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Abstract 

The structure and propagation of turbulent lean premixed high hydrogen content syngas 

flames at pressure values of 1bar, 2bar and 4bar are studied using three-dimensional 

direct numerical simulations. Simulations for each pressure considered were performed 

for three different initial turbulence levels at the turbulent Reynolds numbers of 50, 100 

and 150. The DNS of expanding spherical flames has taken into account detailed 

chemical kinetics and preferential diffusion effects. The mixture-averaged transport 

model has been employed. Effects of pressure on flame structures, heat release rate and 

radical species distributions under low to high initial turbulent conditions are examined. 

The results show that elevated pressures greatly influence the cellular flame structure of 

syngas spherical flames under different initial turbulent conditions. At the atmospheric 

pressure, the flame shows weakly wrinkling structures due to the initial turbulence level 

imposed in the simulation.  At elevated pressures under turbulence conditions, the flame 

develops cellular burning structures, superimposed by flame wrinkles due to turbulence. 

It is shown that highly wrinkled cells that develop over the surface of a spherical flame 

increase its area and thereby the global propagation speed at elevated pressures. Results 

show noticeable increases in the local heat release rate with increasing pressure. The 

analysis also reveals the formation of cusped structures with low heat release rate values 

in areas of negative curvatures at elevated pressures, in agreement with previous studies. 

The joint probability density functions of OH radical mass fraction and temperature show 

broadening OH values in the high temperature zone at elevated pressures compared to its 

distribution at the atmospheric pressure. Comparisons of mean species distributions of 
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OH and HO2 over temperature between laminar and turbulent flames show that pressure 

elevation has a major influence on the flame structure in the composition space.  

 

Key Words: Direct Numerical Simulation, Spherical Flames, Pressure Effects, Cellular 

Flame Structure, Heat Release Rate, Radicals 
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Introduction  

Combustion engines are widely used for transportation and power generation using 

hydrocarbon fuels [1-4]. However, the confluence of concerns about greenhouse gas 

emissions and global climate change raises critical questions regarding energy sources 

and use [5, 6]. New strategies such as low carbon fuel options, revolutionary combustion 

engine designs and exhaust after-treatment systems are required to meet these challenges 

[7-10]. Utilisation of low carbon fuel options such as high hydrogen content (HHC) 

syngas fuel is important to the clean combustion technology [11-15]. In particular, 

burning issues of lean premixed combustion of HHC hydrogen-carbon monoxide 

(H2/CO) syngas fuel at elevated pressures have received considerable attention in recent 

years [16-18].  For example, understanding the flame structure and propagation of highly 

diffusive HHC syngas fuels in lean burn mode will enable us to reduce fuel consumption 

and pollutant emissions.  

 

The rapid growth in computational capabilities in the past two decades has made it 

possible to glean fundamental physical insights into burning characteristics of different 

fuels for various combustion configurations. In particular, direct numerical simulation 

(DNS), in which the complete spectrum of scales is resolved, is evolving as an accessible 

computational tool to capture fine scale turbulence-chemistry interactions and 

discriminate the effects of variations in fuel composition [19-25]. The premixed flame 

characteristics of hydrogen and hydrogen-blended hydrocarbon fuels at the atmospheric 

pressure have been explored by a variety of numerical experiments. For example, a 

number of DNS studies have examined the flame propagation speed and burning rates of 
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premixed and partially premixed hydrogen-air flames at the atmospheric pressure. Im and 

Chen [26] investigated structure and propagation speed of partially premixed hydrogen-

air triple flames and compared their results with other hydrocarbon systems. Hawkes and 

Chen [27] studied turbulent flame speed of hydrogen blended lean premixed methane–air 

flames. Poludnenko and Oran [28] discussed mechanisms in determining the turbulent 

flame speed of hydrogen-air premixed flames in the thin reaction zone interacting with 

driven, subsonic, homogeneous, isotropic, Kolmogorov type turbulence in an unconfined 

system.  Hawkes et al. [29] presented statistics for laminar flame speed and integrated 

burning rates and found that increased flame surface area accounts for most of the 

enhanced burning for hydrogen-air premixed combustion. Very recently Amato et al. [30] 

investigated the flame front structure at the leading edge of a turbulent lean premixed H2-

air flame, and Aspden et al. [31] discussed fuel consumption rates of turbulent lean 

premixed H2-air flames. In addition, several other research questions have been addressed 

by DNS studies on turbulent premixed hydrogen-air combustion, which include 

investigation of auto-ignition of spatially non-homogenous mixtures [32] and unsteady 

interaction between a vortex pair and a premixed flame kernel [33], statistics of flame 

surface density [34], fractal characteristics and cellular structures of the flame front [35] 

and the interaction of turbulence with flames [36-38]. 

 

However, detailed understanding of transient flame characteristics of HHC syngas 

turbulent flame at elevated pressures is still lacking, particularly with respect to lean burn 

mode. As an effort to understand the influence of pressure on flame characteristics of 

HHC turbulent lean premixed H2/CO syngas flames, a comprehensive three-dimensional 
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DNS study with detailed chemistry is performed in an expanding spherical flame 

configuration.  In the context of experimental investigation of structure and propagation 

of turbulent premixed flames at elevated pressures, centrally-ignited outwardly 

propagating (expanding spherical) flame has been studied extensively [16-18, 39-44]. 

Experimental investigations reported the formation of cellular burning structures, cellular 

instabilities and burning velocities of hydrogen flames, hydrocarbon flames and syngas 

flames over a range of equivalence ratios and elevated pressures.  In this study, we 

examine the influence of pressure on cellular burning structures, flame propagation and 

combustion intensity and radical species concentrations of the lean premixed expanding 

spherical flame under low to high turbulence levels initially imposed in simulations. We 

quantify and explain pressure effects on flame front wrinkling, local heat release rate and 

mass fraction of radical species distributions. The remainder of the paper is organised as 

follows: the governing equations, chemistry and numerical details are presented in the 

next section, followed by results and discussion. Conclusions and recommendations for 

further work are presented in the last section.  

 

DNS Details  

Mathematical Equations: 

The set of governing equations solved in parallel DNS flame solver, Parcomb [45, 46] is 

the time-dependent compressible flow Navier-Stokes equations and chemical species 

transport equations. Detailed chemistry and mixture-averaged transport model are 

employed via coupling with the CHEMKIN [47], TRANSPORT [48] and EGLIB [49] 
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libraries. Using the Cartesian tensor notation and ignoring all external forces, the 

conservation equations solved in DNS read:  

Mass conservation: 

( )
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Energy conservation: 
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Equation of state: 

p R T
Wρ

=                  (5) 

where t stands for time, ρ  the mixture density,  ju velocity components in the 

jx direction, ijτ  stress tensor, te  total energy per unit mass, p  pressure, iY the mass 

fraction of species i, sN the total number of species, ijV the  component of the diffusion 
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velocity of species i in the direction j, iω the chemical production rate of species i, jq the 

jth-component of the heat flux vector, R the perfect gas constant ( 1 1R 8.314 Jmol K − −= ) 

and W  the mixture-averaged molar mass.  The H2/CO syngas-air combustion is 

simulated using a skeletal mechanism developed by Goswami et al. [50, 51]. This skeletal 

mechanism incorporates the thermodynamic, kinetic, and species transport properties 

related to elevated pressure H2 and CO  oxidation, consisting of 14 species (O, O2, N2, H, 

H2, H2O, OH, H2O2, HO2, CO, CO2, HOCO, HCO, CH2O) and 52 individual reactions.  

The species diffusion velocity of species i in the mixture, iV , is computed from the 

mixture-averaged transport model supplemented with Soret effect (thermal diffusion):  

1=

∇
= − −∑

sN
T

i ik k i
k

TD D
T

V d                (6) 

where ikD denotes the multi-species diffusion coefficient matrix of species i into species 

k , which depends on all state variables. The mass conservation constraint for the species 

diffusion velocities reads sN
i ii 1

Y 0
=

=∑ V . kd is a species diffusion driving force vector that 

takes into account gradients of mole fraction and pressure. In most cases, as in the present 

study, the pressure-induced diffusion is negligible and the external forces jf are 

considered to act equally on all species, resulting simply in T
k k iX . D= ∇d is the thermal 

diffusion coefficient of species i while the combined term T
iD T / T∇ is the Soret or 

thermodiffusive effect, which accounts for the diffusion of mass as a result of 

temperature gradient. The diffusion coefficient is approximated via Hirschfelder-Curtiss 

approach [52]: 
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*
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where ikD is the binary diffusion coefficient which depends only on species pair 

properties, pressure and temperature and iX is the mole fraction of species i.  The 

diffusion velocity iV for species i is divided into a predictor *
i( )V  and a corrector c( )V   

term in order to satisfy the mass conservation, which leads to:  

* * * *

1
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X T

χ
=

∇ ∇
= + = − = −∑*
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where *
iχ is the thermal diffusion ratio. 

Several post processing equations are employed in order to analyse the detailed flame 

structures from the DNS data. The local heat release rate was calculated using the 

following formula: 

1

sN

k k
k

Q h ω
=

=∑                   (9) 

where kω ( 3 1kgm s− − ) and kh ( 1Jkg − ) are the chemical mass production rate and species 

enthalpy of species k , and sN is the total number of species involved in the oxidation 

processes.   

To describe the local chemical state between unreacted and fully reacted mixtures, we 

define the non-dimensional progress variable:  

0 fresh gas mixture 
1 burnt gases          

u

b u

T Tc
T T

−
= = − 

           (10) 

where uT and bT are the unburned and burned gas temperatures, respectively.  
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For the purpose of evaluating strain rate and curvature effects, the tangential strain rate 

and curvature are also defined.  Here, the tangential strain rate is given by: 

( ) i
T ij i j

j c c

ua N N
u

δ
∗=

∂
= −

∂
,             (11) 

where iN is the ith component of the local flame normal vector, given by:  

1
i

i

cN
c x
∂

= −
∇ ∂

              (12) 

The local curvature was calculated from the flame front coordinates using the following 

formula: 

i

i c c

N
x

κ
∗=

∂
=
∂

,                                     (13) 

where κ is taken to be positive (negative) when the flame is convex (concave) in the 

direction of the unburned mixture.   

Flame stretch is a measure of surface deformation and defined as:  

1 ,=
dA

A dt
                (14) 

where  is the stretch, A is an element of flame area and t is time.  The element of area is 

defined by points on the flame surface moving at the local tangential velocity and 

combined effects of curvature = nκ ∇⋅ and hydrodynamic strain s T= -n a nΚ ⋅ ⋅ , where 

Ta is the strain rate tensor, and unit normal vector c cn = ∇ ∇  . Therefore the stretch rate 

 can be written as:  

.d sSκ= +Κ                (15) 

where dS is the flame displacement speed.  
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Flame Configuration and Numerical Implementation   

A series of lean premixed flames in an outwardly propagating spherical flame 

configuration is presented. All simulations were performed for H2/CO syngas fuel 

mixture with 70% of H2 and 30% of CO by volume, and at equivalence ratio of 0.7. The 

numerical configuration of a flame in a constant pressure cubic domain is shown in Fig. 

1. The cubic domain has a length of 38.0 10 m−× on each side (Fig.1).  A time step of 

approximately 96.0 10 s−× was used for all simulations. To investigate the pressure effects 

on flame characteristics under different turbulence levels, nine DNS test cases were 

performed. They were performed at three different pressure values: p = 1bar, 2bar, 4bar, 

under three different initial turbulence levels with the turbulent Reynolds number, Ret = 

50, 100, 150, respectively. A matrix of turbulence properties and numerical parameters 

based on conditions at the beginning of the simulation including the turbulent Reynolds 

number, Damköhler number, Karlovitz number, kinematic viscosity, integral length scale, 

Kolmogorov length scale and total grid points in each direction, cell width, number of 

grid points in flame thickness, used in the present study are listed in Table 1 (a, b, c).   

 

The equations are discretised in space on a three-dimensional Cartesian grid with high-

order finite difference numerical schemes. Derivatives are computed using centered 

explicit schemes of order six except at boundaries where the order is progressively 

reduced to four. Temporal integration is realized with a Runge–Kutta algorithm of order 

four. A Courant-Friedrichs-Levy (CFL) condition for the convective terms and a Fourier 

condition pertaining to the diffusion terms are treated to ensure the stability of the explicit 

integration and determine a suitable time step.  To maintain the constant pressure 
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throughout the simulation, boundary conditions are treated with the help of improved 

non-reflecting inflow/outflow Navier-Stokes characteristics boundary condition (NSBC) 

by considering additional terms in the definition of the wave amplitudes, and the 

relaxation treatment for the transverse gradient terms in analogy with the pressure 

relaxation [53].  The initial laminar spherical flame is constructed at the center of the 

computational domain with initial radius of 0r 0.6mm= . The initial profiles of 

temperature and mass fractions of species is then prescribed according to: 

0
0

0

1 tanh .
2
   −∆

= + −        

r rk
r

φφ φ              (16) 

Here ∆φ is the variation between the initial approximate values in the fresh and burnt gas 

mixture and real number k is a measure of the stiffness at the fresh/burnt gas interface 

(here, k=10.0).   

 

The initial isotropic turbulent velocity field for each case was initialised using a 

combined approach of digital filtering (DF) [54] and random noise diffusion [55].   In this 

approach, a linear, digital and non-recursive filter is applied to convolute a one 

dimensional series 
xmr of random data (with

xmr ) such that  
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is the filter coefficient.  The preferred length scale is calculated as x x xl n= ∆ , whereas 

x∆ is the homogeneous grid spacing. The half width of the filter kernel is specified 

by xN . This relation is extended to 3D by the convolution of three one-dimensional 

filters: ijk i j kb b b b= .  A numerical error estimate  

x

x k

x

x

N

j j k2
j N

N
2x

j
j N

b b
kmax exp 0.001,

4n b

+

−
=−

=−

 π
− − ≤ 
 

∑

∑
           (18) 

for x xN 2n≥  and xn 2,......100=  is imposed on this approximately valid formulation 

such that the filter width should be large enough to capture twice the desired length scale  

xl .  

The flame thickness thδ is evaluated as  

max
−

=
∇

b u
th

T T
T

δ ,              (19) 

where uT and bT are the fresh and burnt gas temperatures, respectively.  An initial 

temperature of uT 300K= is used. From the calculation of turbulence intensity '
Lu / S and 

length-scale ratio Ll / δ , it can be concluded that the flames considered here fall mainly 

within the “Thin Reaction Zone (TRZ)” or “Thin Flamelet” burning regime, as shown in 

Fig. 2.  

 

In the following, we perform grid sensitivity analysis for the spherical flame that 

develops under high turbulence and elevated pressure. We tested four different grid 

resolutions for the spherical flame at an elevated pressure of 4bar. The resolutions used 
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for four different uniform Cartesian grids are 

200 200 200, 400 400 400, 600 600 600 and 800 800 800× × × × × × × × points in x, y and z 

directions, respectively. The effect of grid resolution on temporal evolution of the 

integrated heat release rate and the spatial variation of the chemical production rate of 

hydrogen species is shown in Fig. 3.  The comparisons of temporal evolution of the 

integrated heat release rate and the spatial variation of the chemical production rate of 

hydrogen species obtained with 200 200 200× × points and 400 400 400× × points show 

strong discrepancy. As seen in Fig. 3 (b), the two simulations carried out 

with 200 200 200× × points and 400 400 400× × points detected numerical wiggles in the 

spatial distribution of the chemical source term of hydrogen species. In addition, the 

results suggest that the temporal evolution of the integrated heat release rate shows 

misalignment for grids with 200 200 200× × and 400 400 400× ×  resolutions. However, 

Fig. 3 shows that a Cartesian grid with 600 600 600× × grid points produces grid 

independent results for the expanding spherical flame at pressure p = 4 bar and turbulent 

Reynolds number of Ret = 150.  The grid independent test performed at pressure of 4 bar 

provides an estimate for the required grid resolutions for the lower pressure values of p = 

1 bar and 2 bar, respectively. Based on this estimate, we employed a Cartesian grid with  

300 300 300× ×  points at a pressure value of p = 1 bar, and a Cartesian grid 

with 400 400 400× × points at a pressure value of p = 2 bar.    
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Results and Discussion 

In discussing the DNS results we examine how pressure increment from the atmospheric 

to high pressures affects the cellular flame structure and flame wrinkling, the spatial 

variation of the heat release rate, and local variation in radical species distribution.  

Cellular Flame Structure and Flame Acceleration 

Fig. 4 shows instantaneous cellular burning structures of spherical flames with the 

influence of preferential diffusion at pressures varying from p = 1 bar to 4 bar under 

identical Ret values (left to right), and different turbulence levels varying from Ret=50 to 

150 under identical pressure values (top to bottom). The instantaneous images indicate 

that spherical flames develop strong wrinkling structures in high pressure environment 

compared to atmospheric pressure. It is evident from Fig. 4 that pressure increase from 

p=1bar to 2bar to 4bar has greatly enhanced the small scale flame wrinkling with 

appearance of cellular flame structures at progressively shorter unstable wavelengths.  It 

is important to note that the development and intensity of flame wrinkling at p=1bar, 2bar 

and 4bar under different turbulence levels is influenced by the thermo-diffusive 

instability via preferential diffusion, and the Darrieus-Landau hydrodynamic instability 

due to thermal expansion. This is the case for lean premixed high hydrogen content 

flames that develop under high pressure and low initial turbulence levels. However, the 

contribution of the thermo-diffusive instability can be overshadowed by sufficiently 

strong turbulence for lean premixed flames that develop under high pressures and high 

initial turbulence levels. 
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To establish a common basis for comparison of flame acceleration with respect to 

increasing pressure at identical Ret values, and with respect to turbulence intensification 

at identical pressure values, we develop all flames to a fixed surface area of 5.685e-5 m2 

corresponding to isotherm of T=620K. The different time instants taken for expanding 

spherical flames to develop to a fixed surface area of 5.685e-5 m2 provide two major 

observations: First, the expansion rate of expanding flames increases with increasing 

pressure under any identical Ret conditions.  For example, at Ret = 50, the time taken for 

the expanding spherical flame to develop to a fixed surface area of 5.685e-5 m2 is 

decreased from t = 5.0e-4 s at p = 1 bar to t = 3.4e-4 s at p = 2 bar to t = 1.9e-4 s at p = 4 

bar, respectively.  Similar trend is also observed when pressure is increased from p = 1 

bar to 2 bar to 4 bar at Ret = 100 and 150, respectively. Second, the flame also develops 

much faster when we increase initial turbulence level at any given pressure value.  For 

example, when we intensify turbulence level at pressure p = 4 bar, the time taken by the 

spherical flame to develop to a fixed surface area of 5.685e-5 m2 is decreased from t = 

1.9e-4 s at Ret=50 to t = 1.6e-4 s at Ret = 100 to t = 1.3e-4 s at Ret = 150, respectively.  

Similar trend is also observed for flames with initial Ret = 50, 100 and 150 at p = 1 bar 

and 2 bar, respectively. This observation suggests that the turbulent burning velocity 

increases with increasing pressure for turbulent flames developing under high pressure 

environment.  
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Heat Release Rate Variations and Curvature   

In general, each plot in Fig. 4 demonstrates how the flame transforms into a cellular state 

when increasing pressure from the atmospheric to elevated values under identical initial 

turbulence levels.  Nevertheless, it is evident from Fig. 4 that flames developing at 

elevated pressures display significant flame wrinkling and cellular burning structures (Fig. 

4, left to right). It is known that flame wrinkling associated with increased pressure can 

produce positive and negative higher flame curvature values and this in turn can 

significantly influence the spatial variation of the unsteady heat release rate. However, 

Fig. 4 is restricted to temporal evolution of flame temperature. Therefore it is unclear 

how flame wrinkling (i.e. higher positive and negative curvature) associated with 

increased pressure influences the local variation of the instantaneous heat release rate.  To 

discuss this issue, we first present the scattered data of the heat release rate versus the 

progress variable for each flame (Fig.5). Then we examine the spatial distribution of the 

heat release rate (Fig. 6), spatial distribution of curvature (Fig. 7), and scattered data of 

the heat release rate versus curvature along the flame front (Fig. 8).  

 

Fig. 5 shows the scattered heat release rate data plotted versus the progress variable. 

There are noticeable differences between effects caused by pressure (Fig. 5, left to right) 

and effects caused by turbulence (Fig. 5, top to bottom) on the heat release rate.  For 

example, the scattered data of heat release rate display less amount of scatter at p=1bar , 

and at Ret=50 than at p=2bar, and at Ret=50.  Furthermore, at p=4bar, and at Ret=50, the 

plot shows a significant degree of scatter in the data compared to p=2bar, and at Ret=50. 

Similar behaviour is also seen when increasing pressure from 1bar to 2bar to 4bar at 
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Ret=100 as well as Ret=150. This confirms that a significant scatter in the heat release 

rate is caused by the stronger wrinkling and related higher positive or negative curvature 

effects due to increased pressure.  In the meantime, Fig. 5 also shows an increasing 

degree of scatter at higher turbulence level compared to lower turbulence level at 

identical pressures. For example, at p=1bar, the scattered data show an increasing degree 

of scatter at Ret=100 compared to Ret=50 as well as Ret=150 compared to Ret=100. This 

confirms that the increasing amount of scatter with increasing Ret is caused by turbulence 

and related higher positive and negative curvature effects.  Fig. 5 also shows an increase 

in the maximum heat release rate with increasing pressure. For example, the maximum 

heat release rate at p=1bar and Ret=50 is 9 -33.0 10  Wm× , while its value at the elevated 

pressure of p=4bar and Ret=50 is 11 -31.0 10  Wm× . Similarly, the peak heat release rate 

at p=1bar and Ret=150 is 9 -34.0 10  Wm× , while its value at elevated pressure value of 

p=4bar and  Ret=50 is 11 -31.4 10  Wm× .  In contrast, it is noted that the increase of the 

maximum heat release rate with increasing turbulence level is trivial.  Overall, the scatted 

data plots in Fig. 5 demonstrate that effects caused by pressure is more significant than 

effects caused by turbulence on the heat release rate of simulated flames under selected 

conditions.  

 

To further elucidate the effects of pressures on unsteady heat release rate under high 

initial turbulence level, the spatial distribution of the heat release rate in a cross-section of 

the flame ball is plotted at different pressure values for Ret=150 (Fig.6). As seen in Fig. 6, 

at p=1bar, the heat release rate contours show a smooth and continuous reaction zone of 

significant thickness. However, at p=2bar, the heat release rate contours show a wrinkled 
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reaction zone of smaller thickness  compared with that at p=1bar. Furthermore, at p=4bar, 

the heat release rate contours demonstrate significant wrinkling and in some places 

discontinuous reaction zones. The overall thickness of the reaction zones at p = 4 bar is 

much thinner those at p=1bar and 2bar, respectively. It is evident from Figs. 5 and 6 that 

increasing pressure increases the flame wrinkling causing higher negative (concave 

towards the reactants) and positive (convex towards the reactants) curvature zones [56]. 

We now look at iso-surfaces of the flame front coloured by local curvature and the 

scattered heat release rate versus curvature along the instantaneous flame front.  

 

Fig. 7 shows iso-surfaces of flame front coloured by local curvature at pressure value of 

p=1bar, 2bar, 4bar, and at Ret=150. Fig. 7 displays cells of long, medium and short 

wavelengths bounded by cusps (concave flame fronts) for p=1bar, 2bar and 4bar, 

respectively. It is seen that the mangitudes of both negative and positive local maximum 

and minimum curvature values are increasing with increasing pressure. For example, the 

maximum and minimum curvature values are approximately four times larger for p=4bar 

case (8000 1/m to -8000 1/m) compared to p=1bar case (2000 1/m to -2000 1/m). The 

formation of cusps in respond to elevated pressure in our study is in agreement with the 

findings of Bradley and Harper [57] and Bradley [58] in high pressure spherical flame 

experiments. According to their observations, such cracks are prone to cross-cracking at 

corners, until the cracks eventually form a coherent cellular structure covering the entire 

flame surface, which we also observe in our DNS results at elevated pressures.  
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Fig. 7 further indicates that the formation of cusps structures is substantial widespread at 

elevated pressures in contrast to the situation observed at the atmospheric pressure. To 

identify the dependence of the heat release rate on positive and negative curvature zones, 

scatter data of the local heat release rate is plotted against the local curvature. Fig. 8 

shows the scatter plot of the heat release rate versus curvature along the instantaneous 

flame front for each flame. It is seen that there is significantly more scatter in the heat 

release rate in both positive and negative curvature zones at p=2bar and 4bar compared to 

that at p=1bar.  Particularly, at p=2bar and 4bar, more scattered data were observed in 

regions of higher negative curvature, where local heat release rate was generally lower. 

This follows from the fact that, in the higher negative curvature zone, the rate of 

occurrence of lower heat release rate increased indicating regions of flames close to local 

extinction along the flame front, as was discussed in [59]. On the other hand, increasing 

the turbulent Reynolds number Ret from 10 to 150 does not have much effect on the 

degree of scatter in the heat release rate. It is noted that at p = 1 bar and  Ret = 50, the 

heat release rate increases with increasing positive curvature but decreases with negative 

curvature. However, at higher pressures or higher turbulent Reynolds numbers, such a 

trend is not clearly identified.  Overall, the spatial distribution of the instantaneous heat 

release rate (Fig. 6), flame front curvature (Fig. 7), and their relationship (Fig. 8) are 

affected much more by elevated pressures than turbulence intensity. 
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Normalised Hydrogen-to-Oxygen Mass Ratio and Radical Species Mass Fractions 

The objectives of this section are to evaluate the separate effects of pressure and 

turbulence on species distributions.  

 

To investigate the effects of pressure at identical turbulent Reynolds number and the 

effects of turbulence at identical pressure, respectively, the JPDFs of temperature and 

normalised hydrogen-to-oxygen mass ratio are calculated. The normalised hydrogen-to-

oxygen mass ratio based on the total mass fraction of element H and total mass fraction 

of element O is calculated using an expression:  

 all,H all,O

H O

Y Y
Local ,

2W W
ψ =              (20) 

where all,HY  is the total mass fraction of element H, all,OY is the total mass fraction of 

element O, HW is the molar mass of element H and OW is the molar mass of element O. 

The preheat zone is defined as the region with T< 1200K.  

 

As seen in Fig. 9, the JPDFs indicate the occurrence of strongest correlation at the 

maximum hydrogen-to-oxygen mass ratio and maximum temperature, where intense 

reactions take place, for all cases. A weak local peak in the JPDFs also appears at a mass 

ratio of about 0.4 and at a temperature of 400K in the unburnt side, which may be linked 

with ignition spots. The high diffusivity of hydrogen allows hydrogen to diffuse more 

effectively from the preheat zone to the reaction zone due to preferential diffusion effects 

than the oxygen molecules, resulting in a stratification of the mass ratio. Hence the mass 

ratio increases in the reaction zone and decreases in the unburned zone. Furthermore, for 
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high pressure flames, results also show slight decrease and broadening of hydrogen-to-

oxygen mass ratio in the reaction zone. This could be due to increased leakage of 

hydrogen from the flame front due to elevated pressure. It is noted that with increasing 

turbulence or pressure double peaks in the JPDFs appear under identical (high) 

temperature ranges.  Again this may be due to preferential diffusion of hydrogen.  

 

In Fig. 10, the JPDFs of mass fraction of OH radical and temperature are shown for all 

cases. One observation can be made: there is strong similarity in the distribution of the 

JPDFs between mass fraction of OH and temperature, and those between hydrogen-to-

oxygen mass ratio and temperature. The effects of pressure elevation at identical 

turbulent Reynolds number and the effects of turbulence intensification at identical 

pressure on the JPDFs between mass fraction of OH and temperature are almost identical 

to those on the JPDFs between normalised local hydrogen-to-oxygen mass ratio and 

temperature.  

 

In Fig. 11, the JPDFs of the mass fraction of HO2 radical species and temperature are 

shown.  It can be seen that that the JPDFs of HO2 mass fraction and temperature show 

weak correlation at lower pressure level (p=1bar), but strong correlation at higher 

pressure levels (p = 2 bar, 4 bar).  At elevated pressures, the JPDFs of HO2 and 

temperature show a broadening peak regions.  

 

To further identify separate effects caused by pressure and turbulence on radical species 

formation, Fig. 12 shows the comparison of conditional mean values of mass fraction of 
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OH and HO2 over temperature between results extracted from the simulated DNS 

spherical flames and the one-dimensional laminar flamelets at pressure values of 1bar, 

2bar and 4bar. It is important to note that we performed one-dimensional flamelet 

calculations for the same conditions with the same chemistry and transport models as in 

DNS. Here the DNS results have been plotted for expanding spherical flames with 

Ret=150.  The conditional mean values of mass fraction of OH and HO2 show significant 

changes with respect to increased pressure for turbulent spherical flames (DNS results) as 

well as one-dimensional laminar flames. The mass fraction of OH shows decreasing 

values with increasing pressure, while the mass fraction of HO2 shows increasing values 

with increasing pressure. Interestingly, similar overall trend has been observed for the 

pressure elevation effect on the species distributions in both laminar and turbulent flames. 

Hence, one can may argue that the pressure effects on the composition space in the 

turbulent and laminar flames are determined by the same reaction kinetics. Nevertheless, 

the mass fraction of OH shows very different distributions in the high temperature zone 

between the turbulent flame and the laminar flame at all three pressures. In addition, the 

mass fraction of HO2 shows strong reduction of its values in the turbulent flame 

compared to the laminar flame while the mass fraction of OH display similar magnitude 

between the two flames.   

 

Figs. 9-11 clearly demonstrate the effects of pressure elevation on key radical species 

such as H, OH and HO2 for lean premixed H2/CO combustion. This may be due to the 

physical effects of pressure discussed above but could also be related to the pressure-

sensitive reaction mechanisms. For example, the sensitivity analysis carried out by 
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Goswami et al. [51] found that the reaction H+O2=OH+O, and CO oxidation reaction 

CO+OH=CO2+H are very sensitive to changes in pressure. In addition, Goswami et al. 

[51] and Burke et al. [60] suggest, through flux analysis of species, that reaction 

H+O2=HO2 contributes significantly in the lean mixture regime, and therefore production 

and consumption of important radicals such as H, OH and HO2 depend on this reaction.  

Goswami et al. [51] also found that in H2/CO syngas fuel mixture, where CO is 15-30%, 

chemistry is subsequently dominated by H2, and therefore the production of carbon 

containing radicals such as CH2O, HCO further helps by H+O2=OH+O.    

 

Conclusions  

Three-dimensional direct numerical simulations using detailed chemistry have been 

presented to investigate the effects of pressure elevation on high hydrogen content lean 

premixed syngas spherical flames under low to high initial turbulent conditions.  

Simulations were performed for H2/CO syngas fuel mixture with 70% H2 and 30% CO by 

volume with an equivalence ratio of 0.7. Statistics were collected to facilitate discussions 

on effects of pressure on flame structure, heat release rate and species mass fraction 

distributions. 

The main conclusions are as follows: 

a. The instantaneous temperature contours indicate that centrally-ignited turbulent 

spherical flames develop cellular burning structures at elevated pressures in 

contrast to the smooth reaction zones at the atmospheric pressure. The flame 

surfaces appear to be a combination of regular cellular structures and irregular 

wrinkles. As the pressure increases, the flame cells become smaller. 
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b. It is found that the time required for the expanding turbulent spherical flame to 

develop to a certain surface area decreases with increasing pressure, indicating 

faster turbulent flame speed at elevated pressures. This is in contrast to decreased 

laminar flame speed as pressure increases in laminar flames.   

c. The local heat release rate shows increasing amount of scatter in both positive and 

negative curvature zones in flames with elevated pressures. Instantaneous heat 

release rate contours and scatter plots reveal the formation of cusped structures 

with low heat release rates at elevated pressures, which is consistent with previous 

findings. 

d. The joint probability density functions of hydrogen-to-oxygen mass ratio and 

temperature indicate flame stratification due to preferential diffusion between 

hydrogen and oxygen.  It is found that the mass fraction of OH show qualitatively 

identical distribution to hydrogen-to-oxygen mass ratio. The conditional mean 

values of the mass fractions of radicals suggest that the pressure elevation has 

stronger influence on the formation of radicals such as OH and HO2 of lean 

premixed H2/CO syngas flames than turbulence. Preferential diffusion effects on 

the species distributions have been observed. 
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Table 1 (a, b, c): Turbulence properties and parameter ranges at three pressure values 
based on conditions at the beginning of the simulation.  

Table 1 (a) 

Case  I(a)  I(b)  I (c) 
Pressure (bar) 1bar 1bar 1bar 

a
tRe  50 100 150 

Dab 0.47 0.24 0.17 
Kac 14.99 40.35 69.92 

( / )2 m sν  1.63e-05 1.63e-05 1.63e-05 

tl (m)  6.37e-04 6.37e-04 6.37e-04 

Lu /S′  2.2 4.4 6.6 

Ll/δ  2.5 2.5 2.5 

Grid Resolution  300 300 300× ×  300 300 300× ×  300 300 300× ×  
η µ d ( m)  33.9 33.9 33.9 

∆ µx( m)  26 26 26 
Number of grid 
points in flame 
thickness  

17 17 17 

  

Table 1 (b) 

Case  II (a)  II (b)  II (c) 
Pressure (bar) 2bar 2bar 2bar 

a
tRe  50 100 150 

Dab 1.6 0.84 0.61 
Kac 4.41 11.83 20.20 

( / )2 m sν  8.22e-06 8.22e-06 8.22e-06 

tl (m)  6.37e-04 6.37e-04 6.37e-04 

Lu /S′  1.8 3.6 4.5 

Ll/δ  5.2 5.2 5.2 

Grid Resolution  400 400 400× ×  400 400 400× ×  400 400 400× ×  
η µ d ( m)  20.1 20.1 20.1 

∆ µx( m)  20 20 20 
Number of grid 
points in flame 
thickness  

11 11 11 
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Table 1 (c) 

Case  II (a)  II (b)  II (c) 
Pressure (bar) 4bar 4bar 4bar 

a
tRe  50 100 150 

Dab 5.71 2.99 2.17 
Kac 1.23 3.33 5.63 

( / )2 m sν  4.13e-06 4.13e-06 4.13e-06 

tl (m)  6.37e-04 6.37e-04 6.37e-04 

Lu /S′  1.6 2.1 3.2 

Ll/δ  6.05 6.05 6.05 

Grid Resolution  600 600 600× ×  600 600 600× ×  600 600 600× ×  
η µ d ( m)  14.9 14.9 14.9 

∆ µx( m)  13 13 13 
Number of grid 
points in flame 
thickness  

8 8 8 

 

'u - Root-mean-square (RMS) turbulent fluctuation velocity 

tl -Integral length scale measured directly from the initial turbulence field 

ν - Kinematic viscosity 

LS -Laminar flame speed 

aTurbulent Reynolds number, '
t tRe u l /= ν  

bDamköhler number, ( )t
L L'

lDa S
u

 = δ 
 

 

cKarlovitz number, ( )( )0.5
L LKa 15 S u′= δ λ  

dKolmogorov length scale, 0.75
t tl Re−η =  

λ - Taylor length scale, 0.5
t tl Re−λ =  
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Figure Captions:  

Fig.1. Configuration diagram. Expanding turbulent spherical flame at p=2bar is shown. 

Fig.2. Premixed combustion regime diagram with locations of current DNS test cases. 

Here squares, rectangles and circles denote spherical flames at pressure of 1bar, 2bar and 

4bar respectively.   

Fig. 3. (a) Temporal evolution of the integrated heat release rate; (b) spatial variation of 

the chemical production rate of hydrogen for four different grid 

resolutions (200 200 200,  400 400 400,600 600 600 and 800 800 800)× × × × × × × × for the 

expanding spherical flame at turbulent Reynolds number of Ret=150, and at pressure of 

p=4bar.  

Fig. 4. Instantaneous snapshots of flame temperature iso-surfaces for three pressure 

values varying from p=1bar to 4bar at identical turbulent Reynolds number (left to right), 

and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical pressure 

(top to bottom). 

Fig. 5. Scatterplots of heat release rate for three pressure values varying from p=1bar to 

4bar at identical Ret (left to right), and three turbulent Reynolds numbers varying from 

Ret=50 to 150 at identical pressure (top to bottom). 

Fig. 6. Contour plots of heat release rate (left hand side: full domain, right hand side: 

zoom view of the selected region) for three pressure values of p=1bar, 2bar and 4bar and 

at identical turbulent Reynolds number of Ret=150. Note the different scales for the 

colorbar from top to bottom.   

Fig. 7. Iso-surfaces of flame front (c=0.5), coloured by local curvature values (left hand 

side: full domain, right hand side: zoom view of the selected region) for three pressure 
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values of p=1bar, 2bar and 4bar and at identical turbulent Reynolds number of Ret=150. 

Note the different scales for the colorbar from top to bottom. 

Fig.8. Scatterplots of heat release rate versus curvature at flame front for three pressure 

values varying from p=1bar to 4bar at identical Ret (left to right), and three turbulent 

Reynolds numbers varying from Ret=50 to 150 at identical pressure (top to bottom). 

Fig. 9. Joint probability density function of hydrogen-to-oxygen mass ratio as a function 

of temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left 

to right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 

Fig. 10. Joint probability density function of mass fraction of OH as a function of 

temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left to 

right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 

Fig. 11. Joint probability density function of mass fraction of HO2 as a function of 

temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left to 

right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 

Fig. 12. Conditional mean values of mass fractions of OH and HO2 radicals as a function 

of temperature for three pressure values of p=1bar to 4bar, (a) for turbulent flames with 

Reynolds number of Ret=150 and, (b) for one-dimensional laminar flamelet. 
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Figures:  

 

Fig.1. Configuration diagram. Expanding turbulent spherical flame at p=2bar is shown. 
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Fig.2. Premixed combustion regime diagram with locations of current DNS test cases. 

Here squares, rectangles and circles denote spherical flames at pressure of 1bar, 2bar and 

4bar respectively.   
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(b) 

Fig. 3. (a) Temporal evolution of the integrated heat release rate; (b) spatial variation of 

the chemical production rate of hydrogen for four different grid 

resolutions (200 200 200,  400 400 400,600 600 600 and 800 800 800)× × × × × × × × for the 

expanding spherical flame at turbulent Reynolds number of Ret=150, and at pressure of 

p=4bar.  
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Fig. 4. Instantaneous snapshots of flame temperature iso-surfaces for three pressure 

values varying from p=1bar to 4bar at identical turbulent Reynolds number (left to right), 

and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical pressure 

(top to bottom). 
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Fig. 5. Scatterplots of heat release rate for three pressure values varying from p=1bar to 

4bar at identical Ret (left to right), and three turbulent Reynolds numbers varying from 

Ret=50 to 150 at identical pressure (top to bottom). 
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Fig. 6. Contour plots of heat release rate (left hand side: full domain, right hand side: 

zoom view of the selected region) for three pressure values of p=1bar, 2bar and 4bar and 

at identical turbulent Reynolds number of Ret=150. Note the different scales for the 

colorbar from top to bottom.   
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Fig. 7. Iso-surfaces of flame front (c=0.5), coloured by local curvature values (left hand 

side: full domain, right hand side: zoom view of the selected region) for three pressure 

values of p=1bar, 2bar and 4bar and at identical turbulent Reynolds number of Ret=150. 

Note the different scales for the colorbar from top to bottom.   
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Fig.8. Scatterplots of heat release rate versus curvature at flame front for three pressure 

values varying from p=1bar to 4bar at identical Ret (left to right), and three turbulent 

Reynolds numbers varying from Ret=50 to 150 at identical pressure (top to bottom). 
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Fig. 9. Joint probability density function of hydrogen-to-oxygen mass ratio as a function 

of temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left 

to right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 
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Fig. 10. Joint probability density function of mass fraction of OH as a function of 

temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left to 

right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 
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Fig. 11. Joint probability density function of mass fraction of HO2 as a function of 

temperature for three pressure values varying from p=1bar to 4bar at identical Ret (left to 

right), and three turbulent Reynolds numbers varying from Ret=50 to 150 at identical 

pressure (top to bottom). 
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Fig. 12. Conditional mean values of mass fractions of OH and HO2 radicals as a function 

of temperature for three pressure values of p=1bar to 4bar, (a) for turbulent flames with 

Reynolds number of Ret=150 and, (b) for one-dimensional laminar flamelet. 


