the elliptic kernel.
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Figure 4.7: Numerical MISE (4.18) as a function of ensemble size (N) of the KDE
reconstruction methods from ensembles of solutions of the RDM (4.9) at time t = 50.

To quantify the quality of the new estimator Ĉr(x, t; Σ), Figure 4.7 displays the

numerical MISE (or square L2-norm error) (4.18) of the KDE methods, calculated

directly from ensembles of solution from the RDM (4.9) at t = 50. The MISE results

are plotted as a function N , and convergence slopes are also plotted as light blue

lines for reference. The DKDE reconstructions (red squares and blue stars) have

MISE results significantly lower than that of the KDE (solid green diamonds), as

expected from the reduced bias. Furthermore it appears that the elliptic DKDE

(blue stars) has the best convergence of ∼ N−4/5, than those of the circular DKDE

(red squares) and the KDE (solid green diamonds). The circular DKDE is found to

attain slightly lower MISE values than KDE, but does not outperform KDE. They

both converge with ∼ N−2/3. The N−2/3 convergence for the d = 2 KDE is expected

and discussed in (4.22).
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4.6 Discussion

The focus of this chapter has been to investigate the problem of estimation of

the concentration field c(x) from trajectory input. Specifically, we have introduced

a new methodology, the dynamic kernel density estimation (DKDE), which builds

on the kernel density methods developed in statistics. The model problem examined

is a two-dimensional advection-diffusion problem that is particularly relevant to the

large-scale quasi-isentropic transport, typical of atmospheric and oceanic flows. We

first discussed the KDE method by Silverman (1986) that applies uniform width

kernels i.e. constant bandwidth in all directions, to an ensemble of RDM solutions

with size N . The most convenient and reliable bandwidth selection for the KDE is to

use Silverman’s (1986) asymptotic analysis which states that the optimal asymptotic

MISE (or square L2-norm) has the best obtainable rate of convergence of order

N−2/3 in the two-dimensional problem. This bandwidth selection method can be

easily implemented for any type of model provided that the curvature information

of the true concentration is known.

We then proceeded to the main discussion of this chapter by considering the

Green’s function approximation solution to the advection-diffusion PDE, to con-

struct the DKDE algorithm. The Green’s function approximation method is par-

ticularly suited to the advection-diffusion in the chaotic advection regime, in which

WKBJ series solutions can be sought using the small inverse of the Pèclet number

i.e. ε = Pe−1 � 1. In Figure 4.7, at N = 106 the MISE is five times lower for

elliptic DKDE compared to KDE. The elliptic DKDE is also shown to have MISE

convergence order of approximately 0.2 higher than those of the circular DKDE and

KDE, with the last two estimators showing the same order of convergence.

There is of course plenty of room to optimise the DKDE methods, the next

feasible step is to carry out the asymptotic analysis of the integrated bias (4.26)

to determine the asymptotic relation between (4.26) and the bandwidth matrix.
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The approximate minimum possible MISE and optimal bandwidth, as in (4.19)

can then be used to provide a more sophisticated way of selecting the optimal

switch time interval ∆t1. One can begin the analysis by finding the approximate

properties of between the circular DKDE and the elliptic DKDE, which explicitly

means substituting the G0 in the bias equation (4.26) with the circular kernel and

the Green’s function solution G with the elliptic kernel. Another optimisation is to

obtain a more accurate estimate of the covariance matrix Σ by solving the higher

order term equation (4.36). For the interest of other researchers, we suggest using

a valid methodology that has been successfully applied in the previous chapter

problems, which is to seek a solution for C1 based on a Hermite polynomial (Gram-

Charlier type A) expansion

C1 =
∞∑
k=0

Hek(X; Σ)Ak(x̃)
1

2π|Σ|1/2
exp

(
−1

2
X ·Σ−1 ·X

)
(4.39)

Here Hek(Σ) denotes the bivariate vector (probabilists’) Hermite polynimal of order

k (Holmquist, 1996), defined by

Hek(X; Σ) = (φ(X; Σ))−1 (−1)k (Σ · ∇X)(k) φ(X; Σ),

where superscripts (k) denote the kth derivative and

φ(X; Σ) =
1

2π|Σ|1/2
exp

(
−1

2
X ·Σ−1 ·X

)
,

where {Ak(x̃)} are sequences of functions to be determined. This definition is

analogous to the definition in the univariate case (A.1).
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Concluding remarks and

discussion

5.1 Conclusions

In this thesis we have presented several methods to investigate, assess and vali-

date single-particle atmospheric dispersion models. The type of model that plays a

central role in this thesis is the stochastic trajectory model or Lagrangian particle

dispersion model (LPDM). This type of model is an invaluable tool in decision-

making analysis and is often used for modelling the transport of an air pollutant

in the turbulent ABL. A large part of the research that was carried out in this

thesis has been focussed on the development of the random flight models (RFMs),

which model the velocity field associated with turbulent eddies in the atmosphere by

an Ornstein-Uhlenbeck process with a finite decorrelation time. These models are

compared with their simpler diffusive approximation known as random displacement

models (RDMs) that correspond to zero decorrelation time of the RFM.

In Chapter 2, we have developed a protocol for the quantitative evaluation of

SDE numerical schemes, applied to the problem of dispersion in a one-dimensional
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(vertical) idealised atmospheric boundary layer (ABL), modelled by RFMs. In our

protocol, we have introduced a new method in solving the complementary FPE of the

stochastic model, using a standard finite-difference discretisation in physical space

and a Hermite function expansion in the vertical velocity space. Consequently the

accurate solutions of the FPE were used to benchmark the distribution obtained

from an ensemble of RFM solutions calculated using different numerical schemes

with a fixed time-step. The weak convergence behaviour of solutions obtained in

our model test problems was investigated, and we have found that all the schemes

tested attain their formal convergence rates at early times in the model before

the reflection becomes important. Thereafter, the convergence was limited to the

effectiveness of the implementation of reflection boundary conditions. The best

performing scheme with respect to accuracy as a function of time-step was Platen’s

explicit order 3.0 weak scheme. However this scheme could be computationally

expensive to implement for models of higher dimensions and operationally, the use of

the relatively simple “small-noise” scheme of Honeycutt was recommended instead.

Legg and Raupach’s “long-step” scheme (LEGGRAUP here) which is currently used

for global operations was also assessed, and was found to have convergence as poor

as the Euler-Maruyama scheme. This was underlined by all experiments, due to the

conceptual error in its derivation, which we have corrected in the development of a

new scheme named LONGSTEP. The new scheme LONGSTEP performs very well

in the case of constant decorrelation time profile but no better than LEGGRAUP for

other spatially varying profiles; hence we recommended that both long-step schemes

to be avoided in operational use. If computational restraints require the use of

moderate to long time-steps, solutions of the RDM approximation of the RFM was

more accurate rather than those of the existing schemes designed for long time-steps

mentioned above.

In Chapter 3, we revisited the problem of shear dispersion in the ABL to gain a

better understanding of how the long-time dispersion behaviours differ between the
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RFMs and RDMs. Analytical, semi-analytical and numerical results of the effective

horizontal diffusivities were compared, using an interpolation parameter that gen-

erated a range of interpolation models between the RDM, RFM with profiles for

stable and neutral conditions in the ABL. We found that the effective diffusivity

of the more realistic RFM was slightly larger, but overall quite similar to that of

the RDM. Under typical ABL conditions, evolution of the low concentrations in the

tails of the tracer spreading cloud, measured by the rate function which controlled

the large-deviation decay rate, were found to be quite identical between the RFMs

and RDMs, except in the downstream tail regions where there are increased trans-

port compared to the RDM. The results of Chapter 3 are interesting because they

were not obvious at the outset. Our results have confirmed the RDM’s capability

to accurately model the late-time shear dispersion in the turbulent ABL, and there-

fore provided more support to the findings made in Chapter 2 suggesting that in

one-dimensional problems, the simpler and easy to implement RDM can be used

accurately, instead of the RFM.

In Chapter 4, the problem widely considered in many atmosphere-ocean appli-

cations, that is of converting discrete trajectory ensemble of solutions into smooth

probability distributions, known as the kernel density estimation was discussed.

Here we considered a two-dimensional advection-diffusion (or RDM), which was a

simpler model set up than the RFM mainly focused in Chapters 2 and 3. A simple

model flow, representative of large-scale chaotic advection on isentropic surfaces in

the atmosphere, is investigated at high Pèclet number. This model problem was se-

lected for the purpose of investigating methods of kernel density estimators (KDE)

because accurate solutions of the advection-diffusion PDE (or FPE) used as bench-

mark particle concentration solutions, were easily accessible in the model set up.

We emphasised the fact that the KDE by Silverman and his asymptotic analysis

to obtain the optimal bandwidth was the most reliable and convenient bandwidth

selection method for any type of model. In the context of the particular RDM
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problem examined in Chapter 4, a new approach to construct a more accurate KDE

was developed, that exploits the fact that we are solving SDEs. We called this new

estimator the dynamic kernel density estimator (DKDE) and the algorithm entails

a diffusion switch off period in the stochastic simulation, which itself controls the

kernel’s size and local orientation of the DKDE. The elliptic shaped DKDE showed

squared L2-norm error results five times lower than those of the circular shaped

DKDE and the KDE by Silverman, with higher accuracy convergence as a function

of number of particles.

5.2 Future research

In the first part of this thesis, the emphasis has been on the testing and evaluation

of numerical schemes for RFMs modelling dispersion in the ABL, for which purpose

a rigorous framework was developed in order to quantitatively assess the numerical

schemes investigated. As our recommendations were based only on the limited set

of schemes which we have studied, it is hoped that the newly developed protocol

could provide useful insights to other researchers into developing and testing novel

methods for RFMs. What still remains to be done from a practical point of view

of such development is the careful treatment of reflection boundary conditions. It

would be useful to verify the model’s behaviour in more complex physical situations

such as in the top of the convective boundary layer represented by a sharp change

of turbulence strength across the interface.

With respect to shear dispersion problems in Chapter 3, the interpolation meth-

ods discussed, to obtain the analytical and semi-analytical results for the RFMs and

RDMs, could prove beneficial in correcting the effective diffusivities in the RDM to

be made as closely realistic as the RFM. Future work could include the effect of

non-uniqueness in more than one dimensional RFMs on the long-time dispersion

behaviours. Another path that could be taken is to consider the three-dimensional
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dispersion in the ABL in order to understand the effect of the turning of the mean

wind with height, e.g. in Ekman layers which are typically observed in neutral

conditions.

The final chapter of this thesis introduces a new method of kernel density es-

timation, whose efficiency, as it turns out relies heavily on the switch time period

in the stochastic simulation. Several improvements to this method can be tried.

Most notably, the asymptotic properties of the integrated square bias in the mean

integrated square error can be used as a guide in the choice of the optimal switch

time interval as a function of sample size. As a starting point, an expression for

the integrated bias of the circular DKDE could be derived by considering the (next

order) elliptic DKDE as the exact Green’s function solution in (4.26). Similarly for

the approximate properties of the elliptic DKDE, the exact solution can be obtained

by solving the higher order equation in the WKBJ series solution of the advection-

diffusion equation. We suggest suitable solution for the higher-order term is one

that has been used as a running theme in this thesis, namely to a series solution

that is based on the Hermite polynomial expansion.



Appendix A

Properties of (probabilists’)

Hermite polynomials

In this appendix we detail some useful properties of the probabilists’ Hermite

polynomials Hek(ω), defined by

Hek(ω) = (−1)k eω
2/2 dk

dωk
e−ω

2/2. (A.1)

We concentrate on those identities necessary to derive equations (2.11) and (3.35),

all can be obtained easily from results found in the classical book of Abramowitz

and Stegun (1965, see Chapter 22). First, the Hermite polynomials are solutions of

Hermite’s equation

(
∂2

∂ω2
− ω ∂

∂ω

)
Hek(ω) = −kHek(ω), (A.2)

from which it follows that the Hermite functions satisfy

(
∂2

∂ω2
+ ω

∂

∂ω
+ 1

)(
Hek(ω)e−ω

2/2

√
2π

)
= −k Hek(ω)e−ω

2/2

√
2π

(A.3)
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Second, because Hermite’s equation can be written as an eigenvalue problem with

a self-adjoint linear operator, the Hermite polynomials can be shown to satisfy an

orthogonality relation, specifically

∫ ∞
−∞

Hej(ω)Hek(ω)
e−ω

2/2

√
2π

dω = k! δjk, (A.4)

where δjk is the Kronecker delta. Notice that a special case of (A.4), for j = 0, is

the integral identity

∫ ∞
−∞

Hek(ω)e−ω
2/2 dω = 0, (k ≥ 1). (A.5)

Thirdly and fourthly, the following differentiation and recursion relations can be

obtained

d

dω
Hek(ω) = kHek−1(ω) (A.6)

ωHek(ω) = Hek+1(ω) + kHek−1(ω). (A.7)

The results (A.3)-(A.7) are used in the derivations of (2.11) and (3.35) in this thesis.
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Asymptotic solution of effective

diffusivity

The details1 to find effective diffusivity in the calculation of §3.3.2 are as follows.

Inserting the expansion (3.28) into (3.7), at leading order in ε,

Lp0 = δ (ωΣwp0)z + δ(Σ′wp0)ω, (B.1)

where the linear operator L acts on functions f(λ, ω) as follows

Lf ≡ T−1
u (fλ + λf)λ + T−1

w (fω + ωf)ω . (B.2)

The leading-order equation has the ‘well-mixed’ solution

p0 = P (x̄, t̄) exp
(
−1

2
(λ2 + ω2)

)
, (B.3)

where P (x̄, t̄) is at this order an undetermined function of the ‘long’ space and time

variables (x̄, t̄).

1The contents of this section are contributed by J.G. Esler.
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At O(ε) in the expansion

Lp1 − δ(ωΣwp1)z − δ(Σ′wp1)ω = δ2up0x̄ + δλΣup0x̄. (B.4)

To proceed a particular integral needs to be found for equation (B.4). A solution

can be sought based on a Hermite polynomial (Gram-Charlier type A) expansion

p1 =
∞∑
k=0

Hek(ω)
(
Ck(z) + λDk(z)

)
Px̄(x̄, t̄) exp

(
−1

2
(λ2 + ω2)

)
. (B.5)

Here Hek(·) denotes the kth (probabilists’) Hermite polynomial defined by (A.1)

and the {Ck(z)} and {Dk(z)} are sequences of functions to be determined. In Ap-

pendix A, the leading terms in (B.4) are evaluated, and it is shown that Ck ∼ O(δk)

and Dk ∼ O(δk+1). Note that the full solution for p1 also includes a complemen-

tary function, which has an identical form to the ‘well-mixed’ solution for p0 given

above, however it is easily shown that only the particular integral contributes to the

effective diffusivity.

It is at O(ε2) in the expansion that the effective diffusivity can be calculated.

The equation for p2 is

Lp2 − δ(ωΣwp2)z − δ(Σ′wp2)ω = p0t̄ + δ2up1x̄ + δλΣup1x̄. (B.6)

At this order it is not necessary to solve explicitly for p2. Instead, the solvability

condition of (B.6) can be used to obtain the effective horizontal diffusivity. The

solvability condition is simply that the integral of the right-hand side, over the

entire (λ, ω, z) domain, must be zero. That is,

∫
D

(
p0t̄ + up1x̄ + δ−1λΣup1x̄

)
dz dλ dω = 0, (B.7)

where the integral is over the domain {D : (λ, ω) ∈ R2, z ∈ [0, 1]}. Evaluating
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this integral, exploiting the orthogonality properties of the Hermite polynomials in

Appendix A, the one-dimensional diffusion equation is obtained

Pt̄ = κeffPx̄x̄, (B.8)

where the effective diffusivity is given by

κeff = −
[
uC0 + δ−1ΣuD0

]
=
[
FC ′0 − δ−1ΣuD0

]
(B.9)

= κ
(1)
eff + κ

(2)
eff .

where, as above, square brackets denote the vertical average of a quantity over the

boundary layer, and F (z) is the integral of the mean wind profile as in (3.2). In

direct analogy with Saffman’s (1962) result (3.2), the two terms κ
(1)
eff and κ

(2)
eff refer

to the two separate terms in the vertical average, with the much larger first term

κ
(1)
eff being due to shear dispersion, and the smaller second κ

(2)
eff with direct horizontal

diffusion.

It is evident from (B.9) that only C ′0 and D0 are needed to calculate κeff , which

guides our approach to solving (B.4). First note that the boundary conditions

require Ck(0) = Ck(1) = 0 and Dk(0) = Dk(1) = 0 for k odd. Inserting the

expansion (B.5) into equation (B.4), the following hierarchy is obtained for the

{Ck},

0 = δ(ΣwC1)′ + δ2u, (k = 0),

−kCk
Tw

= δΣwC
′
k−1 + δ(k + 1)(ΣwCk+1)′, (k ≥ 1). (B.10)

The first equation can be integrated to obtain

C1(z) = −δΣ−1
w F (z). (B.11)
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Notice that the boundary conditions are satisfied because F (0) = F (1) = 0. Rear-

ranging the k = 1 equation

C ′0 =
F

κw
− 2

(ΣwC2)′

Σw

(B.12)

=
F

κw
− δ2

Σw

(
κw

(
F

Σw

)′)′
+

3δ
(
ΣwTw (ΣwC3)′

)′
Σw

.

where the k = 2 equation of (B.10) has been used to to substitute for C2.

Inserting the above expression for C ′0 into equation (B.9) for κ
(1)
eff , integrating by

parts, and using the fact that C3(0) = C3(1) = 0, gives

κ
(1)
eff =

[
F 2

κw
+ δ2κw

(
F

Σw

)′2
+ 3δC3Σw

(
κw
Σw

(
F

Σw

)′)′]
.

Using the k = 3 equation of (B.10) to substitute for C3, and integrating by parts

again, results in (after some working)

κ
(1)
eff =

[
F 2

κw
+ δ2κw

(
F

Σw

)′2
− δ4

2
κw

(
κw
Σw

(
F

Σw

)′)′2]
+O(δ6),

from which the first part of result (3.32) follows upon substitution of δΣw for Σw.

The explicit horizontal diffusivity κ
(2)
eff can be handled in a similar fashion. The

corresponding hierarchy is

−D0

Tu
= δ(ΣwD1)′ + δΣu, (k = 0), (B.13)

−Tw + kTu
TuTw

Dk = δΣwD
′
k−1 + δ(k + 1)(ΣwDk+1)′, (k ≥ 1).
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Following the same procedure as above

κ
(2)
eff = −δ−1 [ΣuD0]

=
[
Σ2
uTu + ΣwD1(ΣuTu)

′] ,
where the second expression is obtained by substituting for D0 from (B.13) and

integrating by parts. It follows from the k = 1 equation of (B.13) that

ΣwD1 = δ2 TuTw
Tu + Tw

Σ2
w(ΣuTu)

′ +O(δ4),

from which

κ
(2)
eff =

[
κu + δ2 κwTu

Tu + Tw

(
κu
Σu

)′2]
+O(δ4).

The second part of result (3.32) follows upon substitution of δσi for Σi and δ−2τi

for Ti (i = u,w).
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List of abbreviations

ABL Atmospheric boundary layer

SDE Stochastic differential equations

PDE Partial differential equation

ODE Ordinary differential equation

FPE Fokker-Planck equation

LPDM Lagrangian particle displacement model

RFM Random flight model

RDM Random displacement model

pdf Probability density function

WMC Well-mixed condition

DMC Direct Monte-Carlo

GWTW Go-with-the-winners

MISE Mean integrated square error
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AMISE Asymptotic mean integrated square error

KDE Kernel density estimator

DKDE Dynamic kernel density estimator

FLEXPART Flexible Particle Dispersion Model

NAME Numerical Atmospheric dispersion Modelling Environment
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