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Abstract Satellite-based Martian reanalyses have allowed unprecedented comparisons between our
atmosphere and that of our sister planet, underlining various similarities and differences in their respective
dynamics. Yet by focusing on large scale structures and deterministic mechanisms they have improved
our understanding of the dynamics only over fairly narrow ranges of (near) planetary scales. However,
the Reynolds numbers of the flows on both planets are larger than 1011 and dissipation only occurs at
centimetric (Mars) or millimetric scales (Earth) so that over most of their scale ranges, the dynamics are fully
turbulent. In this paper, we therefore examine the high-level, statistical, turbulent laws for the temperature,
horizontal wind, and surface pressure, finding that Earth and Mars have virtually identical statistical
exponents so that their statistics are very similar over wide ranges. Therefore, it would seem that with
the exception of certain aspects of the largest scales (such as the role of dust in atmospheric heating on
Mars, or of water in its various phases on Earth), that the nonlinear dynamics are very similar. We argue
that this is a prediction of the classical laws of turbulence when extended to planetary scales and that it
supports our use of turbulent laws on both planetary atmospheres.

1. Introduction

Although modern atmospheric science has its origins in attempts to understand the Earth’s atmosphere,
thanks to satellite data and computer models, it has been extended to encompass extraterrestrial atmo-
spheres, the most similar being on Mars. So far, the comparisons have focused on the similarities and
differences of various dynamical mechanisms (see, e.g., the review by Leovy [2001]) and the Martian point
of comparison has enriched our understanding of the Earth. Significant differences between terrestrial and
Martian atmospheres include the strong control of Martian atmospheric temperature by dust, the larger role
of topography, the stronger diurnal and annual cycles, and the larger role of atmospheric tides. Significant
similarities include jets, zonal circulation patterns, and the existence of fairly similar Hadley cells.

These deterministic mechanisms are pertinent at the very largest spatial scales, but what about the rest? On
both Mars and Earth, typical Reynolds numbers are greater than 1011 (Table 1), so that from planetary down
to dissipation scales (centimetric and millimetric, respectively, Table 1) the flow is turbulent so that we would
expect high-level (statistical) turbulent laws to be obeyed. As reviewed in Lovejoy and Schertzer [2013], these
laws are of the form: ΔI(Δr̄ )≈𝜙Δr̄ H, where ΔI is a fluctuation in the parameter I, Δr̄ is the vector separating
two points, and 𝜙 a turbulent flux (or a power of a turbulent flux). For example, we recover the Kolmogorov
law if I is a velocity component, Δr̄ is the distance between two points, 𝜙 = 𝜖1∕3 where 𝜖 is the energy flux to
smaller scales, H is a scaling exponent, and the fluctuation ΔI (Δr̄ ) is taken as the difference in I between two
points separated by vector Δr̄ (in cases where H < 0, other definitions of fluctuations are needed). For atmo-
spheric applications, the main limitations of the classical laws are their assumption that the turbulent flux is
fairly homogeneous (constant or quasi-Gaussian) and that the turbulence is statistically isotropic: they take
Δr̄ to be the usual vector norm of the vector displacement Δr̄ . However, since the 1980s the development
of multiplicative cascades to account for intermittency have allowed the fluxes to be wildly variable
(multifractal), and the development of generalized scale invariance has allowed the turbulent laws to be
extended beyond isotropy to strongly stratified flows. The resulting anisotropic cascade picture has been
shown to be highly accurate for the Earth’s atmosphere, numerical models of the atmosphere, and atmo-
spheric reanalyses with significant deviations only occurring at scales larger than about 5000 km (see the
extensive review by Lovejoy and Schertzer [2013]).

(A note on terminology: In this paper we use the term “stratification” to refer to vertical stratification, which
is apparently scaling with different exponents in the horizontal and vertical direction implying that the
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Table 1. Mars Versus Earth, Turbulent Characteristics Near Their Surfaces

Earth Mars

Densitya(𝜌) (surface, kg/m3) 1.24 (10∘C) 7 × 10−3 (−20∘C)

Dynamic viscosityb(𝜂), (kg m−1s−1) 1.8 × 10−5 (10∘C) 1.3 × 10−5 (−20∘C)

Kinematic viscosity (v = 𝜂∕𝜌), m2∕s 1.5 × 10−5 1.9 × 10−3

Lw
c 2 × 107 1.07 × 107

ΔUd 27 70

Re = LwΔU∕v 4 × 1013 4 × 1011

𝜖e(W/kg = m2/s3) 10−3 4 × 10−2

Ldiss
f (m) 1.4 × 10−3 2.0 × 10−2

aThe density was taken at the surface pressure (for Mars, 5 mb was used, for Earth,
1000 mb) and at 10∘C Earth and −20∘C Mars.

bThe dynamic viscosity is nearly independent of pressure.
cHalf the circumference, the largest great circle distance = 𝜋R where R is the

planetary radius.
dΔU taken from Lovejoy et al. [2014] (from reanalyses, average antipodes wind

differences).
eThe flux of turbulent energy to smaller scales (equal to the energy rate density)

as estimated in Lovejoy and Schertzer [2011] (Earth) and Lovejoy et al. [2014] (Mars).
fThe dissipation (Kolmogorov) scale estimated by using the Kolmogorov formula:

Vdiss =𝜖1∕3Ldiss and the relation Rediss =LdissVdiss∕v=1 to obtain: Ldiss =(v3∕𝜖)
1
4 .

stratification becomes more and more extreme at large scales. However, we find that there is an exactly
(mathematically) analogous scaling anisotropy in the EW versus NS direction, and this is important in this
paper. Also, in the following, we use the word scaling as in the physics literature, to refer to a physical quan-
tity that varies in a power law way as a function of space and/or time scale. The corresponding exponents are
“scale invariant” and the notion of scale can be considerably generalized from the usual Euclidean notion so
as to take into account anisotropy.)

The advantage of these high-level laws is that although they describe the statistical properties over wide
ranges of space-time scales, they are quite simple, and they provide the theoretical basis of stochastic mod-
eling and stochastic forecasting [e.g., Lovejoy et al., 2015]. Theoretically, the reason that the turbulent laws
are obeyed is because the dynamic equations are formally scale invariant down to the dissipation scale.
We therefore expect them to hold on Mars as well as Earth, although the relevant fluxes and exponents could
be different. Lovejoy et al. [2014] took the first step in making a statistical Earth-Mars comparison by showing
that with the exception of the diurnal and annual cycles and harmonics that the second-order temporal statis-
tics (the spectra) for wind and temperature of the two planets were virtually the same, as long as the Martian
time scales were rescaled by a factor of about 5, itself theoretically predicted from turbulence theory and from
the differences in the overall solar forcing and atmospheric thicknesses. Lovejoy et al. [2014] used both in situ
(Viking Lander) data and MACDA (Mars Analysis Correction Data Assimilation) reanalyzes [Montabone et al.,
2014]; the aim of this paper is to extend this statistical analysis to moments other than the second, to the pres-
sure and both horizontal wind components, to provide analyses in space and in time, and finally to directly
analyze turbulent fluxes and hence cascades structures. The methods are the same as those that were applied
to terrestrial reanalyses in Lovejoy and Schertzer [2011]. Beyond establishing striking quantitative and qualita-
tive similarities between Martian and terrestrial atmospheric variability, this paper underlines the importance
of going beyond deterministic mechanistic descriptions to consider the simple higher level statistical laws
needed for an understanding—and improved modeling—over a much wider range of space-time scales.

Let us briefly comment on turbulent fluxes which are fluxes in Fourier, not real space (i.e., across surfaces in
Fourier space i.e. across scales). It seems that the energy flux is important in both for determining the hor-
izontal velocity dynamics, whereas the buoyancy force variance flux controls the vertical structure of the
horizontal wind. These are anisotropic generalizations of the classical Kolmogorov and Bolgiano-Obukhov
laws. But most of the exponents observed in the atmosphere have yet to be explained and the corresponding
fluxes identified. Fortunately, this is not necessary for analyzing the data and for estimating their intermittency
characteristics.
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This paper is organized as follows. In section 2, we describe the MACDA reanalysis data set used for the sta-
tistical analysis for the Martian Atmosphere. In section 3, we compare the Fourier-space spectral scaling of
atmospheric fields on Earth and Mars. In section 4, we compare real-space statistics of atmospheric fields on
Earth and Mars. In section 5, we discuss and conclude.

2. The Data
2.1. Martian Meteorology
The first general circulation model (GCM) of the Martian atmosphere was proposed by Leovy and Mintz [1969]
by adapting the terrestrial GCM from the University of California, Los Angeles (UCLA) [Mintz, 1965]. The predic-
tions of this model informed much of our initial understanding of the Martian atmosphere, in particular, the
CO2 condensation behavior in the atmosphere and the basic characteristics of the Martian circulation. With
data from the Mars missions in the 1970s, significant improvements were made to this model at the NASA
Ames Research Centre [see Pollack et al., 1976; Hollingsworth and Barnes, 1996] and these improvements led to
further theoretical refinements. In the following years, several other terrestrial models were adapted to Mars,
furthering our understanding of the mechanics of the Martian atmosphere. For example, Hourdin [1992] and
Hourdin et al. [1993] developed a model to explain the pressure variation of the Martian atmosphere, from
an adaptation of the Laboratoire de Météorologie Dynamique (LMD) terrestrial model [Morcrette et al., 1986].
Additionally, Wilson and Hamilton [1996] developed a model from the Geophysical Fluid Dynamics Laboratory
(GFDL) terrestrial GCM [Holloway and Manabe, 1971], to explain the role of thermal tides.

In spite of the great strides in our understanding of Martian atmospheric dynamics at the largest scales, there
has been little insight into the corresponding statistics needed to understand the dynamics over a wide range
of space-time scales. An important reason has been the lack of high quality global scale Martian atmospheric
data. However, with the development of a reanalysis product—the Mars Analysis Data Correction Assimilation
(MACDA) Montabone et al. [2014]—detailed analysis of Martian atmospheric statistics is now possible.

2.2. Martian Reanalyses
The MACDA reanalysis is a hybrid of observational data and the data assimilation part of a numerical weather
model. The observational data assimilated by MACDA were taken from the Thermal Emission Spectrometer
(TES) [Christensen et al., 2001] aboard the Mars Global Surveyor (MGS) at an average orbital height of
400 km. The TES measures thermal radiance via a combination of a spectrometer and two bolometers
(one thermal and one near infrared). When combined, these instruments captured the thermal radiance of
the Martian surface with 18 channels. Although, thermal emission spectra may be used to retrieve tem-
perature and dust opacities using inversion algorithms (see Smith et al., 2000 and Conrath et al. [2000]
for dust opacity and temperature, respectively), the reanalysis allows them to be used more directly in a
forward mode.

MACDA is based on a GCM developed in collaboration between (LMD) and the Department of Atmospheric,
Oceanic and Planetary Physics at Oxford University (AOAP) (see Forget et al. [1999] for model specifications).
The assimilation was first reported by Lewis et al. [2007], who used a scheme developed by the Meteorological
Office in the U.K. [see Lorenc et al., 1991]. The final reanalysis product, presented by Montabone et al. [2014],
is a high quality data set (see, e.g., Lewis et al. [2016] for insights into the quality of the data set) that consists
of seven Martian atmospheric fields, of which four were considered as thermodynamically and dynamically
relevant for analysis—temperature, zonal (EW)/meridional (NS) wind, and surface pressure.

Each of the four atmospheric fields is gridded with a resolution of 5∘ (≈300 km) and sampled at a frequency of
2 Martian hours (2 × 1.0275 Earth hours) over a period of 3 Martian years (≈5.64 Earth years); From 141∘ solar
longitude (for a description of this unit see Sidiropoulos and Muller [2015]) in Martian year (MY) 24 through 82∘

solar longitude in MY 27. In addition, the temperature and wind fields are specified on 25 vertical atmospheric
levels. These levels are defined by a specific percentage of surface pressure, or “sigma” levels. For much of
our analysis, we focus on the 9 sigma level (83% of surface pressure, ≈6 mbar). On the one hand, this is at an
altitude sufficiently high to avoid most issues of topography and dust storms (the strong effects of dust storms
on observational temperature data are well documented in Conrath et al. [2000]). On the other hand, the 9
sigma level was also sufficiently low so as to be well within the region where the reanalysis’ observational data
are most accurate [Montabone et al., 2014]. We also give some more limited results at other pressure levels
and these yield quite similar results; see Table 4.
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Figure 1. Gray-shade renderings of the MACDA reanalysis for the 6 Martian
hour, 141∘ solar longitude in Martian year (MY) 24, on the atmospheric
level with 83% of surface pressure. (top to bottom) The renderings are for
top to bottom respectively surface pressure (p), meridional wind (v), zonal
wind (u), and temperature (T).

For the purposes of analysis, the orig-
inal spherical grid was simplified by
taking a cylindrical projection of the
region between the ±45∘ latitudes
(Gray-shade renderings of these grids
are shown in Figure 1). Not only
does this projection allow us to focus
our analysis on the region where the
observational data are most concen-
trated, but it is also close enough to
the equator so as to be relatively insen-
sitive to latitudinal variations in pixel
size [see Lovejoy and Schertzer, 2011,
Appendix]. The theoretically more ele-
gant method based on spherical har-
monics was not used since as we show
below, the reanalyses are strongly
anisotropic in the horizontal so that
analyses must be performed sepa-
rately in zonal and meridional direc-
tions. Analysis of the higher latitudes is
left for future studies, but the basic sta-
tistical laws (e.g., scaling exponents)
are likely to be the same [see, e.g.,
Lovejoy and Schertzer, 2010].

The exception to our treatment of the
free atmospheric fields was the surface

pressure field. Since its variability is strongly dependent on the topography, rather than analyzing the surface
pressure directly, we analyzed the pressure anomalies with respect to the pressure averaged over the entire
reanalysis period. The same was done for the terrestrial European Centre for Medium Range Weather Forecasts
(ECMWF) reanalysis since the closest existing previous analysis [Lovejoy and Schertzer, 2011] was of the
geopotential height and hence was not directly comparable.

Finally, we mention that the MACDA reanalysis data are no longer the only Martian reanalysis. Recently,
the Ensemble Mars Atmosphere Reanalysis System (EMARS) appeared [Greybush et al., 2014]. EMARS is par-
tially based on more recent observational data from the Mars Climate Sounder observational temperature
limb profiles [see Kleinböhl et al., 2009]. In addition, this reanalysis is built on a different model, the GFDL
Mars GCM [see Wilson and Hamilton, 1996], and a more advanced assimilation algorithm, the Local Ensemble
Transform Kalman Filter (LETKF) [see Hunt et al., 2007]. However, at the time of writing, this reanalysis was not
publicly available.

3. Fourier-Space Spectral Scaling
3.1. Theoretical Considerations
Lovejoy and Schertzer [2011] presented a systematic analysis of the Earth’s atmosphere at 700 mb (≈3 km,
using the European Centre for Medium Range Weather Forecasts (ECMWF) Reanalysis (interim) and 365 con-
secutive daily reanalyses of key atmospheric variables: temperature, wind (all components), geopotential
height, and humidity. In order to systematically compare these to the MACDA reanalyses, we start with spectral
analysis which is both familiar and sensitive to breaks in the scaling. The spectrum is a second-order statistic,
whereas a full statistical analysis requires all the moments; this is postponed until section 4 which provides a
direct analysis of the turbulent fluxes that are responsible for the intermittency.

We begin our theoretical discussion of spectral scaling with a field F(r̄) of a position vector r̄ (extending to the
time dimension is straightforward). The Fourier transform of this field is expressed as follows:

F̃
(

k̄
)
= ∫ eik̄⋅r̄F (r̄)dr̄, (1)
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where k̄ is the wave vector dual to r̄; we take F as real so that it satisfies F̃
(

k̄
)
= F̃∗ (−k̄

)
(“*” indicates complex

conjugate, the tilda indicates Fourier transform). With this transform, we can then write an expression for the
power spectral density P: ⟨

F̃
(

k̄
)

F̃∗ (k̄′)⟩ = 𝛿
(

k̄ + k̄′) P
(

k̄
)
. (2)

As with convention, the brackets refer to “statistical averaging”, “𝛿” is the Dirac function. For finite and real data
F, the spectral density P is thus proportional to the ensemble average of the modulus squared of the Fourier
transform of F. Empirically, fast Fourier techniques (with Hanning windows) are used to estimate the Fourier
transforms in equation (2). This is followed by an ensemble averaging, which we estimate by averaging over
the entire data set.

For systems that are statistically isotropic, P is solely dependent on the modulus of k̄: P
(

k̄
)
= P

(|k̄|). Now,
consider an isotropic “zoom” (i.e., a standard “blowup”) by a scale𝜆> 1 in real space: r̄→𝜆r̄, which is the inverse
of the Fourier-space “blowdown”: k̄ → 𝜆−1k̄. If the system is “self-similar” (a system that is both isotropic and
scaling), then the relation between small and large scales is independent of a characteristic size. This implies
the following power law relation between small scales k̄ and larger scales 𝜆−1k̄:

P
(
𝜆−1k̄

)
≈ 𝜆sP

(
k̄
)
. (3)

The solution to the above can be expressed in a power law form:

P
(|k̄|) ≈ |k̄|−s. (4)

Note that we have purposely taken a methodical approach to this theoretical discussion so far, as we will
shortly relax the isotropic assumption by replacing k̄ with a scale function that respects scaling symmetries,
to allow for nonself-similar and anisotropic scaling systems.

It is common in spectral analysis to evaluate an “isotropic spectrum” E(k) (with k = |k̄|). This spectrum is cal-
culated by an integration over all space: in one dimension, E(k)=2P(k), in two dimension, E(k)=2𝜋kP(k), and
in three dimensions, E(k)=4𝜋k2P(k). In empirical analysis, where one is constrained by finite sample size, one
can integrate over all angles to improve the estimate of E(k) (via noise reduction), by using

E(k) = ∫
𝛿Sk

P(k̄′)dk̄′, (5)

where Sk is defined as the d-dimensional sphere and 𝛿Sk , the integration region, is its boundary (we have
ignored the factor N, the number of degrees of freedom from the Dirac function in equation (2)). In one dimen-
sion, the end points of the interval is from k to k + 𝛿k (reduces to E(k)=2⟨|F(k)|2⟩). In two dimensions, the
integral is done over a circle radius k (reduces to E(k)=2𝜋⟨|F(k)|2⟩). In three dimensions, the integration is
done over a spherical shell radius k (reduces to E(k)=4𝜋⟨|F(k)|2⟩). Using equation (5) and the expression for
the power spectral density in equation (4), we can express the spectrum in a power law form:

E(|k̄|) ≈ |k̄|−𝛽 ; 𝛽 = s − d + 1. (6)

Based on equation (6), the spectrum obeys a theoretical power law dependence. Therefore, we empirically
test for scaling of the field F, by examining the power law form of the field’s spectrum. (Note, we ignore the
d-dependent factors.)

3.2. Spatial Spectra
In Figure 2, we show P(k̄) for the surface pressure (p), meridional wind (v), zonal wind (u), and tempera-
ture (T) variables of the Earth and Martian reanalyses (for the surface pressure we analyzed the anoma-
lies, not the pressure directly). The Martian reanalysis data were taken over a period of 3 Martian years
and at 83% of surface pressure (≈6 mb, close to the corresponding terrestrial levels discussed below).
The Earth data used for this analysis were taken from the European Centre for Medium Weather Forecast
(ECMWF) reanalysis products [Lovejoy and Schertzer, 2011], for the year 2006 and at 69% of surface pressure
(700 mb). To make the scaling more evident in Figures 3–6, the spectra were also averaged over 10 logarithmic
spaced bins.

From Figure 2, it can be seen that although the lines of constant P(k̄) are roughly circular at high wave numbers
corresponding to isotropy at scales of about one or two reanalysis pixels—that at the smaller wave numbers
(near the centre, i.e., corresponding to the larger real-space scales), the contours are elliptical, with the ellipse
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Figure 2. Contour Plots of log P for (left column) Earth and (right column) Mars. Figures 2 (left column) and 2
(right column) within the plots are kx and vertical direction is ky . From Figures 2 (first row) to 2 (fourth row), the plots
are for surface pressure (p), meridional wind (v), zonal wind (u), and temperature (T). Due to the 2:1 aspect ratio
(which compensates for the 2:1 change in range of kx , with respect to ky), a circle the diameter of the square in
the plots corresponds to isotropy at the 2 pixel scale.
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Figure 3. The zonal spectra of (left) Earth and (right) Mars as functions of the nondimensional wave numbers for the p
(purple), v (green), u (blue), and T (red) fields. The data for Earth were taken at 69% atmospheric pressure for 2006
between latitudes ±45∘. The data for Mars were taken at 83% atmospheric pressure for Martian Year 24 to 26 between
latitudes ±45∘ . Figure 3 (left) shows the zonal spectra of Earth, and the reference lines have absolute slopes, from top
to bottom (𝛽): 3.00, 2.40, 2.40, and 2.75 (for p, v, u, and T , respectively). Figure 3 (right) shows the zonal spectra of Mars,
and the reference lines have absolute slopes, from top to bottom (𝛽): 3.00, 2.05, 2.35, and 2.35 (for p, v, u, and T ,
respectively). The spectra have been rescaled to add a vertical offset for clarity and k = 1 corresponds to the half
circumference of the respective planets. The vertical offsets in Log10E(k) are (p, v, u, and T , respectively): −1, 0, −0.3,
and −0.5 for Earth and 2.7, 1.35, 0.6, and 0 for Mars.

axes aligned along the coordinate directions (NS and EW). This suggests that the scaling exponents in the
zonal and meridional directions are quite different (the largest structures are typically wider in the zonal than
meridional direction). It is therefore important to estimate the one-dimensional spectra E(kx), E(ky), which are
obtained by integrating out the conjugate wave numbers:

E(kx) = ∫ P(kx , ky)dky

E(ky) = ∫ P(kx , ky)dkx .

(7)

Figures 3 and 4 compare E(kx) and E(ky); we see that the fields exhibit scaling below 3000 km and
2500 km, for Earth and Mars, respectively (equivalent to nondimensional distances 3000/20,000 = 0.15 and
2500/10,700 = 0.23, respectively). Performing regressions, we obtain estimates of the 𝛽 values; see Table 2.
With the exception of the meridional wind (v) in the zonal direction, we see that all the exponents are nearly
the same on the two planets. Also note that in accord with Figure 2 and with the findings by Lovejoy and
Schertzer [2011], (with the exception of the surface pressure anomaly) that all the fields have strong (scaling)

Figure 4. The same as Figure 3 except for the meridional spectra of (left) Earth and (right) Mars for the p (purple),
v (green), u (blue), and T (red) fields. The same data as Figure 3 were used for the spectra of both planets. Figure 4
(left) shows the meridional spectra of Earth, and the reference lines have absolute slopes, from top to bottom (𝛽):
3.00, 2.75, 2.75, and 2.40 (for p, v, u, and T , respectively). Figure 4 (right) shows the meridional spectra of Mars, and the
reference lines have absolute slopes, from top to bottom (𝛽): 3.00, 2.40, 2.80, and 2.80 (for p, v, u, and T , respectively).
The spectra have been rescaled to add a vertical offset for clarity and k = 1 corresponds to the half circumference of the
respective planets. The vertical offsets in Log10E(k) are (p, v, u, and T , respectively): −1, 0, −0.4, and −0.5 for Earth and
2.2, 1.4, 0.4, and 0 for Mars.
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Table 2. 𝛽 and H Values for Mars and Eartha

p v u T

Earth Mars Earth Mars Earth Mars Earth Mars

𝛽EW 3.00 3.00 2.75 2.05 2.40 2.35 2.40 2.35

𝛽NS 3,00 3.00 2.40 2.40 2.75 2.80 2.75 2.80

𝛽𝜏 2.00 2.00 2.00 2.00 2.00 2.00 1.80 1.80

HEW 1.12 1.11 0.96 0.60 0.77 0.75 0.77 0.76

HNS 1.13 1.18 0.78 0.80 0.95 0.99 0.95 1.00
aThe 𝛽 values are taken from the fits on Figures 3, 4, and 7. The H values are calculated with the respective K(q)

estimates and the 𝛽 values, in accordance with equation (23). The K(q) estimates are taken from the C1, 𝛼 estimates in
Table 3. For the spatial analysis (EW and NS), the 𝛽 and hence H estimates of Earth are good fits up to 3000 km and the
corresponding estimates for Mars are good fits up to 2500 km.

NS-EW anisotropies. For most of the exponents (see, however, Table 3, the C1, 𝛼 estimates) there is no con-
ventional error analysis because the exact exponent values depend on the precise ranges used for the fitting
(recall that at the lowest wave numbers the scaling is broken due to the deterministic effects that are the focus
of the usual approaches, whereas at the highest wave numbers the scaling is broken due to the hyperviscos-
ity). However, we have put reference lines and these are plausible to within ±0.05 for the spectral exponents.
The reader may judge the log-log linearity (scaling) of the data with respect to the lines; we believe that the
procedure is as accurate as is warranted by the data.

To understand this anisotropy, we turn to generalized scale invariance (GSI) [Schertzer and Lovejoy, 1985];
in this case, P satisfies the following scale symmetry:

P(𝜆−Gk̄) = 𝜆sP(k̄), (8)

where s is the scaling exponent of the density, 𝜆 is a scaling ratio, G is the anisotropy generator, and 𝜆−G is the
operator that (anisotropically) reduces the scale of the vector k by a factor 𝜆. When anisotropy varies only with
scale but not position, G is a matrix (“linear” GSI). If the axes of the anisotropy are parallel to the coordinate
axes (as in Figure 2), then G is a diagonal matrix:

G =
(

1 0
0 Hy

)
; 𝜆−G =

(
𝜆−1 0

0 𝜆−Hy

)
, (9)

Table 3. Flux Planet Comparisona

p v u T

Earth Mars Earth Mars Earth Mars Earth Mars

C1 EW 0.119 ± 0.002 0.100 ± 0.001 0.077 ± 0.005 0.074 ± 0.002 0.084 ± 0.006 0.076 ± 0.003 0.09 ± 0.01 0.086 ± 0.005

NS 0.122 ± 0.001 0.168 ± 0.002 0.077 ± 0.005 0.078 ± 0.001 0.084 ± 0.006 0.076 ± 0.001 0.09 ± 0.01 0.088 ± 0.003

𝛼 EW 2.01 ± 0.02 2.17 ± 0.02 1.90 ± 0.006 1.95 ± 0.01 1.85 ± 0.01 1.95 ± 0.04 1.85 ± 0.01 1.962 ± 0.007

NS 2.15 ± 0.02 2.20 ± 0.02 1.90 ± 0.006 1.94 ± 0.01 1.85 ± 0.01 1.946 ± 0.002 1.85 ± 0.01 1.88 ± 0.02

Leff Ratio EW 1.97 3.48 0.5 0.88 0.32 0.77 0.4 0.67

NS 1.64 0.84 0.5 0.56 0.32 0.66 0.4 0.36

Error (%) EW 0.7 0.77 0.35 0.4 0.31 0.53 0.28 0.71

NS 2.14 2.68 0.35 0.69 0.31 0.76 0.28 0.9
aFor Mars, C1, 𝛼, and the Leff ratio estimates are estimated with fits of Mars flux estimates under 6000 km for the zonal direction (EW) and 3000 km for the analysis

in the meridional direction (NS), at 83% of surface pressure and over a period of 3 Martian years (MY 24–MY 26). For Earth, C1, 𝛼, and the Leff ratio estimates are
estimated with fits of Earth flux estimates under 5000 km for both the zonal direction (EW) and meridional direction (NS), at 69% of surface pressure and over a
period of 1 Earth year (2006). The spreads in the parameters for Mars are over three samples of the data, each spanning a Martian year. In contrast, the spreads in
the parameters for Earth are over the data for east-west and north-south directions and time. C1 and 𝛼 values are estimated directly from fitting equation (26) to
the various flux estimates at different pressure levels. Leff is estimated by obtaining the 𝜆 intercept of the flux plots and determining its ratio with respect to the
half circumference of Mars. The error is calculated with the log regression method outlined in equation (28).
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where Hy is a ratio of scaling exponents in the meridional to zonal directions and Hy = 1 (the identity) cor-
responds to isotropy (equation (3)). Note that this simple expression (equation (9)) for the exponential of a
matrix only holds when G is diagonal. The solution of the functional equation (8) is

P(k̄) ∝ ||k̄||−s, (10)

where ||k̄|| is the (nondimensional) “scale function,” which is adopted to replace the vector modulus (in
equation (4)) for anisotropic and scaling systems. This “scale function” ||k̄|| satisfies the following functional
scaling relation:

||𝜆−Gk̄|| = 𝜆−1||k̄||. (11)

At this point, we would like to note that we are considering only the scale by scale anisotropy of a scalar
quantity; this stands, in contrast, to traditional approaches to anisotropy in the meteorological literature
[e.g., Hoskins et al., 1983] which analyzes a vector quantity anisotropy (e.g., the wind) at a particular (fixed) scale
(e.g., the resolution of the model).

The easiest, “canonical” solution to equation (11) (with G given by equation (9)) is

||k̄|| = (
(kx∕ks)2 + (ky∕ks)2∕Hy

)1∕2
, (12)

where ks is the “sphero- wave number,” a wave number that corresponds to approximately isotropic (uniform)
contours (Note that equation (12) is expressed as a dimensionless scale function; one may obtain a dimen-
sional one by multiplying the right-hand side by ks). It is worth emphasizing that this scale function solution
is only the simplest in the class of solutions to equations (10) and (11), for more general solutions that involve
essentially an arbitrary “unit ball,” for a review, see chapters 6 and 7 of Lovejoy and Schertzer [2013].

Formally speaking, testing equations (9)–(11) is a difficult statistical parameter estimation problem, see, e.g.,
Lewis et al. [1999] for the “Scale Invariant Generator” technique which is useful in cases where G is an arbitrary
2 × 2 matrix. But we adopt a simpler approach since G is diagonal in our case we use the one-dimensional
spectra in both directions (zonal and meridional), the two-dimensional angle-integrated (isotropic) spectrum
all obtained from the two-dimensional spectral density P.

Accordingly, we first test equations (9)–(12) from the one-dimensional zonal (east-west) and meridional
(north-south) spectra, EEW(kx) and ENS(ky), which can be expressed as follows:

EEW(kx) = ∫ P(kx , ky)dky = Ax

(
kx

ks

)−𝛽EW

; 𝛽EW = s − Hy; s>Hy

ENS(ky
) = ∫ P(kx , ky)dkx = Ay

(ky

ks

)−𝛽NS

; 𝛽NS = s − 1
Hy

; s> 1,

(13)

where Ax , Ay are dimensionless constants with order of magnitude unity (note that these constants depend
on the exact solution to equation (10) and recal that the canonical scale function (equation (12)) is only one
of a class of solutions). A key implication of equation (13) is that (if s>Hy, s> 1) one may obtain the following
simple relation between exponents:

Hy =
𝛽EW − 1

𝛽NS − 1
. (14)

Note that the overall variance contribution from all structures smaller than a given wave number k is provided
by the integration of E(k) from k to infinity. We can therefore utilize this fact to obtain a one to one space-space
relationship (in implicit form) between the directional wave numbers, kx and ky :

∫
∞

kx

Ex(k′
x)dk′

x = ∫
∞

ky

Ey(k′
y)dk′

y (15)

If 𝛽x > 1, 𝛽y > 1, then equation (15) (with (13) and (14)) reduces to:

ky = k′
s

(
kx

k′
s

)Hy

, (16)
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Figure 5. The empirical space-space relations for p (purple), v (green), u (blue), and T (red) of (left) Earth and (right)
Mars, calculated using the implicit relation equation (equation (15)).The same data as Figure 3 were used for the
space-space relations of both planets. Figure 5 (left) shows the space-space relations for Earth and the reference lines
have slopes from top to bottom, 1/0.8, 1, 0.8, and 0.8. Figure 5 (right) shows the space-space relations for Mars and the
reference lines have slopes from top to bottom, 1, 0.75, and 0.75.

where k′
s ≈ ks (since Ax ≈ Ay ≈ Hy ≈ 1). We can now easily test for scaling anisotropy by directly using the kx ,

ky space-space relation (i.e., the relation between kx and ky implicitly defined by the general equation (15),
in the case of scaling, explicitly given in equation (16) obtained from the one-dimensional spectra and
then check if the power law form is roughly observed (equation (16)). Therefore, we have plotted from the
one-dimensional spectra, the space-space relation of the zonal (east-west) and meridional (north-south)
winds in Figure 5. In this figure, we have drawn scaling fit lines with slopes 1.25 (which is the best fit regres-
sion line based on the zonal wind (u) data) and slope 1∕1.25 = 0.80 which closely matches the meridional
wind (v) data (in both cases, the slopes = 1∕Hy) and theoretical predictions; isotropic scaling would lead
to lines with slopes 1; only the pressure anomaly appears to be isotropic. It is worth noting that the scal-
ing of the space-space relations in Figure 5 is better than the individual zonal (east-west) and meridional
(north-south) spectra (Figures 3 and 4); one reason for this is that the individual spectra suffer from some
residual deviations to scaling caused by the hyperviscosity at small scales (i.e., the unphysical reanalysis
dissipation mechanism).
3.2.1. Angle-Integrated (Isotropic) Spectra
Whatever the explanation for the anisotropy, the angle-integrated spectral exponents are still of interest
(equation (5)). If the spectral density P is anisotropic, then

E(k) ≈ k−𝛽l ; 𝛽l = min(𝛽EW, 𝛽NS); k ≪ ks

E(k) ≈ k−𝛽h ; 𝛽h = max(𝛽EW, 𝛽NS); k ≫ ks

(17)

with 𝛽h the high and 𝛽l the low wave number spectral exponents. One implication of equation (17) is that it
predicts a scaling break in the spectrum at ks. Since this break is a consequence of the isotropic integration,
the break is simply a spurious methodological artifact and does not imply a true break in the spectral density:
referring to equations (10) and (12), the full two-dimensional spectral density P is perfectly scaling.

The exponents 𝛽EW and 𝛽NS are related by equation (14), and so for Hy < 1, we can explicitly express the low
wave number exponent as either 𝛽EW or 𝛽NS under the following conditions:

𝛽l = min(𝛽EW, 𝛽NS) =
𝛽EW; 𝛽EW > 1
𝛽NS; 𝛽NS < 1

(18)

with a corresponding equation for the high wave number spectral exponent 𝛽h, which uses the maximum
rather than the minimum function (and the converse inequalities resulting from the condition Hy > 1).

As mentioned before, the spectra in this analysis are based on anisotropic fields. However, if we are mind-
ful of the potential issues, we may still approximate isotropy and integrate over all angles to obtain E(k).
This method has the advantage of providing cleaner estimates as the angle-based integral reduces noise.
Furthermore, since ks is very close to the wave number of the one pixel scale (see Figure 2) we only examine
wave numbers under the condition k < ks. Thus, we do not expect a break in the scaling for our data since the
condition k < ks ensures that we only observe the low wave number 𝛽l exponent (equations (17) and (18)).
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Figure 6. The angle-integrated “isotropic” spectra of Earth and Mars estimated integrating the power spectral density
over annuli. The same data as Figure 3 was used for the spectra of both planets. (left) The isotropic spectra of Earth and
the reference lines have absolute slopes, from top to bottom (𝛽): 3.00, 2.40, 2.40, and 2.40 (for p (purple), v (green), u
(blue), and T (red), respectively). (right) The isotropic spectra of Mars and the reference lines have absolute slopes, from
the top to bottom (𝛽): 3.00, 2.05, 2.35, and 2.35 (for p, v, u, and T , respectively). The spectra have been rescaled to add a
vertical offset for clarity and k = 1 corresponds to the half circumference of the respective planets. The vertical offsets in
Log10E(k) are (p, v, u, and T , respectively): −5.5, −0.5, −0.9, and −1.2 for Earth and −0.4, −1.6, −2.3, and −4 for Mars.
All the reference lines are from the 1-D spectra (Figures 3 and 4) and the anisotropic theory, equation 17.

Empirically, the approximations in equation (17) are better at smaller wave numbers. Therefore, we obtain
good estimates of the spectra by simply calculating P with numerical Fourier transforms over the available
120 × 60 pixel grids and subsequently performing integrals over circular annuli, keeping only the wave num-
bers below 30 (the smaller end of the wave number range). Due to the 2:1 aspect ratio, the above mentioned
procedure is the same as integrating over ellipses with an aspect ratio of 2:1; this compressed integration
region yields qualitatively similar results (equation (17)) but generates a faster convergence to the power law
form k−𝛽l .

We show the angle-integrated spectra for the four atmospheric variables for Mars and the Earth in Figure 6.
As with the other spectra, they were nondimensionalized by the half circumference (i.e., k = 1 corresponds
to half a circumference; for example, wave numbers 10 times higher correspond to structures 10 times
smaller). For the Earth, the scaling is generally excellent and the reference lines—with slopes chosen to
satisfy equation (18) (i.e., not the results of regression) are also accurate. For the Earth notable exceptions are
the sharp breaks for meridional (north-south) wind and surface pressure, near k−1 ≈ 0.1 (≈2000 km); k is the
wave number nondimensionalized by the circumference. For Mars the scaling is also typically quite good, with
the notable exception of the zonal (east-west) wind, which possesses a break at around k−1 ≈ 0.2 (≈2000 km).

There are no theories that predict different scaling in the NS and EW directions, and it is highly significant, that
Figure 2 shows that the spectra at the one pixel scale (the largest wave numbers) are close to being isotropic.
Isotropy at the one pixel scale is an artifact of the hyperviscosity required by the reanalysis numerics. At the
same time, all the fields that have a stronger global scale NS gradient than EW gradients (u, v, and T but not the
pressure anomaly) display scaling exponents whose magnitude essentially allows them to adjust from a large
NS global scale gradient to a single pixel isotropy. As argued in Lovejoy and Schertzer [2011], this anisotropy
is a reanalysis artifact, a feature neither of terrestrial nor Martian dynamics. This interpretation is bolstered by
the near isotropy of the turbulent fluxes that govern the wind and temperature fields (section 3.4 below). The
exception—confirming the rule—is the pressure anomaly field that is isotropic throughout, a consequence
of the fact that the large scale NS-EW anomalies have very similar magnitudes.

3.3. Discussion
The theoretical prediction that atmospheric statistics should respect a scale invariance principle is indeed
quite general. Indeed, the more general (nonlinear) forms of generalized scale invariance (GSI), in which the
notion of scale not only is anisotropic and a function of size but also varies from one location to another,
would be difficult to falsify. However, in this paper, we validate a far more restrictive form of GSI in which the
directions of anisotropy are fixed: they are independent of both size and location and are even parallel to
the usual coordinate axes (this is the self-affine special case of linear GSI in which the generator is a diagonal
matrix). The log-log plots displaying linearity over wide ranges of scale validate this restrictive form of GSI. Had
the lines failed to be linear (power laws) over significant ranges, this special form would have been falsified.
In actual fact, the analyses already falsify GSI over the smallest and largest scales. This is comforting since
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for obvious reasons, the spectra are not expected to be power laws at small hyperviscous scales, whereas at
the largest scales, the theory only requires that the scaling is confined to scales much smaller than the outer
planetary scales. The small wave number deviations from log-log linearity also falsify GSI at the very largest
scales, but again, this shows the sensitivity of the analysis method to breaks in the symmetry. In summary, the
analysis already shows that GSI is false exactly where it is expected to be false.

It is sometimes thought that symmetry principles such as scaling are so general that they are not useful. This
type of skepticism animated debate in the 1840s about another symmetry principle: conservation of energy
(it was not understood as a symmetry principle until Noether’s theorem in the twentieth century). At the time,
the principle of conservation of energy was considered to be too speculative and top physics journals rejected
papers by Helmholtz, Kelvin and others dealing with the subject.

3.4. Temporal Spectra
On Earth, all atmospheric fields undergo a drastic transition in their statistical properties at scales of 5–10
days. At first the transition was ascribed to synoptic scale “migratory pressure systems” [Panofsky and van der
Hoven, 1955], then to the “synoptic maximum” [Kolesnikov and Monin, 1965], later to baroclinic instabilities
[Vallis, 2010]. At the same time, there was a parallel theorization of 𝜏w as the lifetime of planetary structures
that separated two scaling regimes Lovejoy and Schertzer [1986].

This behavior is clearest and the significance of the transition most obvious if we consider the (real space)
fluctuations ΔF(Δt) for a fluctuation over a field F with time interval Δt:

ΔF(Δt) = 𝜙ΔtH, (19)

where 𝜙 is the turbulent flux (or power of the flux) and H the fluctuation exponent (sometimes called the
“nonconservation exponent”: for quasi Gaussian processes it is equal to the Hurst exponent). Since (essentially
by its definition as a statistically scale invariant flux) the mean of the turbulent flux is independent of scale
(⟨𝜙⟩≈constant), we have ⟨ΔF(Δt)⟩ ≈ ΔtH so that when H > 0, fluctuations grow with scale whereas when
H<0, they decrease. When H > 0, the series F(t) is like a “drunkard’s walk” (indeed, the latter has H = 1∕2),
with F(t) and F(t − Δt) tending to be more and more different as Δt increases (i.e., the differences
ΔF(Δt) = F(t) − F(t − Δt) tend to grow with Δt). On the contrary, when H < 0, successive fluctuations tend
to cancel out with large positive excursions being nearly canceled out by following negative ones (and visa
versa). When H < 0, rather than differences, ΔF(Δt) must be defined using anomalies (i.e., the signal with
its long term mean removed). When these anomalies are averaged over longer and longer periods Δt, they
tend to converge to zero (and the signal itself to its long term mean) at a rate determined by H. This type of
short time growing (diverging with Δt since H > 0, Δt < 𝜏w) and then long time decreasing (converging with
Δt since H < 0, Δt >𝜏w), behavior is a mathematical expression of the idea that while “The weather is what
you get, the climate is what you expect.” However, as pointed out in Lovejoy et al. [2013], after durations of
100 years or so (the preindustrial period) there is another transition to an H > 0 regime (due to anthropogenic
warming, the transition is only about 20 years in the industrial epoch: Lovejoy et al. [2013]). Therefore, there
are three fundamental regimes—not two. The low frequency regime continues to the frequencies associated
with the ice ages (50–100 kyrs) and is most naturally associated with the climate. The middle regime was
baptized “macroweather” since it is statistically well reproduced by deterministic weather models and
stochastic turbulent (cascade) models (the “Fractionally Integrated Flux” model, see Lovejoy and Schertzer
[2013], chapter 10, and Lovejoy and de Lima [2015]).

So what is the origin of the transition at 𝜏w ≈ 5–10 days? The conventional explanation Vallis [2010] is that it is
associated with baroclinic instabilities, but precise models (based on the Eady mechanism) make many unre-
alistic homogeneity assumptions, and in any case, it diverges in the tropics (where the Coriolis force vanishes)
whereas the empirical 𝜏w has only small latitudinal variations. However, given the wide range scaling dis-
played in the previous sections (i.e., scaling that holds with fixed exponents over a wide range of scales), it is
natural to seek turbulent explanations, in this case based on the Kolmogorov law for fluctuations in the wind
(Δv): Δv(Δx) = 𝜖1∕3Δx1∕3, where 𝜖 is the energy flux from large to small scales (sometimes called the “energy
rate density” since the units are m2/s3 = W/Kg). The key point is that while the original Kolmogorov law was
isotropic, due to the stratification, it could not possibly hold to large scales.

In contrast, the anisotropic generalizations (GSI) only predict it to hold in the horizontal with a different expo-
nent (from the buoyancy variance flux) governing the vertical statistics, thereby allowing the Kolmogorov law
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Figure 7. The frequency spectrum with ensemble averaging of (left column) Earth and (right column) Mars for p
(purple), v (green), u (blue), and T (red) atmospheric fields, nondimensionalized to 𝜔 = 1 at the respective
“weather-macroweather” transitional frequency (𝜏w) of both planets (10 days for Earth and 1.8 sols for Mars). The same
data as Figure 3 were used for the spectra of both planets. (top left) The frequency spectrum of Earth in the year 2006,
at a resolution of 1 day. From Figure 7 (right column), the reference lines have absolute slopes (𝛽): 2.0, 2.0, 2.0, and 1.8
(for 𝜔 > (1.8 sols)−1, “weather” region, of p, v, u, and T , respectively). (bottom left) A blowup of the high-frequency
(weather) regime for the frequency spectrum of Earth. (top right) The frequency spectrum of Mars in Martian year (MY)
24–26, at a resolution of 0.2 hours. (bottom right) A blowup of the high-frequency (weather) regime for the frequency
spectrum of Mars. The vertical offsets in Log10E(𝜔) are (p, v, u, and T , respectively): −2.3, 0.6, 0.6, and −0.8 for Earth and
1.2, 0.2, −1.5, and −0.6 for Mars.

to hold in the horizontal up to planetary scales. In this case, Lovejoy and Schertzer [2010] showed that 𝜖 can
easily be estimated from the incoming solar forcing (≈1 mW/Kg) and directly yields the characteristic tran-
sition period—the lifetime of planetary sized structures: 𝜏w = 𝜖−1∕3L2∕3

w , where Lw is the planetary scale (the
largest great circle distance, on the Earth, this is 20,000 km). Since the ocean is also a turbulent fluid—but with
surface currents having 𝜖 about 105 times smaller than the atmosphere—the same theory predicts a break
there at (105)1∕3 ≈ 30 times longer, i.e., about 1 year, a prediction confirmed by ocean temperature spectra
[Lovejoy and Schertzer, 2012]. The final evidence in favor of the turbulent explanation is the prediction of an
equivalent weather-macroweather transition on Mars at ≈1.8 sols in Lovejoy et al. [2014]. This prediction was
based on estimating 𝜖 ≈ 40 mW/Kg from the Martian incoming solar flux combined with the thickness of the
Martian atmosphere; it was well verified using Viking Lander as well as the same MACDA reanalysis data as
analyzed here. Purely empirically, the shorter time scale on Mars can be estimated using the typical Martian
horizontal wind (70 m/s) compared with 27 m/s on Earth, combined with the smaller Martian radius. Just as
on Earth the lifetime and hence transition time scale has some latitudinal and altitude dependence, so it also
does on Mars: the transition scale of 1.8 sols compared to about 8.5 days on Earth—is an average.
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The existence of wide scale range horizontal scaling is not the same as a classical “inertial range.” Recall that
an inertial range is a range with no energy flux sources or sinks, it does not exist in the real atmosphere.
However—at least on Earth—the energy inputs (solar radiation modulated by clouds and albedo) and energy
sinks (infrared radiances modulated by clouds and other turbulent fields) are both scaling so that the dynamics
are nevertheless scale invariant [Lovejoy et al., 2009].

In Lovejoy et al. [2014], only the temperature and wind fields were analyzed and this over a single Martian year.
Therefore, we now complete the analysis by extending it to both wind components and to the surface temper-
ature field and out to the full length of the MACDA reanalysis: 3 Martian years (allowing notably an estimate
of the amplitude of the annual cycle). We conduct the analysis using the same steps outlined in section 3.2,
with the frequency 𝜔 replacing the wave number k. Figure 7 shows the spectra of the four atmospheric vari-
ables of Mars and Earth, respectively, in the time domain. The data for Earth span an Earth year (2006) with a
temporal resolution of a day. The data for Mars span 3 Martian years (MY 24–26) with a temporal resolution
of 2 h. The geographical regions used for both Martian and terrestrial analyses are the same as the range used
for the spatial analyses.

Figure 7 shows the comparison where the frequencies have been nondimensionalized by the weather/
macroweather transition scale with 𝜏w taken as 10 days and 1.8 sols. The reference lines for wind and tem-
perature have the same low- and high-frequency reference slopes as in Lovejoy et al. [2014], and the surface
pressure anomaly has the value 𝛽 = 2 (see Table 2).

Due to the limited low frequency range of data, we were unable to precisely locate the transition point
between the (lower frequency) “climate” regime and the (intermediate frequency) “macroweather” regime for
both planets. As seen in Figure 7 (top left), the transition between climate and macroweather for Earth is not
visible at all since (industrial period) it is at frequency of the order of (20 years)−1. However, for Mars, the results
as illustrated in Figure 7 top right indicate that there is a possible transition point at about (40 days−1). But this
“transition” point could also indicate the presence of a low frequency harmonic on the order of a year and/or
a rather (spectrally) wide annual cycle. Therefore, we could not definitively identify this point as a climate
“transition point.”

4. Real-Space Atmospheric Statistics: Fluxes and Fluctuations
4.1. Discussion
The spectral exponent is a second-order statistic; it is simply one of an infinite hierarchy that are needed for a
full statistical description, especially for the intermittency. These other moments are most conveniently esti-
mated in real space and can be fruitfully analyzed in the framework of multiplicative cascades. Starting with
equation (19) but for the spatial separationΔr replacing the temporal lagΔt, taking qth powers and ensemble
averaging, we obtain the qth order “structure function”:

⟨ΔF(Δr)q⟩ = ⟨𝜙q
Δr⟩ΔrqH. (20)

In general, we have

⟨𝜙q
Δr⟩ ∝ Δr−K(q), (21)

where K(q) is a convex function of the moment q; hence, we have

⟨ΔF(Δr)q⟩ ∝ Δr𝜉(q); 𝜉(q) = qH − K(q), (22)

where 𝜉(q) is the structure scaling exponent of moment q.

A useful relation is obtained by considering the second-order (q = 2) moment which is related to the spectral
exponent 𝛽 via:

𝛽 = 1 + 𝜉(2) = 1 + 2H − K(2). (23)

This relation is derived from the Wiener-Khintchin theorem: the spectrum is the Fourier transform of the auto-
correlation function. This relation will be useful in estimating H from 𝛽 (estimated earlier) and K(q)determined
below. Using the values obtained for 𝛽 in section 3 and the flux in section 4, we calculated the values for H,
which are shown in Table 2.
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4.2. Predictions of the Multiplicative Cascade Theory
The multiplicative cascade theory describes the theoretical characteristics of the intermittent flux, in the form
of a multiscaling law:

⟨𝜙q
𝜆′
⟩ = 𝜆′K(q); 𝜆′ =

Leff

Δr
, (24)

where ⟨𝜙q
𝜆
⟩ is the statistical average of a flux of moment order q and a scale ratio 𝜆′. When Greek 𝜆′ equals to 1;

Δr = Leff, the “effective” outer scale of the cascade and so all the fluxes of different moments converge at this
scale. Physically, this scale of convergence corresponds to where the cascade begins and so is described as
the “effective outer scale” of the cascade.

In empirical analyses, the outer scale is an important empirical parameter that must be determined from the
data. Since we expect the outer scale to be close to the size of the planet—largest great circle distance—we
can define the scale ratio 𝜆 with respect to a convenient reference scale: Lref = Lw = 𝜋R, where R is the
planetary radius. In this case, the empirical flux moments obey

⟨𝜙q
𝜆
⟩ = (

𝜆

𝜆eff

)K(q)

; 𝜆eff =
Lref

Leff
, 𝜆 =

Lref

Δr
. (25)

Finally, without further theoretical considerations, the exponent function K(q) represents an infinite number
of parameters (one for each moment q). This is unmanageable—either empirically or theoretically. However,
there exist stable, attractive universality classes so that a priori we may expect the function K(q) to follow the
two parameter universal form Schertzer and Lovejoy [1987]:

K(q) =
C1

𝛼 − 1
(q𝛼 − q), (26)

with the “Levy index” 𝛼 characterizing the degree of multifractality and in the range 0 to 2 (the former corre-
sponding to the monofractal “beta modal,” the latter to the lognormal multifractal model). The parameter C1

(≥0) describes the intermittency near the mean flux, which is the sparseness of the field that gives the dom-
inant contribution to the calculation of the mean flux, C1 = K ′(1). The dimension of the corresponding set is
defined as the difference between the dimension of the space in which the set is embedded and the fractal
codimension. At lower fractal codimensions (near zero), the structure becomes more uniform and less inter-
mittent. Similarly, at higher fractal codimensions, the structure becomes more sparse; it is more intermittent.
Thus, the codimension parameter quantifies the intermittency.
4.2.1. Spatial Flux Analysis
To analyze the spatial flux of a multiplicative cascade, we can divide both sides of equation (19) by its ensemble
average to obtain

𝜙′
Λ =

𝜙Λ⟨𝜙Λ⟩ = Δf⟨Δf⟩ , (27)

whereΛ is the scale ratio of 𝜆eff to the smallest spatial scale l (here, the grid size) and𝜙′
Λ is the nondimensional

flux normalized so that 𝜙′
Λ = 1.

The fluctuation Δf can be estimated in various ways, for example, by absolute first or second differences
(1-D series) or (2-D) by finite difference Laplacians (the latter was used here). Once the field of normal-
ized fluxes at the finest resolution 𝜙′

Λ has been estimated from the fluctuations, it can then be degraded
(by straightforward averaging) to yield the fluxes at intermediate resolutions with scale ratio 𝜆 ≤ Λ.

Performing regressions on the log-log plots of the average flux estimates (Mq = ⟨𝜙′q
𝜆
⟩) of varying moments

and scale would allow one to obtain the flux characteristic parameters, that were outlined in section 4.2 (note,
due to equations (24) and (25), all regressions must be constrained to go through a single 𝜆 intercept at
𝜆 = 𝜆eff). The first parameter—the outer scale of the cascade—can be obtained by using the fact that

𝜆eff = Lref

Leff
at 𝜆 = 𝜆eff, i.e. at the 𝜆′ = 1 intercept. The K(q) function may be obtained by taking the regressions

slopes of the log-log plots, which are estimates of K(q) at different q that are fitted to equation (24). Finally,
from K(q), we can estimate C1 and 𝛼 either from a nonlinear regression to the universal form (equation (26))
or more simply from the easy to verify relations: C1 = K ′(1) and 𝛼 = K ′′(1)∕K ′(1).
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Figure 8. The analysis for the flux for both (left column) Earth and (right column) Mars in the zonal (EW) direction. The
same data as Figure 3 was used for the flux of both planets. The fluxes were estimated using finite difference Laplacians.
Figure 8 (left column) shows the zonal flux for Earth and the curves are the moments q = 0, 0.1, 0.2 ...1.9, 2.0. Figure 8
(right column) shows the zonal flux for Mars and the curves are the moments q = 0, 0.2, 0.4 ...2.0. For both figures, the
dots are the actual empirical values, and the straight lines are the log-log regression of equation (26) (i.e., with slopes
K(q)) forced to go through a common point (the external scale ratio 𝜆eff ). For Earth, the slopes were estimated with
empirical values below 5000 km. For Mars, the slopes were estimated with empirical values below 6000 km. Finally, the
reference scale, 𝜆 = 1, corresponds to the half circumference of the respective planets. The terrestrial u, v, and T analyses
are from Lovejoy and Schertzer [2011].

Figures 8 and 9 show the results of the analysis conducted in the zonal (EW) and meridional (NS) direction
respectively on the same data as for the spectral analysis, and Figure 9 for the corresponding meridional
analysis. Again, as with the spectra analysis, four atmospheric variables are as follows: surface pressure (p),
zonal wind (u), meridional wind (v), and temperature (T) were compared between Earth and Mars. The dots
in Figures 8 and 9 represent the empirical estimates for the fluxes that were evaluated using equation (27). As
indicated on the plots, the flux estimates (Mq) are evaluated from the highest scale (half circumference of the
planet) to the lowest scale (highest resolution of data) and for moments q = 0, 0.2, 0.4… ,2.0.

The lines indicate the fits based on the multiplicative cascade model (see equation (26)) and the accuracy of
the fits was quantified by the percentage residual of the fitted log-log regression lines. The residuals (Δ) were
estimated as

Δ =
|||||log10(Mq) − K(q)log10

(
𝜆

𝜆eff

)||||| . (28)

The residuals were averaged over all sampled moments q and over the fitted scale range. This average was
subsequently converted to a percent deviation (𝛿), where 𝛿 = 100(10Δ − 1). Using this error estimation, the
regressions were found to be good fits up to a scale corresponding to nondimensional distances of about
𝜆−1 = k−1 = 0.25 (≈5000 km) for fluxes on Earth and about 𝜆−1 = k−1 = 0.6 (≈6000 km) for fluxes on Mars
(see Table 3).
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Figure 9. Same as Figure 8 but for the meridional (NS) analysis. The data in the NS direction span 90∘ in latitude, but the
reference scale, 𝜆 = 1, was kept at the half circumference of the respective planets. (left column) The meridional flux for
Earth and the slopes were estimated with empirical values below 5000 km. (right column) The meridional flux for Mars,
and the slopes were estimated with empirical values below 3000 km. The terrestrial u, v, and T analyses are from Lovejoy
and Schertzer [2011].

Comparing the results between the two planets (Table 3), one finds that the flux exponents C1, 𝛼, and
nondimensional outer scale ratio 𝜆eff in the zonal and meridional directions are very similar for both planets.

The key conclusions are that the intermittency (cascade) exponents are virtually identical on the two plan-
ets and also in the NS-EW directions so that unlike the fields u, v, and T that were strongly anisotropic
(flattened in the EW direction at large scales), the fluxes were nearly isotropic at all scales. This supports
the interpretation discussed earlier that the fields themselves displayed spurious anisotropy due to the
imposed strong meridional gradients (the gradients do not directly affect the fluxes which are estimated from
the Laplacians).

Focusing solely on Mars, we also conducted a flux analysis in the zonal and meridional directions across
various surface pressure levels and tabulated the flux characteristics parameters in Table 4, for the zonal
and meridional directions, respectively. With only the zonal wind (u), meridional wind (v), and temperature
(T), we found that there are only small variations in the intermittency exponents in the vertical, and these
could be artifacts of the model. A possible reason is that the different vertical pressure levels use observa-
tional data with different resolutions, and at progressively higher altitudes, the reanalysis data become more
and more model based. Another possible explanation is the inadequacy of the hydrostatic approximation
in the reanalyses. The reason for suspecting the hydrostatic approximation is that the vertical exponents
of the horizontal wind and other fields are not realistic. Indeed, in Lovejoy et al. [2010], it is shown that the
vertical spectrum of the horizontal wind in dropsonde data is nearly identical to the isobaric reanalysis spec-
trum that is incorrectly interpreted as a horizontal spectrum. Finally, one should note that at the surface, the
data are affected by the topography, which again could lead to a variation in the flux parameters over lower
vertical levels.
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5. Conclusions

The study of other planets usually benefits from relevant knowledge of the Earth; in this paper we inverted the
process effectively using knowledge of the Martian atmosphere to give us greater confidence in terrestrial tur-
bulent laws, allowing us to see Earth as a member of a larger ensemble. In the case of the Martian atmosphere,
up until now this has largely been at the level of comparing deterministic mechanisms that aim at explain-
ing Martian dynamics over relatively small ranges of scales from the size of the planet down to scales a factor
of four or five smaller in horizontal. These mechanistic comparisons have focused either on similarities—for
example, on the Martian version of the Hadley circulation or on the high-level Martian jets—or on the
differences, notably the role of dust in directly heating the middle and upper Martian atmosphere, or the
strong role of topography and tides on Mars or of water in its various phases on Earth.

However, on both planets, the Reynolds numbers are greater than 1011 so that the flows are unstable and
turbulent with dissipation only occurring at centimetric (Mars) or millimetric (Earth) scales. If we nondimen-
sionalize the distances l by the largest great circle distance (the half circumference, Lw), then in rough terms
the deterministic mechanisms may adequately explain the dynamics from scales l∕Lw = 𝜆−1 = 1 to≈0.2 or 0.1,
but we are left to deal with the range 0.1 to 10−8 (Mars) and 0.1 to 10−9 (Earth). The only framework that can
deal succinctly with such large ranges is scale invariance, especially when generalized to account for scal-
ing anisotropy (vertical stratification or EW/NS scaling anisotropy) and scaling intermittency (multifractality).
Although there is a now a considerable body of evidence in favor of this on Earth (see the extensive review by
Lovejoy and Schertzer [2013]), the claim is sufficiently strong that it requires strong evidence, hence, the sig-
nificance of studying Mars. Already, Lovejoy et al. [2014] showed how to nondimensionalize the fundamental
weather/macroweather transition scales using the lifetimes of planetary structures (themselves inferred by
solar forcing), finding that Martian and terrestrial temperature and wind spectra could then be superposed
over wide ranges of scale (with the partial exception of the diurnal and annual cycles that were somewhat
different on the two planets).

In this paper we extend this temporal statistical comparison in several ways examining the temperature, zonal
and meridional wind and surface pressure anomaly fields in space as well as time. First, we completed the
temporal spectral analyses by including surface pressure anomalies and extending the previous analyses over
1 Martian year to 3 Martian years obtaining both better statistics but also a clearer idea of the surprisingly
broad Martian annual cycle. However, the main originality here is the systematic comparison of the spatial
spectra (using the same methodology as described in Lovejoy and Schertzer [2011] for analysis of the terrestrial
ECMWF reanalyses) as well as the turbulent fluxes. In the spatial domain, the exponents are again very close
with notably the intermittency parameters being nearly identical with only the pressure anomaly field having
slightly different intermittency parameters (the intermittency near the mean, C1, see Table 3).

The spectral and related (real space) fluctuation exponents 𝛽 and H again were extremely close (nearly within
experimental error of each other)—in both the zonal and meridional directions (which were different) the
only exception being the meridional velocity and this only in the zonal direction (e.g., 𝛽v,EW = 2.75 (Earth), 2.05
(Mars) and Hv,EW = 0.96 (Earth), 0.60 (Mars).

But even this single exception—the zonal exponent of the meridional wind—may reflect more the limita-
tions of the reanalyses than on real differences between the planets. This is because—as on the Earth—the
reanalyses (with the exception of the pressure anomaly field) reflect the strong meridional gradients and
are therefore strongly anisotropic at the largest (planetary) scale—with aspect ratios of about 2:1 in the
zonal direction yet at the grid scales they are nearly perfectly isotropic. In Lovejoy and Schertzer [2011] it was
argued that this scaling anisotropy (i.e., the different EW and NS exponents) was simply an artifact of the
imposition of nearly perfect isotropy at the (essentially arbitrary) grid scale, that this horizontal stratification
was a reflection of the way the model systematically transformed strong north-south gradients into roughly
isotropic hyperdissipation scale gradients. The interpretation that this anisotropy was spurious was bolstered
by the fact that no theory of turbulence predicts anisotropy in the horizontal scaling and that the turbu-
lent fluxes (that directly reflect the dynamics and are insensitive to boundary conditions) were found to be
essentially isotropic.

The finding that Mars and Earth are often dissimilar when considered from the vantage point of determin-
istic mechanisms describing the very largest scales but are nearly identical as concerns the statistics of the
remaining wide ranges of scales gives additional strong support for the view espoused and reviewed in
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Lovejoy and Schertzer [2013] that—in accord with the expectations of classical turbulence theory—there are
indeed high-level turbulent laws that emerge from the chaos of huge numbers of interacting structures at
very high Reynolds numbers. This follows since the dynamical equations are essentially the same (the core
being the Navier-Stoke equations), and the result is expected to be insensitive to the boundary conditions
(In fact, it turns out that—at least as concerns their topographic boundary conditions—that the two planets
are also quite similar: both have scaling topography—Gagnon et al. [2006] (Earth), Landais et al. [2015] (Mars)
with similar exponents at least at scales above 10 km). The success of the high-level laws in explaining terres-
trial and Martian statistics therefore provides a strong case for using the high-level laws for understanding,
modeling, and forecasting the fields [see, e.g., Lovejoy et al., 2015].
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