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Abstract

This thesis presents three empirical studies related to the economics of health

interventions. All of them use data from England and are related to preventive

care.

The first study estimates the potential impact of early diagnosis programmes

on medication, subjective health and lifestyle. By taking advantage of the survey

design of the English Longitudinal Study of Ageing (ELSA), a regression discontinu-

ity design based on the blood pressure of the respondents allows for estimates free

of selection bias due to screening. There is evidence of a temporal increase in the

use of medication as a treatment for the condition, and induced lifestyle changes.

The second study proposes a structural dynamic life-cycle model for studying

the economic value of the adoption of medical innovations. It allows for both

cost-benefit and cost-effectiveness calculations, by considering long-run gains on

productivity and on welfare derived from adjusting savings and labour supply

throughout life. In particular, the case of a medication that reduces the odds

of developing cardiovascular diseases, namely statins, is considered. Using data

from ELSA, it is possible to calculate the value of such treatment, and to consider

counterfactual policy scenarios.

The last study proposes an empirical test for determining whether rewarded

tasks are cost complements or substitutes in a pay for performance scheme with

kinks on linear task-specific reward functions. The test is based on the insensitivity

of effort exerted on a particular task to variations in the price of competing tasks

for agents who are bunched near the kink. As a case study, we consider the case

of the Quality and Outcomes Framework, which is a pay for performance scheme for

family doctors in the UK. We found no evidence of effort-diversion as a result of

the changes introduced in 2011.
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Chapter 1

Introduction

Authors like Becker (2007) and Murphy and Topel (2010) argue that the health

revolution of the 20th century has been among its more important developments,

if not the most significant. Not only has life expectancy doubled, but quality

of health has also improved sharply. Behind this revolution has been a notori-

ous advance of medical science as well as the introduction of public policies that

have allowed for the adoption of crucial innovations. Such improvements have

consequences for economic behaviour which are also discussed by Becker (2007).

Following Grossman (1972), health can be interpreted as a form of human capital,

meaning that individuals invest in preserving it not only due to its commodity

value but also because it determines their total time available for either labour or

leisure. This motivates economists to understand how current quantity (mortality)

and quality (morbidity) greatly affect all individuals’ current and future choices,

and how governments can shape such decisions via policies. This thesis is based

on these general questions.

This thesis is organised in three main chapters following this introduction.

While there are common elements across them, like the general background of

interventions, datasets and bibliography, each chapter is self-contained. Each one

has its own introduction, dataset section, results, conclusions and appendix, with

few references between them. They explore policies related to health from dif-

ferent perspectives and use very disparate methodological approaches. The first

measures the impact of a policy in terms of individuals’ response to it. The second

goes beyond the impact, and is about calculating the value of health technologies

in order to allow a policy maker to decide whether to implement them or not.
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And finally, the last one is a general empirical test designed to understand the

functioning of pay-for-performance schemes, a standard approach for adopting

health technologies.

The first study is devoted to the role of information treatments in health in-

vestments. Regular health checks are commonly proposed as a means of slowing

the progress of several non-transmittable diseases; specifically, they allow for the

early diagnosis of conditions that increase the odds of serious health complica-

tions. This is the case for high blood pressure or hypertension, which has no

evident symptoms but increases the odds of developing a cardiovascular event

such as a heart attack or a stroke. Early diagnosis means that patients can receive

early treatment. However, the identification of the potential impact of receiving

health information is challenging as individuals’ demand for preventive care is

likely to be related to other health investments and with their beliefs about their

morbidity progression. Chapter 2 estimates the potential impact of early diag-

nosis programmes on medication, objective and subjective health measures and

lifestyle.

In order to deal with potential selection bias due to screening, I employ a

feature of the English Longitudinal Study of Ageing (ELSA) that motivates a regres-

sion discontinuity design based on the blood pressure of respondents. ELSA was

designed following the Health Survey for England, which has a strict protocol for

assessing objective measures of health approximately every four years, starting in

2004. The survey, which includes information such as blood pressure or choles-

terol levels, is collected from respondents by nurses. One of the key elements of

the protocol is the standardised feedback that is given to respondents about such

biomarkers. For the specific case of blood pressure, respondents above the NHS

high blood pressure thresholds are told about the potential risk of being hyper-

tense. It is also suggested to them that they visit their GP in order to get a proper

assessment, as the survey measure does not follow diagnosis protocols. This sur-

vey design allows for identification of the effect of information on health beliefs

and behaviour based on a regression discontinuity design.

As a result of the exercise, there is evidence of a temporal increase in the

probability of being prescribed medication for blood pressure (4.41 pp) as a treat-



19

ment for the condition, which has almost doubled the proportion of people on

medication for these levels of blood pressure. At the same time, there has been

a permanent reduction in alcohol intake frequency of 8.4 pp and an increase in

fruit consumption. However, there is also evidence of higher smoking intensity

(5 cigarettes per week) and a higher probability of being obese (11 pp) for those

above the threshold. Moreover, no clear effects on either objective or subjective

health were found after four years of the intervention. These results suggest that

this type of information-based interventions might have a strong impact on the de-

mand for preventive care treatments, with permanent positive effects on behaviour

at the same time.

While chapter 2 considers one potential preventive intervention, chapter 3 is

about how to value these policies. In general terms it contributes to the literature

that estimates the value improvements on life quantity and quality. There is plenty

of literature on the topics of cost-benefit and cost-effectiveness analysis. There are

established tools like the quality adjust life years (QALY), which is used for assess-

ing the medical value of an intervention. It gives a fixed weight to potential health

estates, based on the subjective measure of quality of life, in order to compute the

gains of a treatment. Nevertheless, this does not take into account other potential

benefits (or losses) derived from a given intervention. For instance, by how much

would average labour income change if we managed to gain 1 QALY? These types

of effects arise as a reduction in the number of people who suffer from work dis-

abilities might increase labour participation. However, reducing the prospects of

suffering such a type of disability might also decrease incentives for extra savings

before retirement. An alternative to QALYs and cost-effectiveness analysis is to

consider how much of their wealth are individuals willing to give up in order

to enjoy the treatment. Willingness-to-pay calculation is the basis of cost-benefit

analysis. This requires a counterfactual scenario that considers not only health

but also financial variables. In Chapter 3, I contribute to this literature by in-

troducing a structural dynamic life-cycle model for studying the economic value

of the adoption of medical innovations. It allows for both cost-benefit and cost-

effectiveness calculations, by considering long-run gains on QALYs, productivity,

and welfare derived from adjusting savings and labour supply throughout life.
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Such a tool considers how realised and expected health shocks modify trade-offs

in the life-cycle, and its parameters are estimated using a rich longitudinal dataset

that involves both health and financial information.

With this model, I consider the case of a medication, namely statins, which

reduces the odds of developing cardiovascular diseases. Using data from ELSA

between 2002/03 to 2012/13, the calculated value of this use of the drug is £79 bil-

lion. This is nearly 12% higher than considering the value derived from assuming

a willingness-to-pay of £23.000 per QALY, a more standard valuation strategy. I

also explore how the value depends on the effectiveness of the drug and of policies

directed to its diffusion in the primary care system, as well as non-health related

elements such as retirement age. It is also shown that one of the main drivers

of the results is the implied willingness-to-pay for extending longevity. This con-

cept, related to the value of a statistical life, is governed by the bequest motive

formulation.

The prescription of statins is done at primary care level, and it is incentivised

under the Quality and Outcomes Framework (QOF). This is a pay for performance

scheme that rewards family doctors for accomplishing several goals. For instance,

doctors are paid more for every increase in the percentage of diabetic patients

who have their cholesterol controlled until this figure reaches 70%. This system

of payment motivates Chapter 4. In this third and last project, a joint effort with

Marcos Vera-Hernández, we develop a test for assessing a central property of

this type of reward system: whether effort is diverted from one task into another

after changing the reward of one the tasks. This is a central question as overall

quality of care might be affected by modifying the incentives of some of the tasks.

Such a type of response occurs when exerting effort in a particular task might

result in an increase (substitutes) or decrease (complements) in the marginal cost of

alternative efforts. While the empirical implications of these changes in a contract

are straightforward, in practice it is difficult to isolate optimal responses from

other concurrent unobserved shocks. This is a common challenge that arises due

to the lack of adequate control groups, as incentive systems are typically rolled-out

at the same time for an entire target group.

We contribute to the analysis of multitasking by using as a control group ob-
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servations close to the presence of kinks in the reward function. In other words,

agents who decided to exert effort just above the point in which there is a drastic

change on the marginal benefit of effort. The relevance of such kinks in agents’

choices can be assessed by their impact on the density function: it produces bunch-

ing near the kink point. This is because agents who would have decided to exert a

higher effort without the kink, because of it choose to be exactly (or slightly above)

at the kink point. Our test proceeds in two steps. First, we test whether or not the

kink has affect on agents’ choices, In other words, if there is bunching. Second, if

that is the case, we test whether or not the response on effort to a change in the

rewards between agents whose decisions are affected by the kink. We show that

as agents at the kink are less likely to react to such a change in conditions, these

individuals constitute a control group.

In terms of the QOF analysis, we show that changes introduced in 2010/11

revealed that tasks for which there was no price variation are not substitutes of

those tasks. In fact, several indicators are complements.





Chapter 2

Early diagnosis of chronic conditions and

lifestyle modification

2.1 Introduction

The rise in public expenditure due to an ageing population is partly due to dis-

eases that could be prevented or delayed by modifying the habits of patients. One

of the potential solutions is a preventive strategy based on the early treatment of

individuals who are at risk of potential complications. This idea motives the strat-

egy of periodical health checks on the population. Massive programmes such as

NHS Health Checks in the UK, or some preventive care components of the Afford-

able Care Act in the US, point in that direction. For instance, the former invites

people aged between 35 and 74 to routine check-ups for detecting signs of chronic

conditions such as cardiovascular diseases. However, some authors like MacAuley

(2012) consider that the impact of such policies might be even negative due to the

misallocation of resources, over-diagnosis of certain conditions and to behavioural

effects.

A first question about these programs is about their potential for inducing

changes on demand for health care. A review by Krogsbøll et al. (2012) found that

in general this type of programmes increased the number of individuals using

anti-hypertensive drugs, but without conclusive effect on health benefits. In the

specific case of the UK, there is no evidence so far on the benefits of the NHS

Health Checks programme. Some studies like Artac et al. (2013) or Cochrane

et al. (2012) provide descriptive evidence of the potential problems and benefits of

the intervention in small areas of the country. Robson et al. (2016) suggests that
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NHS Health Checks is related to an increase on the attendance to GP practices of

individuals in risk of developing cardiovascular diseases (CVD). They have also

observe increased prescription of medication for controlling high blood pressure

(HBP) as well as for lowering cholesterol.

Second, there is an special concern of the effects of periodical health checks

on risky behaviours. There is evidence that individuals might be sensible in terms

of information related to their own health, consistent with the idea of rational

addiction (Arcidiacono et al., 2007). Moreover, smokers’ tend to be optimistic

about their own mortality (Khwaja et al., 2007), and are updated with the on-

set of diagnosis of smoking-related diseases (Smith et al., 2001). However, treat-

ment for mild conditions detected with the checks might induce risk compensa-

tion/offsetting behaviours. In other words, individuals could potentially increase

their risky behaviour in response to improved prospects of future health due to

medical treatment, or due to reassurance when they receive ‘good news’. This is

a common concern on areas like unsafe sexual activity and HIV treatment (Cas-

sell et al., 2006). In order to understand this potential side-effect, it is required

to analyse whether medical treatment and health behaviours are complements or

substitutes in the context of a competing risks model. In principle, theory sug-

gests complementarities between health investments as reducing one of the risks

increases the marginal benefit of reducing the others (Becker, 2007; Dow et al.,

1999). However, if lifestyle gains in reducing a disease-specific risk are offset by

medical treatment, substitution effect might dominate (Kaestner et al., 2014). So

far Kahn (1999) found that diabetics lifestyle improved over time without signs

of medication, Fichera and Sutton (2011) suggests that statins were associated for

lowering cholesterol with reductions on smoking in England. On the other hand,

Kaestner et al. (2014) found an increase in obesity in response to the use of statins

and no effect on smoking.

This chapter contributes to both the understanding of health advice effects

and the analysis of complementarity or substitution between medical treatment

and health behaviours. First, I am able to identify the medium and long run

impact of informing individuals about the odds of being hypertensive, a condition

that might increase the likelihood of developing cardiovascular diseases (CVDs).
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Second, given this evidence, I am able to test if individuals modify their lifestyle

and beliefs about their current and future health status in response to medical

intervention.

My identification strategy to estimate the causal effect of receiving medical

advice relies on the protocols of the English Longitudinal Study of Aging (ELSA)

and the Health Survey of England (HSE). During the progress of the survey, a nurse

takes the blood pressure of interviewees. In ELSA, those with a systolic/diastolic

reading higher than 149/85 mmHg, are encouraged to visit their family doctor in

order to have a proper screening test to confirm the findings. A similar procedure

is in place in HSE with a 160/95 threshold for men aged 50 and over. As a result,

we can compare individuals aged above fifty, not previously diagnosed with HBP,

who are very similar in their health status but who differ only in having being

advised or not to visit primary care services. This motivates a Regression Dis-

continuity Design (RDD) that identifies the impact for individuals who are close

to the advice thresholds but who had not previously been diagnosed with any

cardiovascular conditions.

A significant increase of 4.41 pp in the use of BP-lowering medication was

found around to years after the intervention for those with a systolic BP slightly

above the advice threshold compared to those below it. It almost doubles the

proportion of individuals who are under such medication at this level of blood

pressure. After 2 waves (approximately 4 years), the difference on prescription

drops to 1 pp. and it is not statistically different form zero. This is in line with

previous findings in the health checks literature that found an increase on medica-

tion use. Additionally, the advice caused a permanent decrease on alcohol intake

of 8.4 pp and a positive impact on fruit portions per day. However, it also caused

an increase on self-reported smoking intensity of 5 cigarettes per week, and of 11

pp on the probability to the obese (BMI>30). These findings suggest that improve-

ments on fruits consumption and heavy drinking corresponds to a direct response

to the threat of worse future health. Under Kaestner et al. (2014) framework, re-

sults for smoking and obesity indicate substitution between medical treatment and

lifestyle. However, there is no evidence that such extra risky behaviour is in direct

response to BP medication induced by the advice.
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Results suggest that this type of information-based interventions might have

strong impacts on demand for preventive care treatments, with permanent positive

effects on behaviour at the same time. Moreover, impacts are stronger on men and

on individuals will low risk of developing CVDs, showing that the policy might

be effective for targeting this specific population.

This chapter is organized as follows. The introduction was the first part of

this chapter. Section 2.2 presents the main details of the dataset and the sample

employed and explains the health advice procedure by the survey nurses. Section

2.3 discusses the empirical strategy and Section 2.4 the main findings. Finally,

Section 2.5 concludes.

2.2 Data

I use the English Longitudinal Study of Ageing (Marmot et al., 2013) for the years

2002-2012. It is a longitudinal study with a representative sample of those aged

50 and over in England. Its baseline was constructed using the Health Survey

for England (NatCen and UCL, 2010) and it contains high-quality subjective and

objective health information and detailed socio-economic information.1

Figure 2.1: Survey timing
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Notes: The English Longitudinal Study of Ageing (ELSA) is based on the original sample from the
Health Survey for England (HSE)

Additionally to the core interview, I use the biomarkers data collected in

waves 0, 2, 4 and 6 (see Figure 2.1). All core individuals2 who had a interview

in person were eligible for the blood pressure measurements (BP), and depending

on their health, to other measures.3 After completing the questionnaire, respon-

dents were asked for their approval to be visited by a nurse4 in the following

weeks. If they agreed, an appointment was made for between 2 to 4 weeks after

1More details can be found on the survey website:http://www.ifs.org.uk/ELSA/about
2ELSA collected information about partners, even if they were not part of the original HSE

sample. These ‘new’ partners were not eligible for biomarkers measurements.
3For example, for blood samples eligibility depended on non-suffering a condition or being under

a medication that implies that the test might compromise respondent’s health.
4They are professional nurses trained by the researchers to take the measures following a strict

protocol.

http://www.ifs.org.uk/ELSA/about


2.2. Data 27

the interview. Diastolic and systolic blood pressure was derived by taking into

account the last two of three measurements,5 using an automated monitor under

standardized conditions.6

As cooperation is a choice, the observed sample might be affected by selec-

tion. In particular, there is evidence which suggests that respondents are usually

more likely to be more worried about their health and to engage in practices for

preserving it (Heidi Guyer, 2010).

2.2.1 Descriptive information

For this exercise we consider only individuals for whom there are at least three

valid BP measurements in at least one of the waves. Table 2.1 presents the de-

scriptive information of this sample for each wave. In general, from Panel A, our

sample is getting older during the observed time despite the refreshment samples

that have been added since wave 3.7 Though younger cohorts are more educated,

the levels of education are represented in similar proportions across time as other

characteristics as well as ethnicity, gender and marital status.

Panel B presents the evolution of self-reported health conditions. As our sam-

ple gets older, the prevalence of most diseases increases. The opposite occurs for

lifestyle as observed in Panel C. There is a declining trend in the prevalences of

smoking8 (both in the extensive and intense margins) and alcohol intake.9 Such

a trend is not clear for the case of physical activity.10 Two final measures on veg-

5The protocol discards the first measurement in order to minimize the white coat syndrome. Es-
sentially, anxiety and stress produced by clinical settings temporally increases blood pressure but
without being associated with cardiovascular risk (Pickering, 1996).

6People were asked to sit quietly 5 minutes before the measurement. Nurses were also instructed
to delay the start of the measurements until at least half an hour after their arrival. Other conditions
that might be relevant, such as ambient air temperature, was recorded. If the respondent had eaten,
drunk, smoked or exercised in the last half an hour, his answers would be invalid.

7HSE 2002 to 2006 data is not used in some of the specifications due to the lack of information
on hypertensive status.

8In ELSA, individuals are asked about smoking as part of the health module. If they report to
be currently smoking, they are asked whether they use cigarettes and/or roll-ups. In both cases,
they are ask about their consumption on weekdays and weekends separately: number of cigarettes
and/or grams/ounces of tobacco. Around 23% of the smokers report to be roll-up consumers only,
and I assumed 1 gram to be equivalent to 1 cigarette, and 1 ounce to be 28.35 cigarettes. The top 1%
of these measures are excluded as they seem to be outliers. One important concern is variation on
prices: Leicester and Levell (2012) and Czubek et al. (2010) have a good description on the evolution
of real prices and consumption trends during the period. Relevant actions were in 1998 where the
NHS quit was implemented and in 2007, when bans on smoking in public spaces were implemented.

9ELSA questions on alcohol intake is part of a self-completion module, and they vary from
wave to wave. The present classification tries to capture the available information in a way that is
comparable across waves.

10A recoded version of the level of physical activity derived by NatCen. These questions are part
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etable and fruit intake are included in the ELSA, and as shown in the table, there

is a substantial difference on how they were measured after wave five.11 Such dis-

crepancies are not problematic for the estimation of the sign of the impacts, as this

compares variations within waves. However, the interpretation of the magnitudes

is difficult as the estimates mixes both type of measures.

Panel D and E present subjective and objective measures of health. Evolu-

tion of objective health measures is not homogeneous. Some of them deteriorate

on time: individuals are getting fatter (BMI and obesity), with higher levels of

cholesterol; but their blood pressure is decreasing as the same time. First, binary

variables for reporting to be in good and bad health are derived from standard

likert scale type of question for self-rated health. ELSA also involves subjective

probabilities on the chances to survive age 75; and the chances of suffering an

event that limits ability to work. The former question is asked to individuals aged

60 and younger, and the later only to those who are currently working. Inter-

esting, despite the an increasing proportion of individuals being diagnosed with

hypertension or diabetes, all subjective health measures are on average increasing

on time.

Finally, Panel F presents information on financial variables derived by the

Institute of Fiscal Studies (IFS). Measures of income, savings and wealth, as well

as labour supply, are included. Values in the top 1% of these variables are excluded

as these values can be considered atypical for the rest of the distribution.

As this study aims to understand the effect of receiving advise about potential

undiagnosed hypertension, the objective population has to be those who are in

risk of such condition and are less likely to be tested for it. Falaschetti et al. (2014)

documents that both systolic and diastolic BP increase with age until age 60 where

the diastolic measure start to decrease systematically. The also show that by 2011,

prevalence of hypertension was 28% for the age group 40-49, 40% for 50-59, and

60% for 60-69. Nevertheless, the authors documented an increase in awareness and

management of the condition between 1994 (46%) and 2011 (71%). This is related

of the health module and involve both leisure and labour activities.
11These questions are part of the self-completion questionnaire. For waves 3 and 4, individuals

have to record the total number of fruits/vegetables per item in a list, and then the number was
added up in order to construct the measure. In contrast, waves 5 and 6 ask directly for the number
of portions consumed per day.
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Table 2.1: Sample Means by Wave

Variables Wave
0

Wave
1

Wave
2

Wave
3

Wave
4

Wave
5

Wave
6

Panel A. Socio-demographic Characteristics
Age 60.6 63.5 65.8 67.9 66.3 67.3 69.0
Male 43.9% 43.9% 43.9% 44.5% 44.8% 44.8% 44.9%
Educ: No qualifications mentioned 38.9% 38.9% 36.6% 32.2% 30.8% 27.0% 27.8%
Educ: Some medium qualif. 36.3% 36.3% 36.9% 38.7% 39.2% 40.1% 39.8%
Educ: Some high level or above qualif. 24.9% 24.9% 26.5% 29.1% 30.0% 32.9% 32.5%
Non white ethnicity 29.0% 2.6% 8.1% 2.9% 6.3% 2.5% 4.6%
Married 71.2% 71.1% 63.4% 65.1% 61.0% 66.8% 61.3%

Panel B. Health Conditions
Diagnosed HBP ever 15.3% 23.8% 47.1% 48.7% 48.8% 46.4% 52.6%
High Cholesterol, wave 2 onwards 18.8% 34.6% 35.7% 42.2% 46.6%
Diagnosed Diabetes ever 2.4% 5.9% 8.4% 10.4% 11.2% 11.4% 13.2%
Takes BP medication 11.4% 17.6% 32.0% 36.0% 32.8% 34.9% 35.7%
Takes Lipid-lowering medication 21.4% 22.6% 25.9% 28.0%
Diagnosed Major Cardiovascular Event ever 6.4% 13.2% 18.2% 18.0% 17.4% 15.2% 18.3%

Panel C. Lifestyle
Current smoker 17.5% 16.3% 13.8% 10.1% 11.6% 10.4% 9.3%
Cigarettes per week (0 for non-smokers, includes
rollups) 0.0 13.7 10.8 7.7 9.0 7.8 6.9

Alcohol twice a week or more 64.5% 59.3% 43.8% 42.7% 41.0% 40.9% 38.3%
Sedentary or low physical activity 29.9% 30.0% 30.1% 29.2% 29.1% 30.7%
Portions of vegetables per day 5.3 5.7 2.8 2.9
Portions of fruits per day 5.5 5.2 2.2 2.2

Panel D. Health Perceptions
Self-reported good health 70.5% 71.7% 73.5% 68.8% 75.0% 75.8% 73.2%
Self-reported bad health 7.3% 24.2% 26.5% 31.2% 25.0% 24.2% 26.8%
SSP: Chances to live to age 75 65.5 65.4 67.1 67.8 68.9 68.0
What are the chances that your health will limit
your ability to work before you 37.8 35.4 33.3 32.8 32.3 29.9

Panel E. Health Measures
BMI: Body Mass Index (kg/m2) 27.4 27.9 28.3 28.2
Waist-to-height ratio (WHtR) 0.6 0.6 0.6
Overweight or above: BMI 25+ 68.7% 72.6% 73.5% 72.8%
Obesity level 1 or above: BMI 30+ 23.2% 28.7% 31.2% 30.5%
Blood HDL level (mmol/l) 1.5 1.5 1.6 1.7
Blood total cholesterol level (mmol/l) 5.9 5.9 5.6 5.5
Blood glucose level (mmol/L) - fasting samples
only 5.0 4.9 5.4

(D) Valid Mean Systolic BP 138.3 135.1 132.6 132.5
(D) Valid Mean Diastolic BP 76.2 75.0 74.3 73.1

Panel F. Economic activity
BU total weekly income (£ of May2005) 0.4 0.4 0.4 0.4 0.4 0.5
BU total savings (1000£ of May2005) 22.7 27.4 32.5 37.6 36.5 36.8
BU total net (non-pension) wealth (1000£ of
May2005) 232.8 277.8 307.7 310.6 302.6 307.0

Hours of work all jobs (employed or self em-
ployed) 35.9 34.7 32.8 33.8 33.2 32.1

Working 41.0% 35.1% 30.7% 36.0% 32.7% 27.3%

Individuals 6572 6572 8538 5627 9059 7056 7308
Year 98-00 2002 2004 2006 2008 2010 2012

Source: own calculations using HSE 1998,99,00 for wave 0 and ELSA waves 1-6.
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to the proportion of individuals who regularly had blood pressure tests. Between

1998 and 2008, data from the British Household Panel Survey (ISER, 2010) shows

that there was an increase from 61% to 80% on the proportion of individuals aged

45 to 60 report having had their BP tested in the last two years (see Figure 2.2).

The proportion is larger for the older group, going from 73% to 86%. As a result,

despite improvements over time, while prevalence is higher in older individuals,

testing is lower in the middle-age group. Hence, it is expected that this type of

intervention would be useful for younger individuals.

Figure 2.2: Demand for BP screening tests
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Another element of discussion is the relationship between lifestyle and di-

agnosis of hypertension. Figure 2.3 presents the correlation between habits and

self-reported HBP that arises from the ELSA. It shows that, in general, individuals

who report having been told by a doctor about being hypertense are less likely

to smoke or to consume alcohol more than once a week, but at the same time are

more likely to have a sedentary life.
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Figure 2.3: HBP and lifestyle
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2.2.2 Health Advice Intervention

There is a particular characteristic of the ELSA that makes it ideal for our pur-

poses. As previously indicated, nurses hired by ELSA visit the survey respon-

dents two weeks after the survey interview and take their BP. According to the

ELSA protocol, the nurses advise respondents to visit their family doctor (general

practitioner, GP) if their BP measure is above a certain threshold (see below). This

message might induce some individuals to visit their family doctor and get an

adequate screening to stablish whether they suffer from hypertension.

Essentially, the advice varies with the last 2 out of 3 measurements of respon-

dents’ systolic/diastolic BP. In the ELSA, the thresholds are 140/85 mmHg for

mildly raised blood pressure, 160/100 mmHg for moderately raised and 180/115

mmHg for considerably raised. Below 140/85 mmHg, the blood pressure was

considered normal. In the HSE, the values were the same for women and men un-

der 50, but changed for men aged 50 or over.12 A respondent with mildly raised

blood pressure was instructed to visit their GP in the next 3 months, for moder-

ately raised it was 3 weeks, and for considerably raised, 5 days. These thresholds

are similar to the official recommendation for systolic BP used by the NHS, where

12160/95, 170/105 and 180/115 mmHg respectively
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Figure 2.4: Systolic Blood Pressure Distribution and Nurses’ Advice
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hypertension is diagnosed with 140/90 mmHg (NICE, 2011). For diastolic BP

the recommendation is quite conservative and we will see this reflected in the re-

sults. Figure 2.4 presents the strategy that will be followed in this chapter: the BP

measures are standardized around the relevant mildly raised cut-off according to

respondents’ age, gender and year of the survey. For this analysis, an individual

is treated if such a measure is greater or equal to 0, and is a control otherwise.

Nurses were clearly instructed to provide only the survey interpretation. Re-

spondents were allowed to avoid feedback from the readings, or to allow the re-

sults to be sent to their GP.13 That information could be left written in a “mea-

surement record card” along with other biomarkers.14 The suggestion given by

the nurses was homogeneous as stated by the survey protocol. For instance, in the

case of moderately raised blood pressure, they will tell the respondent:

Blood pressure can vary from day to day and throughout the day so that

one high reading does not necessarily mean that you suffer from high blood

pressure. You are advised to visit your GP within 2-3 weeks to have a further

blood pressure reading to see whether this is a once-off finding or not.

13Unfortunately,public available data does not report these choices.
14There were not any other comments or suggestions based on the biomarkers of the survey.
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2.3 Empirical Strategy

The previously described nurse protocol motivates a Sharp Regression Discon-

tinuity Design (RDD). The idea is to compare the value of the outcomes in the

waves following the measurement, for those individuals that were just below and

just above the threshold. By doing this, we are assuming that having the maxi-

mum standardised BP measurement slightly above or below the advice cut-off is

essentially random once we take into account the trend. Formally, following Im-

bens and Lemieux (2008), the impact of nurse advice at wave t, W = 1, on outcome

Yt+s at wave t + s (s ∈ {1,2}) is identified by the discontinuity in the conditional

expectation of such outcome at the advice cut-off BP = 0:

δ0 = E[Yi,t+s(W = 1)−Yi,t+s(W = 0)|BPi,t = 0] (2.1)

= lim
BP↓c

E[Yi,t+s|BPi,t = 0]− lim
BP↑0

E[Yi,t+s|BPi,t = 0]

This strategy identifies the impact of the policy on the outcomes of a particular

group of individuals. First, it tell us how individuals who might be considered to

have mildly raised blood pressure would react to the diagnosis of such a condition.

Second, it measures how people who comply with the advice react: that is, those

who visit their GP as the nurse told them to, and who would not do so in the

absence of the nurse advice.

Main results are presented based on the estimated parameter δ from Equa-

tion 2.2, which identifies δ0 in Equation 2.1. Essentially, within a bandwidth of

1 standard deviation (h = 1SD) of the cut-off, a second order polynomial is fit

at both sides of the cut-off in order to capture the observed relationship between

prescriptions and blood pressure (see Figure 2.5, described in detail in the results

section).

Yi,t+s = δWit + α0 + fl(αl , BPi,t|Wit = 0) + fr(αr, BPi,t|Wit = 1) , s ∈ {1,2} (2.2)

fx(αx, BPi,t|Wit = 0) = αx,1BPi,t + αx,2BP2
i,t , x ∈ {l,r}

∀BPi,t ∈ [−h, h] , h = 1
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Given that δ0 can be estimated under different bandwidths h and functions

f (·), it is essential to test alternative specifications. Main tables will present results

based on local linear regressions with rectangular and triangular weights.15

Balancing tests are carried out in order to test the validity of the main as-

sumption. These test consist on running Equation 2.3 with s = 0. Such regression

analysis assess if the discontinuities were in place before the nurse advice took

place. Also, it is possible to determine if the effect is related to other pre-existing

elements in the data. This is done by setting socio-demographic characteristics as

left-hand side elements in the regression.

2.4 Results

2.4.1 Main Results

The intervention does increase the likelihood of being treated with medication

for BP among those who report not being diagnosed with HBP at the moment of

the nurse visit, around two years after they received the advice from the nurse.16

Those who were above the systolic BP advice threshold were around 4.41 pp more

likely to report that they were taking medication. This figure is significant at the

90% level and also large, as around 2% of the population with such BP levels take

medication. For the diastolic BP the estimate is 0.05 pp, which is not significant at

90% level.

Figure 2.5 presents a graphic version of the RDD analysis. In both graphs, the

horizontal axis shows the standardized BP measurement where 0 is the relevant

cut-off. A smoothed average, using the triangular linear kernel, is represented

by the dashed lines at both sides of the threshold. The goal of the strategy is to

measure the jump between the dashed lines. The value reported in the graph cor-

responds to Equation 2.2, and which will be called the Local Quadratic Rectangular

estimator in Tables below.

Tables 2.2 and 2.3 present the main results for one and two waves after the

15For further details see Appendix 2.B.
16The sample is selected in that way in order to avoid confounding factors. First, in general

individuals above the threshold are more likely to report being diagnosed with HBP even before the
nurses visited them. This is expected as the advice cut-off is equivalent to the common diagnosis
threshold. Second, individuals in their fifties will benefit the most from the health checks, as they
are less likely to demand primary health care in the first place as shown in Figure 2.2. Age is
explored with more detail in Section 2.4.3. For more details see Appendix 2.A.
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Figure 2.5: Nurse Advice and BP lowering medication at the following-wave
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Sample: Individuals aged 60 or younger who reported not to be diagnosed with HBP or diabetes from the
HSE-ELSA data.

Notes: Calculations using a quadratic function within 1 standard deviation of the cutoff. A 90% CI is presented.

Significance level: *90%, ** 95%, *** 99%

nurse visit. In both of them, the rows present the outcome variables. Panel A

shows the jump estimator for health conditions and medications; Panel B does so

for lifestyle indicators; Panel C for health perceptions; and Panel D, only in Table

2.3, covers objective health measures. The first column is the mean of each depen-

dent variable for those observations one standard deviation below the threshold.

The other columns present different specifications for the trend between the out-

come and systolic blood pressure. Last column, number 4, corresponds to the

estimate of δ according to Equation 2.2. In the rows, standard errors are presented

as well as the number of observations included. They differ according to output

variable and method.17 As a comparison between variables, the reader can check

the common bandwidth of one standard deviation (h = 1). This sample size is

used for the main results in Column 4.18 Notice that some variables have fewer

observations as they were not collected in every wave (ex. fruits and vegetables),

or because they are conditional on some characteristic (ex. cigarettes per week for

those who reported to be smokers at the wave of the nurse advice).

17See Appendix 2.B for more details on the optimal bandwidth for local linear regressions esti-
mates presented in Columns 2 and 3.

18One standard deviation of systolic blood pressure is between 19 and 20 mmHg. Appendix 2.C
shows that the BP medication estimates are robust to the bandwidth selection.
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Before presenting results, tables 2.2 and 2.3 present the differential attrition

below and above the threshold. One standard deviation below the threshold,

average attrition is around 15% approximately two years after the measurement.

This figure is nearly 25% after four years. Nevertheless, there is no observed

systematic difference above and below the cut-off.

Table 2.2: RDD next wave (apx. 2 years) outcomes

RDD on systolic BP standarized around the nurse advice cut-off.

Yi,t+1 = δ(BPc
i,t ≥ 0) + α0 + fl(αl , BPc

i,t|BPi < 0) + fr(αr , BPc
i,t|BPi ≥ 0) + ui,t+1|Agei,t <= 64

(1) (2) (3) (4)

Dependent Variable at t + 1
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Missing this wave 15.17% 0.02 −1.24

N: 4000 (h∗1 = 0.91), (h∗2 =) , 4476 (h = 1) (2.47) (3.22)

Panel A. Health Conditions

Diagnosed HBP ever 5.74% 2.57 5.52∗ 2.72

N: 3188 (h∗1 = 0.87), 2038 (h∗2 = 0.53) , 3772 (h = 1) (2.32) (2.95) (2.95)

High Cholesterol, wave 2 onwards 24.43% −1.41 −1.57 0.22

N: 2475 (h∗1 = 1.41), 1224 (h∗2 = 0.66) , 1888 (h = 1) (3.93) (5.93) (6.08)

Diagnosed Diabetes ever 0.86% −0.12 0.34 −0.21

N: 3585 (h∗1 = 0.97), 2828 (h∗2 = 0.77) , 3772 (h = 1) (0.88) (0.96) (1.14)

Takes BP medication 1.94% 2.98∗ 4.69∗∗∗ 4.41∗∗

N: 3373 (h∗1 = 0.90), 2252 (h∗2 = 0.62) , 3772 (h = 1) (1.54) (1.81) (2.00)

Takes Lipid-lowering medication 9.32% 3.79 3.81 6.47

N: 1888 (h∗1 = 1.01), 1409 (h∗2 = 0.74) , 1888 (h = 1) (3.14) (3.94) (4.17)
Diagnosed Major Cardiovascular Event ever

(Stroke, Heart Failure, Infarction, An
2.46% 1.43 3.03∗∗ 1.29

N: 3017 (h∗1 = 0.82), 2829 (h∗2 = 0.75) , 3774 (h = 1) (1.44) (1.46) (1.77)

Panel B. Lifestyle

Current smoker 16.48% 3.49 4.14 2.47

N: 4775 (h∗1 = 1.37), 2817 (h∗2 = 0.77) , 3761 (h = 1) (2.49) (3.32) (3.79)

Current smoker if smoker at t 83.30% −1.60 −3.40 −2.22

N: 596 (h∗1 = 0.85), 423 (h∗2 = 0.62) , 697 (h = 1) (5.81) (6.82) (7.57)

Cigaretes per week (0 for non-smokers) 10.87 4.38 5.68∗ 2.69

N: 3874 (h∗1 = 1.12), 3003 (h∗2 = 0.87) , 3557 (h = 1) (2.66) (3.19) (3.68)
Cigaretes per week (0 for non-smokers,

includes rollups)
13.04 5.32∗ 6.17∗ 5.12

N: 4156 (h∗1 = 1.15), 3287 (h∗2 = 0.90) , 3682 (h = 1) (2.99) (3.47) (4.13)

Alcohol twice a week or more 55.39% −7.19∗ −10.57∗∗ −8.41∗

N: 3050 (h∗1 = 0.87), 2358 (h∗2 = 0.62) , 3621 (h = 1) (3.97) (4.62) (5.09)

Continued on next page
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Table 2.2: (Continued)

(1) (2) (3) (4)

Dependent Variable at t + 1
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Sedentary or low physical activity 17.47% 0.78 1.40 3.72

N: 3909 (h∗1 = 1.05), 3734 (h∗2 = 1.00) , 3734 (h = 1) (2.68) (2.80) (3.75)

Portions of vegtables per day 3.94 0.02 0.26 −0.09

N: 1192 (h∗1 = 0.69), 1466 (h∗2 = 0.86) , 1734 (h = 1) (0.46) (0.47) (0.56)

Portions of fruits per day 3.20 0.70∗∗ 0.51∗ 0.76∗

N: 1646 (h∗1 = 0.94), 2146 (h∗2 = 1.32) , 1732 (h = 1) (0.34) (0.31) (0.43)

Panel C. Health Perceptions

Self-reported GOOD health 83.86% 0.29 −0.43 1.13

N: 2632 (h∗1 = 0.72), 2455 (h∗2 = 0.62) , 3755 (h = 1) (3.30) (3.50) (3.83)

Self-reported bad health 14.64% −0.12 1.31 −1.15

N: 3568 (h∗1 = 0.94), 3173 (h∗2 = 0.85) , 3755 (h = 1) (2.73) (2.84) (3.63)

SSP: Chances to live to age 75 68.80 −0.57 −0.33 0.33

N: 2779 (h∗1 = 0.73), 1810 (h∗2 = 0.52) , 3707 (h = 1) (1.79) (2.24) (2.10)
What are the chances that your health will limit

your ability to work before you
34.88 0.97 −1.24 0.43

N: 2596 (h∗1 = 0.99), 1547 (h∗2 = 0.62) , 2596 (h = 1) (2.41) (2.95) (3.27)

Sample: Respondents aged 60 and younger at the moment of the nurse advice, who were not diagnosed

with HBP or being taking medication for lowering BP.
Notes: Column (1) presents the mean of each dependent variable for those observations one standard devi-

ation below the threshold. Columns (2) to (4) present different specifications for the trend (function f (·) )

between the outcome and systolic blood pressure. Robust SE are presented in parenthesis. Significance: *

10%, ** 5%, *** 1%.

2.4.1.1 Health Conditions

The impact of advice on objective and subjective measures of health is presented

in Panel A of Tables 2.2 and 2.3. First, self-reported diagnosis of HBP, diabetes,

high cholesterol and other cardiovascular conditions or events.19 Second, prescrip-

tion of blood pressure medication and lipid-lowering medication20 are analysed.

It includes the main result: there is an increase on prescription of medication for

lowering blood pressure of 4.41 pp approximately 2 years after the nurse advice

(Table 2.2). Such estimate is based on the quadratic specification, but a slightly

more conservative figure is presented by the local lineal average using triangular

19Diabetes, stroke, angina, heart attack - including myocardial infraction or coronary thrombosis
-, congestive heart failure, a heart murmur, an abnormal heart rhythm, or any other heart trouble.

20Medication for lowering cholesterol use for prevention of cardiovascular diseases, mostly statins
in the UK.
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weights:21 3 pp significant at the 90% level. Apart from this result, there is no

evidence of an increase on the odds of being diagnosed with high blood pres-

sure, or diabetes. While in one of the specifications a positive impact is found

for diagnosis of high blood pressure and of other cardiovascular diseases, such

impacts are not robust to the specification. A notorious increase on medication for

cholesterol is also reported: 6 pp relative to a prescription rate of 9.32% below the

cut-off. Nevertheless, standard errors are large. One possible explanation is the

reduced sample size: it is based on 1888 observations rather than the 3772 of other

outcomes.

Approximately two years later (four after the nurse advice), below the cut-

offs prevalence of detected hypertension increased from 6% to 11% (Table 2.3).

Prescription of BP medication doubled from 2% to 4%. On the other hand, the dif-

ference at the cutoff decreased to 1 pp., and such figure is not statistically different

from 0. In all other diagnosed conditions results are similar: there is no difference

below and above the threshold after four years.

Apart from medication, family doctors normally give advice on lifestyle.

Panel B of Tables 2.2 and 2.3 covers smoking, alcohol intake, physical activity

and nutrition variables.

2.4.1.2 Lifestyle

As described before, ELSA covers carefully smoking on both the extensive and

intensive margins. Two years after the nurse advice, 16% of the sample below the

cut-off reports to be smoking (Table 2.2). However, there is a decreasing trend:

20% of former smokers have drop this behaviour. While the decrease seems to be

larger above the cut-off by 2 pp, we cannot reject that such figure is different from

0. On the intensive margin, there is a difference of 5 cigarettes per week between

those below and above the threshold. This estimate is similar if we consider a

measure that includes both cigarette and roll-up smokers.22 However, it cannot

be rejected to be 0 under the second order polynomial specification.23 Four years

21See Appendix 2.B for more details about this specification.
22Roll-ups are measured in tobacco ounces or grams, which is translated into ‘cigarettes’ in order

to obtain a measure that avoids substitution between both types of smoking. While not including
roll-ups avoids this measurement restrictions, it underestimates total smoking intensity.

23If we condition these intensity measures on being an smoker at the moment of the nurse advice,
the impact on the roll-ups inclusive measure is estimated to be of 23 cigarettes, significant at 90%.
It drops to 14 cigarettes if we do not consider roll-ups.
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after the advice, 75% of the original smokers are still smoking (Table 2.3). The

difference on intensity below and above the cut-off is estimated between 0.67 to

6.48 cigarettes, according to the measure definition and specification. Just as with

the two-years estimate, the effect is not statistically different from zero for the

quadratic specification.

With respect to alcohol intake, there is a clear reduction of 8.4 pp on the

probability to report to be drinking at least two days a week. The impact is the

same both two and four years after the nurse advice. This is a large impact on a

very common lifestyle: more than half of the respondents below the cutoff have

such alcohol intake frequency, a figure that drops to 4 in 10 two years later.

Finally, there are no effects on physical activity or vegetables consumption.

There is evidence of a positive effect on fruit’s intake, statistically different from

zero two years after the nurse advice (Table 2.2). However, as explained in the

data section, the exact amount of portions per day cannot be determined as the

measure involves two different elicitation methods.

2.4.1.3 Health measures

Given that there is evidence that supports an effect on medication prescription and

lifestyle choices, it is possible to expect an effect on both objective and subjective

health.

With respect to perceived health, there is no evidence of an impact on report-

ing either good or bad health, subjective survival probabilities. Moreover, there is

no effect on the reported chances to suffer a problem that limits ability to work,

for those who were working at the time of the survey.24

With respect to objective health measures, there is evidence of an increase on

the odds of being obese (BMI above 30) of 11 pp, relative to a prevalence below the

cut-off of 27%. This impact is around 8 pp if we consider alternative specifications,

and is not significant in all of them. This result is related to a positive but not

robust to the specification effect on average BMI and waist-to-height ratio; both of

them related with increased CVD-risk. On the other hand, there is no perceived

difference on biomarkers as blood pressure or cholesterol despite the increase on

medication.
24In Table 2.3, a significant difference of 4.3 pp was found for this outcome. However, the estimate

becomes negative under the second order polynomial specification.
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Table 2.3: RDD 2 waves (apx. 4 years) later

RDD on systolic BP standarized around the nurse advice cut-off.

Yi,t+2 = δ(BPc
i,t ≥ 0) + α0 + fl(αl , BPc

i,t|BPi < 0) + fr(αr , BPc
i,t|BPi ≥ 0) + ui,t+2|Agei,t <= 64

(1) (2) (3) (4)

Dependent Variable at t + 2
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Missing this wave 25.28% 3.52 3.13 3.78

N: 3778 (h∗1 = 0.85), 2943 (h∗2 = 0.67) , 4476 (h = 1) (3.21) (3.33) (4.05)

Panel A. Health Conditions

Diagnosed HBP ever 11.60% 2.15 3.40 −1.73

N: 4386 (h∗1 = 1.42), 3657 (h∗2 = 1.11) , 3355 (h = 1) (2.69) (2.73) (4.19)

High Cholesterol, wave 2 onwards 22.23% −2.68 −3.50 0.34

N: 3664 (h∗1 = 1.12), 2844 (h∗2 = 0.88) , 3363 (h = 1) (3.20) (3.29) (4.61)

Diagnosed Diabetes ever 2.33% 0.61 0.48 1.07

N: 3869 (h∗1 = 1.24), 3143 (h∗2 = 0.98) , 3309 (h = 1) (1.46) (1.43) (2.16)

Takes BP medication 4.36% 0.84 1.03 1.06

N: 4108 (h∗1 = 1.30), 3309 (h∗2 = 1.02) , 3309 (h = 1) (1.96) (2.02) (2.91)

Takes Lipid-lowering medication 11.91% 1.96 1.84 3.76

N: 2520 (h∗1 = 1.64), 2129 (h∗2 = 1.29) , 1759 (h = 1) (3.15) (3.11) (5.17)
Diagnosed Major Cardiovascular Event ever

(Stroke, Heart Failure, Infarction, An
3.54% 2.24 2.55 2.24

N: 2812 (h∗1 = 0.86), 2332 (h∗2 = 0.68) , 3333 (h = 1) (1.79) (1.74) (2.26)

Panel B. Lifestyle

Current smoker 14.05% 3.00 3.43 3.13

N: 3143 (h∗1 = 0.97), 2474 (h∗2 = 0.76) , 3309 (h = 1) (2.78) (2.90) (3.71)

Current smoker if smoker at t 75.93% 1.38 0.36 0.55

N: 525 (h∗1 = 0.92), 419 (h∗2 = 0.72) , 579 (h = 1) (8.46) (8.68) (11.21)

Cigaretes per week (0 for non-smokers) 8.01 4.83∗∗ 5.38∗∗ 0.67

N: 4300 (h∗1 = 1.52), 3655 (h∗2 = 1.20) , 3132 (h = 1) (2.19) (2.20) (3.35)
Cigaretes per week (0 for non-smokers,

includes rollups)
10.39 6.20∗∗ 6.48∗∗ 3.08

N: 4765 (h∗1 = 1.73), 4144 (h∗2 = 1.36) , 3236 (h = 1) (2.52) (2.54) (3.89)

Alcohol twice a week or more 42.82% −9.00∗∗ −9.42∗∗ −11.19∗∗

N: 2546 (h∗1 = 0.87), 2125 (h∗2 = 0.68) , 3028 (h = 1) (4.32) (4.39) (5.53)

Sedentary or low physical activity 17.71% 2.66 3.70 2.48

N: 3134 (h∗1 = 0.97), 2467 (h∗2 = 0.76) , 3299 (h = 1) (3.03) (3.15) (4.10)

Portions of vegtables per day 4.21 0.15 0.08 0.44

N: 2085 (h∗1 = 1.44), 1739 (h∗2 = 1.13) , 1590 (h = 1) (0.45) (0.48) (0.59)

Portions of fruits per day 3.27 0.65 0.70∗ 0.60

N: 1033 (h∗1 = 0.67), 870 (h∗2 = 0.52) , 1595 (h = 1) (0.41) (0.40) (0.45)

Continued on next page
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Table 2.3: (Continued)

(1) (2) (3) (4)

Dependent Variable at t + 2
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Panel C. Health Perceptions

Self-reported GOOD health 84.56% 2.42 3.17 3.58

N: 2299 (h∗1 = 0.69), 1771 (h∗2 = 0.54) , 3284 (h = 1) (3.76) (3.82) (4.24)

Self-reported bad health 15.44% −2.42 −3.17 −3.58

N: 2299 (h∗1 = 0.69), 1771 (h∗2 = 0.54) , 3284 (h = 1) (3.76) (3.82) (4.24)

SSP: Chances to live to age 75 68.48 0.88 1.26 1.69

N: 2549 (h∗1 = 0.80), 2083 (h∗2 = 0.63) , 3202 (h = 1) (1.90) (1.95) (2.34)
What are the chances that your health will limit

your ability to work before you
31.08 3.39 4.32∗∗ −0.73

N: 3046 (h∗1 = 1.84), 2629 (h∗2 = 1.44) , 2018 (h = 1) (2.13) (2.17) (3.58)

Panel D. Health Measures

BMI: Body Mass Index (kg/m2) 27.86 0.59 0.74 0.97∗

N: 2092 (h∗1 = 0.76), 1679 (h∗2 = 0.59) , 2782 (h = 1) (0.47) (0.49) (0.57)

Waist-to-height ratio (WHtR) 0.56 0.01 0.01 0.02∗

N: 1956 (h∗1 = 0.69), 1531 (h∗2 = 0.54) , 2778 (h = 1) (0.01) (0.01) (0.01)

Overweight or above: BMI 25+ 70.72% 1.62 0.18 5.04

N: 2505 (h∗1 = 0.91), 1958 (h∗2 = 0.72) , 2782 (h = 1) (3.80) (4.00) (5.03)

Obesity level 1 or above: BMI 30+ 27.60% 8.14∗ 7.67 11.20∗∗

N: 1958 (h∗1 = 0.70), 1532 (h∗2 = 0.55) , 2782 (h = 1) (4.85) (5.03) (5.56)

Blood HDL level (mmol/l) 1.63 −0.03 −0.03 −0.02

N: 2120 (h∗1 = 0.92), 1654 (h∗2 = 0.72) , 2365 (h = 1) (0.04) (0.04) (0.05)

Blood total cholesterol level (mmol/l) 6.01 −0.09 −0.12 −0.09

N: 2008 (h∗1 = 0.88), 1655 (h∗2 = 0.69) , 2367 (h = 1) (0.12) (0.12) (0.16)
Blood glucose level (mmol/L) - fasting samples

only
4.93 −0.04 −0.04 −0.02

N: 2420 (h∗1 = 1.88), 2149 (h∗2 = 1.47) , 1614 (h = 1) (0.07) (0.07) (0.10)

(D) Valid Mean Systolic BP 128.85 −1.79 −1.27 −2.34

N: 1824 (h∗1 = 0.72), 1424 (h∗2 = 0.57) , 2601 (h = 1) (1.61) (1.68) (1.86)

(D) Valid Mean Diastolic BP 76.22 −0.27 0.12 −0.32

N: 2722 (h∗1 = 1.05), 2086 (h∗2 = 0.82) , 2601 (h = 1) (0.83) (0.87) (1.16)

Sample: Respondents aged 60 and younger at the moment of the nurse advice, who were not diagnosed

with HBP or being taking medication for lowering BP.
Notes: Column (1) presents the mean of each dependent variable for those observations one standard devi-

ation below the threshold. Columns (2) to (4) present different specifications for the trend (function f (·) )

between the outcome and systolic blood pressure. Robust SE are presented in parenthesis. Significance: *

10%, ** 5%, *** 1%.

Figure 2.6 presents a visual summary of the main results. Figure 2.5 style of

graph is used for a set of outcomes in different moments of time. The first row

presents BP prescriptions, the second smoking intensity, and the last one alcohol-
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intake. Columns refer to the moment of measurement of each of these outcomes.

The first one is contemporary to the measurement and the advice. This is done

in order to verify that the discontinuity occurs after the intervention. These are

balancing tests which are part of the robustness checks that are detailed in the next

section. The second and third columns of the graph correspond to the estimates

in column 2 of Tables 2.2 and 2.3 but with a fix bandwidth of 0.053.
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2.4.2 Complementarity of medication and health behaviours

Given that the advice caused an increase on medication use for reducing BP with-

out increasing detection rate of HBP, the advice might be interpreted as an exoge-

nous variation on medication use. Table 2.4 considers this exercise it in order to

examine if lifestyle are substitutes or complements of BP detection as in (Kaestner

et al., 2014). In particular, above we found higher rates of smoking and on obesity

incidence among those who were advised to visit their GP. Using a Wald estimate,

we can determine if such lifestyle change was a response to higher medication us-

age.25 There is no evidence of this effect for any of the lifestyle variables that were

reported to be affected by the policy. However, the large standard errors indicate

that the sample might not be large enough to detect this behavioural consequence.

Table 2.4: Wald estimates: BP medication and lifestyle

Wald estimates based on the impact of the nurse advice cut-off on the dependent variable (numerator) and

BP medication (denominator).

(1) (2) (3) (4)

Dependent Variable at t + 1
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Panel A. Lifestyle after one wave (apx. two years)

Cigaretes per week (0 for non-smokers) 10.87 220.146 269.329 62.36

N: 3874 (h∗1 = 1.12), 3003 (h∗2 = 0.87) , 3557 (h = 1) (211.324) (262.487) (90.73)
Cigaretes per week (0 for non-smokers,

includes rollups)
13.04 238.746 241.117 114.49

N: 4156 (h∗1 = 1.15), 3287 (h∗2 = 0.90) , 3682 (h = 1) (205.058) (203.320) (106.68)

Alcohol twice a week or more 55.39% −261.691 −253.372 −208.94

N: 3050 (h∗1 = 0.87), 2358 (h∗2 = 0.62) , 3621 (h = 1) (204.906) (151.474) (160.85)

Portions of fruits per day 3.20 18.171 22.422 13.77

N: 1646 (h∗1 = 0.94), 2146 (h∗2 = 1.32) , 1732 (h = 1) (12.949) (25.566) (10.13)

Panel B. Lifestyle after two waves (apx. four years)

Cigaretes per week (0 for non-smokers) 8.01 4.832 5.378 17.74

N: 4300 (h∗1 = 1.52), 3655 (h∗2 = 1.20) , 3092 (h = 1) (2.193) (2.205) (87.84)
Cigaretes per week (0 for non-smokers,

includes rollups)
10.39 6.202 6.483 73.83

N: 4765 (h∗1 = 1.73), 4144 (h∗2 = 1.36) , 3192 (h = 1) (2.524) (2.540) (96.30)

Alcohol twice a week or more 42.82% −9.001 −9.425 −263.22

N: 2546 (h∗1 = 0.87), 2125 (h∗2 = 0.68) , 2996 (h = 1) (4.325) (4.393) (193.31)

Continued on next page

25The denominator is the impact on BP after one wave, even in the two waves lifestyle exercise.
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Table 2.4: (Continued)

(1) (2) (3) (4)

Dependent Variable at t + 1
Mean 1SD

Below

Loc

Linear

Triangular

h∗1

Loc

Linear

Rectang.

h∗2

Loc Quad

Rectang.

h = 1SD

Portions of fruits per day 3.27 0.648 0.702 9.17

N: 1033 (h∗1 = 0.67), 870 (h∗2 = 0.52) , 1568 (h = 1) (0.410) (0.405) (9.14)

BMI: Body Mass Index (kg/m2) 27.86 0.587 0.743 20.47

N: 2092 (h∗1 = 0.76), 1679 (h∗2 = 0.59) , 2754 (h = 1) (0.471) (0.488) (14.48)

Waist-to-height ratio (WHtR) 0.56 0.012 0.012 0.34

N: 1956 (h∗1 = 0.69), 1531 (h∗2 = 0.54) , 2750 (h = 1) (0.007) (0.008) (0.22)

Obesity level 1 or above: BMI 30+ 27.60% 8.144 7.668 227.71

N: 1958 (h∗1 = 0.70), 1532 (h∗2 = 0.55) , 2754 (h = 1) (4.853) (5.027) (150.10)

Sample: Respondents aged 60 and younger at the moment of the nurse advice, who were not diagnosed

with HBP or being taking medication for lowering BP.
Notes: Column (1) presents the mean of each dependent variable for those observations one standard devi-

ation below the threshold. Columns (2) to (4) present different specifications for the trend (function f (·) )

between the outcome and systolic blood pressure. Robust SE are presented in parenthesis. Significance: *

10%, ** 5%, *** 1%.

2.4.3 Heterogeneity on the impact

A relevant question is whether the impact is heterogeneous according to respon-

dents’ characteristics. First, the impact on BP prescription is declining with age.

Figure 2.7 shows that if older individuals are included in the sample, the estimate

of the discontinuity tends to 0. Second, the impact is concentrated on males with a

10-years CVD-risk above 8%.26 Table 2.5 presents the discontinuity local linear tri-

angular estimator for a selected group of variables. The difference with previous

sections results is that the sample was stratified according to gender and CVD-

risk. This reduces notoriously the sample size, resulting on larger standard errors.

Differences on HBP medication, alcohol intake and fruits consumption are larger

for men, all of them significant at least at 90% level. Finally, the estimates suggest

that the impact is restricted to those individuals with a 10-year risk of developing

a CVD of 8% or above.27 With respect to smoking intensity, the estimated effect is

26CVD risk calculating using the Framingham equation D’Agostino et al. (2008). This is a standard
risk calculator for individuals aged 30 to 74 without prior CVD. It involves age, gender, smoking
status, total and HDL cholesterol levels, systolic BP, diabetes. For this study, while there are more
accurate calculators for England population as QRISK (Hippisley-Cox et al., 2008), this method was
selected for its simplicity given the available information.

27This category was defined on the basis of sample size, rather than clinical standards. However,
a more standard 10% risk results on a similar point estimate but is not significant.
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non-significant in all exercises.

Figure 2.7: Impact on BP medication estimator by age
-5
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These results suggest that the effect is zero on individuals with low over-

all risk of developing CVD. The fact that the effect is strong for men is likely to

be related to the higher thresholds for advising respondents in the HSE (ELSA

wave 0). In fact, NICE recommended drug therapy for those with a systolic BP

of 160 mmHg or above (NICE, 2006, 2011). With respect to age differences, it is

expected as older individuals have a higher demand for medical services, there-

fore the intervention should have no impact on them. Moreover, consequences of

hypertension are higher between ages 40 and 70 (Chobanian et al., 2003).



2.4. Results 47

Table 2.5: RDD by groups: general impact

Yi = δ(BPi ≥ 0) + f (BPi |BPi < 0) + f (BPi |BPi ≥ 0) + ui |Xi
RDD on systolic BP standarized around 140 mmHg. It is conditional on not been diagnosed before with

HBP or being taking medication for blood pressure.

(1) (2) (3) (4) (5)
Restriction

Xi
HBP PILLS N CIGS ALCOHOL FRUITS

Base Result 2.98 4.28∗∗ 5.36 −7.93 0.77∗

N PILLS: 3717 (h = 1) (3.00) (2.02) (4.20) (5.12) (0.43)

Male

Yes 6.09 7.92∗∗ 4.21 −15.02∗ 1.41∗∗

N PILLS: 1478 (h = 1) (4.70) (3.18) (7.00) (8.06) (0.64)

No 0.70 1.74 5.92 −3.53 0.20

N PILLS: 2239 (h = 1) (3.86) (2.59) (5.21) (6.58) (0.57)

10 years CVD risk 8% and over

Yes 3.34 9.01∗∗ −12.13 −9.99 1.45∗∗

N PILLS: 1054 (h = 1) (6.14) (4.13) (8.18) (9.30) (0.65)

No −0.75 −0.38 4.69 0.25 −0.26

N PILLS: 1540 (h = 1) (5.05) (3.19) (4.27) (7.99) (0.55)

Notes: RDD on systolic BP standarized around 140 mmHg. Individuals aged 60 or younger who have not

been diagnosed before with high blood pressure or any other cardiovascular related conditions. Column

(1), HPB, presents estimates for the difference on the probability to be diagnosed with high blood pressure

two years after the advice is given. In Column (2), PILLs, the dependent variable is the probability to be

under medication for controlling blood pressure levels; in Column (3), NCIGS, it is the number of cigarettes

consumed during the last week; in Column (4), ALCOHOL, the probability to have an alcoholic drink twice

or more per week. Finally, Column (5) refers to the portions of fruit per day. Robust SE in parenthesis.

Significance: * 10%, ** 5%, *** 1%.

2.4.4 Specification tests

Several tests were carried out in order to determine the quality of the results. The

principal one was a balancing test, that is, if the ‘treatment’ can be considered

as randomly allocated across a wide set of covariates. Table 2.6 presents the re-

sults from applying the same methodology but using as dependent variables basic

demographic controls (panel A); and information on the main results’ section out-

comes but measured at the moment of the BP measurement (panels B, C and D).

In the entire table, the only difference that is not statistically zero is non-white

ethnicity and education level for some of the specifications. Nevertheless, there is

neither difference in any health measurement, nor risky behaviour.

Further checks on the underlying assumptions of the regression discontinuity
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are presented in Appendix 2.C.

Table 2.6: Balancing Test. RDD on covariates before receiving nurse advice

Xi = δ(BPi ≥ 0) + f (BPi |BPi < 0) + f (BPi |BPi ≥ 0) + ui

RDD on systolic BP standarized around the cut-off.

(1) (2) (3) (4)

Dependent Variable at t
Mean 1SD

Below

Loc

Linear

Rectang.

h∗1

Loc

Linear

Triangular

h∗2

Loc Quad

Rectang.

h = 1SD

Panel A. Demographic Characteristics

Age 53.80 −0.20 −0.21 0.07

N: 3744 (h∗1 = 1.00), 2990 (h∗2 = 0.79) , 3744 (h = 1) (0.34) (0.34) (0.46)

Male 39.77% −0.72 −2.43 0.10

N: 3343 (h∗1 = 0.89), 2620 (h∗2 = 0.70) , 3744 (h = 1) (3.81) (3.89) (4.91)

Non white ethnicity 13.39% 4.84∗ 4.51∗ 4.66

N: 3304 (h∗1 = 0.93), 2767 (h∗2 = 0.73) , 3698 (h = 1) (2.74) (2.74) (3.59)

Educ: Some medium qualif. 42.67% 6.23 8.17∗ 6.86

N: 2982 (h∗1 = 0.78), 2221 (h∗2 = 0.61) , 3733 (h = 1) (4.12) (4.29) (4.99)

Educ: Some high level or above qualif. 34.61% −1.46 0.72 −2.63

N: 3543 (h∗1 = 0.95), 2795 (h∗2 = 0.74) , 3733 (h = 1) (3.53) (3.62) (4.70)

Married 76.74% 2.11 1.07 3.27

N: 4752 (h∗1 = 1.35), 3918 (h∗2 = 1.06) , 3744 (h = 1) (2.73) (2.76) (4.22)

Panel B. Health-related Variables
Diagnosed Major Cardiovascular Event ever

(Stroke, Heart Failure, Infarction, An
1.29% 0.55 0.74 −0.14

N: 4064 (h∗1 = 1.13), 3333 (h∗2 = 0.88) , 3731 (h = 1) (0.86) (0.85) (1.22)

Self-reported GOOD health 83.33% 1.10 1.50 1.82

N: 2990 (h∗1 = 0.78), 2224 (h∗2 = 0.62) , 3744 (h = 1) (3.13) (3.28) (3.81)

Self-reported bad health 8.89% −0.77 −0.21 −1.96

N: 4362 (h∗1 = 1.21), 3553 (h∗2 = 0.95) , 3744 (h = 1) (1.96) (1.97) (2.93)

SSP: Chances to live to age 75 69.18 −0.50 −0.73 0.92

N: 2445 (h∗1 = 1.40), 2031 (h∗2 = 1.10) , 1868 (h = 1) (1.83) (1.84) (2.78)

(D) Valid BMI - inc estimated>130kg 27.75 0.06 0.08 0.41

N: 3769 (h∗1 = 1.06), 3030 (h∗2 = 0.83) , 3603 (h = 1) (0.35) (0.35) (0.49)

Waist-to-height ratio (WHtR) 0.57 0.00 0.00 0.00

N: 1191 (h∗1 = 0.64), 908 (h∗2 = 0.50) , 1835 (h = 1) (0.01) (0.01) (0.01)

Overweight or above 70.00% 2.37 3.01 5.22

N: 2686 (h∗1 = 0.78), 2130 (h∗2 = 0.61) , 3603 (h = 1) (3.79) (3.95) (4.59)

Obesity I or above 26.89% 4.46 4.12 6.72

N: 2686 (h∗1 = 0.74), 2130 (h∗2 = 0.58) , 3603 (h = 1) (4.02) (4.05) (4.71)

Blood HDL level (mmol/l) 1.56 −0.01 −0.00 0.01

N: 2353 (h∗1 = 0.93), 1973 (h∗2 = 0.73) , 2623 (h = 1) (0.04) (0.04) (0.05)

Continued on next page
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Table 2.6: (Continued)

(1) (2) (3) (4)

Dependent Variable at t
Mean 1SD

Below

Loc

Linear

Rectang.

h∗1

Loc

Linear

Triangular

h∗2

Loc Quad

Rectang.

h = 1SD

Blood total cholesterol level (mmol/l) 5.95 0.01 −0.02 0.06

N: 2502 (h∗1 = 0.98), 1976 (h∗2 = 0.77) , 2627 (h = 1) (0.10) (0.10) (0.13)

Panel C. Lifestyle

Current smoker 18.57% 4.05 3.44 2.19

N: 4356 (h∗1 = 1.21), 3547 (h∗2 = 0.95) , 3738 (h = 1) (2.70) (2.72) (3.94)
Cigaretes per week (0 for non-smokers, includes

rollups)
6.93 −1.75 −1.26 −1.76

N: 3125 (h∗1 = 0.95), 2454 (h∗2 = 0.75) , 3288 (h = 1) (3.21) (3.18) (4.24)

Alcohol twice a week or more 51.63% 0.03 −0.02 −2.01

N: 2064 (h∗1 = 0.87), 1696 (h∗2 = 0.69) , 2448 (h = 1) (4.87) (4.97) (6.20)

Sedentary or low physical activity 15.60% 2.60 4.72 4.50

N: 1400 (h∗1 = 0.75), 1100 (h∗2 = 0.59) , 1878 (h = 1) (4.37) (4.49) (5.15)

Portions of vegtables per day 6.04 0.83 0.99 1.24

N: 807 (h∗1 = 0.83), 613 (h∗2 = 0.66) , 959 (h = 1) (1.07) (1.07) (1.30)

Portions of fruits per day 4.83 0.39 0.38 0.34

N: 1009 (h∗1 = 1.07), 809 (h∗2 = 0.84) , 963 (h = 1) (0.55) (0.60) (0.71)

Panel D. Economic activity

BU total weekly income (£ of May2005) 0.54 −0.00 −0.01 −0.03

N: 1836 (h∗1 = 0.99), 1470 (h∗2 = 0.78) , 1836 (h = 1) (0.04) (0.04) (0.05)
BU total net (non-pension) wealth (1000£ of

May2005)
363.46 105.21 107.27 116.08

N: 1372 (h∗1 = 0.76), 1080 (h∗2 = 0.60) , 1836 (h = 1) (69.59) (78.32) (84.96)

Hours of work all jobs (employed or self employed) 36.65 −0.48 −0.92 −1.39

N: 970 (h∗1 = 0.69), 766 (h∗2 = 0.54) , 1414 (h = 1) (2.02) (2.07) (2.38)

Sample: Respondents aged 60 or younger at the moment of the nurse advice, who were not diagnosed with

HBP or being taking medication for lowering BP.
Notes: Column (1) presents the mean of each dependent variable for those observations one standard devi-

ation below the threshold. Columns (2) to (4) present different specifications for the trend (function f (·) )

between the outcome and systolic blood pressure. Robust SE are presented in parenthesis. Significance: *

10%, ** 5%, *** 1%.

2.5 Conclusion

This chapter analysed the impact of a health check that advices to visit a family

doctor for those individuals with blood pressure about certain threshold. Before

continuing with the analysis, it is important to be clear on the limitations of this

analysis. It is restricted for those individuals with mildly-raised blood pressure.
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This is relevant in terms of policy analysis as they are the most likely to be affected

by health checks for that specific condition. However, what would happen with

other conditions in terms of behavioural response, with higher risks of further

complications, might be different.

The first main question of this chapter is the impact of the advice on early

detection of hypertension. Results show a large and significant impact of the ad-

vice on the probability to be under BP medication. However, it cannot be rejected

that probability of being diagnosed with hypertension is the same for those people

above and below the threshold. The present analysis cannot distinguish between

two mechanisms. First, a temporal positive impact on both detection and medica-

tion prescription. Second, that the survey intervention might have increased the

odds of choosing a medication-based HBP treatment by local family doctors. This

is due to the lack on information about demand of health-care services in ELSA

for waves 0 to 5.

The second element to discuss is the impact on lifestyle. Guidelines suggest

a lifestyle intervention that curve smoking, bad dietary habits and heavy alcohol

drinking. A clear impact in this direction is found for drinking frequency, and evi-

dence for improved fruit portions’ consumption is also found. On the other hand,

there is evidence of risk compensation in smoking an caloric intake (reflected on

obesity). In contrast, Steptoe and McMunn (2009) has previously shown that hy-

pertense individuals in ELSA smoke less and drink more than non-hypertense

individuals. This chapter, focused on those individuals who are in the borderline

of the diagnosis, finds that the effect of the advice is precisely to reduce heavy

drinking patterns.

Finally, whether the advice had a positive effect on respondents’ health after

nearly four years is an unresolved question. None of the effects on blood pres-

sure, cholesterol levels, or sugar in the blood are statistically different from zero.

However, this might be due to the limited sample size

These findings complement Kaestner et al. (2014) results on the use of statins,

where an increase on obesity was found but at the same time physical activity

increased for men. Also, such results can be contrasted with Fichera et al. (2016)

who found that an increase in the quality of medical services in England im-
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proved behaviour, including smoking and heavy drinking. Pooling together this

evidence, risk compensation and complementary health-investment mechanisms

are likely to be relevant elements to consider in preventive care policies. However,

such responses are likely to be heterogeneous and hard to extrapolate to general

circumstances.
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2.A Sample selection

The analysis is carried out a subset of all the available data from the HSE-ELSA

data. Individuals who were not diagnosed with HBP and were not taking BP

lowering medication28 are selected. Even though it drastically reduced the sample

size, such restriction avoids potential biases as individuals who are above the

threshold are more likely to report to be diagnosed with HBP before the nurse

visit.

Using all the data, the jump estimator for the systolic BP is apx. 6.5 pp. while

for the diastolic it is -0.6pp. Only the first one is statistically different from 0. How-

ever, Figure 2.9 shows that there might be a potential bias. Instead of reporting

the proportion of those who are reported to have HBP at the following wave, the

outcome is measured at the baseline. That is, what they reported before the nurses

visited them. The same pattern is present: a jump of 5 pp. for systolic BP and of

1.1 pp. for diastolic BP. While it is not possible to reject the hypothesis of them

equal to zero under the quadratic specification, the estimate for the systolic cutoff

is different from zero under a triangular kernel. If we consider BP medication

instead of the self-reported diagnosis, such issue is not present (Figure 2.10).

As a result, in order to avoid the potential bias provided by this discontinuity,

I restrict the sample only to the new cases at the cost of larger standard errors.

28On the ELSA, everyone who is asked about BP medication reports to be diagnosed with HBP
by design of the survey. That is not the case for the HSE, where the analysis of medication is much
more detailed.
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Figure 2.8: Nurse Advice and self-report of HBP at the following-wave
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Sample: Individuals aged 60 or younger from the HSE-ELSA data.

Notes: Calculations using a quadratic function within 1 standard deviation of the cutoff. A 90% CI is presented.

Significance level: *90%, ** 95%, *** 99%

Figure 2.9: Nurse Advice and self-report of HBP at the same wave (balance test)
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Figure 2.10: Nurse Advice and BP medication in the same wave (balance test)
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2.B Alternative Specifications

There are many ways to implement the strategy. The general idea is to choose

the parameters that minimize the distance between the observed outcome and the

prediction from a model m, giving different weights K to each observation i as

shown in Equation 2.3. Such a model, characterized by a set of parameters α,δ

and restrictions, takes into account the relation between Yt+1 and the BP index

BPc
t measured at wave t and standardized according to the relevant advice cut-off

c (it changes according to the year of the survey, gender and age as described be-

fore). The weights K are assigned using some arbitrary rule based on the forcing

variable BPc
t . The most simple specification gives equal importance to all obser-

vations between 0 and h standard deviations, and disregards the remaining data

(rectangular kernel). A common alternative is the triangular kernel, where the

relevance of observations decays linearly. For the main results, the value of h is

determined following the rule of Imbens and Kalyanaraman (2011).

min
{δ,α}

N

∑
i=1

K(BPc
it/h)(Yi,t+s −m(δ,α, BPc

i,t))
2 , s ∈ {1,2} (2.3)
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The model m specifies how BP and the outcomes are related, and in par-

ticular the parameter of interest, the difference δ between being above or below

the cut-off. The relationship can be allowed to be different above and below the

threshold as shown in Equation 2.4. In this expression, α is allowed to be specific

above and below the BPc
it ≥ 0, a condition defined by the dichotomous variables

Wit. The implementation was carried out following Nichols (2012), under different

bandwidths and specifications for f .

m(δ,α, BPc
i,t) = δWit + α0 + fl(αl , BPc

i,t|Wit = 0) + fr(αr, BPc
i,t|Wit = 1) (2.4)

Results are presented using three specifications for f (·):

• Local linear regressions: fl = αl
1BPc

i,t and fr = αr
1BPc

i,t. Triangular and rectan-

gular weights are considered. The difference between them is that triangular

weights give more importance to the observations close to the threshold.

• Local quadratic function: using rectangular weights, fl = αl
1BPc

i,t + αl
2BPc

i,t
2

and fr = αr
1BPc

i,t + αr
2BPc

i,t
2.

2.C Further Robustness Checks

An usual concern with non-parametric estimators is their potential dependence

on ad hoc parameters. In this particular case, the jump estimator might be very

sensitive to the ‘bandwidth’ selection. Optimal selection procedures like the one

presented by Imbens and Kalyanaraman (2011) help to determine a proper value

for it. Nevertheless, the question on the sensitivity is still present. Figure 2.11

present the case of usage of BP-lowering medication for different values of the

parameter, the horizontal axis, across multiple specifications. As a reference, the

optimal bandwidth is highlighted by a vertical line and a confidence interval of

95%, which corresponds to the local linear triangular kernel. We can observe that

the estimated values of the jump change notoriously according to the underlying

assumption but results are relatively stable close to the optimal one.

One concern could be that the nurses registered a value above 140 for individ-

uals who had BP levels slightly below it. This would have been translated into a
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Figure 2.11: Jump estimator for multiple bandwidths (BP medication)
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BP medication

discontinuity in terms of the density at the threshold. Though the reasons for this

potential manipulation are not clear, McCrary (2008) test can asses if that is the

case. The test creates a histogram of the BP and defines the mid-point of each bin

as the dependent variable of the RDD in a non-parametric way. Table 2.8 presents

the estimator of the jump θ for different bin sizes around the optimal one. There

is no evidence of a discontinuity in the density as such point.

Table 2.7: RDD sample restrictions

Xi = δ(BPi ≥ 0) + f (BPi |BPi < 0) + f (BPi |BPi ≥ 0) + ui |BPi /∈Ω
RDD on systolic BP standarized around 140 mmHgDependent variable: whether diagnosed with HBP in

the follow-up, conditional on not been diagnosed before with HBP or being taking medication for blood

pressure.

(1) (2) (3) (4) (5)

Restriction

Ω

Quadratic

1 SD

Loc

Linear

Rectang

h∗

Loc

Linear

Triangular

h∗

Local

Quad 1

SD

Local

Quad 2

SD

Without restriction 1.76 4.19∗∗ 4.27∗∗ 5.59∗∗∗ 2.50

N: 2483 (h∗ = 0.59), 4195 (h = 1) , 6562 (h = 2) (1.48) (1.97) (1.73) (2.02) (1.60)

Taking out 139 mmHg† 2.11 4.77∗∗∗ 3.88∗∗∗ 7.10∗∗∗ 3.04∗

N: 3657 (h∗ = 0.90), 4088 (h = 1) , 6455 (h = 2) (1.51) (1.53) (1.42) (2.00) (1.59)

Taking out 140 mmHg† 0.69 2.91 3.06∗ 5.23∗∗ 1.00

Continued on next page
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Table 2.7: (Continued)

(1) (2) (3) (4) (5)

Restriction

Ω

Quadratic

1 SD

Loc

Linear

Rectang

h∗

Loc

Linear

Triangular

h∗

Local

Quad 1

SD

Local

Quad 2

SD

N: 2621 (h∗ = 0.65), 4084 (h = 1) , 6451 (h = 2) (1.61) (2.04) (1.86) (2.49) (1.88)

Taking out 141 mmHg† 2.02 5.12∗∗ 5.13∗∗ 6.63∗∗∗ 2.84

N: 2163 (h∗ = 0.56), 4117 (h = 1) , 6484 (h = 2) (1.62) (2.30) (2.05) (2.29) (1.80)

Taking out 139-141 mmHg† 1.19 6.15∗∗ 4.91∗∗ 9.10∗∗∗ 1.58

N: 2187 (h∗ = 0.59), 3899 (h = 1) , 6266 (h = 2) (1.85) (2.81) (2.46) (3.35) (2.27)

† For males aged 50 or over in wave 0, the values are 159, 160 and 161 mmHg. Robust SE in parenthesis.

Significance: * 10%, ** 5%, *** 1%.

Table 2.8: McCrary Test for those aged 60 or younger

Bin Size (mmHg)

0.279 0.335 0.391 0.447 0.503 0.558 † 0.614 0.670 0.726 0.782

θ 0.06 0.06 0.08 0.08 0.09 0.12 0.13 0.14 0.16∗ 0.17∗

( 0.08) ( 0.08) ( 0.08) ( 0.08) ( 0.08) ( 0.09) ( 0.09) ( 0.09) ( 0.09) ( 0.09)

SE in parenthesis. Significance: * 10%, ** 5%, *** 1%. McCrary test on the continuity of the density at the

threshold. Triangular kernels are fitted on the means of the bins of a particular bin size. The optimal bin

size (†) and, the bandwidths are chosen following McCrary implementation of the test.

A further test consist of considering placebo discontinuities. In other words,

given the index of standardized systolic BP, it is possible to perform the exercise

but assuming that the jump is at values different from 0. Figure 2.12 shows that

the only values in which a discontinuity is observed are those around 0.

A final test consist on including controls in our regressions. Normally they

should not affect the results in any way. Table 2.9 presents such a regression for

the case of medication. Essentially, there are no noticeable changes; the signifi-

cance is only affected when the sample size is reduced due to the availability of

information.



58 Chapter 2. Early diagnosis of chronic conditions and lifestyle modification

Figure 2.12: Placebo jumps over Std. Systolic BP index (BP medication)
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Table 2.9: RDD including covariates for those aged 60 or younger: Takes BP medication

Yi = δ(BPi ≥ 0) + f (BPi |BPi < 0) + f (BPi |BPi ≥ 0) + Xi β + ui
RDD on systolic BP standarized around the value. Dependent variable: Takes BP medication, conditional

on not been diagnosed before with HBP or being taking medication for blood pressure.

(1) (2) (3) (4)

Dependent Variable at t + 1 Mean

Loc

Linear

Rectang.

h∗1

Loc

Linear

Triangular

h∗2

Loc Quad

Rectang.

h = 1SD

Without controls 3.36% 2.80∗ 2.56∗ 4.28∗∗

N: 3322 (h∗1 = 0.93), 2784 (h∗2 = 0.73) , 3717 (h = 1) (1.54) (1.51) (2.02)

Demographic 3.37% 2.67∗ 2.53∗ 4.21∗∗

N: 3313 (h∗1 = 0.93), 2777 (h∗2 = 0.73) , 3706 (h = 1) (1.52) (1.51) (2.01)

+ Health and Behaviour 3.32% 2.88∗ 2.70∗ 4.25∗∗

N: 3176 (h∗1 = 0.93), 2656 (h∗2 = 0.73) , 3559 (h = 1) (1.57) (1.56) (2.09)

+ Health and Behaviour (extended) 3.42% 2.27 1.94 2.94

N: 1263 (h∗1 = 0.93), 1043 (h∗2 = 0.73) , 1404 (h = 1) (2.26) (2.37) (2.90)

Robust SE in parenthesis. Significance: * 10%, ** 5%, *** 1%. Demographic Characteristics: Age, gender,

ethnicity, education level, marital status. Health and Behaviour: to report to be on bad health, BMI, any

parental CVD-related death, smoking status. Extended variables: Cholesterol (Total and HDL), framingham

CVD risk, alcohol and physical activity levels.



Chapter 3

On the economic value of preventive

care: a life-cycle model perspective

3.1 Introduction

Health is an essential determinant of individuals’ financial choices during their life

cycle, as stated in the classic Grossman Health Capital model (Grossman, 1972).

This is the case even if individuals’ utility does not depend directly on health, as

there are alternative mechanisms such as absence of from work due to disability, or

out-of-pocket expenditures. For these considerations it is relevant to incorporate

the economic consequences of health treatments when ranking the allocations of

health resources. This is of particular interest when consequences are not immedi-

ate, such as for preventive care interventions. This paper introduces a framework

that improves traditional economic evaluation techniques, such as cost-benefit and

cost-effectiveness analysis, by modelling both health and economic consequences

in a dynamic structural life-cycle model.

In general terms, the framework presented in this paper expands on stan-

dard Markov disease progression models, where health is categorised into states

that account for the severity of illness, in two directions. First, it incorporates an

index of risk of disease progression, which allows for heterogeneity in the tran-

sition probabilities between the states. Essentially, the probability of transiting

into worse states of health is higher when the value of the index is higher. Thus,

it is possible to model preventive care interventions as either exogenous transi-

tory or permanent shocks to the value of the index. Second, the health model is

complemented by a life-cycle model in which individuals, whose utility might be
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affected by health status, are able to smooth consumption via savings and labour

supply. This structure can be adapted to any chronic disease where early stage

treatments are available, and can be estimated with datasets that already exist in

many countries.

As a concrete example, I consider the role of a preventive care innovation, a

class of medications called statins, which reduces the odds of serious health com-

plications such as heart attacks or strokes, which might result in disabilities that

inhibit working and increase the risk of death. This is relevant as improvements

in medical care for cardiovascular disease (CVD) have been the main source of

improvement in healthy life expectancy in the last 20 years (Chernew et al., 2016).

First, the progression of CVDs is modelled with four health states: (i) having

no signs of any related condition; (ii) having been diagnosed with mild condi-

tions such as hypertension, which increase the odds of developing cardiovascular

events; (iii) to have survive to such events; and (iv) death. In this setting, the em-

pirical counterpart of the risk index is a summary variable that involves biomark-

ers that are known to be good predictors of future CVD complications such as

blood pressure and cholesterol levels. This formulation is a contribution to the

efforts directed towards modelling health investments (Kaestner et al., 2014; Hai

and Heckman, 2015), when there is a clear distinction between the prevention and

treatment of diseases (Ozkan, 2014). The model also includes a rule for the adop-

tion of the treatment that incorporates a variation across local providers of health

care services. This allows for a better understanding of the benefits of policies

aimed at improving care in a population.

The model considers how health shocks affect individual labour supply and

savings conditional on social security arrangements. This is built the on-growing

literature that considers the role of health in shaping economic choices for indi-

viduals close to retirement age (Palumbo, 1999; French, 2005; Halliday et al., 2015;

De Nardi et al., 2010; French and Jones, 2011; Yogo, 2016). Poor health derived

from such complications has direct effects on wages, via a productivity effect, and

on assets. It also introduces a penalty on the cost of working in terms of time

resources of individuals. This, as in the original Grossman (1972) health capital

model, has a direct effect on utility even if quality of health is not considered as a
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separate commodity. By acknowledging these channels, it is possible to take into

account selection into labour market participation derived by the onset of health

complications (French, 2005). Also, it is possible to incorporate the economic gains

of a medical treatment on top of conventional cost-benefit analysis of health inter-

ventions. In order to do this, a compensating variation is obtained by calculating

the expected life-time utility from a counterfactual scenario in which the technol-

ogy is not available, but a lump sum is given in compensation. Thus, the estimate

of the value is the amount of the lump sum that minimises the difference in ex-

pected utilities from both the observed and counterfactual scenarios.

The framework presented below contributes to the literature devoted to as-

sessing the value of health, medical innovations and policies while taking into

account their economic implications. Murphy and Topel (2006) considers the

social welfare value of improvements in longevity in the US over the 20th cen-

tury using a life-cycle model for computing willingness-to-pay, but without con-

sidering reduced productivity or disabilities. The same consideration applies to

Hall and Jones (2007), which is devoted to understanding rising medical expen-

diture. Papageorge (2015) introduced a major contribution by considering the

labour market implications of a new treatment for HIV/AIDS. Moreover, he iden-

tifies willingness-to-pay for a treatment based on revealed preferences instead of

relying on stated preferences or indirect approaches. While Papageorge’s proce-

dure is ideal, the availability of revealed preferences information is scarce as in

most setups, consumer prices, if they exist, are not informative given that they

suffer from a substantial impact of government interventions. For instance, work

by Murphy and Topel (2006), Nordhaus (2003) or Hall and Jones (2007) matched

the willingness-to-pay for extending life derived from their models with estimates

from labour literature based on the wage premium from jobs according to risk

or death. The procedure of this study introduces a novel alternative by deriving

the value of a statistical life (VSL)1 from the estimated bequest motive that accounts

for assets’ accumulation at the end of life (De Nardi, 2004; French, 2005). Thus

the identification of the compensating variation in the framework derived in this

1This is the willingness-to-pay for a reduction of 1 unit on risk of death, normally extrapolated
from calculations based on small variations on such a risk. See Murphy and Topel (2003) for an
introduction of the concept in on the context of life-cycle models.
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paper comes from the observed losses of people who suffered a CVD event, and

from the value of assets of the elderly.

Another contribution of this project is that it improves the cost-effectiveness

analysis of health interventions. McIntosh (2006) and Borghi (2008) mention that

very few of the stated preference willingness-to-pay studies aggregate their results

for conducting a cost-benefit analysis that will inform policy decisions. Instead,

productivity gains and cost savings are used for this purpose, based on the idea

that decision makers might have objectives other than ‘making Pareto improve-

ments’ (Culyer, 1989; Brouwer and Koopmanschap, 2000). In fact, in the UK tech-

nology adoption decisions are explicitly made based on the cost of increasing 1

quality adjusted life year (QALY),2 regardless of its impact on other elements that

might affect individuals’ utility. This model is able to improve this methodology

by considering the effect of health on labour supply and then on labour derived

income. This provides an additional variable to consider when taking decisions

and allows for the calculation of potential resources that might revert back into the

health care system via taxation. Standard cost-effectiveness analysis is produced

by simulating the lives of a set of individuals under two scenarios, one with and

one without treatment, and then adding up the total QALYs and the total costs

for the reference population. Then, the additional QALYs are divided by the to-

tal amount of costs. With the framework presented above, on top of simulating

health scenarios, it is possible to simulate consumption, savings, labour supply

and income of individuals.

Another key difference from the literature is that the model is estimated us-

ing data from England, where out-of-pocket medical expenditures is low due to

the presence of a publicly funded health care system. For this reason, medical ex-

penses and health insurance are not considered. This allows for a lower bound on

the potential value of preventive care innovations for those institutional setups, as

such elements are crucial determinants of savings in old age as shown by Blau and

Gilleskie (2008), De Nardi et al. (2010), and French and Jones (2011). The parame-

ters are estimated using the method of simulated moments (MSM) with informa-

2It is a simple measure that combines quantity and quality of life. In it, for a given health state a
health utility is assigned, which is a number that represents quality relative to a life without health
problems (Phillips and Thompson, 2001).
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tion from the English Longitudinal Study of Ageing (ELSA). This survey is similar to

the Health and Retirement Study (HRS) in the US, and is devoted to improving the

understanding of health, well-being and general economic circumstances of indi-

viduals aged 50 and older since 2002. It not only includes self-reported diagnoses

of several chronic diseases or conditions, but also involves detailed information

on blood pressure, cholesterol levels and other variables that provide an objective

picture of the state of the current and future health of an individual. This dataset

is linked with characteristics of the local medical services based on the post-code

of residence, which provides exogenous variation to the availability of preventive

care treatment.

The estimated model captures retirement and labour and non-labour supply

patterns, and particularly, the impact of CVD onset, which is allowed to differ

by gender and education level. The required compensation for removing statins

therapy for primary prevention while keeping the same expected utility is on

average £5300. This figure is 12% higher than the value that would be obtained

if in the calculation of benefits we only consider a willingness-to-pay of £23.000

per QALY gained (Shiroiwa et al., 2010), which is between the thresholds for cost-

effectiveness considered by the NHS (£20 to £30 thousand).

This result is based on productivity gains, extra leisure, and a reduced risk

of death (the model predicts a VSL of £1.05 million). At the population level,

aggregating such compensations provides the value of the drug: £79 billion by

2005. This drug, by NHS standards, is cost-effective as it costs £4641 to gain one

QALY. As an additional benefit, labour-income is increased by £684 per year with

such an investment.

The model also provides estimates for three crucial elements linked to the

value of a drug. First, it allows for understanding how the value varies with re-

spect to the efficiency of the drug. In the specific example, doubling the ability of

statins to reduce the CVD-risk index implies an increase of 69% in its value. Sec-

ond, the role of policies for increasing the availability of the treatment for whoever

needs it can be understood, especially since the estimation relies on a variation in

the probability of being on medication coming both from time and local family

doctors’ characteristics. An increase of 3 pp. in the odds of a prescription implies
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an increase of 24.6% in the value of the drug (an elasticity of 0.59).

A final exercise shows how the value of the medication depends on the char-

acteristics of institutional arrangements non-directly related to health. Given that

there was an increase in the state pension age for women that covers some of the

cohorts involved in ELSA, a natural exercise is to assess how much the value of

the drug is affected by this policy change. For women with the characteristics

observed in 2004, the model predicts an increase of 59.26% in participation in the

labour market between the ages of 60 and 65 if they were exposed to such an in-

crease in the state pension age. In terms of the drug, there is hardly any change

in the overall value of the drug in terms of welfare, but there is an increase of 22

times in the labour gains per QALY gained.

After this introduction, a brief discussion of statins prescription in the UK is

presented in Section 3.2 in order to provide some background for the case study.

Next, the model is presented in Section 3.3, and it is followed by the compensating

variation calculation in Section 3.4 and the cost-effectiveness discussion in Section

3.5. This is followed by the empirical component of the paper, which involves the

procedure for the structural estimation of the model in Section 3.6, and the data

used for this in Section 3.7. Finally, the results for the fit of the model and the

value of statins are presented in Section 3.8, and Section 3.9 concludes.

3.2 Statins and prevention of cardiovascular diseases in the

UK

Cardiovascular disease (CVD) is a heavy and growing burden for health care sys-

tems worldwide, making their prevention an important objective of public policy.

Murphy and Topel (2003) calculated the value of a permanent 10% reduction in

death rates due to major CVD events of around $5 trillion dollars of 1996. As a

result, the pharmaceutical industry has been developing therapies aimed at reduc-

ing the risk of the onset of CVD such as statins. Before introducing the model, this

section presents a brief introduction to the role of this medication in the prevention

of CVDs, and how this therapy was adopted in the UK.

As described by Cutler et al. (2003), high cholesterol started to be pointed out

as a risk factor for CVDs in the late fifties, and suggestive evidence and public
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awareness built up until such a link was confirmed in the early eighties. This was

translated into both a radical change in nutritional habits, but also into a race for

developing safe and effective drugs for reducing cholesterol. Statins, which inhibit

the production of LDL cholesterol by the liver, were introduced for the first time

with the approval of Lovastatin (Tobert, 2003). Other molecules followed during

the next decade. While they eventually became blockbusters for their developers,

statins development and adoption involved several controversies about potential

side effects, and about their effectiveness for reducing mortality.

In the 2000s in the UK, lipid-lowering drugs - mostly statins - prescriptions

grew notoriously, specially if compared with the growth of well-established drugs

as analgesics or anti-hypertensive therapies which have similar target population

(see Figure 3.1). Between 2002 and 2012, there was an increase of 266% in the

prescription of statins, which was the largest for any British National Formulary

(BNF) section (HSCIC, 2013). This is similar in other countries like the US as

discussed by Chernew et al. (2016). Since their initial approval, it was already

clear that statins should be prescribed for secondary prevention of CVDs. In other

words, use them in order to reduce the risk of repetition of CVD events on those

patients who already suffered one. However, there was still a debate centred

on whether they should be prescribed to general population who have no prior

history of CVDs (primary prevention). As discussed by Tobert (2003), this last

controversy was solved by the Heart Protection Study (Group et al., 2002), one of

the largest medical trials ever.

Statins for primary prevention are prescribed by family doctors, also known

as general practitioners (GPs). They are essential for access to this type of medi-

cation due to three main characteristics. First, given that GPs are the gatekeepers

of the public health system, almost all non-urgent health care service starts with

them. Second, individuals can choose a GP only if they live within a geographi-

cal zone defined by the practice where the physician is register (catchment area).

They are appointed by regional administrative bodies called Primary Care Trusts3

(PCT), which act as commissioners. By law, GPs are free to prescribe according

3PCTs have changed through the years. Prior to 2006/07, there where 303 of them but they were
merged into 152 and most of them remained stable for the following years. A major reorganization
took place in 2013, where PCTs were transformed into 211 Clinical Commissioning Groups (CCG).
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Figure 3.1: Lipid-lowering medication prescriptions in England
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to their criteria receiving suggestions by the guidelines provided by the National

Institute for Health and Clinical Excellence (NICE). This institution is responsible in

the UK for technical advice and care standards at primary care level. By 2006,

NICE issued a technology appraisal suggesting Statins for primary prevention of

CVDs (NICE, 2006).

Use of this medication is rewarded under the Quality and Outcomes Frame-

work (QOF). This is a pay for performance scheme designed to improve quality

of family doctors services in the UK.4 Under this system, practices gain points

for achieving certain targets, which are translated into cash for the practice every

year. These goals range from administrative registries to precise clinical measures

of people with a particular disease, and their achievement was monitored by their

corresponding PCT. Since its introduction in 2004, QOF have rewarded GPs for

keeping controlled the cholesterol level of their patients who have history of CVD

or diabetes. In 2009, goals related to primary prevention were introduced for the

first time. It incentivised doctors for assessing the risk of developing CVDs follow-

ing a standard procedure for those individuals recently diagnosed with high blood

4How much and what is paid is negotiated between the British Medical Association (physicians
union) and the National Health Service (NHS) every year, with suggestions made by NICE. Prior
to QOF, GPs were paid only according to the population size under their care and their length of
service within the NHS.
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pressure. Such risk calculators are directly related to NICE guidelines for the use

of statins. In 2011, usage of the drug became explicit for secondary prevention,

and the same happened for primary prevention in 2013.

Assessing the impact of QOF on health is particularly challenging as there is

no simple counter-factual (Gillam and Steel, 2013), but there is evidence of some

modest gains when comparing incentivised with non-incentivised measures (Do-

ran et al., 2011). One of the main goals of the QOF is to homogenize primary care

services. In general, there was a gradient on performance with respect to depriva-

tion which narrowed down after the first years (Dixon et al., 2010). In particular,

there is evidence that the introduction of this policy in 2004 reduced heterogene-

ity in access to statins for secondary prevention of CVD (CQC, 2009), or even on

general preventive measures as blood pressure monitoring (Ashworth et al., 2008).

Apart from deprivation, other characteristics associated with performance on the

scheme are related to the number of patients registered on the practice (Dixon

et al., 2010), or the number of GPs working on it (Kelly and Stoye, 2014). Small

practices typically underperformed during the first year of the QOF in several

clinical indicators, but differences narrowed down in the following years (Doran

et al., 2010; Ashworth et al., 2011).

3.3 Life-cycle model with health

This section develops the model which relates economic activity with health pro-

gression. Individuals life is modelled from age 52 until their death, which will

come no-later than 100 years old. In the time being, health deteriorates affecting

the probability to die as well as the trade-off of participating or not in the labour

market. Such decision and the amount of resources to be saved or borrowed from

the future are the choice variables available. With them, individuals maximize

their expected utility conditional on their resources.

The model is organised on periods that cover 2 years of age (t = 1, ..., T =

25), following the data collection interval, and current health is discretised on

four states (S = 1, ...,4) including death. Health states cover progression of CVD

diseases, allowing us to explore the role of statins. In this model calendar years (w)

are not relevant for economic choices, however they do play a role determining the

odds of getting a statin prescription. Apart from wealth, individuals are allowed to
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be heterogenous on the risk of developing CVDs and the potential labour income

that they would obtain if they work. Moreover, there is permanent heterogeneity

on gender g ∈ M, F5 and an index based on education level EDUC ∈ 0,0.5,1.6

In order to describe the model, I will start by explaining the components

related to health progression. After this, I will continue with the choices and

restrictions available by agents every period. This is followed by the optimization

problem and how it is solved.

3.3.1 Health Progression

As described before, there are two different types of health in this model. First,

a present CVD-related health status, discretised in the four states S described in

the profiles section, which directly affects the utility function. Second, continuous

CVD-risk index H, based on observed biomarkers, that affects the transition be-

tween these states. Essentially, by controlling the progression of H it is possible to

diminish the odds of transition into states that reduce utility of individuals.

3.3.1.1 Markov Model

The are four health states. First, individuals do not present signs of any cardio-

vascular condition (S = 1). This might change, and they might present early signs

denoted by persistent levels of high blood pressure, cholesterol or sugar in their

blood (S = 2). Those are chronic conditions that can be managed, but not re-

versed. Additionally, they indicate that for them the risk of suffering a CVD event.

This state (S = 3) makes it more difficult to work, as we will see in the following

subsection, and drastically increase the odds of death.

5In the data,45.6% of the individuals ever observed from waves 1 to 6 are men.
6Level 0 represents no formal education, 31%(40.5%) of (fe)males. Level 0.5 covers from some

formal education up to high school (up to NVQ3/GCE A level) or a foreign degree, 36.4%(38%)
of (fe)males. Finally, level 1 is given to individuals with any tertiary education, 32.4% (21.5%) of
(fe)males.
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Figure 3.2: Health states and disease progression

A Markov process describes the transition between the four health states as

described in Figure 3.2. First, it is assumed that transitions cannot be reverted, so

individuals’ health can only deteriorate7. Individuals can suffer a CVD event even

without the diagnosis of milder conditions, or they can die without suffering this

type of events. These restrictions simplify the transition between states at a given

period t into the matrix Pt,t+1 presented in Equation 3.1.

Pt,t+1 =


p11 p12 p13 p14

0 p22 p23 p24

0 0 p33 p34

0 0 0 p44

 (3.1)

Transition probabilities in Pt,t+1 are modelled using a multinomial logit struc-

ture. In this way it is possible to allow for different probabilities according to age

t, gender g, education level index (EDUC), and CVD-risk index H but with a re-

duced number of parameters to estimate. In state 1, the process is governed by

the three latent indexes (xb2,xb3,xb4) presented in Equation 3.2, and four extreme-

value type I shocks (one per state) denoted by ξs
it. In state 2, only the last two of

the latent indexes (xb3,xb4) and three of the shocks are valid. This is because the

no-reversibility assumption stated above. Consequently, in state 3 only the last

latent index (xb4) and two of the shocks are relevant.

7In epidemiological and health economics literature there might be several alternative CVD states
according to the type of event, the number of years after it, or the secondary onset of another
event. For simplicity, and for data restrictions, I will assume just one state, without any further
differentiation.
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xb2(t, Ht) = τ21 ∗ ageit + τ22 ∗ age2
it + τ23 ∗ exp(Hit) + τ24 ∗ EDUCi + τg;25 (3.2)

xb3(t, Ht,St = s ∈ {1,2}) = τ3,s,1 ∗ ageit + τ3,s,2 ∗ age2
it + τ3,s,3 ∗ exp(Hit) + τ3,s,4 ∗ EDUCi + τg;3,s,5

xb4(t, Ht,St = s ∈ {1,2,3}) = τ4,s,1 ∗ ageit + τ4,s,2 ∗ age2
it + τ4,s,3 ∗ exp(Hit) + τ4,s,4 ∗ EDUCi + τg;4,s,5

For instance, for an individual who is in state 1, death (state 4) will come if
three conditions hold at the same time: xb4 + ξ4 > xb3 + ξ3, xb4 + ξ4 > xb2 + ξ2

and xb4 + ξ4 > ξ1. But if he is in state 3 already, it is only necessary that xb4 +

ξ4 > ξ3. Under this logic, in states 1 and 2, transition can be represented as a
multinomial logistic process. For instance, the odds to transit from state 1 to 3 can
be expressed as follows:

p13 = Pr(St+1 = 3|t, Ht,St = 1) =
exp(xb3(t, Ht,St = 1))

1 + exp(xb2(t, Ht)) + exp(xb3(t, Ht,St = 1)) + exp(xb4(t, Ht,St = 1))

In state 3, transition is simplified to a logistic process as their is only one state to
transit into:

p34 = Pr(St+1 = 4|t, Ht,St = 3) =
exp(xb4(t, Ht,St = 3))

1 + exp(xb4(t, Ht,St = 3))

A limitation of the presented formulation is that it does not consider com-

peting risk of death or disability. Chernew et al. (2016) presents evidence of a

substitution between causes of death in the US, where mortality associated to

CVDs have been declining in the last 20 years while those associated with res-

piratory and central nervous system are increasing. This means that the current

model might overestate the value of extremely effective interventions if transition

probabilities of observed survivors in the data might be higher not only for CVDs

but also for those competing risks.8 For practical purposes, ex-ante it might be

hard to know if it is

3.3.1.2 CVD-Risk progression

Observed H is composed by permanent and transitory elements (Equation 3.3).

This specification aims to capture the persistence of some conditions like choles-

8In other words, if it is the case that even if CVD become as treatable as hypertension (no differ-
ence on survival odds between states 2 and 3), the life-expectancy of those who transit into state 2
is lower than for those who never transit into such state. That is, if those at high risk of developing
CVD are also at higher risk of developing dangerous complications non directly associated with
CVD.
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terol and blood pressure, jointly with the almost immediate effect (in weeks) of

medication for controlling them.

The permanent component is the product of a long-run process that includes

both an initial genetic endowment but also life-style choices as dietary habits,

smoking and physical activity. These factors build up into chronic conditions,

which are captured here with the persistence parameter ω1 in Equation 3.4. Thus,

heterogeneity on investments are captured by the observed initial variation on

H. Such initial level will be transformed by iid normal innovations e (mean 0,

standard deviation σe). In this AR(1) process, the long-run trend differs according

to the education level and gender of the individual.

The transitory element captures the effect of health care into the index. While

medication therapies reduce the levels of blood pressure and cholesterol, their

effect is temporal. For instance, statins inhibits the production of an enzyme that

is essential for the production of LDL cholesterol. Because the enzyme is only

inhibited while the drug is in the body, statins are typically prescribed indefinitely.

Hence, Equation 3.5 presents a specification where medication h has a linear effect

on the temporary component of H. It also shows that each health state has a

different constant which comes from other health-care interventions that might

affect the index.

Hi,t = Hp
i,t + Ht

i,t (3.3)

Hp
i,t = ω1Hp

i,t−1 + ωg;2 + ω3EDUCi + ei,t (3.4)

Ht
i,t = ω4hit +

3

∑
s=2

ω5,s1(Si,t = s) , s ∈ {1,2,3} (3.5)

3.3.1.3 Medication choice

Medication choice is assumed to be exogenous to the individual. While it is true

that in reality individuals might decide to accept or not a prescription by their

doctor, it is not possible to distinguish such decision in the data. It is also assumed

that medication’s sole impact is through health transition probabilities. Hence, we

are assuming that there are no noticeable secondary effects and that monetary

costs are negligible.9

9The actual monetary cost was below 100£per year, or even 0 if individuals meet certain income
conditions. However, other individual costs include to visit the GP practice for a repeated prescrip-
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The probability to get a prescription is given by individuals’ health (S, H),

their education (EDUC), local area characteristics that vary on time, and an un-

observed component (ε). Equation 3.6 expresses such process for individual i at

calendar year w and living in an area r. The model is a logit, as ε follows an Ex-

treme Value Type I distribution. Local area is characterised by one characteristic,

whether GP practices in the area are on average small or large (SL ∈ {0,1}), an

effect that might change according to the calendar year associated to the survey

collection time (w ∈ {4,5,6}). Such time variation according to practice size is

allowed because of the increasing trend on prescription presented in Figure 3.1,

and due to the introduction of pay-for-performance rewards related to primary

prevention of CVDs in 2009 (see Appendix 3.F for further details).

hirw = 1(R > 0) (3.6)

R = ζ1 + ζ2Hp
irw + ζ3Hp

irw
2
+ ζ4EDUCi

+ ζ5Female + ζ61(w ≥ 5) + ζ7SLr + ζ8SLr · 1(w ≥ 5)

+ εirw(h) , εiw(h) ∼ EV1(0,1)

The decision rule presented above can be understood as the reduce form of

the optimal prescription behaviour of a practitioner that is partly altruistic and

gets utility from the health of their patients. However, such decision depends on

the constraints and incentives faced by her local practice which are captured by

the size of it, and the calendar year.

3.3.2 Life-cycle model

This is a Finite-Horizon Life-cycle model, for which each period timing, states

and choices are sketched in Figure 3.3. Each period, individual i chooses hours

of leisure 1 − l and consumption c conditional on being prescribed with lipid-

lowering medication h ∈ {0,1}. Individuals are assumed to consider that the pre-

scription rule is fixed and will not change in the future. It is important to notice

that individuals are constrained by their assets Ait and exogenous shocks that

might affect their potential income, which is a function of their education level

tion. On adverse effects, it is not expected to be harmed due to statins (Ebrahim et al., 2014).
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and has a persistent component Υit. When an agent dies, he gets utility from

leaving a bequest b. Apart from death (S = 4), the only health-state that has a

direct impact on utility is to have suffered a CVD-disease (S = 3). However, notice

that individuals will carefully consider their current CVD-risk index H and health

state S in order to make decisions, as they rationally forecast the future of their

health.

Figure 3.3: Life-cycle model diagram

3.3.2.1 Utility

Individual i, in period t chooses consumption c and hours of leisure `. Utility

follows a Cobb-Douglas function between consumption and leisure and it is nested

within a constant relative risk aversion function (CRRA), with parameters that

are gender and education specific. Consumption has a weight of ηg,ED and risk

aversion γg,ED.

Individuals younger than 90 can work either full-time (FT,l = 40 hours) or

part-time (PT, l = 20 hours10) out of an available endowment of L̄ = 112 hours, a

10On practice, I followed Institute for Fiscal Studies derived variables which sets as full-time any
work with more than 35 hours per week.
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number that comes from the average awake time of people in the UK (Lader et al.,

2006). Part-time and full-time working costs in term of hours are also shifted by

parameter θP;g,ED. Notice that if people have suffered from a CVD event (Sit = 3),

there is a penalty of φ1;g,ED of their time if they want to work (lit > 0). This penalty

might be higher or lower if they decide to work PT (φ2).

If in a given period the individual is alive (S = 1,S = 2,S = 3), they get util-

ity according to Equation 3.7, but if it is death by this period, he will get it from

their bequest as shown in Equation 3.8. Notice that this is equivalent to a non-

depreciated durable good, generating a fixed flow of utility from the time of dead

until the last potential life period T. This ensures that for any given period, the

comparison between death and life has the same sign. As a result, it is not neces-

sary to add a constant to the utility function to ensure that individuals prefer to

be alive to be death.

U(ct, lt;St, At,Υt, X) =u(cit, lit;Sit) =
(cηg,ED

it `
1−ηg,ED

it )1−γg,ED

1− γg,ED
if Sit < 4 (3.7)

`it = L̄− lit − θP;g,ED ∗ (lit = 40)

− (φ1;g,ED + φ2;g,ED ∗ (lit = 20)) ∗ (Sit = 3) ∗ (lit > 0)

lit ∈ {0,20,40}

U(ct, lt;St, At,Υt, X) =b(Ait) = θB
(Ait + θK)

(1−γg,ED)ηg,ED

1− γg,ED
if Sit = 4 (3.8)

The central parameters for our analysis are φ1;g,ED,φ2;g,ED. These parameters

tell us about the burden of CVDs. Such effect is unlikely to be homogeneous across

occupations, and for that reason it is allowed to differ by education level. Another

crucial element is the utility of ‘death’, which is typically captured by the bequest

model θB. This motive is typically identified by the amount of asset holding of the

oldest individuals. Bequest motive is particularly important in the UK context:

Blundell et al. (2016) report that in ELSA nearly 70% of households with one

member aged 70 and older consider at least fairly important to leave property or

money as an inheritance, in comparison with just 50% of similar households in the

US. Notice that apart from these characteristics, health does enter directly into the
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utility function.11

3.3.2.2 Assets progression and income processes

Individuals get resources for consumption from their household assets, which

evolve according to Equation 3.9. Assets accumulate with the financial returns

from the difference between income and consumption, given a risk-free and con-

stant interest rate. Income comes either from labour (yL
i,t) or other alternative

sources (yNL
i,t ).12 Borrowing is limited by the maximum amount of resources that

they could potentially earn given a minimum consumption (Equation 3.10).

The onset of a CVD event has a one-off impact on assets accumulation, cap-

tured by parameter φ3. This parameter considers out-of-pocket expenses, but in

the UK this are more related to temporal disability, informal care provided by

other economically active members of the household, and in general other costs

related to the recovery time Liu et al. (2002). Expenses associated to demand of

health care services, which increased notoriously during and after these events,13

are normally covered by the publicly funded National Health Service (NHS).

Ai,t+1

1 + r
= Ai,t + yL

i,t ∗ κ ∗ li,t + yNL
i,t (agei,t, li,t,Si,t,EDUCi, g,b)− ci,t − φ3 · (Si,t = 3) · (Si,t−1 6= 3) (3.9)

Ai,t ≥ BCt where BCi =
T

∑
i,t=1

BCi,t+1

1 + r
− ymin + cmin

(3.10)

As shown in Equation 3.11, income from labour yL
i,t (κ transforms weekly

income into yearly one,14) either from wages or self-employment earnings, is a

function of a stochastic idiosyncratic productivity process Υ, current CVD-status,

gender and of their education level. The productivity process follows an AR(1)

given an initial draw Υi,0 and is shaped by iid normal innovations υ.

Non-labour income is the deterministic process presented in Equation 3.12.

As it involves income from non-labour sources, earnings from other family mem-

11An alternative would be to weight Equation 3.7 by a function of the current health status as in
De Nardi et al. (2010); Palumbo (1999).

12Even tough periods cover a two-years span, parameters in the income equations will be calcu-
lated for a year for interpretation purposes. In the data, income is elicited at week level, so reported
figures are multiplied by 52 weeks and then doubled.

13See Appendix 3.E for more details.
14κ = 52/1000, for 52 weeks per thousand GBP.
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bers, and the benefits and tax system, the two main drives behind this process

are age and education level. In other words, instead of formally modelling such

elements of the household, I will estimate a reduce-form version of it. First, the

base level is determined by the education level and gender, but with a permanent

jump at state pension age (SPAg,b) which is gender (g) and cohort-of-birth specific

(b). In the model, SPA is 65 for all men and for women born on and after 1954,

while it is 60 for women born before such date.15 Second, it has a positive trend

with age which changes at SPA. The trend is quadratic after SPA in order to avoid

huge non-labour incomes as age approach to 100. The third element is a response

to labour supply: features of the benefit social welfare system like job-seeking al-

lowance increase non-labour income as working hours decrease, which changes

according to education level and age. The fourth element are pensions on top of

the state pension: individuals who do not work will receive part of their potential

labour income according to their participation status.

ln(yL
i,t) =ιL

g;1 + ιL
2 ∗ EDUCi + ιL

3 ∗ (Sit = 3) + Υi,t (3.11)

Υi,t =ρΥi,t−1 + υi,t , υi,t ∼ N(0,συ)

ln(yNL
it ) =ιg;1 + ιg;2 ∗ EDUCi + (ιg;3 + ιg;4 ∗ EDUCi) ∗ [age≥ SPAg,b]

+ ιg;5 ∗ (age− 50) ∗ (age < SPAg,b)

+ [ιg;6 ∗ (age− SPAg,b) ∗ (age≥ SPAg,b)

+ [ιg;7 ∗ (age− SPAg,b)
2 ∗ (age≥ SPAg,b)

+ [ιg;8 + ιg;9 ∗ EDUCi] ∗ (age≥ SPAg,b)] ∗ lit

+ [(ιg;10 ∗ (lit = 1) + ιg;11 ∗ (lit = 2)] ∗ ln(yL
it) ∗ [age≥ SPAg,b] (3.12)

3.3.3 Solution

Individuals solve:

15Traditionally, the SPA was 65 for men and 60 for women. However, the 1995 Pensions Act
equalised it to 65, with a transition regime from April 2010 to 2020. A new Pensions Act in 2011
speeded up the transition and increased the age for both genders to 66. For simplicity, the model
assumes that SPA jumps immediately from 60 to 65 for women born in 1954 and afterwards, and
that there is no change from 65 to 66. It is assumed that women knew well in advance the first
change, so it is effectively incorporated in their behaviour.
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max
(ct,lt)T

t=1

u(c1, l1;S1, X) + E

[
T

∑
t=2

βt−1U(ct, lt;St, At,Υt, X)

]
(3.13)

given a vector of parameters Θ = {β,η,γ,φ,θB,θK,µ,συ,ρ, ι,ω,τ,ζ}, conditional

on fixed characteristics X (education level, gender and birth-cohort,16 calendar

year and type of nearby GP practice). They have to decide the full stream of

choices considering the potential utility every period (Eqs 3.7 and 3.8) subject to

the progression of income (Eqs 3.11, 3.12), assets (Eqs 3.9, 3.10), health states (Eq

3.2), CVD-risk index (Eqs 3.3, 3.4 and 3.5) and odds of prescription (Eq 3.6 ).

An essential assumption for guaranteeing a solution is that in T + 1 the in-

dividual will be death with certainty. This problem can be reformulated using

bellman equations, which allows for the problem to be solved backwards from

period t = T. As a result, all the estimated parameters will be relative to such

arbitrary value set by the bequest function. This is a fundamental assumption for

calculating the compensating variation for the drug, and will be further discussed

in the welfare section.

Conditional on education level and prescription status, the value function for

an individual who is still alive is shown in Equation 3.14. This means that rational

individuals consider the potential paths of both their health (CVD-risk index, pre-

scription, health status) and income (labour and non-labour). Notice that calendar

year is not considered, this means that individuals take current prescription pro-

cess as granted and do not expect it to change in the future. For notation benefit,

individual subscript was removed, and time notation was simplified: V = Vt and

V ′ = Vt+1. More details on how the problem is solved are in the Appendix 3.D.1.

There are two main output of the solution. First, the expected maximised util-

ity at a given point of the state space, V(A, H,S,Υ; X), presented in Equation 3.14.

It is crucial as it allows us to calculate the measure of value as will be described in

the next section. Second, the arguments of the problem at a given point of the state

space, A′∗(t,S, A, H,Υ, h; X)17 and l∗(t,S, A, H,Υ, h; X). These policy functions are

16There are three options: males, females born before 1954, and females born on and after such
date.

17 A′ (future assets) is stored instead of c as it is in the same units and magnitude of the state
variable A (assets). Nevertheless, results should be similar using either of them.
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used to predict choices while doing simulations. More details on the simulation

procedure can be found in Appendix 3.D.4.

V(A, H,S,Υ;X) =Vh=1 ∗ Pr(h = 1) + Vh=0 ∗ (1− Pr(h = 1)) i f S < 4 (3.14)

V(A) =b(A) i f S = 4

Vh =argmax
(c,l)

u(c, l;S) + βE
[
V′(A′, H′,S′,Υ′;X)|A, H,S,Υ, h, c, l

]

3.4 The measure of value: compensating variation

The measure is obtained by comparing the expected utility of both scenarios. The

question, as show in Equation 3.15, is to determine the amount of money πi that

would be required in order to compensate an individual i for living in the no-

medication world if we want him to attain the same expected utility as in the

current scenario. It can also be interpreted as the maximum amount of assets that

the individual will give up in order to live in a world where the medication system

is available.

πi ∈ argmin

∣∣∣∣∣E0

T

∑
t=τi

βtU(lit, cit|h∗it, Ait)− E0

T

∑
t=τi

βtU(lit, cit|hit(Sit = 2) = 0, Ait + πi)

∣∣∣∣∣
(3.15)

This compensation variation can also be interpreted as the willingness-to-pay

for the drug. How much will a person give up in order to enjoy the benefits of a

treatment? A substantial difference from literature is that the value of this technol-

ogy is not based solely on the trade-off life vs. death but also considers observed

differences on labour hours and consumption. This means that it considers the

value of quality of life improvements of the technology.

Papageorge (2015) exploits rich data on medication prices and choices, allow-

ing him to identify willingness-to-pay based on revealed preferences. This is not

feasible for most applications, therefore most of them are based on the implicit

values of life present in the trade-off between wages and mortality risk of cer-
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tain occupations (Viscusi, 1993). While this approach does not take into quality

of health, it allows to incorporate estimates of the Value of a Statistical Life (VSL)18

already established on the literature. For instance, Hall and Jones (2007) calibrate

their utility function, where death is normalised to 0, in order to match VSL esti-

mates.19 In the model presented above, the sole driver of the difference between

life and death in the model is the bequest motive presented in Equation 3.8, which

is identified by the shape of the assets rather than from an observed trade-off that

involves mortality risk.

In order to contrast the implications of this assumption I will calculate the

VSL implied by the model. This is done by considering a counterfactual reduction

in the mortality rate (Murphy and Topel, 2010).

3.5 Improving Cost-Effectiveness Analysis

The most common approach for evaluating whether or not to adopt a technology

is the cost-effectiveness analysis. In the UK, NICE considers that an interven-

tion provides value for money if it is able to gain one quality-adjusted life year20

(QALY) if it costs £20.000 or less to do so. By using this criteria, this valuation strat-

egy avoids economic considerations and centers the decision on the pure ‘health’

benefits. However, such economic benefits might produce extra resources to the

health system.

QALYs calculation comes from calculating the incremental cost-effectiveness

ratio (ICER), in the scenarios with and without the drug. For it, it is required

to simulate two datasets under the estimated policy rules and the counter-factual

scenarios. In total k datasets of size N are simulated in both scenarios. It is

normally interpreted as the amount of money that would be required in order to

18How much of their assets an individual is willing to give up in order to reduced probability of
death by 1 unit. However, calculations are based on extrapolating small reductions, for instance, of
1/1.000 or of 1/10.000. See (Viscusi and Aldy, 2003) for a good review.

19Hall and Jones (2007) also considers quality of life by introducing extra elements on the utility
function that are calibrated with quality adjusted life years weights.

20In the health economics literature, health states are given a factor called utility that represents
the physical and mental capacity of each state. Typically, an utility of 1 is considered one quality-
adjusted life year. Such factors are normally derived from surveys that consider perceived quality of
life and health conditions. For example, according to the EuroQol 5 dimensions (EQ-5D) measure of
health status (Devlin and Krabbe, 2013) which is typically used in NICE guidelines, if the number
1 represents the best health state, a value of 0.079 is given for a state in which individuals require
assistance for daily-life activities. For a simple introduction see Phillips and Thompson (2001) and
Malek (2001).
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gain 1 QALY using this treatment. Even though this interpretation has assumes

that the production function is linear on resources and that there are no fixed

costs, it is a simple and widely used reference for cost-effectiveness evaluation:

ICER =
Coststatin −Costno statin

QALYstatin −QALYno statin
(3.16)

where CostΞ = ∑kN
i=1 ∑T

t=1 costit(Ξ) and QALYΞ = ∑kN
i=1 ∑T

t=1 QALYit(Ξ), with

Ξ = statin when h∗it operates, and Ξ = no statin when hit(Sit = 2) = 0.

The same equation can be used for determine not the cost but any other

simulated variable. For instance, we can obtain how much extra labour income is

associated to 1 extra QALY in the treatment-available world as follows:

YL
statin −YL

no statin
QALYstatin −QALYno statin

(3.17)

where YL
Ξ = ∑kN

i=1 ∑T
t=1 YL

it (Ξ).

3.6 Structural Estimation of the Model

The model was estimated in several steps, separately for men and women. First,

adjusted profiles are obtained in order to derive moments from the data. Most

of the moments are unconditional means per age, but they also include transition

probabilities, variances and serial covariance of labour income and the health-

index. Next, initial conditions for simulating predictions by the model are derived.

This involves an imputation procedure for the potential labour-income of those

who are not working. This is carried out using a Heckman selection model where

participation is instrumented with a dummy for having a partner who reports to

be in bad health (see appendix 3.D.3 for more details).

The next step is to determine the value of the parameters that will reproduce

the profiles observed in the data. First, the health-model parameters are estimated

independently, and given their results, life-cycle model parameters are estimated

for men and women separately. The discount factor is calibrated from literature

and set to β = 0.960421 and the interest rate set to r = 0.030225.22, all other pa-

rameters θ, a q × 1 vector, are estimated via the Method of Simulated Moments

21This is the two-years equivalent to the more standard β = 0.98.
22This is equivalent to r = 0.015 in a one-year term.
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(MSM). This requires to simulate a dataset similar to ELSA, which involves also to

consider sampling and attrition. Details on how the simulated dataset is prepared

are presented in appendix 3.D.4.

Let x = {xi}N
i=1 be the data where we have N individuals. Each individual

is observed at least two times or at most 6 between age 53 and T. Such data is

transformed by a vector functions m of size p× 1, such that p > q. The individual

functions, mj select a variable, or a combination of variables, at a specific age.

For instance, wage; conditional on being observed at wave 2, being 53 to 54 years

old, and being working at such year. Appendix 3.D.2 presents in detail each

of the moments considered. These conditional moments are transformed into

a unconditional ones using an indicator function. In other words, in order to

produced sample averages, the sum of individual contributions is divided by the

total number of individuals N, rather than the number of individuals who meet

the condition set by the moment.23 Given such information is possible to construct

a sample average, the observed moment, ψj(x), such that as N→∞

ψj(x) =
1
N

N

∑
i=1

mj(xi)→ E(mj(x))

Given the model and the vector of parameters, it is possible to construct a simu-

lated data analogue, x(k) = {xi}Nk
i=1, which size is k times the original sample. With

it, we can apply the same vector m and construct simulated moments ψj(x(k)),

such that as kNj→∞

ψj(x(k)) =
1

kN

kN

∑
s=1

mj(xs)→ E(mj(x(k),θ))

If the model is correctly specified ∀j, E(mj(x(k),θ)) = E(mj(x)). This motivates the

MSM estimator (McFadden, 1989; Pakes and Pollard, 1989; Duffie and Singleton,

1993):

θ̂ = argmin
θ

(
ψj(x)− ψj(x(k))

)′
W
(

ψj(x)− ψj(x(k))
)

(3.18)

Where W is a diagonal matrix constructed with the diagonal of the inverse of

23See for instance Chamberlain (1992) and French and Jones (2011).
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the covariance matrix of the data:24 W−1 = diag(S) and S = Var
(

1√
N ∑N

i=1 m(xi)
)

;

and J is the jacobian matrix of the simulated statistics with respect to θ, J =
∂ 1

kN ∑kN
i=1 m(xi)
∂θ . In practice, it is derived numerically using steps of 25% of the original

parameter value, or of 0.01 if it is 0.

Then θ̂ is a consistent estimator of θ, and its asymptotic distribution is given

by
√

N(θ̂ − θ0)→ N (0, Q). Matrix Q =
(
1 + 1

k

)(
Σ−1

1 Σ2Σ−1
1

)
, with Σ1 = J′WJ and

Σ2 = (J′W) ∗ S ∗ (WJ).

The health model was estimated using an amoeba algorithm starting from

a defined set of starting values. Parameters of the transition equations were ini-

tialised at 0, while starting values for CVD-risk dynamics and prescription equa-

tions come from estimating them outside the model. In terms of identification, the

Markov health transitions and prescription equation involve a collection of logis-

tic regressions which are identified by observing transitions between states across

ages, education levels, GP-sizes and different values of the CVD-risk index. For the

CVD-risk dynamics equation it also required to include moments that account for

variance and autocovariance (4 and 8 years). The list of the moments constructed

with such information is in Appendix 3.D.2. As any logistic models, parameters

are relative to the variance of the innovations that have been standardised to 1.

On terms of the economic choices model, parameters are relative to β and r

which were fixed. The are two motives for savings in this model: risk aversion,

captured by the parameter γg; a the bequest motive represented by θB. While the

shape of the assets’ profiles is dominated by both parameters (inducing labour

participation), the bequest motive allow us to understand why there is not a sharp

drop in assets for the elderly (above age 80). These utility parameters were ini-

titalised to standards in the literature, but several combinations were manually

calibrated. Transitory and persistent components of labour income per hour are

identified by including up to 4 autocovariances of the variable (from 2 to up to 8

years), on top of its cross-sectional variance.

24The optimal weighting matrix might be biased in small samples, so the diagonal is used as
recommended by Pischke (1995).
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3.7 Data

This section presents the main sources of data for estimating a model that jointly

considers life-cycle choices, health progression and statins prescriptions. First, a

description of the individual-level dataset will cover the first two elements. Sec-

ond, GP practice and PCT levels data will allow us to understand how health-care

services are related to individual choices.

3.7.1 ELSA

The English Longitudinal Study of Ageing (Marmot et al., 2013) is a panel of indi-

viduals aged 50 and over, representative for those living in private households

in England. I consider its first 6 waves spanning the period 2002/03 to 2012/13.

Together with socio-economic information, it includes biomarkers collected by

nurses in waves 2,4 and 6 (Figure 3.4).25 Financial variables as wealth, income

and non-labour income26 of the household based on the Institute of Fiscal Studies

income calculations. Financial figures were adjusted to May/June 2005 constant

prices using monthly regional consumer prince index from the Office for National

Statistics. A final element which makes the dataset attractive is that mortality in-

formation was obtained by ELSA directly during field work but also by it with

data from the Department for Work and Pensions and the National Health Service Cen-

tral Register.

Figure 3.4: Survey timing
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ELSA
2004

2nd Nurse
visit

W3
ELSA
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W4
ELSA
2008

3rd Nurse
visit

W5
ELSA
2010

W6
ELSA
2012

4th Nurse
visit

While ELSA includes information from partners and other household mem-

bers, the present study includes individuals who are part of the core dataset, that

is, those selected in order to make the sample representative of England’s pop-

ulation. Panel A of Table 3.1 shows the number of individuals observed in each

wave according to their original inclusion. From the 11391 observations included

25For further information, please refer to:http://www.ifs.org.uk/ELSA/about
26This is calculated as non-housing and non-pension wealth of the benefit unit minus the labour

income of the individual. All income measures in ELSA are net of tax. See Section 3.A.2 for more
details about wealth calculations.

http://www.ifs.org.uk/ELSA/about
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in wave 1, 8780 were reinterviewed in wave 2. The other 2611 are either death

(506 of them) or not considered because they asked not to be re-contacted, it was

not possible to do it, or moved out of Britain. Hence, it is possible to follow-up

81.5% of the original sample.27 According to ELSA reports (Bridges et al., 2015),

missing information is correlated with age, ethnicity, region and subjective health

measures.

Panel B of Table 3.1 presents the number of individuals included in the main

estimation. In wave 2, nurses visited 88% of the interviewed core members. The

remaining refused to be contacted for such purpose (Scholes et al., 2008). From

81% of those who were visited by a nurse, a blood sample was collected (6231

individuals). The figure in Table 3.1 is smaller as the measurements had to be

valid for blood pressure and cholesterol levels, as it will be discussed in Section

3.7.1.2. This is a common problem for this kind of instruments (Heidi Guyer,

2010), and as a general rule, the resulting analysis will be over a population who

is in better health relative to the general population.

ELSA provides population weights in order to recover representative esti-

mates. Cross-sectional weights are going to be used in this analysis when dis-

cussing the willingness-to-pay calculations from wave 1 perspective, however, lon-

gitudinal weights are not considered as the model will incorporate attrition.

27Given that ELSA wave 1 is based on the Health Survey of England, ELSA wave 2 report estimated
the longitudinal response to be around 46.6% of the original sampling framework (Scholes et al.,
2008).
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Table 3.1: ELSA Structural Estimation Sample

Number of individuals

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Source Sample 2002/03 2004/05 2006/07 2008/09 2010/11 2012/13

Panel A: Original sample

Since wave 1 11391 8780 7535 6623 6242 5659

Since wave 3 0 0 1275 972 936 888

Since wave 4 0 0 0 2291 1912 1796

Since wave 6 0 0 0 0 0 826

Total 11391 8780 8810 9886 9090 9169

Confirmed Deaths 0 506 1033 1663 2229 2701

Total Observed 11391 9286 9837 11499 11286 11867

Panel B: Included sample

Used for the moments 11358 9260 9807 11450 11214 11737

CVD-risk index 0 5058 0 5631 0 5439

Source: Own calculations based on ELSA waves 1-6, core members.
Notes: Panel B consider observations that are used for calculating the moments for the structural estimation of the model and

includes registered deaths. In this context, observations without a valid age, work or health status were discarded. Also, notice

that CVD-risk index is based on those individuals for which there is valid measurements of blood pressure and cholesterol.

3.7.1.1 Data profiles

Following the model, health is categorise in four states which are based on re-

ported conditions diagnosed by a physician. First, individuals do not present

signs of any cardiovascular condition (S = 1). This might change, and they might

present early signs denoted by persistent levels of high blood pressure, cholesterol

or sugar in their blood (S = 2). Those are chronic conditions that can be managed,

but not reversed. A more serious scenario is to suffer an CVD event, which might

generate permanent limitations for work (S = 3). Last state, S = 4, is death.28

Figure 3.5 shows the proportion of individuals in each health state, at a given

two-years age group (52-53, 54-55 and so on).29 For both men and women the

proportion of individuals in high risk of suffering from a CVD event is increasing

until age 70. For those who survived such event, the peak age is around 80. The

main difference is that more male are affected by CVD than women, but more

women move into the ‘at risk’ status.

28Death is observed via an administrative linkage from ELSA with ONS records.
29Age is grouped in order to boost the number of observations per group.
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Figure 3.5: Observed progression of health states
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Figures 3.6, 3.8 and 3.7 show the assets, income and labour supply profiles

after netting out the effects of cohorts, family size, and seasonal and business cy-

cle.30 I follow a procedure similar to French (2005) which using linear regressions

estimates the contribution of all this confounding elements in each one of the out-

comes, while controlling for the contribution of health states and age. Given this

estimates, variables are adjusted by removing the specific effects in favour of com-

mon normalisation. Specifically, the profiles adjustment aims to set all individuals

in a world with a fix unemployment rate of 5, a family size of 2, and to be born in

1946. Appendix 3.A explains in detail this procedure.

First, Figure 3.6 shows that assets are considerable smaller for CVD survivors.

Part of this might be triggered by lower participation in the labour market as

shown in Figure 3.7. As a second observation, it is clear that there are differences

on this aspect, specially before the SPA. The effect is larger in full-time participa-

tion for men, and in part-time for women. Third, Figure 3.8 shows that earnings

per hour are slightly lower for those participating in the labour market after sur-

viving a CVD event. This suggest a productivity effect if those working are those

who are more likely to earn more.

3090% confidence intervals are based on the standard error of the mean
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Figure 3.6: Observed Assets Profile
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Notes: Own calculations based on IFS derived variables on ELSA waves 1 to 6. Ad-

justed for Birth cohort, family size and regional unemployment. Includes 90% CI.
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Figure 3.7: Observed Labour Supply Profiles by Health State
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(b) Part-time
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Notes: Own calculations based on IFS derived variables on ELSA waves 1 to 6. Ad-

justed for Birth cohort, family size and regional unemployment. Includes 90% CI.
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Figure 3.8: Observed Income Profiles by Health State
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(b) Yearly non-labour, non-financial income
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Notes: Own calculations based on IFS derived variables on ELSA waves 1 to 6. Ad-

justed for Birth cohort, family size and regional unemployment. Includes 90% CI.
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3.7.1.2 Cardiovascular Risk Index

A CVD risk index was built using some of the biomarkers collected by ELSA:

systolic and diastolic blood pressure, non-HDL31 and total cholesterol. These vari-

ables are summarized into a single index using the Anderson (2008) summary

index. Anderson’s summary index weight standardised version of the variables

in order to maximise de variance of the index. Panel A of Table 3.2 presents the

weights given to each variable given such criteria.32

Table 3.2: Anderson Summary Index (2008) for CVD-Risk Biomarkers and Statins

A. Anderson Summary Index (2008) for CVD-Risk Biomarkers

Variable Mean SD Weight

Systolic BP (mmHg) 132.655 16.908 0.346

Diastolic BP (mmHg) 74.253 10.978 0.209

Total Cholesterol (T-C, mmol/L) 5.684 1.203 0.253

Non-HDL Cholesterol (Non-HDL-C, mmol/L) 4.103 1.125 0.191

B. Cochrane’s (2013) estimates of Statin effect on Cholesterol

Variable Reported SDvs

Total Cholesterol (T-C, mmol/L) -1.05 -0.873

Non-HDL Cholesterol (Non-HDL-C, mmol/L)† -1.01 -0.898

Total effect (ω4) -0.392
Notes: † Cochrane (2013) reports effects on LDL Cholesterol (-1.00 mmol/L). This number was

translated into Non-HDL-C given the observed relationship in the ELSA sample: 1 mmol/L of

LDL-C is equivalent to 1.005 to 1.0155 mmol/L of Non-HDL-C. Moreover, the correlation coefficient

between LDL-C and Non-HDL-C is 0.9476. The advantage of Non-HDL-C is that fasting is not

required for the validity of the measure, which is essential for LDL-C calculation.

31While the dataset includes LDL cholesterol, sample size is smaller than for HDL cholesterol due
to the nature of the test: LDL requires fasting prior to the blood sample, while HDL does not.

32The index is a weighted average of the standardised variables, with weights that maximize the
variance of the index. For more details, see Appendix A from Anderson (2008). Alternatively, a
factor model was calculated. While both of them are highly correlated, the Anderson’s version is a
better predictor of the Framingham score. Fundamentally, the weight for each variables is calculated
as the sum of the elements of the respective row of the inverse of the covariance matrix, with respect
to the total sum of the elements of the same matrix. Therefore, more weight is given to those
variables for which their variation is less captured by other variables variation. In comparison, the
factor analysis captures the common variance of those variables. In this particular application, it is
important to take into account both individuals with either high cholesterol or high blood pressure,
rather than those with high levels of both biomarkers. The reason is that each measure might include
essential information for predicting CVD risk.
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The resulting index, a number between -2 and 2, is a measure of the underly-

ing risk of developing a CVD event. Figure 3.9 presents its distribution according

to their medication status, where despite selection,33 there is a clear difference be-

tween those who are and not taking statins, possibly due to their beneficial effect

on CVD risk.

The role of statins in the model is defined in Equation 3.5. This parameter is

calibrated based on evidence from literature. In particular, Taylor et al. (2013) re-

view on the effect of statins on primary prevention of CVDs, estimates the impact

of the drug usage on the reduction of cholesterol levels. Given that the CVD-risk

index mixes standardised versions of cholesterol and blood pressure, Panel B of

Table 3.2 translates those point estimates into the index.

Figure 3.9: Distribution of the log CVD-risk index ln(H)
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Figure 3.10 presents the age profiles for the resulting index and medication

intake, showing a similar picture for both men and women. In general, there

is a large decrease on the CVD-risk index for those who survive a CVD event.

Appendix 3.E discusses the potential channels behind these trends in detail.

One concern is the potential effect of the drug-therapy on other factors that are

related with the risk of developing a CVD or death. Strazzullo et al. (2007) review

of clinical literature shows that Statins cause a small (1.1 mmHg) but significant

reduction on systolic blood pressure. This implies an underestimation of the value

33Those under medication should have, on average, a higher CVD-risk than those who are not.
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of the drug. Nevertheless, a risk compensation mechanism might be triggered,

Kaestner et al. (2014) have found that Statins’ adoption is related to an increase on

BMI and alcohol use. If such compensation is not of the same magnitude in the

clinical trials, this might generate an upward bias on the current estimates of the

drug’s benefits.

3.7.2 Practices data and prescription rule

Equation 3.6 presented the probability to be prescribed with statins. Information

for constructing moments required for its identification comes from administrative

data on primary care services from the QOF registers34 which apart from perfor-

mance for each GP practice, includes data on raw prevalences of some diseases

derived from clinical records, and the number of registered patients.

Panel A presents the size of GP practices measured according to the number

of patients registered in them. As a general trend, the number of practices has

reduced while the number of patients per practice has increased. On average,

each practice has around 60 new patients per year. At the same time, there was

an increase in the adjusted number of physicians per capita. However, detected

prevalence of risk conditions as hypertension and diabetes have increased, part

of it due to ageing of English population and to better quality of primary care

services.

ELSA data is linked to GP practices’ information based on respondents’ post

code of residence. While PCTs cover a well defined geographical area, practices

catchment areas definition is not standard and overlap in urban areas. As a result,

individuals are able to choose among nearby practices. In order to stablish a

measure of the type of available health care services, I have considered information

for the 10 closest GP practices within 15 Kms, according to Euclidean distance. For

each respondent, list size information of the selected practices was averaged with

equal weights as long as they are within 1 Km of the postcode, based on 2009/10

information. For observations outside that range, their relative weight decays with

the inverse of distance.35

34This data archived and published by the Health & Social Care Information Centre (HSCIC). It is
recorded in the Quality Management and Analysis System (QMAS), which is the source for deriving
the payments calculations.

35See Appendix 3.B for further details.
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Figure 3.10: Observed progression of CVD-risk Index and Medication
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(a) Medication intake
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Panel B of Table 3.3 shows the result of the process. Nearly 80% of the ob-

servations included in the model (Panel B of Table 3.1) analysis were matched to

at least one GP practice. However, if we do not consider those who are already
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death by each wave, almost 90% of the observations have a valid match. Around

a third of them live in areas where the closest GP practices are small, that is, with

an average of less than 6000 patients. Such practices are almost half of the more

than 8000 GP practices in England.

Table 3.3: GP Practices List Size Summary

Wave 3 Wave 4 Wave 5 Wave 6

Source Sample 2006/07 2008/09 2010/11 2012/13

Panel A: GP Practices Average by practice

Number of patients in thousands (list size) 6.41 6.60 6.69 6.98

Less than 6000 patients 0.54 0.52 0.51 0.49

Between 6000 and 8300 patients 0.18 0.18 0.18 0.19

8300 patients and above 0.28 0.30 0.31 0.33

List size year variation . 60.56 58.64 91.62

Number of practices 8372 8229 8245 8020

Panel B: ELSA matched with nearby GP practices 2009/10 data Average by individual

Number of patients (1000s) 7.48 7.51 7.51 7.50

Less than 6000 patients 0.28 0.28 0.28 0.28

Between 6000 and 8300 patients 0.39 0.38 0.39 0.39

8300 patients and above 0.33 0.34 0.33 0.33

QOF: PP01 achievement . . 80.67 82.61

Number of individuals included in the sample 7683 9213 9005 9377

Source: Own calculations based on the Attribution Data Set GP-Registered Population.
Notes: Prevalences and list size (number of patients) information is derived from QOF data. PP01 is a clinical indicator of the

QOF on primary prevention of CVDs.

3.8 Results

3.8.1 Parameters and Fit

The main goal of the model is to be able to forecast lifetime choices and states for

English population aged 53 and over at a given moment. As a result, a first im-

pression of such ability is how it fits the actual progression of observed data. The

next set of figures present the data profiles both from ELSA and from a dataset

simulated using the model. Such simulations are based on the estimated coeffi-

cients presented in Tables 3.4 and 3.5.
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Table 3.4: Parameters from the Structural Model I: Utility and Income Process

Male Female

Parameter Value SE Value SE

Utility

β Discount factor (Cal) 0.9604 0.9604

No Education (ED=1)

η Importance of consumption in utility 0.5018 0.0049 0.4307 0.0012

γ Relative risk aversion 3.9561 0.1656 3.2435 0.0148

θp Unflexibility penalty for FT work -3.1488 0.2074 1.3808 0.2554

φ1 Disutility of bad health while working 7.7135 1.2082 6.2889 1.1380

φ2 Additional disutility of bad health while PT -1.5579 0.5250 -3.1569 0.9432

At least high school (ED=2,3)

η Importance of consumption in utility 0.5491 0.0033 0.5951 0.0003

γ Relative risk aversion 3.4819 0.1765 3.9129 0.1569

θp Unflexibility penalty for FT work (ED=2) -3.6253 0.1298 -0.3484 0.0944

θp Unflexibility penalty for FT work (ED=3) -3.9688 0.1110 -2.0189 0.1593

φ1 Disutility of bad health while working 7.5768 0.5876 7.5214 1.0271

φ2 Additional disutility of bad health while PT -2.4389 0.1949 -4.6596 0.9254

All levels of education

φ3 Asset one-off cost of CVD event -54.0091 6.6823 -35.0947 3.4689

θB Bequest importance 0.6926 0.0388 0.4646 0.0237

θK Base for not leaving bequest penalty (Cal) 30.0000 30.0000

Earnings per hour

σu Variance innovations 0.5804 0.0158 0.5349 0.0102

ρ Persistence innovations 0.5507 0.0216 0.3897 0.0222

ιL
1 EDUC 0.8778 0.0476 0.9161 0.0361

ιL
2 To be in State 3 -0.1125 0.0269 -0.5587 0.0804

ιL
3 Mean 1.1904 0.0345 1.0199 0.0272

Non-labour Income

ι1 Constant 2.1653 0.0189 2.5744 0.0033

ι2 EDUC 0.3302 0.0236 0.2536 0.0210

ι3 Age ≥ SPA 0.5931 0.0245 0.1323 0.0161

ι4 Age ≥ SPA * EDUC -0.4526 0.1549 -0.8998 0.1940

ι5 (Age<SPA) * (Age-50) 0.2136 0.0161 0.0890 0.0153

ι6 Hours of work -0.4307 0.0242 -0.2076 0.0181

ι7 Hours of work * EDUC 0.4988 0.0393 0.2034 0.0284

ι8 Hours of work * Age ≥ SPA 0.0437 0.0125 0.1690 0.0163

ι9 Hours of work * Age ≥ SPA * EDUC 0.0563 0.0188 0.0228 0.0122

ι10 Age ≥ SPA * YL * Not work 0.1011 0.0078 0.1961 0.0036

ι11 Age ≥ SPA * YL * Part-time 0.0653 0.0041 0.1017 0.0022
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Table 3.5: Parameters from the Structural Model II: Health Process

Parameter Value SE

CVD-risk index

σe Variance innovations 0.4242 0.0008

ω1 Persistence 0.7234 0.0005

ω2 Constant 0.0232 0.0011

ω3 EDUC -0.0296 0.0015

ω4 Health investment effect (Cal) -0.3900

ω5,2 To be in State 2 0.1315 0.0029

ω5,3 To be in State 3 -0.2107 0.0034

ω6 Female 0.0371 0.0005

Prescription Model

ζ1 Constant -2.8955 0.0476

ζ2 H 0.0943 0.0143

ζ3 H2 2.0189 0.0741

ζ4 EDUC 1.1630 0.0350

ζ5 To be in State 3 1.6119 0.0339

ζ6 Female -0.0558 0.0100

ζ7 Wave 6 0.4128 0.0489

ζ8 Small list area 0.5984 0.0310

ζ9 Small list area after 2009 0.5825 0.0456

XB2: latent evolution of transition into State 2 (CVD risk)

τ21 Age 0.0000 0.0019

τ22 Age Sqd/100 0.0000 0.0016

τ23 CVD-risk index H 0.7994 0.0109

τ24 Constant -3.4827 0.0748

τ25 EDUC -0.0054 0.0031

τ26 Female 0.0059 0.0058

XB3: latent evolution of transition State 1 into 3 (CVD event)

τ311 State 1: Age -0.3103 0.0004

τ312 State 1: Age Sqd/100 0.2747 0.0017

τ313 State 1: CVD-risk index H 0.2807 0.0151

τ314 State 1: Constant 3.5065 0.0866

τ315 State 1: EDUC 0.9040 0.0516

τ316 State 1: Female 0.1802 0.0248

XB3: latent evolution of transition State 2 into 3 (CVD event)

τ321 State 2: Age 0.0000 0.0022

τ322 State 2: Age Sqd/100 0.0000 0.0018

τ323 State 2: CVD-risk index H 0.3239 0.0093

τ324 State 2: Constant -3.5000 0.0867

τ325 State 2: EDUC -0.1784 0.0198

τ326 State 2: Female -0.6525 0.0164

XB4: latent evolution of transition State 1 into 4 (death)

τ411 State 1: Age -0.3103 0.0004

τ412 State 1: Age Sqd/100 0.2747 0.0015

τ413 State 1: CVD-risk index H 0.0009 0.0022

τ414 State 1: Constant 4.6067 0.0632

τ415 State 1: EDUC -0.0621 0.0096

τ416 State 1: Female -0.7480 0.0437

XB4: latent evolution of transition State 2 into 4 (death)

τ421 State 2: Age -0.2929 0.0004

τ422 State 2: Age Sqd/100 0.2683 0.0010

τ423 State 2: CVD-risk index H 0.7348 0.0094

τ424 State 2: Constant 4.1552 0.0391

τ425 State 2: EDUC -1.0362 0.0234

τ426 State 2: Female -0.8065 0.0129

XB4: latent evolution of transition State 3 into 4 (death)

τ431 State 3: Age -0.2974 0.0020

τ432 State 3: Age Sqd/100 0.2657 0.0027

τ433 State 3: CVD-risk index H 0.7410 0.0258

τ434 State 3: Constant 4.3937 0.0462

τ435 State 3: EDUC -0.0079 0.0029

τ436 State 3: Female -0.6562 0.0215
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Figure 3.11 presents the proportion of individuals per health state by gender.

The continuous line presents the proportion per age derived from ELSA while the

dashed one comes from the simulations. The other main components of the health

model are presented in Figure 3.12, where Panel A presents the average CVD-risk

index progression while Panel B the proportion of individuals under statins. In

general terms, the model fits adequately such profiles.

Figure 3.11: Observed and Simulated Health States progression

Female Male

0.0

0.2

0.4

0.6

60 70 80 90 60 70 80 90
Age in years

P
ro

po
rt

io
n 

of
 to

ta
l i

nd
iv

id
ua

ls

State
(S=1) No signs

(S=2) At risk

(S=3) CVD survivor

Source
ELSA

Simulations

Notes: Own calculations based on IFS derived variables on ELSA waves 1 to 6. Ad-

justed for Birth cohort, family size and regional unemployment.

Assets are presented in Figure 3.13, labour supply in Figure 3.14 and income

in 3.15. As a whole, the model captures the general trends of the data. Labour

participation is reduced after the onset of a CVD principally due to the extra

cost of labour (parameters φ1, φ2), the reduced payoff per hour (parameter ι3).

Such behaviour is reflected in a reduction on assets, which is exacerbated by an

onset shock on expenditures (parameter φ3). A clear limitation is the inability of

the model to accurately forecast selection into work according to potential labour

income. In this case, despite of the wage penalty, labour income of those who
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decide to participate is higher than those who have not suffered such events. This

is evident in Panel A of Figure 3.15 for females.
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Figure 3.12: Observed and Simulated Health Model Profiles by Health State
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Figure 3.13: Observed and Simulated Assets Profiles by Health State
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Figure 3.14: Observed and Simulated Labour Supply Profiles by Health State
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Figure 3.15: Observed and Simulated Income Profiles by Health State
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3.8.2 The Value of Statins

Table 3.6 presents the main elements for an economic evaluation of a lifetime

treatment with statins for primary prevention of CVD for age 53 onwards. In other

words, here we are comparing the observed state of the world, where someone at

risk of developing CVDs (S = 2) obtains a statins prescription with a probability

given by Equation 3.6, against the counterfactual where statins are only available

for those who already have been diagnosed with a CVD (S = 3).

In first place, panel A presents the value of the drug taking into account

individuals’ utility. In this case, they compare their expected utilities under the

current state of the world, against an scenario where preventive care medication

is not available but that includes a monetary compensation. The amount of such

compensation require to make both expected utilities the same is the willingness-

to-pay. It is on average £5300. By aggregating such amounts36 we are able to

obtain the value of the drug if give an equal weight to all individuals: £79 billion

2005 pounds.

As expected, there is substantial heterogeneity on the required compensa-

tion. Figure 3.16.A presents its distribution according to the current health state

of individuals. Figure 3.16.B shows that valuation is heterogeneous along many

dimensions apart from gender. It shows the value of the intervention across age

for a selected set of characteristics, leaving all the other state variables constant.

It does depend on CVD-risk and health status, but also on the main drives of

financial gains: income (education level in the graph) and assets. A remarkable

result to discuss is that while the gains are monotone on CVD-risk index, that is

not the case for assets. The reason for this is the existence of a bequest motive that

depends only on such variable.

36ELSA sample is weighted according to age and gender in order to obtain a figure that is repre-
sentative of England’s population aged 53 and older by 2004. Notice that this procedure implies an
utilitarian welfare function.
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Figure 3.16: Heterogeneity on the compensating variation for primary prevention of CVDs
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The estimated value can be compared with a QALY based equivalent. Panel B

of the table present the total amount of QALYs gained if we simulate the lives of all

individuals considered in Panel A until their death, weighting their contribution

in order to be representative on England’s population in 2004. In total, nearly 3.1

million QALYs would be obtained through all the remaining years of life if we

compare the current progression of health with a counterfactual without access to

primary prevention statins. Shiroiwa et al. (2010) estimate the willingness-to-pay

per QALY in the UK on £23.000, which is between the cost-efficiency threshold

used by the NHS as a reference for the value of each QALY (£20 to £30 thousand).

The total value of the drug would be between Â£61 to Â£92 billion. Hence, the

compensating variation estimate would be nearly 12% higher with respect to the

£23 thousand value per QALY.

Nevertheless, the most common economic evaluation approach for health is

the cost-effectiveness analysis, presented in panel C. Details on how QALYs and

costs are computed is presented in Appendix 3.C, following Ward et al. (2007) who

did a systematic review of the cost-effectiveness of statins for primary prevention

of CVDs using UK data. In terms of life years gained (LYG) and QALYs gained,

estimates are smaller than to those presented by Ward et al. (2007). Undiscounted

estimate for ICER with 50% non-compliance37 is of £4641 while it is around £10.000

in Ward et al. (2007) for people of such age and with a compliance rate of 65% after

2 years and of 50% after 4 years. The ICER is normally interpreted as the amount

of money required to obtain 1 QALY. If compared with NICE threshold of £20.000,

this is a cost-effective treatment.

37Non-compliance refers to those individuals who are prescribed but do not take the drug. Here I
assume that for each person prescribed and who takes the drug, there is another who does not take
it. Effectively, this doubles de costs of prescription per patient. Discounting under usual rates from
medical literature has little impact on the estimates, for this reason is not presented.
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Table 3.6: The Value of Statins for Primary Prevention of CVD at age 53

Male Female Both

Panel A: Compensating variation by 2004/05 (Wave 2)

Required compensation (thousand £) (mean) 5.7 5 5.3

Required compensation (million £) (sum) 38965 40407 79372

Panel B: Total gains:

Total gained QALYs (millions) 1.1 2 3.1

Value if each QALY is worth £20.000 (million £) 21729 40019 61748

Shiroiwa et al. (2009): WTP of £23.000 QALY (million £) 24988 46022 71010

Value if each QALY is worth £30.000 (million £) 32593 60029 92622

Panel C: Cost-Effectiveness:

Undiscounted ICERs:

1 Life Year Gained 1890 1312 1508

1 Quality Adjusted Life Year (QALY) Gained 2699 1900 2172

Undiscounted ICERs with 50% non-compliance:

1 Life Year Gained 3865 2893 3221

1 Quality Adjusted Life Year (QALY) Gained 5518 4187 4641
Notes: Own calculations. Panel B is based on 41028 simulated individuals. The initial sample replicates ELSA wave 2 age-gender

distribution.

In order to calculate the number of QALYs gained, it was only required to

use the health component of the model. In this respect, the only difference with

traditional analysis is the inclusion of the prescription equation. However, we can

take advantage of the economic side of the model to add value to this exercise. The

ICER definition in Equation 3.16 allows to approximate the cost-per-QALY gained,

hence the same exercise can be used for any other variable, in particular labour

supply variables. Table 3.7 presents such exercise. According to it, with every

1000 QALYs gained, approximately 1.8 individuals who would participate in the

labour market one year in the observed state of the world, would not do so in a

world without statins for primary prevention. The mean reason for this is that risk

averse individuals might reduce their labour intensity if there is a less risky future

ahead. An additional effect is that some individuals shift their labour supply in

the intensive market as well: the treatment implies that some individuals decide

to change their decision of participate part or full time. The last consideration

is the productivity effect of statins. As part of the model estimation, CVDs were
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found to impose a penalty of 30% on wage per hour. The table shows that with

the treatment it is possible to avoid the burden of such penalty and increase wage-

per-hour in £.3 per QALY gained. This result is enough for offsetting reduced

part-time participation for men.

The result is that £1972 per year will be produced for men and of £17 for

women. Population-wise, the net effect is an increase of £684 . Thus, if it costs

£4641 to produce 1 QALY, it will come with £684 which is a potential source of

income for the health system.

Table 3.7: Labour market implications of primary prevention

Male Female Both

Undiscounted effect on labour supply per 1 QALY gained

Persons working per year .089 -.049 -.0023

Persons working FT per year -.022 -.065 -.05

Persons working PT per year .11 .016 .048

Working Hours per week 1.3 -2.3 -1.1

£ from yearly labour-income 1972 17 684
Notes: Own calculations. Panel B is based on 41028 simulated individuals. The initial sample replicates ELSA wave 2 age-gender

distribution.

3.8.2.1 Bequest motive and the Value of a Statistical Life (VSL)

A final element for discussion is the interpretation of previous results as a

willingness-to-pay estimate. As discussed before, in this model difference between

life and death is based on the bequest motive. This is a central difference with re-

spect to value-of-life literature that traditionally calibrates this difference using

occupation-based estimates of the value of a statistical life. Table 3.8 presents an

equivalent exercise for the simulated dataset in 2004/05: which is the maximum

amount of money that an individual would give up in order to attain a reduction

of 1/1000 on the odds of death for the rest of his life? The average is around £1050,

or £1582 for individuals younger than 60. This implies a VSL of £1.05 million, or

£1.582 million for those aged 60 or younger.38 Such figure is similar to the average

value of preventing a casualty in 2004 estimated by the Department for Transport

in the UK, £1.4 million (DfT, 2005). However, is below VSL estimates for the UK

38Willingness-to-pay for risk reductions is not linear, this is just a standard normalization of the
estimates in the VSL literature.
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derived from risk-compensating premium in wages. Following Viscusi and Aldy

(2003), the implicit VSL from Sandy et al. (2001) is of £7.65 to £99.6 in 2005 prices.39

Thus, this paper presents a lower bound of the willingness-to-pay measure that

would be obtained under such literature.

Table 3.8: The Value of a Statistical Life (VSL)

Male Female Both

Required compensation (million £) 1.193 .9339 1.05

Required compensation (million £), age ≤ 60 1.875 1.337 1.582
Notes: Own calculations. Based on a counterfactual reduction of 1/1000 on the odds of death for the remaining life for a

simulated sample of individuals that replicates ELSA Wave 2 age-gender composition.

While the model design implies a VSL, it is still possible to use (Hall and

Jones, 2007) strategy and introduce a constant to Equation 3.7, which plainly

would represent the difference on utility between of life and death in any given

period. This one can be calibrated it in order to match a particular VSL value.

Figure 3.17 presents the resulting average value of statins under different implied

VSL. The point on the lower left is the present estimate. It shows that the value of

the treatment greatly depends on such figure, and after a £10 million figure, the

relationship is almost linear.

39$5.7 - $74.1 millions, 2000 USD. Translated into 2000 £using an exchange rate of 1.51 £/USD.
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Figure 3.17: Simulated Labour Supply under SPA=60 and SPA=65
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3.8.3 Retirement age and the value of preventive care

One of the central implications of the model presented in this paper is that the

value of a medical innovation depends on the institutional arrangement of a soci-

ety. Specifically, the model considers the role of social protection when considering

non-labour income as a function of retirement age in Equation 3.12. As discussed

when the equation was introduced, there are two retirement regimes for women

in the model. This is because the 1995 Pensions Act implied a radical increase on

retirement age for women during our study period, from age 60 to age 65 depend-

ing on the date of birth. A natural question is that given everything else equal,

women from these two generations value differently the introduction of statins for

primary prevention.

In other to answer this question, the value of statins is computed for women

considering both retirement regimes separately. For this, a counterfactual scenario

is constructed: all simulated women in wave 2 are switched to the new 65-years-

old standard pension age.40 Figure 3.18 presents the simulated age profiles for

40All women aged 52 and over at wave 2 would be eligible for the former retirement regime
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labour market participation under both scenarios. It shows that the model predicts

an increase on full-time labour supply participation after the age of 60 due to this

retirement-age reform. In total, there is an increase of 59.26% in participation in

the labour market between ages 60 and 65 .

Table 3.9 presents the calculated value of statins in both scenarios. The first

column shows results under the regime applicable to women in wave 2, and the

second the counter-factual scenario. First, willingness-to-pay is slightly higher

in the 60-years-old SPA regime than in the new alternative, but there are extra

gains of 22 times of the income produced when obtaining 1 extra QALY with the

medication.

Figure 3.18: Simulated Labour Supply under SPA=60 and SPA=65
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Table 3.9: The Value of Statins and Retirement Age

Female SPA=60 Female SPA=65

Panel A: Compensating variation by 2004/06 (Wave 2)

Required compensation (million £) 40407 39918

Panel B: Undiscounted effect on labour supply per 1 QALY gained

1 person working per year -.049 -.0055

1 person working FT per year -.065 -.06

1 person working PT per year .016 .054

1 Working Hour per week -2.3 -1.3

£ of yearly labour-income 17 399

Notes: Own calculations based on 22720 simulated individuals that replicates ELSA Wave 2 age-gender composition.

3.8.4 Counterfactual technology scenarios

Our analysis above depends crucially on the evolution of CVD-risk index and

medication prescription when individuals are at-risk of developing CVDs (S=2).

With the model we can analyse how the compensating variation would change if

we modify the two basic pieces of this process: how effective is the drug and how

likely is that one gets a prescription. These two channels allow for an improvement

on health of the population from different perspectives. The first one is a pure

medical innovation result, while the second can be attained under government

policies.

With the model we can consider alternative values for the effect of statins in

the CVD-risk index. Figure 3.19.A presents the average required compensation

for not having access to the drug (vertical axis) according to its effect on reducing

cholesterol (horizontal axis). The vertical line corresponds to the value ω4 (Equa-

tion 3.5 calibrated from RCTs discussed in section 3.7.1.2, and the corresponding

average compensation is the value presented in Table 3.6 for both men and women.

It shows that the value is increasing on the effect of the drug (a more negative ω4),

as expected. If there is a drug that doubles current statins efficiency, its value will

be 69% larger than the estimated one for statins. This calculation involves both the

drug effect on people at-risk of CVD and those who already survived at least one

of such events. The diminishing returns are produced by the functional forms of

the latent indexes presented in equation 3.2. As the risk-index H enters exponen-
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tially on the transition probabilities, it implies that a reduction when the index is

high is much more important for cutting the odds of bad health events that when

the index is low.

Figure 3.19.B considers the value under different values of the parameter ζ1

from Equation 3.6. This parameter governs the probability to get a prescription for

statins when regardless of CVD-risk and gender, thus the horizontal axis considers

the derived average probability rather than the value of the coefficient. In order to

consider only the primary-prevention extent, parameter ζ3 is adjusted in order to

keep the probability of prescription constant for those who already suffered a CVD

event. A striking result is that increasing the probability to access a prescription

might increase the value of the drug notoriously. For instance, the model predict

that the value of a coverage of nearly 80% for those at-risk of CVD events would

be higher than a potential drug that is more than twice as effective in reducing the

CVD-risk index. This is a suggestive result, because the model does not considers

differently those individuals who are at-risk but should not take statins.41 More

informative is to consider an impact on prescription probability similar to the

increase obtained in the quality and outcomes framework for individuals living in

small relative to large GP practices. A 3 pp. increase on the odds of prescription

is obtained (see Appendix 3.F). And additional advantage is that the model is

estimated taking into account his exogenous variation. Then, an increase of 3 pp.

on the probability to be treated results on an increase on the value of the treatment

of 24.6%. This implies that at such point there is an elasticity of the value with

respect to the prescription probability of 0.59.

41Because they interact with other medication increasing the risk of
adverse effects. See https://www.gov.uk/drug-safety-update/
statins-interactions-and-updated-advice-for-atorvastatin.

https://www.gov.uk/drug-safety-update/statins-interactions-and-updated-advice-for-atorvastatin
https://www.gov.uk/drug-safety-update/statins-interactions-and-updated-advice-for-atorvastatin
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Figure 3.19: Counterfactual technology scenarios
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B. Value as a function of the average probability of prescription in (S=2)
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3.9 Conclusion

This paper introduced a framework for assessing the economic benefit derived

from the adoption of a health-care technology. It introduces a life-cycle model for

savings and labour supply decisions into a Markov health progression model.

It is found that statins therapy for primary prevention, a drug for reducing

the odds of CVD onset, had a pure economic value of £79 billion by 2005. This

figure is 12% higher than the value that would be obtained if in the calculation of

benefits we only to consider a rate of £23.000 per QALY gained, which represents

the willingness-to-pay per QALY in the literature.

As is widely accepted in the clinical literature, primary prevention is cost-

effective in comparison with NICE standards. In terms of the drug, it costs £4641

to gain one QALY (undiscounted, 50% non-compliance), but by doing so, it in-

creases labour-income by £684 per year. Such additional gains depend on the

trade-off between the direct avoidance of CVD events and a reduction in the pre-

cautionary motive for asset accumulation. This is reflected in the sharp differences

by gender; the labour income gains of using statins for primary prevention are

£1972 per year for men and £17 for women. The role of a recent retirement age

increase for women was also considered, and almost no difference was found in

the value of the drug.

A relevant question is the relevance of the economic benefit of a health in-

tervention when considering its adoption. In particular, labour income gains will

also be reflected in extra taxable income, which should be deduced from the cost

figures. Let us consider a back-of-the-envelope calculation assuming that the total

net of tax £684 comes from a pure increase in taxable income. For an individual

subject to deductions of 25%, assuming than half of those resources are directed

to the health service, the total gains for the health system would be of £327.
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3.A Data profiles and cohort effects

3.A.1 Adjustment procedure

First, Equation 3.19 is estimated from the data, where Y corresponds to the rele-

vant variable to be adjusted, for individual i at period t living in region r. Second,

the predicted effects of unemployment, family size and cohort are removed from

the data, while keeping the predicted values from the age-health status interac-

tions. Third, the predicted effect of an unemployment rate of 5, a family size of

2 and of cohort 1946 are added to all observations. Notice that cohort effects are

allowed to be different from age 70 onwards. The reason for this is to avoid high

levels of participation on the labour market after SPA.42

Yitr =
3

∑
s=1

80

∑
k=50

dks
itr × (ageit = k)× (Sit = s)

+
F

∑
f=1

d f
itr × ( f amsize = f )itr + ΠU ×Utr

+
C

∑
c=1

dC1
itr × (cohorti = c)× (age < 70) +

C

∑
c=1

dC2
itr × (cohorti = c)× (age ≥ 70) + uitr

(3.19)

Figure 3.20 illustrates how profiles are affected by this procedure. The graphs

on the left show that it induces a notorious divergence on labour participation

after SPA. This is driven by the difference between cohorts presented on the right

graph: younger generations are more likely to be working. Also, notice that the

adjusted profile is a normalization with respect to a given cohort at a specific

time. Thus, if we consider a young cohort as the base, the procedure implies a big

difference at old ages. I have consider this cohort as the benefits of a reduction of

CVD-risk is aimed towards individuals below the SPA.

42Younger cohorts are observed to work more as their are observed before SPA, which implies
an upward correction on those cohorts which having retired for most of the observed time. In
practice, without the differential cohort effect by age, nearly 20% of individuals aged 80 and over
are suggested to be working while the observed figure is almost 0%. This is attenuated with this
strategy, as shown in Figure 3.20.
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Figure 3.20: Observed Income Profiles by Health State
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The most affected variable is assets. Figure 3.21 shows how a hump-shape

average is generated if no correction is applied to the data. However, if we group

data by birth cohort, an increasing pattern is observed. Hence, the correction has

a strong implication on the profile. One the reasons behind is the strong cohort

effects on housing ownership in the UK, described by Banks et al. (2012): older

cohorts are notoriously less likely to own their dwelling with respect to younger

ones due to a Government policy that allowed individuals to buy the council house

that they were renting. However, as discussed in Appendix 3.A.2, the pattern is

also present in non-housing assets. This is central as the value of assets late on life

identify the bequest motive with is the main driver of the statistical value of life

in the drug value calculations. If individuals rapidly de-accumulate at the end of

life, it means that the bequest motive should be small.
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Figure 3.21: Assets by Birth Cohort
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Notes: ELSA data profiles for individuals aged 50 to 80. Cohort, unemployment and

family size effects were removed in the ‘adjusted’ series.

3.A.2 Assets

Assets include all liquid and non-liquid financial positions reported by the house-

hold excluding pension wealth. The main reason for this is that its returns are

already included in the non-labour income equation (Eq. 3.12). Also, before 2015

it was not possible to borrow against pension-wealth before age 55 without paying

a tax of 55%. After it, individuals can get up to 25% tax-free. In this model, as

pension release is not the main focus of the analysis, it is assumed that individuals

cannot access to their pension pot at all.

An important element of interest in housing. One of the potential reasons

for the increasing pattern of assets with respect to age could be house prices.

If housing wealth increased notoriously during all the decade for all cohorts, I

might be confounding the savings pattern with the commercial hike on prices.

Figure 3.22 presents assets measures both with and without housing, before and

after adjusting them from cohort and other variables effects. In both cases the
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hump-shape of assets is transformed into an age-growing trend, meaning that

both housing and non-housing assets are corrected.

Figure 3.22: Assets Correction
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(b) Excluding housing
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3.A.3 Non-Labour Income

Non-labour income is the total non-financial household income minus employ-

ment and self-employment earnings of the respondent. Total household income in

ELSA includes employment, self-employment, benefits, state pension, annuities or

private pension, assets income and others. Asset income is not included as asset’s

law of motion equation (Eq. 3.9) captures capital gains directly, and not as a part

of the non-labour income equation (Eq . 3.12). In ELSA, asset income includes:

interest from savings, TESSA, ISA or National Savings; income from Bonds, PEPs,

Shares, Trusts, Bonds and Gilts. Also, it considers gains from renting property, or

returns from businesses and farms.

The non-labour income process of this article makes several assumptions on

its functional form. This reduce-form equation roughly summarizes the benefits

and retirement system in place.43 This appendix explains some of them in detail.

1. To be working has different returns before and after SPA: ELSA data shows that in

aggregate terms, retirement age drastically change the profile of labour and

non-labour income. Part of this can be backed-up with the design of benefits

system: state pension replace other type of benefits as job-seeking allowance

or income support. Also, the fact that couples retire together also explains

why after SPA there is no difference on non-labour income.

2. EDUC variable only affects the mean of both working and non-working profiles:

While potentially many aspects of non-labour income might differ accord-

ing to past economic background, evidence shows that profiles are almost

parallel for different levels of EDUC.

3. Health states do not influence the profiles: This is probably the most surprising

element of this model, however it is a result of the data. As can be seen in

the figure, there is almost no difference on the profiles across health states.

Although not presented, similar results are found for separate working and

not-working profiles.

43See Bozio et al. (2010) for a detailed exposition of the main characteristics and changes of the
system.
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3.B Matching GP practices and ELSA respondents

Figure 3.23 presents an example for a postcode in London (NatCen office). The

first 8 practices are within 1 Km of the postcode while 9th and 10th are around

1180 meters from it. As a result, while the weight for the first eight is 1
8+2/1.18

, for

the last two are 1/1.18
8+2/1.18

.

Figure 3.23: ELSA and QOF linkage example
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The goal of this procedure was to stablish a link between ELSA respondents

and nearby GP practices. This is possible as for waves where there is a nurse visit,

ELSA has a record of the postcode of residence of the respondent. For other waves,

the last available residence postcode was assumed. Under this criteria for 97% of

the respondents (present in any ELSA wave) there is a valid postcode. For the

case of GP practices, their postcode is publicly available in the directory epraccur,

published by the HSCIC. As a result, it is possible to calculate the distance between

a given postcode centroid and all its nearby practices’ postcode centroids. Such

calculations were made using the geodist routine (Picard et al., 2012) for STATA

13. This procedure was carried out in NatCen’s secure data enclave in order to

protect confidentiality of ELSA respondents. Finally, it was possible to provide a
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measure for 87% of the respondents.

Table 3.10 tells us that the example in the data description is far from the

usual case as expected given that it is based in central London. In general within

1 Km there is only 1 or 2 GP practices, a number that can go up to 19 in densely

populated areas. Moreover, Table 3.11 shows that the mean distance to the closest

practices is around 700 to 1200 meters, but it can go up and beyond the 15Km

boundary in some rural areas. The most common distance to the furthest practice

is beyond 3.7 Kms, if available. This can be. Back in Table 3.10, we can see that

the average scenario is that the 10 closest practices are located within 3 Km. This

is also reflected in Figure 3.24, which is a graphical version of Table 3.11.

Figure 3.24: Distance to the nearest GP practice
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The selected weighting of practices’ information is based on the previous de-

scriptive information. The goal is to give more importance to the nearest practice

but still considering the possibility of choice when it is available. Figure 3.25

presents the density of the 10 closest practices and the weight according to dis-

tance. By setting it fix to 1 Km, I am assuming that individuals will have a similar

preferences for the average two practices that are quite close to their home, but

will still consider those nearby. On the other hand, in rural areas, a considerable

more weight will be given to a practice in 5 Kms rather than 10 Kms.
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Given that all the elements (maximum distance, number of practices and

weights) are arbitrary, I considered several alternative. Figure 3.25 shows how

the weighted average list size measure varies under the different elements. While

there are differences, in general all of them are highly correlated.

Figure 3.25: Weights allocation
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Table 3.10: Number of GP Practices Given a Distance Buffer

Practices

within

Mean Median Max

1 Km 1.735 1 19

2 Km 5.264 3 50

3 Km 10.228 6 98

4 Km 16.468 9 151

5 Km 23.954 13 207

Source: own calculations based on ELSA respondents’

postcode and epraccur GP practices’ postcode.
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Figure 3.26: Alternative criteria

Table 3.11: Descriptive Statistics of the Distance to the 10 Nearest GP Practices

Practice

Number

Number

Available

within 15

Km

Mean

Distance

Percent 25

Distance

Percent 50

Distance

Percent 75

Distance

Minimum

Distance

Maximum

Distance

Closest 8878 1.171 0.408 0.714 1.269 0 14.886

2 8865 2.035 0.744 1.244 2.404 0 13.502

3 8823 2.680 1.027 1.686 3.475 0 14.916

4 8779 3.228 1.278 2.124 4.355 0.086 15.020

5 8706 3.610 1.484 2.446 4.934 0.143 15.878

6 8574 3.927 1.686 2.790 5.467 0.143 15.690

7 8467 4.233 1.869 3.118 5.892 0.143 15.833

8 8318 4.433 1.999 3.339 6.104 0.143 15.874

9 8178 4.597 2.149 3.526 6.358 0.143 15.963

10 8051 4.764 2.282 3.750 6.579 0.143 15.802

Source: own calculations based on ELSA respondents’ postcode and epraccur GP practices’ postcode.
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3.C Cost-effectiveness details

Ward et al. (2007) summarised the main models for statins in the literature and

developed a Markov model for the NHS framework, the ScHARR model. In order

to provide a comparison as close as possible, I will follow their costs and benefits

calculations. In their model, individuals are heterogeneous on their initial CHD-

risk (CVD without stroke or TIA) and gender. Every year patients can transit into

several CVD events or death, until they reach age 100. Age-dependent transition

probabilities between those states are derived from the Health Survey of England,

which is the same base population as this study. It is assumed that health-care or

life-style advice do not differ between treatment and control scenarios. Also, that

side-effects or the odds of adverse events associated to the medication are negli-

gible. Both assumptions are also in place in the model presented in the previous

sections.

With respect to the health-state utilities U,44 baseline levels were estimated

based on the EQ-5D questionnaire and CVD-states taken from the literature. Given

that Ward et al. (2007) considers several CVD illness separately while this model

only have one CVD event state, an adjustment is required in order to obtain costs

and associated utilities. I will get a single number by weighting according to the

their figures on the distribution of primary events. Given these considerations,

Equations 3.20 and 3.21 show how utility values and costs are assigned in the

model in order to estimate the cost of gaining one QALY. One drawback is that the

present model does not distinguish deaths from CVDs or other causes, as a result

it is imposed that only deaths of previous CVD-survivors are linked to a different

cost. This is likely to underestimate the true cost reduction of the intervention.

A final cost to consider is the value of statins treatment. At 2005 prices, Ward

et al. (2007) costs of prescriptions are £281 per year, £127.5 for monitoring the first

year and £33.42 for the subsequent ones. Their estimates are based on the mix of

statin molecules used in the NHS by 2003, and of the usual tests required by guide-

lines at that point. These figures do overestimate the cost of the treatment as the

mix of molecules and the intensity of generics prescriptions changed notoriously

44These utilities are different to the output of the utility function presented in the model as they
are not designed to represent economic choices but quality of health. See footnote 20 for more
details.
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during the past decade. Nevertheless, these figures are going to be preserved in

the present analysis in order to make both models comparable.

For this exercise, for both scenarios, with and without statins for primary

prevention, a group of individuals is simulated without attrition under the con-

ditions of ELSA wave 2 from age 50 until their death or until they are 100 years

old. Initial conditions and shocks are the same in both groups, the sole difference

is the governing prescription process. Given these datasets, utilities and costs are

aggregated in each scenario. The resulting figures provide the values required for

Equation 3.16 in the two-years cycle. Notice that apart from utilities, which give

the QALY estimates, we can aggregate pure life years (LY), or any other outcome

as number of working hours of labour-income.

Ut = 2 · (1.060− 0.004 · aget) · $t · (St 6= 4) (3.20)

$ =

 1 if St ∈ {1,2}

0.77 if St = 3

costt =


6980 if St = 3 & St−1 ∈ {1,2}

1400 if St = 3 & St−1 = 3

4000 if St = 4 & St−1 = 3

(3.21)

One clear limitation of ELSA data is that prescriptions are patient reports,

hence we do not know if those who are not reporting it were prescribed with

it. Also, we cannot infer the actual compliance of those who report to be taking

the drug, as discussed in section 3.3.1.3. In order to understand its effect on the

estimates, I will consider an scenario with a 50% non-compliance rate, the most

extreme case presented in Ward et al. (2007), which effectively means than the cost

of prescription is doubled.

Ward et al. (2007) performed a systematic literature review on costs and utili-

ties for major CVD events, with emphasis on studies which are based on UK data.

Their estimates are presented in Table 3.12. However, a major difference with this

study is that separate states are defined based on the primary CVD event suffered

by the patients. Hence, it is necessary to collapse their figures into a single number

per state in order to use the same costs and utilities. This is done by weighting
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each state according to the proportion of individuals who suffered it as primary

event. Table 3.13 present such results by gender and age. Given these numbers, an

utility factor of 0.77, a cost of £3490 for the first year and £700 for the subsequent

ones are assumed. Deaths of CVD survivors will be given a cost of £2000.

Table 3.12: Ward et al. (2007) utilities and costs per health-state

Health States
Stable angina Unestable

angina
MI TIA Stroke

Panel A: Utilities for Health
Utility factor 0.808 0.77 0.76 1 0.629

Panel B: Costs
First year 175.8 452.3 4572.5 1093.8 8271.3
Subsequent years 175.8 175.8 175.8 271.4 2223.6
Fatal event 1198.6 7238.1

Notes: Based on Table 55 (2005 prices) and Table 61 of Ward et al. (2007).

Table 3.13: Ward et al. (2007) utilities and costs per age

I. Distribution of primary events for non-

fatal post-CVD events
II. CVD-state utility and costs

Gender Age
Stable

angina

Unestable

angina
MI TIA Stroke

Utility

factor

First

year

Subseq.

years

Fatal

event

Males 45 28.7 10 37.4 7.2 16.6 0.7696 3257.6 522.4 1321.4

55 37.2 8 36.2 4.3 14.2 0.7696 2978.4 470.5 1123.7

65 31.2 12 32.1 7.5 17.2 0.7716 3081.6 535.2 1388.8

75 29 12.4 30.5 4.8 23.3 0.7562 3481.4 657.5 1835.1

Average 0.7716 3481.4 657.5 1835.1

Females 45 34.1 11.9 26.3 4.6 23 0.7577 3269.1 651.0 1807.4

55 41.1 8.9 21.8 8.2 20 0.7741 2853.3 593.2 1554.3

65 33.4 12.9 25.7 4.7 23.4 0.7587 3279.1 659.6 1848.4

75 34.3 14.6 18.7 6.9 25.4 0.7605 3157.8 702.3 2013.5

Average 0.7741 3279.1 702.3 2013.5
Notes: Panel I is based on Table 51 of Ward et al. (2007), and Panel II are derived using utilities and costs presented in Table

3.12. Each figure from such table is multiplied by the weights provided in Panel I for each age and gender. Costs are in 2005

constant prices.

3.D Model Solution and Estimation details

3.D.1 Detailed solution

Calculating the expectation in Equation 3.14 in each period below T + 1 involves

solving several integrals as shown in Equation 3.22, a problem that is solved by
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both numerical and analytic methods. This section discuss them in more detail.

Vh = argmax
(c,l)

u(c, l) + βEe′ ,S′ ,υ′ ,ε′h

[
V′(A′(c, l), H′(h, e′), s,Υ′(υ′); X)

]
(3.22)

Vh = argmax
(c,l)

u(c, l)

+ β(1− p4,S(H(h))) ·
3

∑
s=1

ps,S(H(h))
∫

e′

∫
υ′

∫
ε′d

V′(A′(c, l), H′(h, e′), s,Υ′(υ′); X,ε′h) · f (ε′h)dε′h · f (υ′)dυ′ · f (e′)de′

+ p4,S(H(h)) · b(A′(c, l))

First, as ε′h follows an extreme value type I distribution, the most internal

integral can be analytically expressed in terms of the value of V ′1 and V ′0.45 Second,

the value function conditional on the state values is calculated over a grid of the

potential permanent income Υ′ that guarantees that each point is equally feasible

(Tauchen discretisation of the AR(1) process). Third, the most outer integral is

solved numerically by averaging over an equi-probable grid of shocks e′. Fourth,

the analytical transition probabilities are calculated conditional on the choice h.

Once the expectation is solved, the resulting Vh are functions of optimal (c, l). This

optimization problem is discretised over 25 points for c, on top of the 3 points of l.

A final consideration is that as V(·) is a function of continuous state variables A,Υ

and H, in practice the function is evaluated over a grid that covers the potential

values of such variables, conditional on the discrete states, and then interpolated

when called.

Some details about the implementation of the solution:

• The structural estimation was programmed in JULIA 0.4.

• Linear interpolation of the Emax functions

• Grid on A: 24 points, log-spaced around 0.

• Grid on H: 10 points, constant-spaced

• Grid on log Υ: 8 points, Tauchen version of the AR(1)

45The advantages and limitations of dynamic discrete choice problems where there are taste-
shocks distributed as Extreme Value Type-I is discussed in detail by Arcidiacono and Ellickson
(2011).
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• Optimal consumption and labour are derived after populating a grid of 25

points for consumptions times the three labour-supply options.

• Optimization algorithm (estimation): Subplex (from NLopt), derived from

Nelder-Mead simplex.

3.D.2 Detailed steps for the structural estimation of the model

1. Initial steps

• EDUC and CVD risk index were constructed

• Data profiles are derived as described in the data section

• Initial values for the simulations are obtained for those aged 50 to 53

in waves 2 and 4, as we require biomarkers information. See Appendix

3.D.3 for more details.

• Potential labour income per hour is imputed for those not working us-

ing the heckman selection model presented in Appendix 3.D.3

2. Estimate Markov process independently

• For a given set of parameters, a dataset is simulated as discussed in

Section 3.D.4. As in this model choice and transition probabilities can

be computed directly from the functional forms, there is no solution

step prior to the simulations.

• Matched moments. Age cells go from 53-54 to 79-80 for the case of the

CVD-risk index and medication intake, and from 53-54 to 97-98 for all

the other variables.

(a) Average CVD-risk index, the proportion of individuals in each

health state, and the proportion under medication.

i. For a given age cell (ex. all individuals aged 61 to 62 years old)

ii. For a given age cell by health state (ex. all individuals aged 61

to 62 years old, who have been diagnosed with a CVD)

iii. For a given age cell by waves’ groups: 1-2, 3-4, 5-6 (ex. all indi-

viduals aged 61 to 62 years old, who were interviewed either in

wave 3 or 4)
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iv. For a given age cell by education level (ex. all individuals aged

61 to 62 years old, who have no formal qualification)

(b) Average CVD-risk index for a given age cell by medication status

(ex. all individuals aged 61 to 62 years old, who report to be under

lipid-lowering medication)

(c) Average CVD-risk index and the proportion of individuals under

medication

i. For a given age cell by size of the nearby practice (ex. all indi-

viduals aged 61 to 62 years old, who live in an area where the

average practice size has been classified as small)

ii. For a given age cell by size of the nearby practice and waves’

groups: 1-2, 3-4, 5-6 (ex. all individuals aged 61 to 62 years old,

who live in an area where the average practice size has been

classified as small, and who were interviewed either in wave 3

or 4)

(d) Variance of CVD-risk index for a given age cell

(e) Autocovariances of CVD-risk index for a given age cell, of order 2

and 4 (ex. covariance of H at age 61 with H at ages 57 and 53),

provided that an individual is observed as many times as required.

(f) Elements of the state transition matrix, for all age cells (ex. propor-

tion of those aged 55 who were in risk of CVD -S = 2- two years

ago, and by age 57 were diagnosed with a CVD -S− 3-)

(g) Average CVD-risk index according to current and future health sta-

tus in 4 years. For example, the average for those who currently are

in. There are 9 possible combinations.

3. Obtain starting values for the income model parameters

(a) A linear fixed effect model equivalent to equation 3.12 was estimated.

As the model depends on earnings, it was approximated with the ob-

served median labour income during all waves prior to SPA.

(b) Fixed-effects and idiosyncratic residuals were predicted, and then re-

gressed into EDUC index in order to estimate persistent differences



130 Chapter 3. On the economic value of preventive care

(c) Parameters from Equation 3.11 were pre-estimated using OLS. A first

regression takes into account EDUC, to have had a CVD event ever, and

a constant. From such regression’s residuals, an autoregressive process

was fitted in order to get an approximation to the persistent innovations

process.

(d) As the income process involves selection due to participation, these

parameters are also included into the main model estimation.

4. Jointly estimate the utility function parameters and income model.

• Part of the parameters are calibrated as the model and data used do not

allow for identification of all them. Bequest motive penalty was set to

8, β = .9604 (two-years equivalent of the common annual rate 0.98), and

interest rate r = 0.030225 (annual rate of r = 0.015).

• For a given set of parameters, the model is solved as described in Sec-

tion 3.D.1. Then, specific state-space policy rules are used for simulating

a dataset as discussed in Section 3.D.4

• Matched moments. Age cells go from 53-54 to 97-98 for the case of

assets, and from 53-54 to 75-76 for all the other variables.

(a) Average assets, labour (if working) and non-labour/financial in-

come; and the proportion of individuals in each health state, work-

ing part-time, working full-time.

i. For a given age cell (ex. all individuals aged 61 to 62 years old).

Average assets at age 53 is not matched as it is considered a

starting condition.

ii. For a given age cell by health state (ex. all individuals aged 61

to 62 years old, who have been diagnosed with a CVD)

iii. For a given age cell by waves’ groups: 1-2, 3-4, 5-6 (ex. all indi-

viduals aged 61 to 62 years old, who were interviewed either in

wave 3 or 4)

iv. For a given age cell by education level (ex. all individuals aged

61 to 62 years old, who have no formal qualification)
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(b) Average assets and non-labour/financial income for a given age cell

according to being working or not (ex. all individuals aged 61 to 62

years old, who are working)

(c) Variance of labour-income for a given age cell

(d) Autocovariances of labour-income for a given age cell, of order 1 to

4 (ex. covariance of income at age 61 with income at ages 59, 57, 55

and 53), provided that an individual is observed working as many

times as required.

5. Calculate the compensating variation

• The treatment implies a different effective discount factor for the

counter-factual as the odds of survival might change. Hence, in or-

der to calculate the compensating variation (π), Equation 3.15 has to be

computed.

• Equation 3.15 is solved by considering a grid of π between -50 and 50

3.D.3 Deriving Initial Conditions

An essential element of the estimation procedure is to obtain initial conditions of

the state variables in order to perform the simulations. In a nutshell, observed

data for individuals ages 50 to 53 in waves 2 and 446, for whom there is informa-

tion on all variables, is randomly replicated until the desired number of simulated

individuals. While this is straightforward for most variables, it is not the case for

potential labour income as it is not observed for those who do not work. Given

that the non-inclusion of individuals who are not working would generate a bi-

ased sample, I imputed wages based on a cross-sectional auxiliary income model.

In order to take into account selection, a traditional Heckman selection model was

implemented. Explanatory variables for income involve a comprehensive set of

measures with respect to education, demographics, cognitive skills and health,

and whether or not the respondent’s partner is sick as an excluded variable in

46There are 589 respondents that meet these ages, and 322 (55%) for which there information on all
variables. The main sources of missing data are biomarkers information (172, 30%) and assets (135,
23%). Lack of data for the first variable is not associated to the education level, but it significantly
negative related to the second. Data for wave 6 is not considered as there are few individuals within
the age range and some of the variables used for the income imputation model are not available.
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the participation equation. Estimated coefficients for the auxiliary model are pre-

sented in Table 3.14 for men, and in Table 3.15 for women.

Table 3.14: Initial labour income per hour:males

OLS Sel. Model

(1) (2)

Log-Wage per hour Log-Wage per hour

_ Log-Wage per hour Is working

Age 0.006 0.006 0.006

(0.019) (0.019) (0.032)

Age finished full-time education 0.055∗∗∗ 0.055∗∗∗ 0.043

(0.013) (0.013) (0.027)

Educ: Some medium qualif. 0.182∗∗ 0.184∗∗∗ 0.144

(0.071) (0.071) (0.114)

Educ: Some high level or above qualif. 0.320∗∗∗ 0.325∗∗∗ 0.319∗∗

(0.074) (0.074) (0.129)

State 2: early signs of CVD 0.008 0.005 -0.179∗∗

(0.045) (0.045) (0.089)

State 3: suffered a CVD -0.172 -0.187∗ -0.954∗∗∗

(0.112) (0.108) (0.150)

Reg. Unemployment rate for the month -0.004 -0.005 -0.058∗∗

(0.015) (0.015) (0.028)

BU total net (non-pension) wealth (1000£ of May2005) 0.000∗∗ 0.000∗∗ 0.000

(0.000) (0.000) (0.000)

Married -0.007 0.002 0.684∗∗∗

(0.052) (0.051) (0.088)

Partner sick (not sick if not have a partner) 0.000 -0.550∗∗∗

(0.079) (0.147)

Observations 1499 1785

Censored Obs. 286

ρ_ε 0.0448

χ2 test on H0: ρ_ε = 0 0.8888

p-val 0.3458

Males aged 50 to 53 years old from ELSA waves 1 to 6.
Standard errors clustered at individual level in parenthesis. This table reports coefficients from

an OLS and and ML Heckman selection model.
Significance: * 10%, ** 5%, *** 1%.
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Table 3.15: Initial labour income per hour: females

OLS Sel. Model

(1) (2)

Log-Wage per hour Log-Wage per hour

_ Log-Wage per hour Is working

Age 0.034∗∗ 0.034∗∗ -0.045∗

(0.017) (0.017) (0.025)

Age finished full-time education 0.034∗∗ 0.034∗∗ 0.049∗∗

(0.014) (0.014) (0.025)

Educ: Some medium qualif. 0.068 0.068 0.485∗∗∗

(0.052) (0.053) (0.087)

Educ: Some high level or above qualif. 0.311∗∗∗ 0.312∗∗∗ 0.762∗∗∗

(0.066) (0.068) (0.114)

State 2: early signs of CVD 0.011 0.010 -0.332∗∗∗

(0.038) (0.041) (0.072)

State 3: suffered a CVD -0.166 -0.169 -0.975∗∗∗

(0.139) (0.152) (0.199)

Reg. Unemployment rate for the month -0.009 -0.009 -0.040∗

(0.012) (0.012) (0.022)

BU total net (non-pension) wealth (1000£ of May2005) 0.000∗∗ 0.000∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000)

Married 0.002 0.003 0.133∗

(0.041) (0.040) (0.076)

Partner sick (not sick if not have a partner) 0.014 -0.392∗∗∗

(0.061) (0.108)

Observations 1656 2177

Censored Obs. 521

ρ_ε 0.0081

χ2 test on H0: ρ_ε = 0 0.0033

p-val 0.9542

Males aged 50 to 53 years old from ELSA waves 1 to 6.
Standard errors clustered at individual level in parenthesis. This table reports coefficients from

an OLS and and ML Heckman selection model.
Significance: * 10%, ** 5%, *** 1%.

3.D.4 Detailed simulation

The goal of the simulations is to generate a dataset that have the same structure

as the ELSA survey in terms of age profiles per wave. This implies that for a

given set of simulated individuals with starting values at age 53, we will need to
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decide when each of them is observed for the first time and for how long are they

observed. In order to do this, the model replicates selection related to age of the

observed data.47 This section explains on detail how the data generating process

accounts for both elements.

Step 1: take initial values and simulate the life-profiles of 10 times the num-

ber of individuals ever observed in ELSA from waves 1 to 6 (14967) from

age 53 until their death for our gender-cohort-education groups. This is

21.620/24.680/21.960 men (without formal education/at most high school/college

or above); 32.340/27.810/15.270 women born before 1954, and 1.060/2.990/1.940

born after such date. For the willingness-to-pay exercises, sample size is equiv-

alent to 10 times ELSA sample. At the end, nearly K=29.772 individuals are in-

cluded in the simulated dataset (almost two times the original ELSA sample). As

we will see, the dataset is simulated twice the required size as some observations

will not be included due to attrition.

Given the starting values and a set of random shocks, simulations operate by

applying the correspondent law of motion of each state and choice variables. Most

of the states laws are motion are straightforward given their functional form. For

instance, for the transition between health states, the difference in shocks drawn

from an extreme value type-I distribution are contrasted with the difference be-

tween latent indexes described in Equations 3.2. For the economic-choices model

the policy rules c∗(t,S, A, H,Υ, h, X) and l∗(t,S, A, H,Υ, h, X), derived from the so-

lution, are used to infer the progression of these choices and the state A.

Step 2: individuals are assigned to be observed by the econometrician. This means

that a given individual is observed at most for 6 consecutive periods, and that the

resulting observed dataset resembles ELSA sampling structure according to age

and wave. This involves deciding when an individual enters and quits the study.

This is attained as shown in Figure 3.27 for males of high level of education in

waves 1,2 and 3. This figure shows the proportion of individuals according to their

age in each wave of ELSA and the simulated dataset. It takes into account both the

initial sampling of the survey and the refreshment samples that are introduced.48

47For example, at age 73 we don’t observe a random sample of the initial individuals at age 53.
We do observed the healthiest and wealthiest ones, which are the one who survive and are more
likely to stay for longer in the survey.

48Given that the data considers individuals from ages 52-53, younger ones are considered to be
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Such process is done separately for the three groups of gender-cohort-education.

Figure 3.27: Age distribution of males by wave in ELSA and the simulated dataset
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For step 2, the censoring of data due to mortality is modelled explicitly by the

model. This is specially important with age, as oldest observed individuals are

likely to be the healthiest of their cohort. The DGP replicates this selection pattern

as ‘weaker’ individuals are less likely to be observed with age as they are more

likely to die prior to be selected to be observed for the first time.

On top of mortality, there is non-random missing information related with

age. This means that for some individuals, despite of being alive, we cannot

observe the value of at least one of their choice or state variables, and that such

event is correlated with age. The reasons for this are assumed to be independent

of other choices and states. The probability of an observation being missing for

individual i in wave w, Pr(Mw
i = 1), conditional on age is estimated outside the

model using a logistic regression and, as shown in Equation 3.23 (Λ(·) is the

inverse of the logistic function), its parameters are allowed to differ by wave and

are gender-education-specific. Tables 3.16 and 3.17 presents the estimates for them.

observed for the first time only when they meet the age criteria.
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Here we assume that individuals are always observed once they are death given

the administrative link between ELSA and ONS mortality statistics.

Λ(Pr(Mi,w;g = 1)) =ψ1,w;g(60≤ agei,w;g < 70)+ψ2,w;g(70≤ agei,w;g < 80)+ψ3,w;g(80≤ agei,w;g)

(3.23)

Table 3.16: Coefficients of missings model: Males

Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Panel A: No Formal Education
Age [60,70) -0.158 -0.039 0.259 0.443∗∗ 0.309

(0.171) (0.175) (0.192) (0.203) (0.236)

Age [70,80) -0.343∗∗ -0.163 0.120 0.433∗∗ 0.399∗

(0.173) (0.174) (0.189) (0.201) (0.233)

Age 80+ -0.174 -0.123 0.193 0.732∗∗∗ 0.697∗∗∗

(0.195) (0.189) (0.203) (0.216) (0.244)

Constant -0.824∗∗∗ -0.405∗∗∗ -0.389∗∗ -0.801∗∗∗ -0.598∗∗∗

(0.138) (0.148) (0.166) (0.181) (0.217)

Observations 1534 1485 1374 1492 1437

Panel B: Up to high school
Age [60,70) 0.001 0.115 0.244∗ 0.382∗∗∗ 0.358∗∗

(0.163) (0.147) (0.145) (0.135) (0.144)

Age [70,80) -0.419∗∗ -0.173 -0.003 0.092 0.063
(0.188) (0.161) (0.155) (0.147) (0.155)

Age 80+ 0.156 0.098 -0.048 0.152 0.163
(0.218) (0.198) (0.200) (0.186) (0.182)

Constant -1.334∗∗∗ -0.950∗∗∗ -0.763∗∗∗ -0.960∗∗∗ -0.844∗∗∗

(0.123) (0.115) (0.119) (0.113) (0.125)

Observations 1498 1564 1588 1927 1922

Panel C: College and above
Age [60,70) -0.144 -0.066 -0.027 0.031 -0.008

(0.185) (0.168) (0.150) (0.144) (0.157)

Age [70,80) -0.074 0.296 -0.029 -0.041 -0.105
(0.215) (0.189) (0.177) (0.167) (0.171)

Age 80+ -0.197 -0.373 0.025 0.127 -0.329
(0.337) (0.297) (0.223) (0.215) (0.224)

Constant -1.662∗∗∗ -1.489∗∗∗ -1.070∗∗∗ -1.242∗∗∗ -0.962∗∗∗

(0.130) (0.127) (0.120) (0.118) (0.138)

Observations 1277 1388 1477 1820 1842
Notes: Coefficients of probability of not observing an individual conditional
on being alive and being observed in at least one previous wave (see Equation
3.23). Standard errors in parenthesis. Significance: * 10%, ** 5%, *** 1%.

The following example illustrates on how the simulation algorithm works.

Figure 3.28 presents a hypothetical simulated dataset. Each cell shows the number
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Table 3.17: Coefficients of missings model: Females

Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Panel A: No Formal Education
Age [60,70) -0.506∗∗∗ 0.205 0.010 0.318∗∗ 0.208

(0.144) (0.144) (0.154) (0.152) (0.175)

Age [70,80) -0.457∗∗∗ 0.011 -0.138 0.055 0.081
(0.140) (0.143) (0.153) (0.152) (0.174)

Age 80+ -0.298∗∗ 0.228 0.109 0.595∗∗∗ 0.561∗∗∗

(0.149) (0.147) (0.156) (0.154) (0.175)

Constant -0.760∗∗∗ -0.756∗∗∗ -0.366∗∗∗ -0.717∗∗∗ -0.539∗∗∗

(0.112) (0.121) (0.134) (0.133) (0.159)

Observations 2438 2422 2325 2570 2485

Panel B: Up to high school
Age [60,70) -0.240 0.061 -0.036 0.319∗∗∗ 0.190

(0.147) (0.131) (0.122) (0.118) (0.130)

Age [70,80) -0.521∗∗∗ -0.198 -0.310∗∗ 0.001 -0.053
(0.178) (0.148) (0.138) (0.137) (0.144)

Age 80+ -0.069 0.297∗ -0.061 0.467∗∗∗ 0.488∗∗∗

(0.202) (0.173) (0.162) (0.153) (0.157)

Constant -1.371∗∗∗ -1.149∗∗∗ -0.737∗∗∗ -1.133∗∗∗ -0.939∗∗∗

(0.104) (0.098) (0.097) (0.099) (0.115)

Observations 1868 2012 2136 2624 2624

Panel C: College and above
Age [60,70) -0.476∗∗ 0.178 0.110 -0.113 -0.092

(0.230) (0.202) (0.176) (0.163) (0.169)

Age [70,80) -0.385 0.295 0.080 -0.067 -0.404∗∗

(0.278) (0.231) (0.208) (0.191) (0.194)

Age 80+ 0.194 0.497∗ 0.178 0.437∗ 0.376∗

(0.316) (0.274) (0.247) (0.227) (0.225)

Constant -1.670∗∗∗ -1.658∗∗∗ -1.266∗∗∗ -1.287∗∗∗ -1.009∗∗∗

(0.153) (0.157) (0.139) (0.129) (0.144)

Observations 956 1035 1134 1432 1444
Notes: Coefficients of probability of not observing an individual conditional
on being alive and being observed in at least one previous wave (see Equation
3.23). Standard errors in parenthesis. Significance: * 10%, ** 5%, *** 1%.

of wave assigned to each individual observation. For instance, individual 1 is

observed in wave 1 when aged 53, while individual 6 is observed in the same

wave but at age 55. In this case, the desired number of individuals is 10. As we

will see, it is required to simulate 11 in order to fulfil the desired sample size.

Moreover, let’s assume that the observed dataset has the following structure:

1. 50% of the individuals are observed for the first time at age 53. Of those,

40% in wave 1, 40% in wave 2, and 20% in wave 3
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2. 40% are observed at age 55 for the first time. Of those, 25% in wave 1, 50%

in wave 2, and 25% in wave 3

3. The last 10% is observed for the first time at wave 3 when aged 57.

As it is required to replicate such structure, the first 5 individuals are assigned to

be observed at age 53: two in wave 1, two in wave 2, and one in wave 3. Notice

that we will follow them every period until wave 6. However, randomly we might

be unable to observed them due to the missing information mode. For example,

individual 4 was supposed to be observed ad ages 57 and 59, but it is not. Also,

we fully observe them if they die, even if they have not been observed for some

periods, as happens with individual 4. At age 55, we need 4 additional individuals

to be observed in order to meet the data age-structure. That is one in wave 1, two

in wave 2, and one in wave 3. However, notice that individual number 8 is already

death, so it has to be replaced. For this reason individual 10 is considered while

number 8 is completely discarded from the analysis. Finally, the sole observation

left is number 11, this one is assigned to wave 3.

Figure 3.28: Example of the simulation procedure
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3.E Health Investments

Receiving a diagnosis of hypertension or the onset of a stroke might have an im-

pact on the CVD-risk index progression and the transition probabilities. Equation

3.5 shows that there health-status has an effect on the level of the CVD-risk index.

Also, there is full heterogeneity on τ according to health-status in Equations 3.2.

However, the model is agnostic on why there is such heterogeneity, and more ex-

plicitly, individuals’ investment in their own health is not disentangle from health

care treatments. This is important as one potential mechanism to consider is that

drug treatments might imply different investments in a dimension that is not al-

ready considered by the model.

Preventive health investments come in two main groups: lifestyle and medical

care. The first one involves personal choices as diet, physical activity, or smoking.

Individuals normally know that their CVD-risk is affected by such habits. Figure

3.29 shows cohort-adjusted profiles, by age and health status, of some behaviours

that might be relevant for CVD-risk. Both smoking and alcohol consumptions

seem to decline with age, while the opposite is observed for physical activity.

However, other choices as fruit and vegetables consumption are more stable on

time. However, while it is true that selection is in place, it is difficult to observe

a clear difference between profiles according to health state. The sole exception

is physical activity, but this is a variable that might be a bad proxy for health

investments as the capacity to perform certain exercises might be seriously affected

by a CVD event.

The second group is related to demand of health care: check blood pressure

and cholesterol, x-rays, blood tests and visits to the doctor. Figure 3.30 presents

data averages per age-group and CVD status from the British Household Panel

Survey (BHPS). It is clear that the increasing risk of further health complications

imply more demand of preventive medical services as regular BP and cholesterol

checks, blood tests, and even simple interaction with the family doctor.49 While

once again these profiles involve selection, they suggest that main mechanisms

behind the different trends in CVD-risk accumulation are related to health-care

49The question refers about the amount of times the respondent has talked or visited a GP for the
same reference period as the check-up questions. They are specifically instructed to not take into
account visits to the hospital.
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procedures rather than lifestyle modification.

Figure 3.29: Lifestyle

0

10

20

30

40

C
ig

ar
. p

er
 w

ee
k

50 60 70 80 90

Age

Smoking intensity

.2

.4

.6

.8

1

P
ro

po
rt

io
n

50 60 70 80 90

Age

No physical activity

0

1

2

3

A
lc

. u
ni

ts

50 60 70 80 90

Age

Max. alcohol units per day, last week

2

3

4

5

6

P
or

tio
ns

/d
ay

50 60 70 80 90

Age

Fruit consumption

2

3

4

5

6

7

P
or

tio
ns

/d
ay

50 60 70 80 90

Age

Vegetables consumption

Smoking intensity of 0 for non-smokers

No risk of CVD Risk of CVD CVD

Figure 3.30: Demand for Health-Care (BHPS)
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3.F Financial Incentives

The QOF introduced a pay for performance scheme into primary care services in

the UK. Since 2009/10, a new clinical area was introduced with the aim of prevent-

ing the onset of CVD for the first time (primary prevention). The first indicator

promotes the use of risk assessment for patients recently diagnosed with hyper-

tension without pre-existing diagnosis of CVD-related conditions (PP01), and the

second refers to provide lifestyle recommendations to the same patients (PP02).

These indicators were suggested by NICE and are based on the Clinical Guideline

67 (NICE, 2008). The first indicator, which was paid at most £1016 in that year for

the average practice, is the main focus of this analysis. The precise definition of

indicator is as follows:

PP01: In those patients with a new diagnosis of hypertension (ex-

cluding those with pre-existing CHD, diabetes, stroke and/or TIA)

recorded between the preceding 1 April to 31 March: the percentage of

patients who have had a face to face cardiovascular risk assessment at

the outset of diagnosis using an agreed tool.

In other words, GPs are paid for meeting with their new hypertense patients

and apply a standard CVD risk calculator, initially the Framingham equation (An-

derson et al., 1991), or more recently the QRISK2 model (Hippisley-Cox et al.,

2008). These epidemiological models predict the odds of developing a CVD within

the following 10 years, given a set of risk factors that typically involve biomakers as

blood pressure and cholesterol. Their prediction is the standard for NICE guide-

lines on preventive care. For instance, guideline 67 recommended that patients

with a 10-year risk of 20% or above should be under lipid-lowering medication.

More recently, the threshold was reduced to 10% (NICE, 2014) and the indicator

became explicit about the statins prescription.

QOF payment in clinical indicators is given according to a number of points

obtained by a GP practice. They follow a non-linear function of indicator achieve-

ment, which is the reported usage of the services described. In this case, the

proportion of new hypertense patients who received the risk assessment. Prac-

tices start to earn them if the achievement is above 40%, with a maximum number

reached at 70%. The exact amount of money derived from each point depends
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on the size of the practice and how common are new cases of hypertension in

the practice, with respect to the national average. Hence, practices that before

the intervention did not use such tools have incentives to do it. After the first

year, nearly 86% of all GP practices with at least one new case of hypertension50

attained the maximum amount of points.

As discussed in Section 3.2, there is evidence of differential performance in

the QOF according to the number of patients registered in the practice, a variable

known as the list size. While there is not conclusive evidence on the superior-

ity of bigger practices (Ng and Ng, 2013), they have advantages as economies of

scale for hiring staff and adopting information technologies in their favour. Such

advantage seems to be clear given the increasing administrative pressures that

family doctors are facing. This is a feature that motivates policy recommendations

suggesting a move towards bigger primary care provider institutions (Goodwin

et al., 2011; Smith et al., 2013). For the PP01 indicator, nearly 90% of the big prac-

tices (above 8300 patients) obtained the maximum amount of points for PP01 in

2009/10, against 83% of the small ones (less than 6000 patients). Rather than QOF

achievement, what is central for this study is the odds of being prescribed with

statins.

The essential question is if the introduction of affected changed the odds of

being prescribed with statins between small and non-small practices. Guideline 67

suggests the usage of the risk assessment tool for people aged 40-74, so individuals

aged 52 to 74 will be considered for our analysis. Equation 3.24 presents the

main specification for testing this hypothesis. Here the variation in lipid-lowering

Yir,w−Yir,w−1 medication from an individual i between 2010 and 2012 is compared

with such increase between 2006 and 2008, between areas r with small practices

(SLr = 1) relative to areas with non-small practices (SLr = 0). As a condition, the

individual cannot be previously diagnosed with a CVD by the first year of the

respective variation. This is conditional on second order polynomials on age and

biomarkers measured in 2008 (for 2010 to 2012) and in 2004 (for 2006 to 2008),

gender, smoking status, PCT covariates and government region dummies (Xi,w−2).

BMI, systolic blood pressure, total and HDL cholesterol are considered two waves

5092 practices did not have one case.
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before in order to avoid contamination from current medication status.

Yir,w −Yir,w−1 = α1SLr + α21{w = 6}+ α3SLr · 1{w = 6}+ αXi,w−2 + uirt, w ∈ [4,6](3.24)

Column 1 of Table 3.18 presents the results for this analysis. It shows that

in , those living in small GP practices areas it was around 2 pp. less likely to be

under lipid-lowering medication conditional on age and objective health measures.

However, this difference is removed by 2012.

An additional concern is that QOF policy is intended to include lifestyle ad-

vice. As we have seen, doctors are also paid for providing such advice. Therefore,

the benefits of the program might be understated. More worrying is that individ-

uals might increase their unhealthy behaviour due to the medication, or at least

fail to reduce it as much as those who are not under the drug. This will imply

an overestimation of the effects of the policy. Table 3.18 also shows that there is

no evidence of different lifestyle changes as smoking, physical activity of fruit and

vegetables consumption. Also, there is no evidence that other essential medication

for CVD-risk reduction, hypertension treatments, are modified.
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Table 3.18: QOF impact on primary care prescription of health investments according to
list size

(1) (2) (3) (4) (5)
LIPID

PILL
BP PILL SMOKE LOW PA

FRUIT

VEGT

(=1) Living in a Small Practice (SP) -0.025∗ -0.003 -0.002 -0.001 0.241

(0.014) (0.010) (0.010) (0.024) (0.537)

(=1) Interviewed in 2012/13 (1{w = 6}) -0.023∗ -0.013 -0.004 -0.038 0.043

(0.012) (0.009) (0.007) (0.024) (0.393)

(=1) Interaction (SP) · (1{w = 6}) 0.035∗∗ 0.002 0.016 0.009 -0.036

(0.017) (0.012) (0.010) (0.032) (0.549)

Observations 5338 5339 5337 5275 4620

Clusters 150 150 150 150 150

Notes: This table presents coefficients associated to be in a small GP practice area, to be surveyed in 2012/13 instead of 2008/09,

and their interaction , for five different dependent variables (columns) The sample consist on ELSA core individuals aged 52

to 74 in 2012 or 2008, for which there is information on their lipid-lowering medication status in the current and previous

wave. All models include a second order polynomial on age and 4 year lagged biomarkers (BMI, systolic blood pressure, total

and HDL cholesterol), blood pressure medication, previous signs of CVD status (State 2), and smoking status. Governement

office region and education level fixed effects, and PCT level controls are also included. LIPID PILL: to be under lipid-lowering

medication. BP PILL: to be under any type of blood pressure medication; lagged version of this variables is not included as a

control. SMOKE: to report to be an active tabacco smoker. LOW PA: to be sedentary or to have a low physical activity level. This

is, either not working or at sedentary occupation, and at most engages in mild exercise less than three times a month or less.

FRUIT VEG: portions o fruit and vegetables per week. Standard errors clustered at individual level in parenthesis. Significance:

* 10%, ** 5%, *** 1%.



Chapter 4

Identifying complementarities across

tasks using two-part contracts. An

application to family doctors

Joint work with Marcos Vera-Hernández

4.1 Introduction

Principal-agent relationships are widespread in economics. Since Holmstrom and

Milgrom (1991)’s seminar article, it is well understood that the agent’s cost func-

tion plays a crucial role in a multitask environment, that is, when the agent must

carry out more than one task. If tasks complement each other, rewarding one task

will be enough to increase the production of an unrewarded task. If, however,

tasks substitute for each other, rewarding one will reduce the effort exerted on

the unrewarded task. Complementarities/substitutions across tasks not only play

a role in the structure of incentive contracts, but also in job design. Whenever

possible, tasks that are substitutes should be performed by different agents, each

of them carrying out tasks that complement each other.

In this paper, we show how to recover from the data whether tasks are com-

plements or substitutes when the agent faces a two-part linear contract, essentially

a contract with two different piece-rate levels. Our approach exploits a change in

the incentives faced by the agents, but in contrast to the literature, we can exploit

nationwide incentive changes, and do not need that a “control” group, that is, a

group of agents not eligible for the change of incentives.

Our main insight is that when agents face two-part linear contracts, a group
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of agents will naturally choose to produce at the level of the kink of the two-part

contract, the level at which the piece rate changes. We show that these agents

are insensitive to local changes in the incentives of other tasks, independently of

how the tasks interact in the cost function. Hence, the individuals at the kink will

work as a “control” group. Because linear two-part contracts are quite prevalent

(and we do not need an explicit control group), our method greatly expands the

situations in which we can test for complementarities/substitutions in the agent’s

cost function.

We apply our method to identify whether different activities that family doc-

tors perform are complements or substitutes in their cost function. Examples of

the activities that we analyse include carrying out certain tests on diabetic patients,

recording smoking history in at risk patients, or reviewing asthmatic patients with

some minimum frequency, among others.

The types of activities that we analyse contrast with much of the existing em-

pirical literature that has focused on much simpler activities.1 This literature has

focused on studying a specific case of multitasking: the trade-off between quan-

tity and quality within a single activity. Because of the very nature of it, quantity

and quality are either substitutes or independent at best, but complementarity is

rightly dismissed.2 Because we study genuinely different tasks (rather than the

quantity and quality of a single task), the possibility of complementarities across

them is real. It might well be, for instance, that the marginal cost of carrying out

a test is smaller if another test is also being conducted during the same visit.

Monetary incentives are also used amongst professions with a large pro-social

component, such as teachers and doctors. Although crowding out of intrinsic mo-

tivation is usually cited as a concern, multitasking is another one. Unsurprisingly,

there is a reasonably large body of literature for “teaching to the test”, and more

generally whether teachers shift effort from unrewarded tasks to rewarded ones

(see Neal (2011) for a review of US focused studies).3 The evidence on health care

1See for instance, Lazear (2000), Shearer (2004), Kosfeld and Neckermann (2011), Bradler et al.
(2013).

2Al-Ubaydli et al. (2012) finds that higher piece rates leads to higher quality when stuffing en-
velopes, but this is explained because the piece-rate mechanism signals to the agent that the principal
has a good monitoring technology rather because there are complementarities in the cost function.

3Muralidharan and Sundararaman (2011), and Glewwe et al. (2010) are examples of developing
country studies).
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probably lags behind that on education. Dumont et al. (2008) found that Canadian

physicians who voluntary signed up to a contract that paid less for a specific quan-

tity of consultations, increased the average time per consultation (an indicator of

quality) as well as other activities unremunerated at the margin (i.e. teaching).

Feng Lu (2012) exploited a mandatory quality disclosure policy and found that

nursing homes improved scores on quality measures for the reported dimensions,

but deteriorated in regard to unreported ones.

In this paper, we exploit the Quality Outcomes Framework (QOF), a programme

established in 2004 that remunerated all family doctors in England according to

their performance in a large battery of indicators. There is a remuneration sched-

ule for each rewarded indicator, which has a lower and an upper limit. The doc-

tor’s remuneration increases linearly as long as the indicator is between the lower

and upper limit, and flattens out if the upper limit is passed. The programme was

rolled out simultaneously across England, and any changes to the remuneration

schedule also apply nationally. This makes it an ideal setting to apply the method

that we develop in this paper.

The QOF is the largest primary care pay for performance programme world-

wide, and has already received some attention. Sutton et al. (2010)compared in-

centivised and unincentivised measures before and after the introduction of the

program, a improvements in both measures which were higher for incentivised

ones.4 This approach relies on the assumption that incentivised and unincen-

tivised measures would follow a common trend in the absence of the program.

We are able to overcome these limitation thanks to the two-part linear payment

scheme of QOF where there is an upper limit for the increasing payments ac-

cording to performance. Also, as there is a period in which there are changes to

rewards (2010/11), preceded by a period without them (2009/10), we are able to

distinguish effort response to the new rewards from variations linked to year-to-

year variation, which are correlated with performance. We found that there is no

evidence of substitutability between tasks in the system, and if anything, several

of them are complements.

4Kaarboe and Siciliani (2011) motivate their multitasking model using the QOF. They argue,
based on the results of Sutton et al. (2010), that quality dimensions in primary care might be com-
plements.
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After this introduction, we present a basic model of multitasking with a two-

part linear reward function for agents. Given that, we show the conditions under

which we are able to identify complementarities/substitution in the cost function

empirically. This is followed by a description of the QOF and the results of using

our test on it. Finally, the conclusions are presented.

4.2 Model

Our test is based on the existence of a two-part linear tariff on a principal-agent

relationship. In order to understand the intuition behind the test, we will start

by presenting a simple version of the model without uncertainty. In this model,

we will introduce the kink produced by a two-linear tariff and examine its im-

plications. Later, we will consider how this main ideas would be affected by

introducing uncertainty.

Consider a principal-agent relationship with two distinct tasks. The principal

hires the agent to to exert task-specific efforts (e1, e2). The principal benefits in-

creasingly from the output of the two tasks (x1,x2). The agent is paid according

to P(x1, x2; a1, a2) = T + a1x1 + a2x2 , where T represents a lump-sum payment,

and ai is the piece rate associated to xi. The agent’s cost function is given by

C(e1,e2;z). characterised by a parameter z. We assume that for i ∈ 1,2 we have that
∂C
∂ei

= Ci > 0, ∂2C
∂e2

ii
= Cii > 0, ∂C

∂z > 0, ∂2C
∂z2 > 0, and that C is a convex function, but

we do not restrict the sign of the cross-derivatives Cij =
∂2C

∂ej∂ei
, i 6= j. That is, while

we know that it is increasingly costly to exert effort, we do not know if increas-

ing effort in one task, increases or reduces the marginal cost of exerting effort on

the other task. In the former case, the tasks are said to be substitutes, and in the

latter they are complements. Our main goal is to estimate the sign Cij to ascertain

whether the tasks are complements or substitutes.

The agent takes the contract P(x1, x2) as given, and decides optimal levels of

effort in order to maximize his surplus, that is:

max
e1,e2

U = E [P(x1, x2; a1, a2)− C(e1, e2;z)] (4.1)
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4.2.1 Model without uncertainty

Let’s assume that xi=ei and that providers are heterogeneous only on an efficiency

parameter z which is assigned in the population following a pdf g(·), or CDF G(·).

Specifically, let’s assume that C(e1, e2;z) = 1
z C(e1, e2). As a result, given a contract

specified by {T, a1, a2}, the provider will solve:

max
e1,e2

U = (T + a1 · e1 + a2 · e2)−
1
z

C(e1, e2). (4.2)

The first order conditions (FOC) of the problem are given by:5

ai −
1
z

Ci = 0, i ∈ {1,2} (4.3)

Essentially, the marginal benefit (ai) of exerting effort has to be equal to the

marginal cost ( 1
z Ci). If we differentiate these FOC, we obtain:

dai −
1
z

Ciidei −
1
z

Cijdej = 0, i 6= j, i, j ∈ {1,2} (4.4)

This system of equations allows us to explore how optimal allocation of effort

in each task would be adjusted as a response to variations in the piece-rates ai and

to the efficiency parameter z.

Proposition 1. With a linear payment and without uncertainty, we have that de1
da2

=

−z·C12
C11C22−C2

12
> 0, and hence that the sign of de1

da2
is opposite to the sign of C12. If the tasks

are substitutes (C12 > 0), we will have that de1
da2

< 0. On the contrary, if the tasks are

complements (C12 < 0) then de1
da2

> 0.

Proof:

If we set da1 = 0, that is, a1 as the unchanged P4P incentive, we can obtain

that

de2 = −
C11

C12
de1 (4.5)

And hence, the impact of modifying the reward a2 on e2 is obtained by sub-

stituting (4.5) in the FOC of e2 :

5The second order condition (SOC) is given by C11C22 − C2
12 > 0, which we assume to hold.
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de1

da2
=− z · C12

C11C22 − C2
12

(4.6)

Q.E.D.

If we consider that da2 = 0 but da1 6= 0, we can derive the response on optimal

effort for task 1, given variations in its own price. As expected, it is unambiguously

positive:

de1

da1
=

z · C22

C11C22 − C2
12

> 0 (4.7)

Assumption 1. We assume that de1
dz = a1C22−a2C12

C11C22−C2
12

> 0, for any value of z.

Note that this is a very natural assumption: if the agent becomes more effi-

cient and its costs decreases, he will exert more effort. It is indeed guaranteed for

the case of complements, because C12 < 0. For the case of substitutes, we need

to assume that C22 is not too small compared to C12. Otherwise, the agent might

greatly increase e2 and decrease e1.

4.2.2 The role of kinks

Now, let’s consider a two-part linear payment function, with a kink at e1 = UL.6

We consider a piece-rate for a given task varies at UL from a1to ā1, as shown in

Equation 4.8 below. As a notation convention, all objects denoted with a lower

bar will be related to the contract when the output is below UL, and those with

an upper bar for the contract when the output is above such a value. Following

our specific application,7 we will consider a1 > ā1, so the marginal benefit of e1

decreases discontinuously at e1 = UL. Notice that this payment function also im-

plies that the fix income jumps in order to maintain the total payment continuous

6As will be described in the application section, the QoF is a three-part linear contract. It has
a zero piece-rate below a first threshold, the lower limit, and above a second threshold, the upper
limit. We will concentrate on what happens around the upper limit given that most of the agents are
situated around or above it. Nevertheless, the model and empirical test detailed in this paper could
potentially be formulated to the lower limit if there was enough information.

7The QoF presents an extreme scenario: a1 > ā1 = 0. The results that we present here do not
require a zero marginal benefit for unit of effort after the upper threshold. An alternative interpre-
tation is that ā1 represents the altruistic marginal benefit that the physicians obtain for improving
their patients’ health.
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at UL.

P(x1, x2; a1, a2) =


a1x1 + a2x2 + T i f x1 < UL

ā1x1 + a2x2 + T + (a1 − ā1) ·UL i f x1 ≥UL
(4.8)

Proposition 2. Without uncertainty, the presence of a kink at e1 = UL implies that those

providers with a z ∈ [z, z̄] choose e∗1 = UL. Moreover, de1
da2

= 0 for them.

Proof:

Below the threshold UL, for a given z there is a optimal level of effort

e1(z) = e∗1(z, a1, a2). In particular, we assume that ∃z = z st e1(z) = UL. Above

the threshold, e1 > UL, there is also an optimal allocation ē1(z̄) = e∗1(z, ā1, a2), and

we also assume that ∃z st ē1(z̄) = UL.

Given that a1 > ā1, the optimal effort above UL, ē1(z) = e∗1(z, ā1, a2), has to be

smaller than the corresponding decision if there were no kink: e1(z) > ē1(z) ∀z.

In particular, UL = e1(z) > ē1(z). This is due to Equation 4.7. Notice that it has

to be the case that e∗1(z + ε, a1, a2) > e∗1(z, a1, a2) ∀ε > 0, which holds because of

Assumption 1 (a1C22− a2C12 > 0).8 As a result, given that UL > ē1(z), it is required

that z̄ > z.

Those providers with a z ∈ [z, z̄] have to choose e∗1 = UL, even though the FOC

is not satisfied, because any deviation would be detriment of their utility. Let us

consider the diagram on Figure 4.1 to illustrate the argument. Point A represents

the decision of a provider with productivity z, which is e∗1 = UL as stated before.

Point C does the same for the typical z̄ provider, which also chooses e∗1 = UL.

Let us consider a provider with a productivity in between, z̃ ∈ (z, z̄). Without

the kink, the optimal decision under e1(z) would have been point B′; however

under the kinked payment function it is not optimal. At this point the marginal

cost of exerting effort is larger than the marginal benefit of doing so, C1
C2

a2 > a1

(from the FOC), so it is a better idea to reduce effort in order to enhance utility.

An alternative scenario is to consider a world where a1 = ā1∀e1; in such a scenario

B′′ would have been the choice. Once again, under the actual kinked function

this is suboptimal. The provider is better off if effort is increased, as at that point

8If the assumption does not hold, e∗1 = 0 as discussed before. A milder version would be when
a1 · C22 − a2C12 > 0 but ā1 · C22 − a2C12 < 0. In such a case e∗1 = UL will always be preferred for all
z ≥ z . This implies that there should not be no provider above UL, regardless of the value of z.
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Figure 4.1: The effect of a kink on rewards at e1 = UL

z

e1

UL

e1(z) = e∗1(z, a1, a2)

e∗1(z)

ē1(z) = e∗1(z, ā1, a2)

A B

B′

B′′

C

z z̃ z̄

Note: Providers’ payment for task 1 effort below UL is a1, and above it is ā1 < a1. It produces
a piecewise optimal effort function e∗1(z) = e1(z) × 1(e1 ≤ UL) + ē1(z) × 1(e1 > UL), where
e1(z) = e∗1(z, a1, a2) and ē1(z) = e∗1(z, ā1, a2). This diagram assumes constant second derivatives of
function C(e1, e2). It is also assumed that both tasks are substitutes, so the slope above UL is smaller
than below it (see Assumption 1). Nevertheless, in the diagram ã1C22 − a2C12 > 0, hence the values
of e∗1 above UL are feasible.

C1
C2

a2 < a1. As a result, due to the non-smoothness of the optimization problem,

the provider is better off at point B, even though the FOCs do not hold. Notice

that as C1
C2

a2 6= a1, the effect of a small variation in a2 would have no impact on the

allocation of a∗1 . As a result, de1
da2

= 0 for those providers with a z ∈ [z, z̄].

Proposition 3. Without uncertainty, the presence of a kink at e1 = UL generates bunch-

ing on the distribution of effort on task one, H(e1).

Proof:

This we can follow Saez (2010).9 We define H(ẽ1) = Pr [e∗1(z, a1, a2) ≤ ẽ1] =

Pr
[
z ≤ e∗−1

1 (ẽ1; a1, a2)
]
= G

[
e∗−1

1 (ẽ1; a1, a2)
]
, where e∗−1

1 (·) is the inverse function

of e∗1(z). As explained above, e∗1(z) is piecewise defined, which is also the case for

H(ẽ1). Below UL we have H(ẽ1) = G
[
e∗−1

1 (ẽ1; a1, a2)
]
, and above it the relevant

function is H̄(ẽ1) = G
[
e∗−1

1 (ẽ1; ā1, a2)
]
. Given that all providers with a z̃ ∈ [z, z̄]

have to choose e∗1 = UL, an entire mass that would have exerted an effort e1(z̃) >

9See Kleven (2016) for a good review.
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Figure 4.2: The effect on e1 density of a kink on rewards at e1 = UL
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Note: Providers’ payment for task 1 effort below UL is a1, and above it is ā1 < a1. It produces
a piecewise optimal effort function e∗1(z) = e1(z) × 1(e1 ≤ UL) + ē1(z) × 1(e1 > UL), where
e1(z) = e∗1(z, a1, a2) and ē1(z) = e∗1(z, ā1, a2). This diagram assumes constant second derivatives of
function C(e1, e2). It is also assumed that both tasks are substitutes, so the slope above UL is smaller
than below it (see Assumption 1). Nevertheless, in the diagram ã1C22 − a2C12 > 0, hence the values
of e∗1 above UL are feasible.

UL if there were no kink is now collapsed at that single point and has a value of

b = h(UL) = H(e1(z̄))− H(UL). Above z̄, the distribution will follow h̄(e1)

Figure 4.2 extends the previous example and considers a uniform density g(z)

and how it transforms into h(e1). For z < z, the kink makes no difference at all:

h(e1) = h(e1). However, for those z∈ [z, z̄] there is a clear change. Without the kink,

such provider would have exerted e1 ∈ [UL,UL + ∆e], between points A and D in

the figure, which would have followed the density h(e1). Because of the kink, AD

became AC and the entire area b is now collapsed into a unique spike at e1 = UL.

Finally, for z > z̄ we have that optimal effort is given by ē1(z), which is reflected by

density h̄(e1). Notice that it is required that 1− H̄(UL) = 1− H(UL), so the final

H(e1) is a valid CDF. This is reflected in the fact that all observations that would

have covered e1 ∈ [UL + ∆,∞), are now spread into e1 ∈ [UL,∞).10

10For the uniform example in Figure 4.2, this means that the maximum value of e1 will fall, but
the density at any point will be larger (h̄(e1) > h(e1) for e1 ∈ [UL, ē1(zmax)]). See the example in the
Appendix for more details.
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4.2.3 Uncertainty

A common characteristic of multitasking models is the role of uncertainty.11 In

particular, Holmstrom and Milgrom (1991) discuss the role of using noisy signals

for rewarding agents. Let us consider x1 = e1 + ε1, where ε1 is distributed accord-

ing to F(·), which is a twice differentiable CDF, with PDF f (·). Let us assume

that uncertainty has an impact of −Ω < 0 on utility.12 Hence, we can write their

problem as follows.

max
e1,e2∈[0,1]

U =Pr [e1 < UL− ε1] ·
{

E
[
(T + a1 · e1 + a1 · ε1 + a2e2)−

1
z

C(e1, e2)

]
−Ω

}
+Pr [e1 ≥UL− ε1] ·

{
(T + p1UL + ā1e1 + a2e2)−

1
z

C(e1, e2)

}

The FOC for e2 is still the same as before, but for e1 it is different. First, part of

the marginal financial return p1 = a1 − ā1 is now subject to uncertainty; so as long

as e1 < UL it will be obtained. However, by exerting more effort, the probability

of loosing such a financial reward decreases, but also there is a reduction in the

uncertainty penalty Ω. This is reflected in the term in brackets of Equation 4.11.

FOC1 : = ā1 −
1
z

C1 + {F (UL− e1) · p1 − f (UL− e1) · [(e1 −UL) · p1 −Ω]} = 0

(4.11)

We can obtain the marginal variation in optimal effort on task 1 with respect

11For our particular application, the model without uncertainty is not necessarily too simplistic.
This is because the payment is based on the aggregate outcome of the doctor’s patients, and hence
the noise might be averaged out.

12This would be the case with preferences that exhibit absolute risk aversion η. For example:

max
e1,e2∈[0,1]

U = E
[

u(αB(e1, e2) + (T + φ(p1, e1 + ε1) + a2e2 −
1
z

C(e1, e2))

]
= E[−e−η(αB(e1,e2)+(T+φ(p1,e1+ε1)+ã1e1+a2e2)− 1

z C(e1,e2))] (4.9)

With a linear tariff φ1(x1) = p1x1 = p1e1 + p1ε1 the problem can be expressed in terms of the
certainty equivalent Û. Where, despite risk aversion, the noise plays no role in the allocation of
effort. This is because a provider’s choices do not affect the expected value of the reward for
attaining a certain level of performance.

max
e1,e2∈[0,1]

Û = αB(e1, e2) + (T + a1e1 + a2e2)− C(e1, e2)−
1
2

η(p2
1σ2

1 ) (4.10)
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to the reward on task 2 following the same procedure as in the case without un-

certainty.

de1

da2
= − z · C12

C11C22 − C2
12 + p1 · z · C22 · f (UL− e1) ·

{
2 + f ′(UL−e1)

f (UL−e1)
·
[

1
p1

Ω + UL− e1

]}
(4.12)

This expression is equivalent to Equation 4.6, but with D instead of C11. As

before the sign is determined by C12, but the magnitude is a function of current

effort with respect to e1. Hence, Proposition 1 is not affected by the presence of

either risk or uncertainty. However, Proposition 2 requires further analysis.

As with the no-uncertainty scenario, we can derive how general efficiency z

is related to e∗1 .

de1

dz
=

{
ā1 + p1 ·

[
F (UL− e1) + f (UL− e1) ·

(
1
p1

Ω + UL− e1

)]}
C22 − a2C12

C11C22 − C2
12 + p1 · z · C22 · f (UL− e1) ·

{
2 + f ′(UL−e1)

f (UL−e1)
·
[

1
p1

Ω + UL− e1

]}
(4.13)

The simulation exercise in Figure 4.3 will be useful to illustrate how Equa-

tions 4.12 and 4.13 compare with the ones in the no-uncertainty case. This Figure

follows the same configuration as the diagram presented in Figure 4.2. In this

simulation, a cost function with constant second order derivatives is assumed. the

noise on the task’s result is assumed to follow a normal distribution. The pro-

vided parameters imply that both tasks are substitutes, and parameter z is drawn

from a uniform distribution. The figure considers three cases: first, in black, the

policy rules for e∗1 derived with no-uncertainty (black); second, with uncertainty

but without risk aversion (orange), and finally including risk aversion (light blue).

Let us consider the case without risk aversion, Ω = 0. As shown in the graph,

uncertainty essentially smooths out the corners of optimal effort e∗1(z). Moreover,

the slope ∂e1
∂z is always positive, as predicted by Equation 4.13. While introducing

noise removes the idea of corner solution, it still generates bunching at UL as the

slope becomes smaller rapidly near this threshold.
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Figure 4.3: Simulation exercise
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Parameters: UL=0.5, δ=1, c1 =2, c2 =2,, a2 =1, ã1 =1, p1 =0.2, σ=0.07 with 10000 simulations

Note: Parameters z drawn from a beta distribution with parameters (5,2) multiplied by 3. The cost
function is defined as C(e1, e2;z, c1, c2,δ) = 1
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1 + c2e2
2)+ δe1e2). For the cases with uncertainty,

x1 = e1 + v1 where v1 ∼ N(0,σ)

Let us consider first the denominator of Equation 4.13, and in particular, its

last term:(
f ′(UL−e1)
f (UL−e1)

· [UL− e1] < 0
)

. When e∗1 < UL, it is implied that (UL− e1) < 0

which also means that f ′(UL − e1) > 0. Hence, the entire term is negative(
f ′(UL−e1)
f (UL−e1)

· [UL− e1] < 0
)

, so the denominator will become smaller as e1 moves

away from UL. When e∗1 > UL, exactly the same happens as when f ′(·) < 0 and

(UL− e1) > 0. Hence, the further e1 is from UL, the larger the derivative, at least

until it becomes equal to the no-uncertainty case when f (UL− e1)→ 0.

Risk aversion plays an important role as observed in the example in Figure

4.3 (Ω = 0.05). In the denominator, the term
(

f ′(UL−e1)
f (UL−e1)

·
[

1
p1

Ω + UL− e1

])
changes

the sign near UL three times. First, below UL, it makes the slope even larger, as

it goes in the same direction as UL − e1and the denominator becomes smaller.

Second, in the interval e∗1 ∈ [UL, 1
p1

Ω +UL], the term f ′(·) becomes positive so the

denominator is larger and then the derivative de1
da2

is smaller. Finally, when e∗1 ≥
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1
p1

Ω +UL, the derivative starts to grow again. The implication for the distribution

of x1 is that the bunching will be centred above UL.

While the numerator of Equation 4.13 is also a function of f (·) and risk

aversion, it plays a less important role in the graph of e∗1(z). The term[
F (UL− e1) + f (UL− e1) ·

(
1
p1

Ω + UL− e1

)]
decreases as e1 departs from 0.

This is because F(UL− e1) decreases with e1, and so does
(

1
p1

Ω + UL− e1

)
. This

effect is present both above and below UL.

Proposition 4. In the presence of uncertainty on the task result, and if f (·) corresponds

to a symmetric unimodal distribution with mean 0, de1
da2

becomes larger in absolute value

as e1 moves away from 1
p1

Ω + UL.

This proposition replaces Proposition 2, as de1
da2

is not required to be 0 at UL

anymore. The denominator in Equation 4.6 is the same as in Equation 4.13, so

the same attenuation pattern when e1 is just above UL can be expected. The main

difference is that the sign is given by parameter C12 and that f (·) and risk aversion

are present only in the denominator. Figure 4.4 presents two additional examples.

The graphs on the left correspond to a cost function that exhibits substitution be-

tween tasks, while the ones on the right come from complementary tasks. The top

graphs show optimal effort exerted on task 1 as a function of the price of task 2,

for each of the cost functions and considering no-uncertainty (black), uncertainty

(orange) and risk aversion (light blue). In the second row, the figure presents the

first derivative of the graphs above, de1
da2

. In both types of cost function, the deriva-

tives are closest to zero when e1 = UL or is above it. For the case of substitutes,

there are two additional cases in which the derivative is zero; those are corner

solutions in which either e∗2 = 0 or e∗2 = 1.

4.3 Empirical Test

In this section we present how we implement the test for determining whether

a specific task is a complement or a substitute of a set of tasks for which there

was an observed variation on the reward per unit of effect. The general concern is

that if such a shock to the system occurs, normally it should affect all agents who

are under the same contract. It involves two steps. First, two tests are presented

in order to determine if there is bunching at the upper limit of a given indicator.
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Figure 4.4: Simulation exercise: x1(a2)
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with uncertainty, x1 = e1 + v1 where v1 ∼ N(0,σ)

It this is the case, for this specific indicator we can establish a set of agents that

will not react to a variation in the reward per unit of effort in other tasks. These

agents, who bunch themselves above UL, constitute a control group that motivates

a difference-in-differences (DiD) approach (Equation 4.20 below). As a treatment

group, agents that originally reported a level of output below the kink point UL

are selected.

In the subsections below, the motivation and identification arguments for the

DiD are discussed first, and the tests for bunching afterwards.

4.3.1 Test Specification

Our object of interest is the sign of C12. According to proposition 1, the sign of C12

is the same as the sign of de1
da2

. In this section, we explain how we can use data from

a random sample of agents to estimate the sign of de1
da2

(and hence the sign of C12).

Assume that we have available a random sample of N agents, observed con-

secutively for three time periods (t = 1,2,3). For each agent and time period we

observe their task 1 output, that is, {x1it}N,3
i=1,t=1. Assume that the payment func-
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tion for output x1 is exactly as (4.8) and is the same in the three time periods. On

the contract, assume that the piece rate for task 2 output is the same in the first

two time periods, but changes in the third time period: a2t=a
′
2 if t = 1,2; and a2t=a

′′
2

if t = 3. Without loss of generality, we assume that a
′′
2<a

′
2.

We will represent agent i’s observed level of task 1 output at time t by:

x1it = e∗1 (a2t,z(i)) + θ1i + λ1t + ε1it, (4.14)

where e∗1 (a2t,z(i)) represents agent i’s effort choice on task 1 when he faces

a2t as task 2 piece rate, and z(i) is agent i’s efficiency parameter.13We allow for the

measured level of x1it to differ from the agent’s optimal choice due to a agent fixed

component, θ1i, a time component common across agents, λ1t, and an independent

and identically distributed random error term ε1it, which exhibits zero mean and

finite variance.

Using the above, the change in agent i’s observed task 1 output between the

third and second time period is given by:

x1i3 − x1i2 = e∗1
(
a′′2 ,z(i)

)
− e∗1

(
a′2,z(i)

)
+ λ13 − λ12 + ε1i3 − ε1i2,

where we are using that the task 2 piece rate, a2t, changed from a
′
2 to a

′′
2 be-

tween these two time periods. We will specialise the above expression according

to whether the agent’s efficiency parameter, z(i), is such that z(i)∈ [z, z̄], and hence

agent i’s optimal effort corresponds to the kink (e∗1 = UL), or when z(i) < z, and

hence the exerted effort is higher. Moreover, we assume that a
′
2, and a

′′
2 are suffi-

ciently close, so that e∗1 (a′2,z(i)) = e∗1 (a′′2 ,z(i)) = UL if z(i) ∈ [z, z̄] (see proposition

2). This means that e∗1 (a′′2 ,z(i))− e∗1 (a′2,z(i)) = 0 for the group of agents for which

z(i) ∈ [z, z̄]. Hence, we have that:

x1i3 − x1i2 = λ13 − λ12 + ε1i3 − ε1i2 if z(i) ∈ [z, z̄] (4.15)

13For ease of notation, we do not make explicit that the agent’s optimal choice of task 1 effort,
e∗1 (·), also depends on the payment function of x1 as well as agent i′s cost function. These elements
are assumed to be constant along the sample period.
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x1i3− x1i2 = e∗1
(
a′′2 ,z(i)

)
− e∗1

(
a′2,z(i)

)
+ λ13− λ12 + ε1i3− ε1i2 if z(i)< z (4.16)

Taking expectations of (4.15) and (4.16) over the relevant group of agents, and

subtracting one from the other, we have that:

∆=Eiε{i:z(i)<z}[x1i3− x1i2]−Eiε{i:z(i)∈[z,z̄]}(x1i3− x1i2) = Eiε{i:z(i)<z}[e
∗
1
(
a′′2 ,z(j)

)
− e∗1

(
a′2,z(j)

)
]

(4.17)

Note that the left hand side of (4.17), Eiε{i:z(i)<z}[e∗1 (a′′2 ,z(j))− e∗1 (a′2,z(j))], is

the discrete approximation to (- de1
da2

) (averaged over the set of agents i for which

z(i)< z), whose sign is the same as the sign of C12, our object of interest, and hence

the sign of C12. 14 We can estimate the sign of Eiε{i:z(i)<z}[e∗1 (a′′2 ,z(j))− e∗1 (a′2,z(j))],

by estimating the sign of the coefficient γ1 in the following difference-in-difference

regression:

x1i3 − x1i2 = γ11(z(i) < z) + vijt (4.18)

which implicitly uses the idea that those agents whose z(i) is between [z, z̄] can

be used as a control group, because they choose to be at the kink of the payment

function of x1and hence are insensitive to small changes in a2, the piece rate of the

other task: x2.

A problem with implementing (4.18) is that neither z(j) nor z will generally

be observable to the econometrician. To address this problem, one could estimate

the following regression diff-in-diff regression:

x1i3 − x1i2 = β11(x1i2 < UL) + v′ijt (4.19)

where we are using the idea that those agents whose z(i)< z are those that have

a output level below the kink (x1i2 < UL), because the individuals that choose

to produce at the kink (UL) are those with z(i) ∈ [z, z̄]. While it is feasible to

estimate (4.19), a problem is that x1i2 depends on the random component ε1,i2,

14Note that we place a minus in front of de1
da2

because we assumed that a′′2 <a′2.
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which introduces a bias due to mean reversion. That is, there might be agents for

which e∗1i2 > UL but due to a large negative transitory shock, ε1,i2 < 0, they end up

with x1i2 < UL. In the following time period, t = 3, we expect x1i3 to be larger or

equal to UL, even if a2twas the same in both t = 2 and t = 3. To net out this mean

reversion bias, we need to estimate the following regression:

x1it− x1it−1 = α11(x1it−1 <UL)+ α21(t= 3)+ α31(x1it−1 <UL) ·1(t= 3)+ v′′ijt, t= 2,3

(4.20)

where the estimate of α1 absorbs the mean reversion effect, and the sign of

the estimate of α3 will have the same sign as Eiε{i:z(i)<z}[e∗1 (a′′2 ,z(j))− e∗1 (a′2,z(j))],

and hence the same sign as C12.

4.3.2 Detection of Bunching

It is necessary to construct a counterfactual distribution of achievement in order to

detect the existence of bunching. First, we consider the basic strategy for bunching

developed by Kleven (2016): fit a parametric model on the observed distribution

excluding an interval around UL, and compare it with the observed distribution.

Moreover, if financial rewards play a big role in effort allocation, they will affect

the entire shape of the distribution above UL, not only an interval around the

threshold. For this reason, we borrow a concept from regression discontinuity

design. Essentially, if agents’ effort is the main driver of achievement, this will

produce not only bunching at UL but a discontinuity on the density at that point.

By running a standard McCrary (2008) test, we can determine if this is the case

for a given estimator without imposing an assumption on the endogenous shape

of the density.

In both exercises, our output variables are the histograms of the indicators.

For this purpose we define bins on achievement following McCrary’s procedure

(x̃h) and count the number of agents in each bin
(
nhj
)
.15

15More precisely,

njh =
N

∑
i=1

1

{
x̃h − x̃h−1

2
≤ xij <

x̃h+1 − x̃h
2

}
, x̃h ∈ {0.5,1,1.5, ...,99.5}
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Bunching strategy We fit restricted cubic splines on the histogram excluding the

interval
[
ULj,ULj + L

]
.16 This strategy essentially splits the domain into segments

defined by K knots (joint points) in order to fit the histogram (nhj) of indicator j

with a piece-wise cubic polynomial in the middle segments, and a linear function

in the first and last ones. It requires the transformation of the domain variable

(the midpoint of the bins, x̃h) into K− 1 constructed variables
(

X(k)
jh

)
that ensure

that the resulting function’s first and second derivatives are the same.17 Such

variables are included in the linear expression presented in Equation 4.21 which

also considers dummy variables that indicate the presence of an excluded bin(
1{x̃h = l} , ∀l ∈

[
ULj,ULj + L

])
. The error term, ujh, is assumed to be i.i.d. and

normally distributed.

njh =
K

∑
k=1

ωkX(k)
jh +

UL+L

∑
l=UL

γl1{x̃h = l}+ ujh (4.21)

After the vector of parameters {ω,γ} is estimated, the counterfactual density

is the predicted value of this equation without the dummies for the excluded

range’s contribution: n̂jh = ∑K
k=1 ω̂kX(k)

jh . Then, the excess number of observations

that bunch above UL relative to the calculated counterfactual is the difference

between the observed and counterfactual histograms in the excluded range. This

is equivalent to the sum of the omitted dummies γ:

b̃j =
UL+L

∑
l=UL

γ̂l =
UL+L

∑
l=UL

(
njh − n̂jh

)
Following Chetty et al. (2009), we compare the amount of excess bunching

with the average density per 1 pp. in the excluded range

bj =
b̃j

1
L+1 ∑UL+L

l=UL n̂jh

In case there is bunching, the estimated bj overestimates the amount of it. The

16While Kleven (2016) recommends polynomials, such functions might produce poor approxima-
tions in certain cases (Harrell, 2015, Chap 2.4.2). Spline interpolation is a parametric approach that
is as easy to implement as a polynomial, without several of its limitations.

17The procedure was implemented in STATA 13 using mkspline command, using 5 to 7 knots
determined by percentiles recommended in Harrell (2015, Chap 2.4.6).



4.3. Empirical Test 163

reason is that it does not consider that some of the bunched observations in the

interval
[
ULj,ULj + L

]
should be above ULj + L in the counterfactual distribution,

as predicted by the model.18 As our goal is to determine whether or not there

is bunching, we perform a joint significance test of the omitted dummies from

Equation 4.21:

H0 :
UL+L

∑
l=UL

γ̂l = 0 (4.22)

RDD strategy In the context of the regression discontinuity design (RDD), Mc-

Crary (2008) introduced a test for the continuity of the log-density g (x) at a given

point:

ι = ln lim
x̃↓UL

g (x̃)− ln lim
x̃↑UL

g (x̃)

The basic idea behind it is that if a treatment were assigned according to being

above or below such a point, individuals would try to ‘choose’ their position in

the domain in order to obtain or avoid the treatment. Such self-selection would

induce a discontinuity on the density. In the bunching literature a discontinuity is

not necessary as it allows for a noisy relationship between individual choices and

observed outcomes. However, if such a noise is not present, the excess of density

at one point will induce a drastic change in the density at such a point.

The estimation of the jump on the log-density, î, is undertaken following Mc-

Crary’s procedure. First, the bin size is determined according to the standard

deviation of the indicator and the total number of indicators. Second, a band-

width is selected based on the non-parametric estimator literature.19 Given the

bandwidth, local linear regressions are fitted to both sides of UL. Finally, the

estimator tests whether the fitted function is continuous at UL.

4.3.3 The importance of bunching

The presence of the kink at UL is essential for the test. If there were no corner

solution near this point, the expression in Equation 4.17 would deliver mislead-

18Chetty et al. (2009) correct for this using an iterative procedure in which the area above ULj + L
is artificially increased in such a way that the area under both the observed and counterfactual
densities is the same.

19In a few cases, the suggested optimal bandwidth is beyond the domain of the indicator (i.e.
upper limit above 100%). In such case, we set the bandwidth to be equal to 100−UL.
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ing results. From Equation 4.6, and assuming as before that the sole source of

heterogeneity is the efficiency parameter z, we can derive the predicted sign of

Equation 4.17 if the UL does not produce bunching. As shown in Figure 4.2, a

higher level of z implies a higher level of e1. As a result, when we compare the

e∗1 response to variation in a2 for an agent with high x1 with one with low x1,

we are comparing an agent with a high vs. low value of z. Then, the essential

question here is how de1
da2

changes along z. Equation 4.23 answers that question,

and shows that its sign is determined by the sign of C12, just like the derivative

itself. For substitutes (C12 > 0), the derivative is negative ( de1
da2

< 0) and becomes

even more negative with higher values of the productivity parameter
(

d2e1
dzda2

< 0
)

.

For complements the opposite is true.

d2e1

dzda2
= − C12

C11C22 − C2
12

(4.23)

Equation 4.23 has a strong implication for the test described above. Essen-

tially, if the sorting is based on overall productivity, z, and there is no bunching,

the term ∆ presented in Equation 4.17 will produce a result that is opposite to the

test result. In order to illustrate this, let us compare the response of two practices,

one below UL with a productivity z and the other above such a cut-off with z̄. The

sorting of e∗1 implies that z̄ = z + ι, where ι > 0. As shown below, if we approxi-

mate Equation 4.17 with derivative, it is clear that the sign of ∆ is the same as the

sign of C12, exactly the opposite result from the one stated in the test description.

∆ = Eiε{i:z(i)<z}[x1i3 − x1i2]− Eiε{i:z(i)∈[z,z̄]}(x1i3 − x1i2)

≈ de1(z)
da2

− de1(z̄)
da2

= − z · C12

C11C22 − C2
12

+
z̄ · C12

C11C22 − C2
12

= (z̄− z)
C12

C11C22 − C2
12

=
ι · C12

C11C22 − C2
12
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The previous derivation was based on particular sorting with respect to over-

all efficiency z. However, sorting might be along other dimensions so no reliable

test can be derived based on such a difference. For instance, if heterogeneity is

only based on the efficiency of task 2, ∆ might always be negative regardless of

the sign of C12. See the example in Appendix 4.A.1 for more details.

4.4 An application: The Quality and Outcomes Framework

4.4.1 Background

The program that we analyse, the Quality and Outcomes Framework (QOF), was

introduced in 2004 as part of major reform with the aim of improving service and

reducing inequality in the quality of care received. It is a financial reward system

for achieving a set of administrative and clinical goals. The level of achievement

of these goals is monitored by a regional commissioner. Every year, the NHS

and the physicians trade union, the British Medical Association, negotiate which

indicators should be included and how much money should be paid for each one.

Rewards are defined according to a point system, which is based on indicators.

Administrative indicators are usually binary questions, where the practice obtains

all of the points assigned to an indicator if a certain requirement is fulfilled. On

the other hand, most clinical indicators are a non-linear function of the proportion

of patients that received a certain standard of care. This will be explained in detail

in the next section. Changes to the system have been proposed by the National

Institute for Health and Care Excellence (NICE), but still have to be negotiated by the

interested parties. These indicators are one of the most significant contributions

of the program, as they provide an image of the quality of primary care services

that was not available before. All the information is published yearly by the NHS

at GP practice level and is the main source of data for the present study.20

Clinical indicators are related to management of chronic diseases and pub-

lic health concerns. They cover chronic patients that require specific treatments

such as those with coronary heart disease, heart failure or diabetes. Moreover,

it involves lifestyle advice for smoking, obesity and primary prevention of car-

diovascular diseases in general. Since their introduction, several areas have been

removed or introduced or indicators replaced.

20Currently date is archived by NHS Digital at http://digital.nhs.uk/qof.

http://digital.nhs.uk/qof
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Analysis of multitasking on the QOF starts with the introduction of the sys-

tem. The first order concern was to determine whether the programme had a

negative impact on unmeasured (thus, unrewarded) indicators of care, one of the

possible outcomes predicted by Holmstrom and Milgrom (1991) and Baker (1992).

Sutton et al. (2010) studied a panel of medical records collected before and after

the introduction of the programme in Scotland, which included both rewarded

and unrewarded outcomes. They claim that after the introduction of the pro-

gramme there was an improvement in record-keeping for both type of outcomes

with respect to the pre-programme trend, but this was larger for those rewarded

measures. This was the case for recordings on blood pressure, cholesterol and

smoking, which were rewarded, against BMI and alcohol consumption, which

were not. Doran et al. (2011) did a similar exercise for a sample of practices in

England, but in this case they had access to prescription and biomarkers data,

and they obtained similar results. In both studies, as unrewarded measures are

affected by the reallocation of effort generated by the introduction of rewards, the

identification of the effects of multitasking relies on the validity of using extrapo-

lated pre-treatment trends as a counter-factual. This has also motivated theoretical

work on the optimal design of the system. such as Eggleston (2005) and Kaarboe

and Siciliani (2011).

As the QOF is adjusted almost every year, a second generation of the analysis

followed these innovations. A first set of changes was introduced in 2005/06,

where the payment thresholds were revised for some indicators making it more

difficult to achieve the maximum number of points. Feng et al. (2015) compared

the evolution of the modified and unmodified indicators in Scotland, and showed

that performance increased for the affected measures.

A final element to consider is gaming of the system. The main concern is

called exception reporting for clinical indicators, which consists of declaring that

a patient should not be treated according to the QOF guidelines due to specific

health conditions. By increasing the number of excepted patients, the relevant

indicator will increase without providing extra services. Gravelle et al. (2010)

showed that GP practices exempt relatively more patients from being considered

for some of the clinical indicators if the overall achievement in the previous year
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was below UL, than if it was above this threshold. For our purposes, cheating

implies that some practices with productivity z0− η would report having produc-

tivity z0. This would be a problem for our estimates if those cheating above UL

adjusted their reported effort in response to changes in the price of alternative

tasks.

Panel A of Table 4.1 presents the number of practices in the financial years

2009, 2010 and 2011 and their average number of patients (list size). There are

around 8000 GP practices covering on average 7000 patients. Panel B shows the

mean achievement per domain in each year, which is very close to 100% in all

years. The big increase from 2010 to 2011 is due to the removal of some of the

indicators, which will be discussed in the next section. Panel C presents the total

clinical points (2009) assigned to those conditions with the highest prevalence

in the population, according to the QOF data reports. Such points assignments

provide an idea on the areas where the NHS considered it a priority to improve

and standardize health care. In 2009, diabetes was the most rewarded clinical

area with 100 points out of 697 available for the clinical indicator, followed by

hypertension and CHD. While these are also some of the most common chronic

conditions, relevance is not the sole criteria. For instance management of new

cases of depression in the previous years received more points than asthma, even

though the latter was the second most common chronic disease after hypertension.

4.4.2 Payment system

In our analysis we will consider that for a GP practice, the marginal benefit of

exerting effort on a task is a linear function that involves both altruism and mone-

tary payments. Hence, the marginal reward above UL for task j, which we called

ā1 in subsection (4.2.2), refers to the altruistic motive.21 Our analysis is based on

data from the years 2009 to 2011. In 2009 and 2010, GPs could obtain up to 1000

points: 697 for the clinical domain, 167.5 for the organizational domain, 91.5 for

patient experience, and 44 for additional services. In 2011, the clinical domain

was reduced to 661 and patient experience to 33, and 262 points were rellocated

to organizational indicators. Points are translated into income depending on the

21The assumption of a linear benefit to patients’ welfare is relaxed by Kaarboe and Siciliani (2011).
In such a scenario, the relevant function is not C(·) but B(·) − C(·), hence our results will signal
complementarity or substituiability of this function.
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Table 4.1: GP Practices and QOF Descriptives

Panel A: Main Characteristics Average by practice and year
2009 2010 2011

Number of patients (list size) 6602.84 6691.28 6835.62
Number of practices 8305 8359 8124

Panel B: QOF achievement Average by practice and year
2009 2010 2011

Clinical 95.86 96.75 97.01
Organisational 96.34 97.36 96.37
Patient Experience 71.47 72.60 98.95
Additional Services 95.35 97.13 97.02
Total 93.69 94.66 96.91

Panel C: Selected Raw Prevalences and QOF points for 2009
Points Mean Std Dev

Diabetes † 100 4.28 1.85
Hypertension 81 13.53 4.79
Asthma 45 5.95 2.29
Coronary Heart Disease 87 3.45 1.49
Depression new cases † 53 0.76 0.80

Notes: Own calculations based on QOF data published in NHS Digital. † Diabetes raw prevalence is underestimated as it is
calculated as the number of individuals aged 17 and over with diagnosed types I or II, over the total list size (without age
distinction). New cases of depression are those patients diagnosed with the disease during the last financial year (April 1 to
March 31).

size of the practice and how common the underlying health condition is in the

practice’s population.22

Monetary payments in the QOF are determined by achievement according to a

set of indicators, of which there are two main types: binary and ratios. The former

gives a fixed amount of points if a condition is attained.23 For instance, indicator

BP1 gives 6 points if there is a register of people with established hypertension,

or 0 points if there is not. On the other hand, the awarded points for ratio based

indicators depend on the number of patients that should potentially receive a

given treatment (denominator), and the number of those who effectively receive it

(numerator) during a specific period of time.24 For instance, the definition below

for indicators DM17 and ASTHMA6.

Indicator ASTHMA6: The percentage of patients with asthma who

have had an asthma review in the previous 15 months

22See Appendix 4.B for further details.
23Some administrative indicators also involve ratios. For instance, if there are less than 5 years

of records of the blood pressure of patients for 80% of the patients aged 45 and over (indicator
RECORD17). In those cases, the number of points allocated follow a binary allocation instead of a
piece-rate reward system.

24In principle, payment is retrospective, but it is possible to obtain advance payments based on
previous year’s performance, which are known as aspiration payments. More details are available
from the BMA (2013).
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Indicator DM17: The percentage of patients with diabetes whose

last measured total cholesterol within the previous 15 months was 5

mmol/l or less

If achievement is below a lower limit (LLj) zero points are awarded, and if it above

the upper limit (ULj) the maximum amount of available points for indicator j are

awarded.

Returning to the DM17 indicator example, the lower limit is LL = 40% and

the upper limit is UL = 70%. Then, if at least 70 out of every 100 patients with

diabetes have total cholesterol of 5mmol/l or less in the last 15 months, the practice

will receive 6 points, the total number of points allocated to this indicator. For

ASTHMA6 there are 20 points available and it has the same thresholds LL = 40%

and UL = 70%. A graphic representation of such an assignment rule is presented

in the top diagrams in Figure 4.5, where the horizontal axis presents the possible

levels of achievement and the vertical axis represents the number of points that

would be awarded according to the QOF rules. Figure 4.5 also presents histograms

for the actual achievement attained by GP practices in each indicator for the 8301

practices in the 2009/10 financial year.25 From these densities, there are two main

points to remark on. First, there are few practices at or close to the lower limit

LL; and in fact, most of the distribution is above the UL. The mean achievement

for ASHTMA6 was 80% and 83% for DM17 (see Table 4.2). Less than 6% of the

practices attained a level below UL for ASTHMA6, while for DM17 this figure

was 2.5%. This is a common element in all indicators that initially exceeded the

expectations of the policymakers (Gregory, 2009). As a result, the main focus of

this project is the role of the UL, hence the LL will not be discussed.

Second, as seen for the case of ASHTMA6, there is a sudden increase in the

density at UL; in other words, there is bunching above the threshold, which is an

usual feature of the data produced by discontinuities in budget constraints (Saez,

2010). However, this is not the case for all of the indicators. This seems to be the

case of indicator DM17. According to the model discussed before, this might be

either because the financial reward has a minimum impact on the motivation of

physicians for accomplishing the goal or due to substantial noise between effort
25This includes practices without any cases of hypertension (5 practices) or asthma (8 cases). In

those scenarios, zero points are given.
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and the measured achievement indicator.26 Another typical reason for not detect-

ing bunching, the measurement error (Kleven, 2016), is a problem for the present

study as the QOF data are based on administrative records for a large number of

GP practices.

The other main source of variation in the data is time. Given that between

2009/10 and 2010/11 there were not changes to the QOF indicators, we can under-

stand how achievement changes from period to period. First, while achievement

is persistent, there is substantial year-to-year variation. The autocorrelation coeffi-

cients are 0.54 for ASTHMA6 and 0.6 for DM17. Second, practices below the UL

in one year tend to increase their achievement in the next one. The mean variation

for ASTHMA6 is 11 pp. (SD = 14.8 pp.) for those practices below the UL in 2009,

but it is -0.2 pp. (SD = 6.7 pp.) for those above it. Such a mean difference is differ-

ent from 0 at the 99% level. The same happens for DM17, but with a difference of

means of 9 pp. Descriptive statistics for the other indicators are presented in Table

4.7 in the appendix as the pattern is the same.

Table 4.2: DM17 and ASTHMA3 QOF indicators descriptives for 2010/11

(1) (2) (3) (4) (5) (6)

Indicator UL Number E[xt] P[xt < UL] ρ(xt) E[xt − xt−1 E[xt − xt−1

|xt−1 < UL] |xt−1 > UL]

ASTHMA06 70% 8245 79.58 5.29 0.54 11.03 -0.19

DM17 70% 8245 82.73 2.43 0.60 8.70 -0.55

Notes: Own calculations based on QOF data. Number: Number of GP practices, including those with 0 elegible

patients for the given indicator. E[xt] : Average achievement per indicator. P[xt < UL] : Proportion of practices

with an achivement below UL. ρ(xt) : Correlation between 2010 and 2009 achivement.

4.4.3 The 2011 changes

While QOF is normally revised every year, there was no change between 2009 and

2010 after an agreement between BMA and NHS during the H1N1 vaccination

program (NHS Employers, 2010). However, between 2010 and 2011 there were

major changes that we will interpret as a net reduction in the financial reward per

26For instance, the staff of the GP practice might have complete control in keeping records of tests
or ensuring that patients with a given condition are prescribed a given drug. However, ensuring that
the levels of cholesterol of their patients are within certain range, as required by indicator DM17
discussed before, might depend on many actions not controlled by providers. Indeed, Fichera
et al. (2014) present a game in which physicians and doctors interact using their available tools,
prescriptions and lifestyle, in response to QOF incentives.
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Figure 4.5: Points reward function and achievement density for Diabetes 17 (DM17) and
ASHTMA6 (2009/10)
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Notes: Own calculations based on QOF data archived at NHS Digital.

unit of effort for part of the clinical indicators. This time-frame between 2009 and

2011 will be the main source of data for our analysis.

There are in total 1000 QOF points in all three years, but several indicators

were either removed, modified or replaced by new ones. We have summarized

them in three broad categories presented in Table 4.3. First, those that imply a

reduction in the financial reward per unit of effort; second, those that we interpret

as an increase in the marginal benefit; and third, those whose nature is ambiguous.

A more detailed explanation of these changes is presented in Table 4.8 in the

appendix.

In the first category (reduction in the financial reward per unit of effort), we

include indicators that are withdrawn,27 increases in UL (which will obviously

flatten the slope of the reward function)28 or changes that consisted of a reduction

27Clinical retired indicators were almost a requirement for measuring other QOF indicators. For
instance, indicator CH5 was about having a recent blood pressure record for patients who suffered
from coronary heart disease but CHD6 rewards practices for keeping the blood pressure of these
patients controlled.

28See Equation 4.25 in the appendix. While the initial proposal was to redefine the UL and make
them a function of the underlying indicator distribution in 2011 (match the 75th percentile), the
negotiations delivered a slow-paced plan. By 2011 two ULs had increased by one pp. However in
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in the number of points allocated to the indicator. In total 143 of the original

clinical points are affected. A different type of change also implied a reduction

in the financial reward per unit of effort: these were wording amendments in

which the goal definition changed to require either additional tasks or reduce the

reference time of the indicator.

The second category (ambiguous change) covers several word amendments

that are not straightforward to classify. In these cases typically a more precise

definition of the goal to be accomplished is accompanied by additional points in

compensation. In total 51 of the original points are in this category.

The third category (increase in the financial reward per unit of effort) includes

new indicators as well as old ones with goals that are easier to achieve. The new

indicators, covering 12 points, refer to tasks that were not financially rewarded be-

fore. Also, for one indicator (17 points) the new wording relaxed the goal defined

in the original version.

As we can see, in terms of clinical indicators, the total amount of points re-

lated to a reward drop are larger than those associated with an increase, even if

we consider all ambiguous changes as increases. Hence, we interpret the overall

changes in 2011 as an overall reduction in the marginal payment per unit of effort.

Administrative indicators suffered a major modification in 2011. Two thirds of

the patient experience domain were removed in favour of the new quality and produc-

tivity indicators. Practices had to agree a plan with the primary care organisations

consisting of three main goals for prescribing (28 points), outpatient referrals (21

points) and emergency admissions (47.5 points). The exact indicator definition

and its upper threshold was defined at local level. The objective of the indicators

was to reduce costs for the PCT by improving the cost-efficiency of prescribing

and by treating more patients at primary care level, reducing both referrals and

emergency admission rates.

For the reasons given above, we consider that the main objective of the

changes was to tighten-up the requirements for obtaining rewards, at least on the

clinical side. We will not discuss the administrative indicators, given that almost

an entire domain was replaced with an other: the perceived time for getting an

2012 both the lower and upper limits were increased by between 4 to 10 pp. for 13 indicators (Doran
et al., 2014).
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Table 4.3: Changes in QOF 2011 with respect to 2009-2010

Panel A. Clinical Indicators
Price

Interpretation
(Total Points)

Status Description Points

Reduction
(143 to 87)

Withdrawn No longer rewarded tasks 32
Points

reduced
Number of assigned points per
indicator was reduced.

26 to 22

Upper Limit
Increased

Increase on UL 22

Replacement
I

New wording with more strict
definition of a goal or a reduced
time-frame for accomplishing it

18

Replacement
II

Decrease in points and new wording is
more detailed

45 to 25

Ambiguous
(51 to 59) Replacement

III
Harder to accomplish or more detailed
goals but compensated with extra
points

51 to 59

Increase
(29)

Replacement
IV

Reference cutoff relaxed 17

New New tasks to be rewarded 12
NA

(486)
Replacement

V
Similar or same wording, but expressed
in new units or highlight recent
changes on diagnostic procedures.

32

Unchanged No change on points, thresholds or
wording

454

Panel B. Non-Clinical Indicators
Price

Interpretation Status Description Points

Reduction Retirements No longer rewarded tasks 60.5
Increase New New tasks to be rewarded 96.5

NA Unchanged No change on either points or wording 242.5
Note: Authors’ interpretation based on NHS Employers public documents.

appointment was replaced with meetings related to prescribing and other super-

vised improvement plans designed by the PCT. Because these are administrative

tasks, we assume that they were not carried out by doctors themselves and hence

that they do not alter the marginal cost of clinical effort.

4.5 Results

The results are presented in two steps. First, we assess the validity of the test by

checking for a discontinuity and/or for bunching at the upper limit (UL). Second,

we test the sign of the response on effort to a price drop in alternative tasks, on

those indicators that were not affected by the QOF 2011 changes.

For the bunching analysis, we pool data from both years 2009 and 2010 and

set 10 pp. an estimation window below and above UL. We also discard the bins
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corresponding to 100%, which is hard to fit with a continuous density function.

Figure 4.6.A presents a graphical representation of the McCrary test for continuity

on the density at UL for indicators DM17 and ASTHMA6, our examples discussed

in the previous section. Both graphs present the histogram (nhj), and the fitted

models to both sides of UL . For ASTHMA6 there is clear evidence of the existence

of a discontinuity as the null hypothesis that both approximated log-densities

are the same at UL is rejected. In both cases the test suggest the presence of a

discontinuity on the density at UL. For DM17 such a null cannot be rejected at the

95% level, but it is at the 90% level. Table 4.4 presents this exercise (Column 4) for

each indicator (rows) given a McCrary’s default calculations for bin size (Column

2) and bandwidth (Column 3).

The calculation of the amount of excess bunching for both indicators is pre-

sented in Figure 4.6.B. Apart from the histogram (nhj), these figures present the

fitted model including dummies γ covering [UL,UL + 5pp.] (orange line) and ex-

cluding them from the prediction (black line). For DM17, the difference between

the histogram and the counterfactual difference is of 42% of the average density

in the interval; and for ASTHMA6 it is 107%. Both estimates are significant at

the 95% level. However, such estimates are sensible to the number of knots in the

spline, the excluded range size L, and the estimation window. Varying the config-

uration of such parameters we obtain very different point estimates. Columns 5

to 9 in Table 4.4 present several configurations of an excluded range from L = 2 to

L = 7, 5 and 7 knots, and estimation windows of 10 and 20. For DM17 an estimate

of b between -90% and 43%; and for ASTHMA6 it is around 60% to 417%. Despite

such large differences, the null in Equation 4.22 is not rejected for ASTHMA6.

On the other hand, for DM17 the null is rejected in 3 out of 5 of the explored

specifications.

Given the results stated above, there is clear evidence that the upper limit

has an effect on practices, effort allocation for ASTHMA6, but this is not as clear

for DM17. Therefore the test is likely to be informative for the first but not the

second indicator. Table 4.4 also suggests that for indicators DM22,29 SMOKE330

29Based on having a record of glomerular filtration rate (GFR), which measures kidney function.
30Proportion of individuals affected by several chronic conditions who are referred to smoking

cessation advice.
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Figure 4.6: Testing for Bunching
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and THYROI0231 there is no evidence of bunching. Table 4.9 in the appendix

presents definitions and graphs equivalent to Figures 4.6.A and 4.6.B for these

indicators.

31Record on thyroid function tests.
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Table 4.4: QOF indicators corner test

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indicator UL BS BW DC Test

w=10,

h=2,

k=5

w=10,

h=3,

k=5

w=10,

h=3,

k=7

w=20,

h=3,

k=5

w=20,

h=5,

k=5

AF03 90 0.06 6.38 1.82 ∗∗∗ 123.1 ∗∗∗ 242.4 ∗∗∗ 183.3 ∗∗∗ 176.9 ∗∗∗ 345.4 ∗∗∗

[30.72] [ 6.53] [10.96] [ 6.11] [ 9.34] [ 9.73]

AF04 90 0.19 10.00 2.50 ∗∗∗ 171.4 ∗∗∗ 184.7 ∗∗∗ 237.4 ∗∗∗ 137.1 ∗∗∗ 183.7 ∗∗∗

[26.28] [ 4.10] [ 3.88] [ 2.67] [ 3.82] [ 3.17]

ASTHMA03 80 0.11 10.00 1.76 ∗∗∗ 200.5 ∗∗∗ 154.5 89.1 150.4 ∗∗ 295.5 ∗∗∗

[20.65] [ 3.31] [ 1.41] [ 0.51] [ 2.13] [ 3.32]

ASTHMA06 70 0.13 6.05 0.92 ∗∗∗ 49.3 ∗∗∗ 107.4 ∗∗∗ 57.1 ∗∗∗ 125.4 ∗∗∗ 416.9 ∗∗∗

[12.28] [ 4.68] [ 9.33] [ 5.19] [ 6.36] [19.66]

ASTHMA08 80 0.14 10.00 1.93 ∗∗∗ 205.8 ∗∗∗ 254.8 ∗∗∗ 193.4 256.6 ∗∗∗ 492.7 ∗∗∗

[27.49] [ 4.98] [ 3.42] [ 1.59] [ 5.11] [ 8.02]

BP5 70 0.10 5.26 0.31 ∗∗∗ 13.9 ∗ 37.5 ∗∗∗ 42.5 ∗∗∗ 24.1 ∗∗∗ 18.8 ∗∗

[ 3.60] [ 1.92] [ 3.99] [ 2.83] [ 3.94] [ 2.32]

CANCER03 90 0.28 10.00 1.41 ∗∗∗ 160.2 ∗∗∗ 235.6 ∗∗∗ 195.5 ∗∗ 229.2 ∗∗∗ 352.1 ∗∗∗

[26.48] [ 3.36] [ 4.05] [ 2.44] [ 6.30] [ 5.83]

CHD08 70 0.10 6.59 0.30 ∗∗∗ 37.8 ∗∗∗ 39.1 ∗∗ 68.8 ∗∗ 14.7 -56.2 ∗∗∗

[ 2.59] [ 4.27] [ 2.10] [ 2.54] [ 0.85] [-2.91]

CHD09 90 0.05 4.57 1.20 ∗∗∗ 77.1 ∗∗∗ 136.2 ∗∗∗ 85.4 ∗∗∗ 57.7 ∗∗∗ 208.4 ∗∗∗

[18.55] [ 8.68] [11.54] [ 5.81] [ 5.48] [ 9.06]

CHD10 60 0.15 7.69 1.30 ∗∗∗ 91.9 ∗∗∗ 128.3 ∗∗∗ 112.7 ∗∗∗ 112.4 ∗∗∗ 237.5 ∗∗∗

[12.46] [ 7.18] [ 8.89] [ 4.60] [ 6.19] [ 9.17]

CHD12 90 0.08 4.82 1.21 ∗∗∗ 118.2 ∗∗∗ 222.2 ∗∗∗ 153.4 ∗∗∗ 161.5 ∗∗∗ 323.7 ∗∗∗

[22.56] [10.79] [20.70] [17.18] [16.06] [14.33]

CKD02 90 0.04 3.42 0.83 ∗∗∗ 289.9 ∗∗∗ 141.9 ∗∗∗ -1279.0 ∗∗∗ 398.2 ∗∗ -166.1 ∗∗

[ 3.52] [ 6.71] [ 2.83] [ 5.35] [ 2.30] [-2.02]

CKD03 70 0.13 7.73 0.69 ∗∗∗ 82.9 ∗∗∗ 136.9 ∗∗∗ 100.9 ∗∗∗ 164.0 ∗∗∗ 343.5 ∗∗∗

[16.24] [10.73] [11.64] [ 6.81] [11.02] [18.86]

CKD05 80 0.16 10.00 2.40 ∗∗∗ 466.9 ∗∗∗ 249.9 83.9 243.7 ∗ 413.4 ∗∗

[18.73] [ 3.21] [ 1.11] [ 0.29] [ 1.72] [ 2.48]

CKD06 80 0.22 8.89 0.85 ∗∗∗ 77.3 ∗∗∗ 113.6 ∗∗∗ 109.9 ∗∗∗ 109.8 ∗∗∗ 259.6 ∗∗∗

[16.84] [ 5.82] [ 5.70] [ 3.40] [ 5.11] [ 8.42]

CVD01 70 0.28 10.00 1.11 ∗∗∗ 164.8 ∗∗∗ 254.3 ∗∗ 200.1 179.7 ∗∗ 499.0 ∗∗∗

[13.83] [ 4.00] [ 2.32] [ 1.34] [ 2.01] [ 5.17]

CVD02 70 0.22 10.00 1.02 ∗∗∗ 97.4 ∗∗∗ 118.1 ∗∗ 97.6 79.6 ∗ 71.4

[10.77] [ 3.84] [ 2.50] [ 1.40] [ 1.78] [ 0.89]

DEM02 60 0.19 10.00 2.31 ∗∗∗ 366.9 ∗∗∗ 359.9 ∗∗∗ 717.4 ∗ 282.1 ∗∗ 338.2

[13.60] [ 4.56] [ 4.71] [ 1.92] [ 2.40] [ 1.30]

DM2 90 0.06 4.22 0.20 ∗∗ 4.9 -34.2 ∗∗∗ 39.3 ∗∗∗ -106.8 ∗∗∗ -141.5 ∗∗∗

[ 2.33] [ 0.53] [-3.78] [ 3.16] [-10.34] [-6.49]

DM10 90 0.12 4.98 0.74 ∗∗∗ 48.9 ∗∗∗ 108.5 ∗∗∗ 57.6 ∗∗∗ 58.9 ∗∗∗ 214.8 ∗∗∗

Continued on next page
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Table 4.4: (Continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indicator UL BS BW DC Test

w=10,

h=2,

k=5

w=10,

h=3,

k=5

w=10,

h=3,

k=7

w=20,

h=3,

k=5

w=20,

h=5,

k=5

[13.74] [ 4.80] [ 9.03] [ 6.26] [ 5.46] [ 9.35]

DM13 90 0.14 4.95 0.75 ∗∗∗ 74.0 ∗∗∗ 175.6 ∗∗∗ 113.8 ∗∗∗ 159.1 ∗∗∗ 400.7 ∗∗∗

[16.51] [ 5.69] [11.93] [14.40] [12.83] [19.51]

DM15 80 0.13 10.00 1.45 ∗∗∗ 306.7 ∗∗∗ 223.7 ∗ 172.0 194.6 ∗∗ 262.3 ∗∗∗

[19.09] [ 4.69] [ 1.83] [ 0.84] [ 2.57] [ 2.70]

DM17 70 0.09 4.86 0.25 ∗ 0.0 42.4 ∗∗ 42.6 42.5 -93.2 ∗∗∗

[ 1.76] [ 0.49] [ 2.39] [ 1.60] [ 1.54] [-3.44]

DM18 85 0.09 5.60 0.46 ∗∗∗ 30.0 ∗∗∗ 27.7 ∗∗∗ 42.1 ∗∗∗ 14.5 ∗ 65.9 ∗∗∗

[ 6.41] [ 4.70] [ 3.08] [ 3.19] [ 1.90] [ 6.50]

DM21 90 0.12 5.30 1.07 ∗∗∗ 119.7 ∗∗∗ 222.1 ∗∗∗ 156.1 ∗∗∗ 186.2 ∗∗∗ 376.1 ∗∗∗

[22.39] [ 9.26] [17.40] [14.53] [15.90] [21.36]

DM22 90 0.05 4.21 0.27 ∗ 76.2 ∗∗∗ 34.1 601.1 ∗∗∗ -9.8 -143.7 ∗∗∗

[ 1.87] [ 5.44] [ 1.63] [ 5.28] [-0.32] [-2.82]

EPILEP06 90 0.11 8.54 1.38 ∗∗∗ 84.6 ∗∗∗ 66.9 ∗∗ 181.1 ∗∗∗ -3.9 -72.3 ∗

[19.48] [ 2.70] [ 1.99] [ 2.69] [-0.18] [-1.66]

EPILEP08 70 0.21 10.00 1.18 ∗∗∗ 145.7 ∗∗∗ 245.2 ∗∗∗ 208.6 ∗∗ 250.8 ∗∗∗ 288.7 ∗∗

[23.80] [ 4.44] [ 3.43] [ 2.15] [ 3.75] [ 2.33]

HF02 90 0.17 10.00 2.41 ∗∗∗ 222.9 ∗∗∗ 259.5 ∗∗∗ 257.5 ∗∗ 232.6 ∗∗∗ 336.4 ∗∗∗

[29.80] [ 3.90] [ 4.31] [ 2.65] [ 5.14] [ 6.12]

HF03 80 0.11 10.00 2.19 ∗∗∗ 399.7 ∗∗∗ 240.8 ∗ 246.3 221.1 ∗∗ 293.6 ∗∗

[21.12] [ 4.66] [ 1.72] [ 0.95] [ 2.40] [ 2.50]

HF04 60 0.19 10.00 2.51 ∗∗∗ 662.3 ∗∗∗ 675.1 ∗∗∗ -4475.9 ∗ 580.8 ∗∗ 274.0

[11.53] [ 3.67] [ 4.94] [ 1.92] [ 2.39] [ 0.68]

SMOKE03 90 0.04 3.15 0.14 -9.7 -91.0 ∗∗∗ 104.7 ∗∗∗ -165.7 ∗∗∗ -238.9 ∗∗∗

[ 1.17] [-0.58] [-6.60] [ 5.32] [-12.89] [-10.12]

SMOKE04 90 0.08 4.86 1.32 ∗∗∗ 132.9 ∗∗∗ 299.2 ∗∗∗ 165.9 ∗∗∗ 272.4 ∗∗∗ 662.6 ∗∗∗

[24.79] [ 9.08] [18.04] [14.88] [18.08] [26.30]

STROKE07 90 0.10 6.58 1.12 ∗∗∗ 98.1 ∗∗∗ 179.4 ∗∗∗ 125.2 ∗∗∗ 142.5 ∗∗∗ 308.2 ∗∗∗

[25.10] [ 6.41] [ 8.71] [ 4.76] [ 8.74] [11.01]

STROKE08 60 0.13 9.60 0.47 ∗∗∗ 89.9 ∗∗∗ 116.4 ∗∗∗ 114.5 114.5 ∗∗ 90.4

[ 4.25] [ 2.99] [ 2.85] [ 1.30] [ 2.49] [ 1.12]

STROKE10 85 0.11 7.79 0.98 ∗∗∗ 64.6 ∗∗∗ 103.9 ∗∗∗ 95.3 ∗∗∗ 113.3 ∗∗∗ 262.9 ∗∗∗

[17.87] [ 4.18] [ 5.84] [ 3.64] [ 7.16] [11.52]

STROKE12 90 0.07 5.96 1.51 ∗∗∗ 88.3 ∗∗∗ 155.6 ∗∗∗ 128.2 ∗∗∗ 84.2 ∗∗∗ 217.0 ∗∗∗

[24.03] [ 4.39] [ 5.91] [ 3.21] [ 3.75] [ 5.30]

STROKE13 80 0.19 10.00 2.32 ∗∗∗ 450.8 ∗∗∗ 267.3 ∗ 165.3 259.9 ∗∗ 455.9 ∗∗∗

[21.42] [ 5.27] [ 1.72] [ 0.68] [ 2.55] [ 3.52]

THYROI02 90 0.05 4.48 0.04 -20.3 ∗ -50.7 ∗∗∗ 33.8 -122.2 ∗∗∗ -144.6 ∗∗∗

[ 0.31] [-1.97] [-4.09] [ 1.35] [-10.19] [-5.84]

Continued on next page
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Table 4.4: (Continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indicator UL BS BW DC Test

w=10,

h=2,

k=5

w=10,

h=3,

k=5

w=10,

h=3,

k=7

w=20,

h=3,

k=5

w=20,

h=5,

k=5

Notes: Own calculations based on QOF data. McCrary test on the continuity of the density at the threshold.

Optimal bin sizes (BS) and bandwidths (BW) for each indicator are chosen following McCrary implementation

of the test. Significance: * 10%, ** 5%, *** 1%.

Table 4.5 presents the second part in which we estimate regression (4.20),

where x1 refers to indicators whose rewards remained unchanged throughout the

three years that we consider (2009-2011). We exclude from the analysis those

indicators in which the test would not be not valid because bunching was not

detected. For each indicator (rows), the table reports the number of observations

above and below the threshold within a 5 pp. window to both sides of the UL

(Columns 1 and 2). Such is the selected sample for estimating the parameters of

regression (4.20): columns 3 to 5 of the table presents estimates for α1, α2, and α3.

In order to estimate the model, first differences with respect to time are obtained

for each GP practice between 2010 and 2011, and between 2009 and 2010. Such

a variable is the outcome of the equation. We also construct a binary variable

that indicates whether the practice was below the UL in years 2009 and 2010(
1(x1j,t−1 < ULj)

)
, and another that indicates whether we are observing data from

the variation 2010 to 2011 (1(t = 2011)). The sample is restricted to a window of

[UL− 5,UL + 5]. In particular, we are interested in the sign of α3. Given that we

observed a net reduction in the marginal benefit of alternative tasks, a negative

sign of α̂3 indicates a positive cross-derivative
(

de1
da2

> 0
)

which indicates that the

analysed task are complementary to the tasks affected by the 2011 changes. This

does not mean that the task is a complement of all modified indicators, but that

overall, the net response is equivalent to complements. Another possibility is

that the task is a substitute only of those tasks for which the marginal reward

was increased instead of reduced. This is less likely as the majority of changes

correspond to a decrease, rather than an increase, but we cannot rule out such a

possibility.

We also note that, for some indicators, we might not be able to reject the

hypothesis thatα3 = 0 because of lack of power. In particular, there are some
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indicators that have a very small number of practices below the threshold. For

instance, for HF04 there are only 45 practices below UL in comparison with 669

above it.

We find that AF04,CKD06, DM10, DM13 and EPILEP08 are complements of

the overall modified indicators: effort was reduced in response to the net reduction

in incentives in other indicators. The first (AF04) is the percentage of patients

with atrial fibrillation (a rapid and irregular heartbeat) who had their diagnosis

confirmed by an specialist or with a specialised test. The second (CKD06) is the

percentage of patients with chronic kidney disease who have a record for a test that

checks their kidney status. The third (DM10) is on having records of neuropathy

testing (nerve disorders) and the fourth (DM13) is records of micro-albumuria

testing (kidney’s status) for diabetic patients. The last one, EPILEP08, is on having

records on the percentage of epileptic patients under drug treatment who have

been seizure free

Alternative estimation windows are considered in Table 4.6. In this table,

each cell presented is an estimate of α3 considering a sample of [UL− l,UL + k].

This table is restricted to those cases in which the hypothesis α3 = 0 is rejected at

least once. This means that Column 3 of Table 4.5 corresponds to the fifth column

(l = 5,k = 5) of Table 4.6. Estimates for AF04, CKD06 and DM13 are stable across

the different specifications. Table 4.10 in the appendix presents definitions and

graphs with the bunching test for these indicators.

The diabetes mellitus (DM) area suffered several changes. There were changes

in payments for keeping blood pressure of patients controlled and on records of

foot examination. Also, financial rewards for keeping records of plasma glucose

concentration, blood pressure and cholesterol were removed. Given that both

DM10 and DM13 are also records of recent tests, it seems plausible that such tasks

are complements.

Neither the chronic kidney disease nor the atrial fibrillation indicators were

modified in 2011. Nevertheless, AF04 and CKD06 are affected by other indicators’

changes. AF04 measures the proportion of individuals diagnosed with ECG or by

a specialist. CKD06 rewards keeping a record of albumin creatinine ratio, which

is a specific measure related to kidney disease.
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Table 4.5: QOF indicators results: Window of 5 pp.

(1) (2) (3) (4) (5)

Descriptives Estim. Regression Coefficients Classif.

Indicator UL N N BELOW AFTER INTER

Below Above α1 α2 α3

AF03 90% 771 5747 0.027∗∗∗ 0.001 −0.001

(0.002) (0.001) (0.003)

AF04 90% 433 3001 0.039∗∗∗ −0.002∗ −0.015∗∗∗ Comp

(0.003) (0.001) (0.005)

ASTHMA03 80% 336 2505 0.031∗∗∗ −0.004 0.003

(0.007) (0.003) (0.011)

ASTHMA06 70% 512 3214 0.032∗∗∗ −0.008∗∗∗ −0.009

(0.005) (0.002) (0.007)

ASTHMA08 80% 436 3389 0.032∗∗∗ −0.006∗∗∗ −0.007

(0.006) (0.002) (0.008)

BP5 70% 554 2122 0.021∗∗∗ −0.002 −0.005

(0.003) (0.002) (0.005)

CANCER03 90% 1098 2892 0.019∗∗∗ −0.003 −0.006

(0.004) (0.002) (0.007)

CHD08 70% 317 1255 0.028∗∗∗ −0.021∗∗∗ −0.012

(0.006) (0.003) (0.009)

CHD09 90% 711 5724 0.014∗∗∗ 0.000 0.002

(0.003) (0.001) (0.003)

CHD10 60% 210 1621 0.038∗∗∗ −0.001 −0.012

(0.009) (0.003) (0.012)

CHD12 90% 1412 5769 0.016∗∗∗ −0.004∗∗∗ 0.002

(0.002) (0.001) (0.003)

CKD02 90% 95 1212 0.044∗∗∗ 0.001 −0.014

(0.006) (0.003) (0.009)

CKD03 70% 1688 3778 0.016∗∗∗ 0.009∗∗∗ 0.001

(0.003) (0.002) (0.003)

CKD05 80% 243 1487 0.038∗∗∗ −0.012∗∗∗ −0.010

(0.010) (0.005) (0.016)

CKD06 80% 1235 3387 0.027∗∗∗ −0.015∗∗∗ −0.018∗∗∗ Comp

(0.004) (0.002) (0.006)

CVD01 70% 548 1699 0.020 −0.014∗∗ −0.003

(0.013) (0.007) (0.017)

CVD02 70% 347 1458 0.029∗∗ 0.001 −0.023

(0.014) (0.006) (0.018)

DEM02 60% 79 1008 0.015 0.014∗∗ −0.000

(0.025) (0.007) (0.035)

Continued on next page
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Table 4.5: (Continued)

(1) (2) (3) (4) (5)

Descriptives Estim. Regression Coefficients Classif.

Indicator UL N N BELOW AFTER INTER

Below Above α1 α2 α3

DM2 90% 700 4130 0.020∗∗∗ 0.001 −0.001

(0.002) (0.001) (0.003)

DM10 90% 1585 5411 0.014∗∗∗ 0.001 −0.006∗ Comp

(0.002) (0.001) (0.003)

DM13 90% 2297 5154 0.011∗∗∗ −0.001 −0.005∗∗ Comp

(0.002) (0.001) (0.002)

DM15 80% 472 1988 0.024∗∗∗ 0.003 −0.007

(0.007) (0.003) (0.009)

DM18 85% 812 3437 0.014∗∗∗ −0.004∗∗ 0.007

(0.003) (0.001) (0.004)

DM21 90% 1687 5417 0.010∗∗∗ −0.002∗∗ 0.004

(0.002) (0.001) (0.003)

EPILEP06 90% 639 3745 0.031∗∗∗ −0.002 −0.006

(0.004) (0.001) (0.006)

EPILEP08 70% 1254 3262 0.014∗∗∗ 0.014∗∗∗ −0.013∗ Comp

(0.005) (0.003) (0.007)

HF02 90% 620 3028 0.025∗∗∗ −0.001 0.001

(0.004) (0.001) (0.005)

HF03 80% 271 2175 0.039∗∗∗ −0.001 0.001

(0.010) (0.003) (0.012)

HF04 60% 45 669 0.054∗ 0.022∗∗ −0.050

(0.028) (0.009) (0.038)

SMOKE04 90% 1186 6007 0.020∗∗∗ 0.001 −0.005

(0.002) (0.001) (0.003)

STROKE07 90% 1751 5483 0.010∗∗∗ −0.003∗∗∗ 0.002

(0.002) (0.001) (0.003)

STROKE08 60% 228 705 0.024∗∗∗ −0.007 0.005

(0.009) (0.006) (0.013)

STROKE10 85% 995 4049 0.014∗∗∗ −0.002 0.006

(0.003) (0.002) (0.005)

STROKE12 90% 839 5322 0.023∗∗∗ 0.001 −0.005

(0.002) (0.001) (0.004)

STROKE13 80% 290 2084 0.020∗ −0.006∗ −0.003

(0.011) (0.003) (0.014)

Notes: Own calculations based on QOF data. BELOW: To have attained below the respective upper thershold in the first

year of the variation (2009 for 2009-2010 and 2010 for 2010-2011). AFTER: 2010 to 2011 variation. AFTER: Interaction

between INTER and AFTER. Clustered at PCT-level standard errors in parenthesis. Significance: * 10%, ** 5%, *** 1%.
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Table 4.6: QOF indicators results: Multiple windows

Estimate of α3 under the sample in [UL− l,UL + k]

Presents only indicators for which α3 = 0 is rejected in at least one specification.

k=3 pp. above UL k=5 pp. above UL

Indicator l=2 l=5 l=8 l=2 l=5 l=8

AF04 −0.007 −0.015∗∗∗ −0.017∗∗∗ −0.007 −0.015∗∗∗ −0.017∗∗∗

(0.005) (0.005) (0.006) (0.005) (0.005) (0.006)

ASTHMA06 −0.007 −0.005 −0.007 −0.012 −0.009 −0.011∗

(0.008) (0.007) (0.006) (0.008) (0.007) (0.006)

CHD08 −0.015 −0.017∗ −0.017∗∗ −0.010 −0.012 −0.013∗

(0.011) (0.009) (0.009) (0.010) (0.009) (0.008)

CKD06 −0.008 −0.015∗∗ −0.016∗∗∗ −0.011 −0.018∗∗∗ −0.019∗∗∗

(0.008) (0.006) (0.005) (0.008) (0.006) (0.005)

CVD02 0.005 −0.020 −0.025 0.001 −0.023 −0.028∗

(0.024) (0.020) (0.018) (0.023) (0.018) (0.016)

DM10 −0.001 −0.004 −0.002 −0.002 −0.006∗ −0.003

(0.004) (0.003) (0.003) (0.004) (0.003) (0.003)

DM13 −0.007∗∗ −0.005∗ −0.005∗∗ −0.007∗∗ −0.005∗∗ −0.006∗∗∗

(0.003) (0.003) (0.002) (0.003) (0.002) (0.002)

DM15 −0.018∗ −0.005 −0.007 −0.020∗∗ −0.007 −0.009

(0.010) (0.010) (0.009) (0.009) (0.009) (0.008)

DM18 0.001 0.006 0.007 0.002 0.007 0.008∗∗

(0.006) (0.005) (0.004) (0.006) (0.004) (0.004)

EPILEP08 −0.000 −0.005 −0.002 −0.008 −0.013∗ −0.009

(0.009) (0.007) (0.006) (0.008) (0.007) (0.006)

HF04 −0.112∗∗ −0.059 −0.055 −0.103∗∗ −0.050 −0.045

(0.044) (0.039) (0.036) (0.043) (0.038) (0.035)

STROKE10 0.011∗ 0.003 0.005 0.013∗∗ 0.006 0.007∗

(0.006) (0.005) (0.004) (0.006) (0.005) (0.004)

Notes: Own calculations based on QOF data. Clustered at PCT-level standard errors in parenthesis. Significance: * 10%,

** 5%, *** 1%.

4.6 Conclusion

This paper introduces a test for complementarities/substitutions in the agent’s

cost function in a multitasking setting when there is a two-part linear contract.

It works by considering as a “control” group those agents who self-select into

levels of effort that corresponds to the “kink” in the reward function, that is, at

the threshold where there is a sudden change in the marginal benefit for exerting

effort in a given task. For these agents, there is a wedge between the marginal

benefit and marginal cost of effort, and hence, small changes in incentives will not
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alter their effort allocation (and hence can be used as a control group). The test

consists of two steps: first, determining whether the kink produces “bunching” in

the distribution of achievement at the threshold, and if that is the case, a difference

in differences estimator identifies the desired characteristic of the cost function.

As a case of study we have analysed a pay for performance scheme for family

doctors in the UK, the Quality and Outcomes Framework (QOF). We have shown

that changes introduced in 2010/11, which we understand as a net price drop in a

set of modified indicators, revealed that several indicators are in fact complements.

This might be because most clinical indicators refer to chronic patients, who not

unusually have several co-morbidities.

4.A Model Examples

A simple cost function that captures both substitutability and complementar-

ity is presented in Bolton and Dewatripont (2005): C(e1, e2;θ = {z, c1, c2,δ}) =
1
z · (

1
2 (c1e2

1 + c2e2
2) + δe1e2) under the assumption that δ <

√
c1c2, ci > 0∀i. As a

result we can characterize the second derivatives with each parameter Cii =
1
z · ci

and Cij =
1
z · δ, ∀i 6= j.

4.A.1 No uncertainty

Given our function φi(xi), for an optimal level of effort below UL1 , the optimal

levels of effort are given by

e∗1 = z · a1c2 − δa2

c1c2 − δ2 , e∗2 = z · a2c1 − δa1

c1c2 − δ2

Hence, Equation 4.6 becomes:

de1

da2
= z · −δ

c1c2 − δ2

Where it is clear that the sign of δ dominates the response to the incentives:

if it is negative, then the tasks are complements as the marginal cost of one of the

tasks is reduced when the effort of the other is increased (similar to the concept of

economies of scope). However, notice that if we are above the threshold UL1, two

options should be considered
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e∗1 = z · ã1c2 − δa2

c1c2 − δ2 , e∗2 = z · a2c1

c1c2 − δ2 and e∗1 = UL1 , e∗2 =
z · a2 − δUL1

c2

As a result:

1) If δ > 0 (substitutes), at most, it is optimal to exert an effort level e1 = UL1,

so it is expected that de1
da2
|e∗1≥UL1 = 0. Below that level, effort in task 1 it is decreasing

with respect to the other task price: de1
da2
|e∗1≥UL1 ≤ 0

2) If δ < 0 (complements), below a cutoff ā2 it is optimal to exert an effort level

e1 = UL1, but above such a price cutoff, de1
da2

> 0.

The result is a three section supply of effort 1. For substitutes it is flat, and

then it decreases until it is optimal not to do any effort; and for complements it is

increasing, flat and then increasing.

Kink With our current restrictions, it is straightforward to obtain the density of

e∗1 . Here, H̄(ẽ1) = G
[
e∗−1

1 (ẽ1; ā1, a2)
]
= G

[
ẽ1

c1c2−δ2

ā1c2−δa2

]
. Then, h̄(ẽ1) = g

[
ẽ1

c1c2−δ2

ā1c2−δa2

]
·

c1c2−δ2

ā1c2−δa2
and similarly h(ẽ1) = g

[
ẽ1

c1c2−δ2

(ā1+p1)·c2−δa2

]
· c1c2−δ2

(ā1+p1)·c2−δa2
.

Let us consider the point ê = ẽ1
(ā1+p1)·c2−δa2

ā1c2−δa2
. If we consider the density with-

out kink h(ê) = g
[
ẽ1

c1c2−δ2

ā1c2−δa2

]
· c1c2−δ2

(ā1+p1)·c2−δa2
. We can re-express it as g

[
ẽ1

c1c2−δ2

ā1c2−δa2

]
=

h(ê) · (ā1+p1)·c2−δa2
c1c2−δ2 . Replacing this term in the density above UL, we can express

the density of e∗1 in terms of h(·), as shown below:

h(ẽ1) =


h (ẽ1) if ẽ1 < UL

b if ẽ1 = UL

h
(

ẽ1
(ā1+p1)·c2−δa2

ā1c2−δa2

)
· (ā1+p1)·c2−δa2

ā1c2−δa2
if ẽ1 > UL

(4.24)

Notice that near UL, there is a discontinuity on the density even if we do not

consider the bunching mass at UL. Below UL the density is h (ẽ1), but above it,

the density is larger for a constant h (ẽ1). This is evident in the example of figure

4.3, where h (·) is a constant as g(·) is uniformly distributed.

Comparative Statics What can generate the distribution over e1? Let us consider

only interior solutions (a1c2 − δa2 > 0 and a2c1 − δa1 > 0) and let ∆T be the differ-

ence between the slopes of e∗1 with respect to a2 above and below a given point

T
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∆T =
de1

da2
|e∗1<T −

de1

da2
|e∗1≥T

Heterogeneity on c1 If the distribution on e1 is due to efficiency on task 1, the

sign of ∆ is informative about the sign of δ. The resulting sorting on e1 due to

variation in e1 is the same regardless of the nature of the cost function, while the

size of the e∗1 slope with respect to a2 depends on it.

∂e1
∂c1

∂2e1
∂a2∂c1

Below - Above (∆T)

− (a1c2 − δa2) · z−1 ·
(
c1c2 − δ2)−2 c2 δ · z−1 ·

(
c1c2 − δ2)−2 c2

−δ
z·(c̄1c2−δ2)

− −δ
z·(c1c2−δ2)

First term is smaller in abs. val as its denominator is larger

δ < 0 (Complements) < 0 < 0 < 0

δ > 0 (Substitutes) < 0 > 0 > 0

Heterogeneity on c2 If the distribution on e1 is due to the efficiency on task 2,

the sign of ∆ is not informative about the sign of δ. In this case, both the sorting

and the size of the e∗1 slope with respect to a2 depend on the nature of the costs

function.
∂e1
∂c2

∂2e1
∂a2∂c2

Below - Above (∆T)

δ (a2c1 − a1δ) · z−1 ·
(
c1c2 − δ2)−2

δ · z−1 ·
(
c1c2 − δ2)−2 c1 Depends on δ

δ < 0 (Complements) < 0 < 0 < 0

δ > 0 (Substitutes) > 0 > 0 < 0 !!!!

Heterogeneity on δ If the distribution on e1 is due to the degree of comple-

mentarity/sustituibility, the sign of ∆ can only detect substitutes. Here, the size

of the e∗1 slope with respect to a2 depend on the nature of the costs function but

the sorting depends on the value of other parameters. If tasks are substitutes and

e∗1 > a2
2δz2 , the sorting will be positive. In that case it is possible to say that the

tasks are substitutes by observing a positive ∆, but if this term is positive it is not

possible to deduce the sign of δ.

∂e1
∂δ

∂2e1
∂a2∂δ Below - Above (∆T)

(
−a2

(
c1c2 − δ2)+ 2δ (a1c2 − δa2)

)
· z−1 ·

(
c1c2 − δ2)−2 −

(
δ2 + c1c2

)
· z−1 ·

(
c1c2 − δ2)−2 c1 Depends on δ(

−a2 + 2δz2 a1c2−δa2
z(c1c2−δ2)

)
· z−1 ·

(
c1c2 − δ2)−1

(
−a2 + 2δz2e∗1

)
· z−1 ·

(
c1c2 − δ2)−1

δ < 0 (Complements) < 0 < 0 < 0

δ > 0 (Substitutes) If −a2
(
c1c2 − δ2)+ 2δ (a1c2 − δa2) > 0, then > 0 < 0 > 0

If −a2
(
c1c2 − δ2)+ 2δ (a1c2 − δa2) < 0, then < 0 <0 < 0 !!!!
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4.A.2 With uncertainty

Adding the functional form C = 1
z · (

1
2 (c1e2

1 + c2e2
2) + δe1e2). Also, assume ε1 ∼

N(0,σ1), which will allow us to work with the standard normal distribution. An

additional element is the inclusion of the penalty Ω for uncertainty. For instance,

this term will be equal to 1
2 η(a2

1σ2
1 ) if we consider an exponential utility function

u(p) = −exp(−η · p), where ηis the absolute risk aversion coefficient.

FOC1 : = z ·
{

a1Φ
(

UL− e1

σ1

)
+

1
σ1

φ

(
UL− e1

σ1

)
· [(UL− e1) · a1 + Ω]

}
− c1e1 − δe2 = 0

FOC2 := z · a2 − c2e2 − δe1 = 0

And the equivalent of Equation 4.12

de1

da2
= z · −δ

c1c2 − δ2 + z · c2

{
1

σ2 φ′
(

UL−e1
σ1

)
· [(UL− e1) · a1 + Ω] + 2a1

1
σ φ
(

UL−e1
σ1

)}

Given that for the standard normal pdf it holds that φ′(x) = −xφ(x)

de1

da2
= z· −δ

c1c2 − δ2 + z · c2

{
− 1

σ3 φ
(

UL−e1
σ1

)
· [UL− e1] · [(UL− e1) · a1 + Ω] + 2a1

1
σ φ
(

UL−e1
σ1

)}
= z· −δ

c1c2 − δ2 + a1 · z · c2 · 1
σ · φ

(
UL−e1

σ1

){
2− 1

σ2 · [UL− e1] ·
[

1
a1

Ω + UL− e1

]}

As in the general case, being far from UL implies a larger slope (in absolute

value). This is an effect that is attenuated by risk aversion below UL. Above such

cut-off, risk aversion makes the derivative larger in absolute value. In this partic-

ular case, being very far from UL implies that the derivative will be equivalent to

the non-uncertainty case.
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4.B QOF Payment

Equation 4.26 shows how ratio indicators are translated into income for a practice

i. Essentially, achievement xi of indicator j is translated into points, and such

points into yearly income. First, points are allocated according to a non-linear

tariff that depends on two indicator specific thresholds. Below the lower limit (LLj)

zero points are awarded, and above the upper limit (ULj) the maximum amount of

available points for indicator j is awarded (Equation 4.25). The resulting figure is

adjusted with respect to the relative size of the practice (contractor population index,

CPIi), and to the relative prevalence of the specific condition rewarded for clinical

indicators (PFij). The achievement factor is multiplied by the CPI index and the

prevalence factors, and by the price per point (Equation 4.26). The CPI captures

the size of the practice, and is calculated as the number of patients in the practice

relative to the figure 5891, which was the 2003 average list size.32 The prevalence

factor measures how commonly the condition is treated in indicator j, relative to

the national average.

xij =
Numeratorij

Denominatorij

AFij =


0 if xi ≤ LLj(

xi − LLj
)
· Avail. Pointsj

ULj−LLj
if xi > LLj

Avail. Pointsj if xi ≥ULj

(4.25)

CPIi =
listi

5891

PFij =
denomij/listi|Xij

E[denom/list|X]
, where X are specific conditions

Pij =
(

Value per point in Â£
)
· AFij · CPIi · PFij (4.26)

32Since 2013 this figure has been updated annually. More details are available from BMA (2013).
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4.C Additional Tables

Table 4.7: QOF indicators descriptives for 2010/11

(1) (2) (3) (4) (5) (6)

Indicator UL Number E[xt] P[xt < UL] ρ(xt) E[xt − xt−1 E[xt − xt−1

|xt−1 < UL] |xt−1 > UL]

AF03 90% 8245 93.82 7.14 0.50 9.88 -0.55

AF04 90% 8245 95.28 6.43 0.51 26.20 -1.39

ASTHMA03 80% 8245 90.00 4.69 0.41 18.64 -0.76

ASTHMA06 70% 8245 79.58 5.29 0.54 11.03 -0.19

ASTHMA08 80% 8245 87.89 6.37 0.46 15.63 -0.98

BP5 70% 8245 79.68 5.17 0.64 5.87 -0.09

CANCER03 90% 8245 92.75 17.84 0.34 18.18 -2.69

CHD08 70% 8245 81.90 3.51 0.56 11.30 -0.41

CHD09 90% 8245 93.58 7.56 0.46 4.30 -0.66

CHD10 60% 8245 74.91 2.60 0.67 13.30 -0.70

CHD12 90% 8245 92.73 16.53 0.48 5.17 -0.31

CKD02 90% 8245 97.26 1.29 0.41 26.83 -0.37

CKD03 70% 8245 74.86 21.73 0.52 5.58 -1.72

CKD05 80% 8245 90.78 6.03 0.46 40.20 -2.70

CKD06 80% 8245 82.35 24.29 0.53 14.80 -1.33

CVD01 70% 8245 80.12 14.71 0.44 26.06 -5.50

CVD02 70% 8245 82.61 7.94 0.37 34.13 -5.68

DEM02 60% 8245 80.54 3.04 0.42 36.15 -0.92

DM2 90% 8245 94.87 7.00 0.54 4.47 -0.36

DM10 90% 8245 91.39 22.84 0.58 4.93 -0.69

DM13 90% 8245 88.80 37.48 0.65 3.38 -1.38

DM15 80% 8245 89.28 8.07 0.53 20.31 -1.66

DM17 70% 8245 82.73 2.43 0.60 8.70 -0.55

DM18 85% 8245 91.19 9.76 0.47 5.99 -0.17

DM21 90% 8245 91.08 24.33 0.52 5.46 -0.97

DM22 90% 8245 96.95 2.44 0.44 7.78 -0.02

EPILEP06 90% 8245 95.62 6.95 0.27 13.07 -0.64

EPILEP08 70% 8245 73.96 26.14 0.56 7.72 -3.09

HF02 90% 8245 95.46 8.02 0.51 17.25 -1.03

HF03 80% 8245 90.26 4.24 0.46 27.42 -1.10

HF04 60% 8245 83.15 3.26 0.47 41.65 -1.39

SMOKE03 90% 8245 95.61 2.66 0.52 5.69 0.00

SMOKE04 90% 8245 93.07 12.48 0.44 4.98 -0.72

STROKE07 90% 8245 91.49 23.91 0.43 5.01 -1.08

STROKE08 60% 8245 77.18 3.07 0.50 20.72 -0.57

STROKE10 85% 8245 90.09 13.45 0.40 8.97 -0.49

Continued on next page
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Table 4.7: (Continued)

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10)

Indicator UL Number E[xt] P[xt < UL] ρ(xt) E[xt − xt−1 E[xt − xt−1

|xt−1 < UL] |xt−1 > UL]

STROKE12 90% 8245 93.79 8.98 0.45 9.97 -0.93

STROKE13 80% 8245 88.90 7.51 0.58 25.92 -1.87

THYROI02 90% 8245 95.81 3.24 0.41 10.46 -0.11

Notes: Own calculations based on QOF data. Number: Number of GP practices, including those with 0 elegible

patients for the given indicator. E[xt] : Average achievement per indicator. P[xt < UL] : Proportion of practices

with an achivement below UL. ρ(xt) : Correlation between 2010 and 2009 achivement.
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Table 4.8: Detailed Changes in QOF 2011 clinical indicators with respect to 2009-2010

Status Description Affected Indicators Price
Interpretation

Points

Retirements These tasks are not rewarded anymore. Clinical
indicators are about having a recent record of
certain physical measures, or reviews.

CHD5, CHD7,
DM5, DM11,
DM16, EPILEPSY7,
MH7, STROKE5

Reduction 32

Points reduced Number of assigned points per indicator was
reduced.†

BP4, DEP1 Reduction 26 to 22

Upper Limit
Increased

Small increase from 70% to 71%. ♠ CHD6, STROKE6 Reduction 22

Replacement I For indicators PP01, MH04, MH05, the time for
accomplishing a given goal was reduced. For
CHD2, the optional specialist referral was made
compulsory.

PP01, MH04,
MH05, CHD2

Reduction 18

Replacement II Decrease in points and new wording is more
precise and requires actions at the moment of
diagnosis instead of treatment starting point.

DEP2, DEP3 Reduction 45 to 25

Replacement III Most of these indicators were replaced by
versions which are harder to accomplish. In a few
of them this was compensated with extra points,
but in some others there was a reduction as well:

• For CHD11/CHD14 there is an increase
from 7 to 10 points in exchange for
prescribing aspirin and statins on top of
an ACE inhibitor or alternative blood
pressure treatments.

• Requirements for DM9 were increased
from checking peripheral pulses to a more
comprehensive foot examination. It was
also increased from 3 to 4 points.

• Indicator DM12 was split into DM30 and
DM31, keeping the same number of
points. It asked for a percentage of
patients below a given blood pressure
target (145/85). It was replaced by two
targets, one slightly below the original
(140/80), and one notoriously above
(150/90).

• Indicator MH09 was split into MH11,
MH12, MH13, MH14, MH15 and MH16.
It moved from 23 to 27 points. The
original indicator was general and
imprecise (“routine health promotion and
prevention advice appropriate to their age
and health status”), while the
replacements ask for specific
measurements depending on age and
gender.

CHD11/CHD14,
DM9, DM12
(DM30,DM31),
MH09 (MH11,
MH12, MH13,
MH14, MH15 and
MH16)

Ambiguous 51 to 59

Replacement IV The cutoff was relaxed from last HbA1C to be 7%
or less, to HbA1C to be 7.5% or less

DM23/DM26 Increase 17

Replacement V Similar or the same wording, but the recoding
was done in order to highlight recent changes in
diagnostic procedures. For diabetes indicators the
wording is explicit about new measurement
standards.

COPD1/COPD14,
COPD12/COPD15,
MH6/MH10,
DM24/DM27,
DM25/DM28

- 32

New These are tasks that were not considered before.
Three new clinical indicators, on dementia,
epilepsy and learning disabilities.

DEM3, EPILEPSY
9, LD2

Increase 12

Unchanged No change on points, thresholds or wording - 454

Note: This corresponds to our interpretation based on NHS Employers public documents. † Does not include
indicators which wording was amended as DEP2 and DEP3. ♠ Does not include DM12/DM30, which is an

indicator that its wording was also amended.
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Table 4.9: Bunching tests for selected indicators I

DM22: The percentage of patients with
diabetes who have a record of estimated
glomerular filtration rate (eGFR) or
serum creatinine testing in the previous
15 months.
3 points. LL=40, UL=90.

SMOKE3: The percentage of patients
with any or any combination of the
following conditions: coronary heart
disease, stroke or TIA, hypertension,
diabetes, COPD, CKD, asthma,
schizophrenia, bipolar affective disorder
or other psychoses whose notes record
smoking status in the previous 15
months (except those who have never
smoked where smoking status need
only be recorded once since diagnosis)
30 points. LL=40, UL=90.

THYROID2: The percentage of patients
with hypothyroidism with thyroid
function tests recorded in the previous
15 months
6 points. LL=40, UL=90.
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Table 4.10: Bunching tests for selected indicators II

AF04: The percentage of patients with
atrial fibrillation diagnosed after 1st
April 2008 with ECG or specialist
confirmed diagnosis.
10 points. LL=40, UL=90.

DM13: The percentage of patients with
diabetes who have a record of
micro-albuminuria testing in the
previous 15 months (exception reporting
for patients with proteinuria)
3 points. LL=40, UL=90.

CKD06: The percentage of patients on
the CKD register whose notes have a
record of an albumin:creatinine ratio (or
protein:creatinine ratio) value in the
previous 15 months
6 points. LL=40, UL=80.



Chapter 5

Conclusions, future work and policy

recommendations

This thesis has explored three broad topics in the area of the economics of health.

While each of them deals with different research questions, the common element

among them is the role of government policies in shaping health and, as a con-

sequence, individual choices. As a result, the conclusions of each chapter are

able enrich our understanding of how to design health-related policies in order to

improve the welfare of a society.

In chapter 2, behavioural responses to routine health checks were considered.

Specifically, as a result of being advised to visit a family doctor due to a potential

risk of suffering hypertension, I found an increase in the probability of being on

medication to lower blood pressure but also differences in lifestyle. Interestingly,

there were responses in opposite directions. For instance there was a reduction

in alcohol intake frequency but also an increase in the odds of being obese. This

adds to current evidence that suggests that information-based treatments should

consider behavioural responses in order to assess the full impact of these pro-

grams, and that more research is needed to understand which lifestyles are more

responsive and in which direction to such interventions.

As a policy lesson, this chapter tells us that health checks type of programmes

might work in identifying certain individuals who are at risk of developing chronic

diseases. The effect on medication use was substantial, especially for those indi-

viduals with a high risk of developing cardiovascular diseases, even if it was tem-

poral. However, it is important that this type of policy is also accompanied by a
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lifestyle follow-up in order to check whether this is deteriorating.

Chapter 3 presented a novel framework for assessing the value and the cost-

effectiveness of the adoption of a health intervention. It combines a health progres-

sion model with a standard life-cycle model with endogenous labour supply. As

a result, it is possible to construct counterfactual scenarios with diverse policies,

featuring not only health technology or social protection but also labour market

characteristics. This allows for determining a willingness-to-pay value that incor-

porates how households’ consumption and leisure is affected by the treatment.

With this too is also possible to improve standard cost-effectiveness calculations

by incorporating the gains on additional labour income, a potential source of re-

sources for the health system.

This chapter developed a tool that would be useful for institutions around the

world that have to decide whether to include certain treatments in a health insur-

ance contract. The general design of the model allows potential users to analyse

preventive care innovations in areas different to cardiovascular disease. For in-

stance, valuing innovations in mental health, cancer and disability benefits among

others are feasible applications. The sole requirements are to be able to map such

conditions into reported diagnoses, and to have information on markers that sig-

nal a higher risk of developing certain conditions. This tool can also introduce

a more general analysis of the heterogeneity in the value of a treatment, which

might also help to target some treatments to specific populations.

And last, in the context of contracting schemes where there are rewards for

specific tasks, in chapter 4 a novel test for complementarity/substitutability across

tasks was introduced. It takes advantage of two-piece linear tariffs such as the

Quality and Outcomes Framework clinical indicators. Essentially, for a given task,

agents - GP practices in our example - who self-select into the level of effort at

which the marginal benefits change become insensitive to small exogenous varia-

tions in the marginal benefit of alternative tasks. Effectively, those agents near the

threshold become a control group that allow us to understand how agents react to

such alternative task prices variations.

While this last chapter’s contribution is more technical than the previous ones,

it has direct implications for our understanding of financial incentive schemes. In
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this precise case, it shows that the UK primary care incentive programme does not

have tasks that are clear substitutes. It also suggests that these schemes should

include kink points in order to allow for a recurrent evaluation of changes in

their design. This is a sensible alternative when it is not possible to introduce

experimental variation.

As a general conclusion, this dissertation has shown that there is potential to

extend our knowledge of preventive care interventions both from the supply and

demand side. First, there is empirical evidence that certain interventions do affect

individuals’ decisions; however work on this topic is scarce and more detailed

evidence of the mechanisms behind is still required. In my research I found that

some lifestyles are improved while others deteriorate, but knowing more about

the heterogeneity in beliefs regarding the contribution of each input of the health

production function is still required. Understanding this would motivate a better

analysis on how individuals value medical innovations. In my research, rational

agents know perfectly the benefit of a drug and have beliefs about their future

health that match realised events for the previous generation. This is an assump-

tion that could be relaxed if my proposed framework were to be combined with

information that includes subjective beliefs about current and future health.

The previous recommendations, both in terms of policy and research, are

direct contributions from this dissertation. I hope that they could be implemented

in order to improve both welfare and knowledge.
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