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Abstract

Soft independent modelling of class analogy (SIMCA) is a widely-used sub-

space method for spectral data classification. However, since the class sub-

spaces are built independently in SIMCA, the discriminative between-class

information is neglected. An appealing remedy is to first project the original

data to a more discriminative subspace. For this, generalised difference sub-

space (GDS) that explores the information between class subspaces in the

generating matrix can be a strong candidate. However, due to the difference

between a class subspace (of infinite scale) and a class (of finite scale), the

eigenvectors selected by GDS may not also be discriminative for classifying

samples of classes. Therefore in this paper, we propose a discriminatively

ordered subspace (DOS): different from GDS, our DOS selects the eigen-

vectors with high discriminative ability between classes rather than between

class subspaces. The experiments on three real spectral datasets demonstrate
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that applying DOS before SIMCA outperforms its counterparts.

Keywords: Discriminatively ordered subspace, generalised difference

subspace, generating matrix, SIMCA, spectral data classification, subspace

method

1. Introduction1

High-dimensional spectral data, such as near infrared (NIR) spectroscopic2

data and mass spectrometry (MS) data, are widely used in a variety of fields,3

for example chemometrics, bioinformatics and hyperspectral image analysis.4

In the analysis of spectral data, classification is an omnipresent task [4, 10,5

2, 9, 7, 13], which enables us to distinguish different species, identify the6

geographical origins of the products, or predict molecular substructure, to7

name a few.8
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Figure 1: Spectra of meat samples from two classes: chicken and turkey.

Figure 1 shows an example for NIR spectroscopic data of two classes, the9

chicken meat samples and the turkey meat samples. Each curve depicts the10

spectrum of a sample, which is usually represented by a high-dimensional11
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feature vector. A classification task is to classify the spectra of new samples12

into the two classes based on the information provided by some labelled13

training spectra. In this paper, we focus on two-class classification. Based14

on the two-class classification results, multi-class classification can be readily15

obtained by using the one-vs-one or one-vs-all strategy [3].16

Soft independent modelling of class analogy (SIMCA) [12] is a subspace-17

based classification method that is widely used in the two-class classification18

of high-dimensional spectral data in chemometrics [4, 10, 2]. When SIMCA19

is used for two-class classification, firstly two class subspaces are built for the20

two classes separately through using principal component analysis (PCA).21

Then an F -test, which tests whether the residual standard deviation of a22

new sample from the subspace of a class is statistically significantly different23

from the residual standard deviation of the training set of that class, is used24

to determine the class membership of the new sample. The PC-subspace25

is considered as a good class model for high-dimensional data because it26

extracts the most variable information in the data to few PCs and gets rid of27

a large amount of redundant information in the original feature dimensions.28

SIMCA is originally designed for both outlier detection and classification. In29

this paper, we treat SIMCA as a simple classification method that assign a30

new sample to the class with the smallest F-value as suggested in [8].31

In spite of its wide use, SIMCA suffers from the problem that the class32

subspaces are built independently without considering between-class infor-33

mation. Therefore the F-value calculated independently for each class may34

not be discriminative enough to classify a new sample.35
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Figure 2: (a) Two classes of samples are mixed together in the original 3-dimensional
feature space. (b) The same groups of samples can be well separated when they are
projected to a discriminative 2-dimensional subspace.

An appealing solution to this problem is to find a more discriminative sub-36

space than the original feature space and project the data to this subspace37

before applying SIMCA. The projections of the samples to this discriminative38

subspace are expected to be more separated and can be more easily classified39

than those in the original feature space, as illustrated in Figure 2. Also, as40

the new subspace contains more discriminative information for classification,41

the F -value calculated in this subspace is expected to be more discrimina-42

tive. It is therefore the objective of our work in this paper to find such a43

discriminative subspace.44

Recently, Fukui and Maki [6] propose the generalised difference subspace45

(GDS) projection as a preprocessing method to improve a popular subspace-46

based classifier called mutual subspace method (MSM) in image set-based47

object recognition. GDS aims to tackle an issue of MSM: the class subspaces48

are independently generated by PCA in a class-by-class manner, and thus49
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may not be strongly discriminative for classification. This issue is actually50

the same as that of SIMCA. Hence, we believe the GDS projection can also51

be utilised as a preprocessing method for SIMCA to improve its classification52

performance.53

GDS is a subspace containing the information about difference between54

class subspaces, and thus is supposed to be more discriminative than the55

original feature space. GDS is generated on the basis of a generating matrix56

GD, which is calculated as the sum of the projection matrices of the two class57

subspaces and can provide between-class information. Fukui and Maki [6]58

show that the eigenvectors of GD with small eigenvalues contain the informa-59

tion of difference between class subspaces while those with large eigenvalues60

contain the information about similarity between class subspaces. The GDS61

projection thus keeps only the last few eigenvectors with small eigenvalues62

and discards the first few eigenvectors with large eigenvalues, in order to63

make use of the difference information.64

The GDS projection shows superior performance on face recognition and65

hand shape recognition problems. However, there is a limitation of the GDS.66

The GDS projection discards the eigenvectors of GD with large eigenvalues67

because they contain similarity information between class subspaces and thus68

are assumed ineffective for classification. This assumption is, however, not69

always valid due to the conceptual difference between a class subspace (of infi-70

nite scale) and a class (of finite scale). For example, two separable classes may71

span the same subspace. More technically, this assumption defines similarity72

information by using the eigenvector directions only, without considering the73

distribution of the projected samples in these directions. If the projected74
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samples of different classes in the directions of similarity (i.e. the directions75

with large eigenvalues of GD) are still class separable, then these directions76

can also be discriminative in separating classes (although not discriminative77

in separating class subspaces), and thus discarding them can be harmful for78

classification of samples.79
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Figure 3: An illustrative example of the difference between a class subspace (of infinite
scale) and a class (of finite scale).

To illustrate the difference between a class subspace and a class, we show80

an intuitive example in Figure 3. The infinite scale subspace of class 1,81

L1, is spanned by v1 and v2, and the infinite scale subspace of class 2,82

L2, is spanned by v1 and v3. The samples of the two classes lie in the83

two ellipses with finite scales in L1 and L2, respectively. It is obvious that84

v1 is the intersection of L1 and L2, which represents the same direction,85

i.e. the similarity information, between class subspaces. The GDS projection86
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discards v1 because it is the eigenvector of GD with the largest eigenvalue87

and contains similarity information between class subspaces. However, the88

samples of the two classes are class separable on the direction of v1, which89

suggests that v1 contains discriminative information between classes. (We90

shall demonstrate another motivating example for this issue in Section 2.3.191

using a real spectral dataset.)92

0.7

0.75

0.8

0.85

0.9

0.95

1

SIMCA GDS

(a) meat

0.55

0.6

0.65

0.7

0.75

0.8

0.85

SIMCA GDS

(b) Phenyl

0.7

0.75

0.8

0.85

0.9

0.95

SIMCA GDS

(c) fat

Figure 4: Classification accuracies of SIMCA and the GDS-preprocessed SIMCA on three
real spectral datasets: meat, Phenyl and fat. In each panel, the left-hand boxplot is for
SIMCA, and the right-hand boxplot is for the GDS-preprocessed SIMCA.

Moreover, here we illustrate that discarding the eigenvectors of GD with93

large eigenvalues can be harmful for classification using three real spectral94

datasets: meat, Phenyl and fat. In Figure 4, we plot the classification accu-95

racies of SIMCA and the GDS-preprocessed SIMCA on the three datasets.96

We can clearly observe that a preprocessing step of SIMCA by GDS does not97

necessarily benefit the classification performance of SIMCA; it actually has98

an negative effect (lowering classification accuracy) on SIMCA for the Phenyl99

dataset and the fat dataset. Detailed discussion on this will be provided in100

Section 3.101

To make use of the between-class information in GD and to overcome102
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the above limitation of the GDS projection, we propose a discriminatively103

ordered subspace (DOS): our DOS is spanned by the most discriminative104

eigenvectors of GD instead of the eigenvectors with small eigenvalues and105

extracts the most discriminative information from the data. That is, we sort106

the eigenvectors in terms of their discriminative ability and select the top-107

ranked eigenvectors with high discriminative abilities to generate the DOS108

projection. This discriminatively ordering procedure during the generation109

of the subspace is where the term ‘discriminatively ordered’ was from in110

DOS. As our objective is to develop DOS to tackle the issue of SIMCA, the111

discriminative ability of an eigenvector is measured by the classification accu-112

racy of SIMCA on the samples projected to this eigenvector. The higher the113

classification accuracy, the higher the discriminative ability. We choose this114

filter-type of eigenvector selection scheme for high-dimensional spectral data,115

taking into consideration its simplicity and efficiency, as well as the uncorre-116

latedness and orthogonality of the candidate eigenvectors. The effectiveness117

of the DOS-preprocessed SIMCA will be demonstrated in Section 3.118

The rest of this paper is organised as follows. In Section 2, a discussion119

of the GDS projection and a detailed description of the DOS projection are120

provided. In Section 3, GDS and DOS are compared for the improvement121

of classification performance of SIMCA on real spectral datasets. Section 4122

presents some concluding remarks.123
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2. Methodology124

2.1. SIMCA125

In the training phase of SIMCA, suppose Xk ∈ RNk×p is the training126

set of class k (k = 1, 2), in which there are Nk training instances and each127

instance is represented by a p-dimensional data vector (i.e. in the original p-128

dimensional feature space). To build the principal component (PC) subspace129

for each class, we apply eigendecomposition to the covariance matrix of the130

kth class:131

Cov(Xk) =
1

Nk − 1
(Xc

k)TXc
k = U kΣU−1k , (1)

where Xc
k is the column-centred Xk; the columns of U k ∈ Rp×qk denote132

the normalised eigenvectors, and Σ is a diagonal matrix with eigenvalues133

{σ1 ≥ σ2 ≥ · · · ≥ σqk}. We select the first rk (rk ≤ qk) columns of U k134

as the basis vectors W k that spans the kth class subspace Pk, which is rk-135

dimensional.136

It follows that the projection matrix P k ∈ Rp×p of Pk can be written as137

P k = W kW
T
k . (2)

In the test phase, a new sample xnew is assigned based on the following138

two residuals. First, the residual of the kth class in the training set:139

Ek = Xc
k −Xc

kP k . (3)
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Second, the residual of xnew when it is projected to the kth class subspace:140

ek,new = xc
new − xc

newP k , (4)

where xc
new is centred by the mean vector of Xk. Then xnew is assigned to141

the class with the smallest F-value [8], where the F-value is defined as142

F =
||ek,new||22

||Ek||22/(Nk − rk − 1)
, (5)

in which || · || denotes the Frobenius norm.143

2.2. Generalised difference subspace144

Since the class subspaces in SIMCA are built independently, the between-145

class information is not considered by SIMCA and thus the classification146

performance is limited. To improve the performance of SIMCA, we aim to147

find a subspace more discriminative than the original feature space. Applying148

SIMCA to the projections of the samples in this discriminative subspace is149

expected to have better performance because the samples are expected to150

be more separated in this subspace. The process of seeking and projecting151

to such a discriminative subspace can be treated as a preprocessing step of152

SIMCA.153

Mutual subspace method (MSM) is a commonly used subspace-based154

method for image set-based object classification, which has a similar problem155

as SIMCA: MSM builds the class subspace by using PCA for each class156

separately. The generated class subspace of an image set of an unknown157

object is compared with the known class subspaces of reference objects and158
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classified to the class with the smallest canonical angle.159

When the image set of an unknown object contains only one image, the160

image is represented by a feature vector and the canonical angles are cal-161

culated between the vector and the class subspaces. In this case, MSM is162

reduced to the commonly-used subspace method (SM) in image classification.163

The only difference between SM and SIMCA is the criterion for assigning new164

samples: SM assigns the new sample to the class with the smallest canonical165

angle between the sample and the class subspace, while SIMCA assigns the166

new sample to the class with the smallest F-value calculated in (5).167

MSM suffers from the problem that the class subspaces generated by168

PCA may not be sufficiently discriminative for classification. Hence recently169

Fukui and Maki [6] propose to project the data onto a generalised difference170

subspace (GDS) as a preprocessing step of MSM, so as to improve the classi-171

fication performance of MSM. GDS contains difference information between172

two class subspaces and is more discriminative to separate the two class sub-173

spaces than the original feature space. Thus the projections of the samples174

to GDS are expected to be more separated and can be better classified. Since175

SIMCA and MSM suffer from similar problems, we believe the GDS projec-176

tion can also be used as a preprocessing method of SIMCA to improve the177

classification performance of the latter.178

2.2.1. GDS179

The GDS projection is proposed on the basis of the properties of the180

difference subspace (DS) of two class subspaces. The DS, denoted by D, is181
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calculated by using the sum matrix GD ∈ Rp×p, which is defined as182

GD =
K∑
k=1

P k , (6)

where K = 2. Applying eigendecomposition to GD, we obtain183

GD = V DΛDV
T
D , (7)

where the columns in V D = [v1,v2, . . . ,vrD ] ∈ Rp×rD are the normalised184

eigenvectors of GD, and ΛD denotes the diagonal matrix with correspond-185

ing eigenvalues {λ1 ≥ λ2 ≥ · · · ≥ λrD} in descending order, where rD =186

rank(GD).187

The DS is defined as the subspace spanned by the eigenvectors vi in V D188

with corresponding eigenvalues λi less than one. As shown by Fukui and189

Maki [6], these eigenvectors are proportional to the difference between the190

canonical vector pairs of the two class subspaces, and hence they contain the191

difference information between the two class subspaces.192

In addition to DS, Fukui and Maki [6] also define the principal component193

subspace (PCS), denoted by M, which is spanned by the eigenvectors vi in194

V D with corresponding eigenvalues λi larger than one. They point out that195

M contains the similarity information between class subspaces, because the196

eigenvectors are proportional to the sum of the canonical vector pairs.197

Based on the properties of the DS, Fukui and Maki [6] propose the gen-198

eralised DS (GDS) projection for K (K ≥ 2) classes. The GDS projection199

discards the first few eigenvectors of GD with large eigenvalues and keeps200

only the last few eigenvectors of GD with small eigenvalues. In this way, the201
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GDS spanned by the last few eigenvectors contains difference information202

between class subspaces. The projections of the samples onto GDS are ex-203

pected to be more separated and can be better classified. The dimension of204

GDS is determined by maximising the mean canonical angles between class205

subspaces, as suggested in Fukui and Maki [6].206

2.2.2. The generating matrix207

To further investigate the properties of the sum matrix GD and the GDS,208

we introduce the generating matrix proposed in Therrien [11]. The generating209

matrix is defined as the linear combination of the projection matrices of the210

two class subspaces [11]. Therrien [11] shows that the generating matrix can211

be used to find the intersection of the class subspaces.212

For two classes, the generating matrix G ∈ Rp×p can be written as213

G =
K∑
k=1

αkP k , (8)

where K = 2, αk ∈ (0, 1), and
K∑
k=1

αk = 1. Applying eigendecomposition to214

G, we can obtain215

G = V GΛGV
T
G , (9)

where the columns of V G ∈ Rp×rG denote the normalised eigenvectors of G,216

and ΛG denotes the diagonal matrix with eigenvalues {λ1 ≥ λ2 ≥ · · · ≥ λrG},217

where rG = rank(G).218

Therrien [11] shows three important properties of G. First, the eigen-219

values of G are in the interval [0, 1]. Second, the eigenvectors with the220

corresponding eigenvalues of one span the intersection of the two subspaces221
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2⋂
k=1

Pk. Third, the eigenvectors with nonzero eigenvalues span the sum sub-222

space of the two classes, and the eigenvectors with eigenvalues of zeros span223

the complement of this sum subspace.224

Since the vectors in
2⋂

k=1

Pk are in both P1 and P2,
2⋂

k=1

Pk denotes the sub-225

space that contains the most similar directions of the two class subspaces.226

In other words, the most similar directions of the two class subspaces are227

extracted by the eigenvectors of G with eigenvalues of one. In contrast, the228

eigenvectors with eigenvalues of zeros are the complements of the sum sub-229

space which contain information that is irrelevant to the two class subspaces.230

The larger the eigenvalue, the more similarity information the corresponding231

eigenvector contains.232

The generation of GDS is closely related to the generating matrix: GD233

and G are both linear combinations of P k although with different coefficients.234

The linear coefficients of GD are all one, i.e. αk = 1 ∀ k, while those of G235

are constrained by αk ∈ (0, 1) and
K∑
k=1

αk = 1. Although GD and G are236

slightly different, we can derive similar properties of GD as those of G by237

following the proofs in [11]. First, the eigenvalues of GD are in the interval238

[0, 2]. Second, the eigenvectors with the corresponding eigenvalues of two239

span the intersection of the two subspaces
2⋂

k=1

Pk. Third, the eigenvectors240

with the corresponding eigenvalues that are nonzero span the sum subspace241

of the two subspace and those with zero eigenvalues span the complement of242

the sum subspace. Hence, with some abuse of notation, we also call the sum243

matrix GD a generating matrix.244

The eigenvectors of GD with eigenvalues in (1, 2] span the PCSM which245

contains similarity information between the two class subspaces. This argu-246
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ment seems to be consistent with the property of GD, based on the assump-247

tion that the eigenvectors closed to the intersection directions contain large248

amount of similarity information. Since the eigenvectors with eigenvalues of249

two span the intersections subspace, the eigenvectors with eigenvalues close250

to two could be close to the intersection directions. On the other hand, the251

eigenvectors with eigenvalues far from two, i.e. eigenvalues in [0, 1), are far252

from the intersection directions. Therefore, the GDS projection aims to dis-253

card the eigenvectors that are close to the intersection directions, so as to254

provide a discriminative subspace.255

2.3. Discriminatively ordered subspace256

The GDS projection is based on the assumption that, because the first257

few eigenvectors with large eigenvalues close to the intersection directions258

contain similarity information between the class subspaces, they are not im-259

portant for classification. However, this assumption is not always true, as a260

class subspace (of infinite scale) and a class (of finite scale) are different, and261

hence the ability to discriminate two class subspaces are not necessarily in262

line with the ability to discriminate samples of two classes. In the extreme263

case, two separable classes may span the same class subspace. More techni-264

cally, the similarity information in the GDS assumption only considers the265

directions, while the scores or the projection values on the directions should266

also be considered. The eigenvectors of GD that are close to the intersection267

directions between the two class subspaces can be discriminative when the268

scores on these eigenvectors are largely separable between classes. In the269

following section, we show a motivating real-data example that even the di-270

rections in the intersection subspace of the two classes can be discriminative.271
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2.3.1. Intersection and discriminative ability: a motivating example272

The fat dataset contains 193 spectra of finely chopped meat measured273

at 100 wavelengths, in which 122 samples contain less than 20% fat and 71274

samples contain more than 20% fat. Detailed description of this dataset can275

be found in Section 3.1. We split the dataset into a training set and a test set:276

35 samples with fat content less than 20% and 35 samples with fat content277

more than 20% are randomly sampled into the training set; the rest samples278

form the test set.279

The projection matrix P k is calculated by using all the 34 available eigen-280

vectors of each class. There are 68 eigenvectors that can be obtained from281

the eigendecomposition of GD, in which the first seven eigenvectors have282

eigenvalues of two and the last 34 eigenvectors have eigenvalues less than283

one. Thus the first seven eigenvectors span the intersection of the two class284

subspaces and the last 34 eigenvectors span the DS.285

0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094
−0.072

−0.071

−0.07

−0.069

−0.068

−0.067

−0.066

−0.065

−0.064

−0.063

Intersection 1

In
te

rs
e

c
ti
o

n
 2

 

 
Fat content < 20%

Fat content > 20%

(a)

4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6

x 10
−4

1.355

1.36

1.365

1.37

1.375

1.38

1.385

1.39

1.395

1.4
x 10

−3

Difference 1

D
if
fe

re
n

c
e

 2

 

 
Fat content < 20%

Fat content > 20%

(b)

Figure 5: (a) Projections of the test samples onto two directions of the intersection. (b)
Projections of the test samples onto two directions of the DS.

Figure 5 shows two scatter plots of the test samples. Figure 5a shows the286

projections of the test samples onto two intersection directions, and Figure 5b287
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shows the projections of the test samples onto the first two DS directions.288

It is clear that the test samples can be well separated when projected onto289

the two directions in the intersection subspace, whereas the projections of290

the test samples onto the two directions of DS show slight separation with291

a mixture in the central region. In other words, this indicates that the two292

eigenvectors in the intersection subspace are more discriminative than those293

in DS. Therefore, it is better to keep the two eigenvectors in the intersection294

subspace instead of those in the DS.295

This counter-example demonstrates that the eigenvectors of GD in the296

intersection directions can be discriminative and the assumption in the GDS297

method is not valid in this case.298

2.3.2. Discriminatively ordered subspace299

As shown in Section 2.2.2, the eigenvectors of the generating matrix GD300

contain between-class information. Thus we are able to select discriminative301

eigenvectors of GD to generate a discriminative subspace for better classi-302

fication. In the GDS projection, the eigenvectors of GD are sorted by the303

eigenvalues in descending order, and the last few eigenvectors with small304

eigenvalues are selected to generate the GDS. However, as we have shown,305

the eigenvectors with large eigenvalues are possible to be more discriminative306

than those with small eigenvalues, and discarding the eigenvectors with large307

eigenvalues that are discriminative may be harmful for classification.308

Therefore, instead of using the GDS projection, we aim to select the most309

discriminative eigenvectors of GD to generate a discriminative subspace. We310

propose a discriminatively ordered subspace (DOS), which uses the discrimi-311

native ability (rather than eigenvalues) to sort the eigenvectors in ascending312
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order and select the last few eigenvectors with high discriminative ability313

to generate the discriminative subspace. In our case for improving SIMCA,314

the discriminative ability of an eigenvector is measured by the classification315

accuracy of SIMCA on the samples projected to this eigenvector. For each316

eigenvector, if the projections of the samples of the two classes are more317

separated, then the classification accuracy of SIMCA will be high. This318

simple eigenvector-by-eigenvector selection scheme is appropriate for high-319

dimensional spectral data, given that the candidate eigenvectors are uncor-320

related. In the end we choose a set of eigenvectors with high discriminative321

abilities to span a subspace that can make the samples of the two classes322

more separated and improve the performance of SIMCA.323

Specifically, given the generating matrix GD in (6) and its eigendecom-324

position in (7), the eigenvectors vi (i = 1, . . . , rD) are sorted using their325

discriminative abilities di, which are calculated using leave-one-out cross-326

validation (LOOCV) on the training set as follows.327

The training set is denoted as XT
train = [XT

1 ,X
T
2 ] = [xT

1 , . . . ,x
T
N1+N2

] ∈328

Rp×(N1+N2), where XT
1 = [xT

1 , . . . ,x
T
N1

] ∈ Rp×N1 and XT
2 = [xT

N1+1, . . . ,x
T
N1+N2

] ∈329

Rp×N2 are the training sets for the two classes and xm ∈ R1×p is the mth330

(m = 1, . . . , N1 +N2 ) training sample.331

Firstly, we project all the training samples in X train to each eigenvector332

vi ∈ Rp×1 and obtain the projections X̂ train,i = X trainvi ∈ R(N1+N2)×1. For333

the mth validation, the mth projection, x̂m,i = xmvi ∈ R1×1, is used as the334

validation sample and the rest projections are used as the training samples.335

Secondly, we apply SIMCA to each validation by setting the dimensions336

of the two class subspaces to zeros, i.e. r1 = r2 = 0. Based on (3), (4),337

18



and (5), we observe that the F-value is dependent on the distance from the338

projected validation sample to the projected class centre. We assign the339

validation sample to the class with the smallest F-value.340

Thirdly, for each eigenvector vi, we obtain N1 + N2 predictions from341

LOOCV. The classification accuracy di is calculated as342

di =
Nc

N1 +N2

, (10)

where Nc is the number of correctly classified test samples.343

Fourthly, after obtaining d′is for i = 1, . . . , rD, we sort the eigenvectors344

v′is in ascending order of d′is and obtain the matrix of the sorted eigenvectors345

V sort = [v(1),v(2), . . . ,v(rD)], where the discriminative ability d(1) < d(2) <346

· · · < d(rD). The last few eigenvectors in V sort are selected to span the347

discriminative subspace Ds, which we term discriminatively sorted subspace348

(DOS).349

Finally, we project the samples to DOS and apply SIMCA to the projec-350

tions of the samples. The dimension of Ds and the dimensions of the two351

class subspaces in Ds can be tuned by cross-validation through minimising352

the classification error of the training set.353

3. Experiments354

In the following experiments, we compare the performances of the orig-355

inal SIMCA without preprocessing, the SIMCA preprocessed by the linear356

discriminative analysis (LDA) projection, the SIMCA preprocessed by the357

GDS projection, and the SIMCA preprocessed by the DOS projection. The358

LDA-preprocessed SIMCA is also compared since LDA is a commonly used359
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method to find a discriminative subspace. Three real datasets are used in the360

experiments: the fat dataset, the meat dataset, and the Phenyl dataset. In361

the illustrations presented in this section, the DOS-preprocessed SIMCA is362

denoted by ‘DOS’, the GDS-preprocessed SIMCA is denoted by ‘GDS’, the363

LDA-preprocessed SIMCA is denoted by ‘LDA’ and the original SIMCA is364

denoted by ‘SIMCA’.365

3.1. Datasets366

3.1.1. The meat dataset367
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Figure 6: The spectra of the two classes in the meat dataset.

The meat dataset [1] contains beef, pork, lamb, chicken and turkey meat368

samples measured at 1051 wavelengths. Only the 55 chicken and 54 turkey369

samples in the dataset are used in our experiments since the two groups370

are difficult to classify. The first 350 wavelengths in the meat dataset are371

used because the experiments in Arnalds et al. [1] suggest that the first 350372

wavelengths ranging from 400 to 1100 nm perform the best. The spectra of373

the meat dataset are illustrated in Figure 6.374

During the training-test split, the total of 55 chicken samples and 54375
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turkey samples are randomly partitioned into a training set (27 chicken sam-376

ples and 27 turkey samples) and a test set (28 chicken samples and 27 turkey377

samples).378

3.1.2. The Phenyl dataset379
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Figure 7: The spectra of the two classes in the Phenyl dataset.

The Phenyl dataset is provided in the R package, ‘chemometrics’. The380

dataset consists of 600 mass spectra of chemical components, with 300 com-381

pounds contain the phenyl substructure and 300 compounds do not contain382

the substructure. Each spectrum contains 658 mass spectral features. Since383

a plot of the spectra of all samples is confusing, we only show the spectra of384

two instances in the Phenyl dataset, one for each class, in Figure 7.385

We randomly select 100 samples from the Phenyl dataset for our exper-386

iments, with 50 contain the phenyl substructure and 50 do not contain the387

structure. These 100 instances are randomly partitioned into two equal sub-388

sets: a training set containing 50 samples (25 contain the phenyl substructure389

and 25 do not contain the substructure), and a test set containing 50 samples390

(25 contain the phenyl substructure and 25 do not contain the substructure).391
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3.1.3. The fat dataset392
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Figure 8: The spectra of two classes in the fat content dataset.

The fat content dataset [5] contains 193 spectra of finely chopped meat393

measured at 100 wavelengths, in which 122 meat samples contain less than394

20% fat and 71 samples contain larger than 20% fat. The spectra of the data395

of the two classes are shown in Figure 8.396

For this dataset, 100 samples are selected as a training set (50 samples397

with the fat content less than 20% and 50 samples with the fat content larger398

than 20%) and the remaining samples are selected as a test set.399

3.2. Experiment settings400

The performances of the original SIMCA, the LDA-preprocessed SIMCA,401

the GDS-preprocessed SIMCA, and the DOS-preprocessed SIMCA are com-402

pared.403

In SIMCA, the dimensions of the two class subspaces are tuned by 10-404

fold cross-validation. Before applying LDA, the high-dimensional spectral405

data are projected to the PC subspace of all available PCs. Then in LDA-406

preprocessed SIMCA, the dimensions of the two class subspaces are set to407
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zeros because only one discriminative direction can be found for two classes408

by LDA and this direction should be used for classification. In GDS and DOS,409

all the available PCs of each class subspace are used to obtain the generating410

matrix GD. In GDS, the dimension of GDS and the dimensions of the two411

class subspaces are also tuned by 10-fold cross-validation. The dimensions are412

chosen to minimise the classification error. In DOS, the discriminative order413

of the eigenvectors of GD is determined by using the training set. Leave-one-414

out cross-validation (LOOCV) is used to obtain the classification accuracy415

of each eigenvector. The dimension of Ds and the dimensions of the two416

class subspaces are also tuned by 10-fold cross-validation. The dimensions417

are chosen to minimise the classification error, same as those for SIMCA and418

GDS.419

All the experiments are repeated 100 times and the classification accura-420

cies of all the experiments are recorded and depicted in boxplots.421

3.3. Results422

3.3.1. The meat dataset423
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Figure 9: For the meat dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix GD.
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Figure 9a shows the boxplots of the classification accuracies of the four424

methods for the meat dataset, from which we can observe that LDA performs425

similar to SIMCA while GDS and DOS both perform better than SIMCA.426

Figure 9b shows the discriminative abilities of the eigenvectors of the427

generating matrix GD versus the descending order of eigenvalues, which ex-428

plains the good performance of GDS. That is, in Figure 9b, the horizontal429

axis shows the eigenvectors of GD with eigenvalues in descending order and430

the vertical axis shows the corresponding average classification accuracies of431

SIMCA using the projected samples onto each of the eigenvectors. Since the432

first few eigenvectors of GD do not have high discriminative abilities, dis-433

carding them, as done by GDS, can benefit classification, and thus GDS can434

provide good classification results.435

In short, Figure 9 suggests that GDS performs well when the deletion436

of the first few eigenvectors (in terms of large eigenvalues) is beneficial for437

classification. In addition, DOS can achieve similarly good classification438

performance as GDS in this situation, as the first few eigenvectors are also439

not selected by DOS due to their low discriminative abilities.440
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3.3.2. The Phenyl dataset441
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Figure 10: For the Phenyl dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix GD.

As we have seen in Figure 4, GDS may fail to provide good classification442

results in the cases of the Phenyl and fat datasets. Now we shall see that443

DOS may provide good classification results even when GDS fails in these444

cases.445

Figure 10a shows that GDS performs worse than SIMCA, which indicates446

that the GDS projection is not a good preprocessing method for the Phenyl447

dataset. LDA performs better than GDS, but worse than SIMCA. In con-448

trast, DOS performs better than GDS and LDA, although only providing449

similar classification accuracies as SIMCA in this case.450

To explain this result, we can check Figure 10b, which shows the discrim-451

inative abilities of the eigenvectors of GD for the Phenyl dataset. On the452

one hand, we observe that the first few eigenvectors with large eigenvalues453

have higher discriminative abilities than the remaining ones. Thus deleting454

the first few eigenvectors is harmful to classification. This explains why GDS455

cannot provide good classification results. On the other hand, we also ob-456
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serve that the discriminative abilities of the eigenvectors are ranged from 0.52457

to 0.58, which suggests that the discriminative abilities of the eigenvectors458

are similar to each other. Since the eigenvectors are similarly important to459

classification in this case, it is hard to achieve better classification by select-460

ing from these eigenvectors. This explains why DOS performs similarly to461

SIMCA.462

In summary, Figure 10 indicates that GDS fails to provide good classifi-463

cation results in the situation where the first few eigenvectors (in terms of464

large eigenvalues) of GD are important for classification. DOS can provide465

better classification results than GDS in this situation. However, the classi-466

fication results of DOS do not show noticeable improvement compared with467

those of SIMCA for this dataset, because the eigenvectors of GD have similar468

discriminative abilities.469

3.3.3. The fat dataset470
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Figure 11: For the fat dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix GD.
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Here we shall demonstrate that DOS can achieve better classification471

accuracies than SIMCA when the discriminative abilities of the eigenvectors472

of the generating matrix GD have a large variation. In this situation, DOS473

can select the most discriminative eigenvectors to make the samples more474

separate and is a good preprocessing method for classification.475

As shown in Figure 11a for the fat dataset, GDS performs worse than476

SIMCA and LDA, but DOS can achieve better performance than SIMCA477

and LDA.478

Once again, let us use Figure 11b to explain the above results. On the479

one hand, because the discriminative abilities of the first few eigenvectors480

are higher than the remaining ones, GDS deletes the first few eigenvectors481

of GD that are actually discriminative for classification, leading to a poor482

performance. On the other hand, Figure 11b shows that the discriminative483

abilities range from 0.45 to 0.85, which indicate a large difference in discrim-484

inative abilities between the eigenvectors. Hence DOS can select the most485

discriminative eigenvectors of GD and provide better classification results486

than SIMCA.487

To sum up, Figure 11 suggests that DOS performs well when there is488

a large difference in the discriminative abilities of the eigenvectors of the489

generating matrix GD. The good performance of DOS demonstrates that490

selecting the eigenvectors of GD by using the discriminative ability instead491

of using eigenvalues can be effective, when GDS fails to provide improvement492

in classification.493

3.3.4. Summary of experiments494

We would like to convey two messages through our experiments.495
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Firstly, from Figure 9b, Figure 10b and Figure 11b, we can observe that496

there is no negative correlation between eigenvalues and discriminative abil-497

ities of the eigenvectors of the generating matrix GD. The eigenvectors with498

large eigenvalues, although close to the intersection of two class subspaces,499

may have high discriminative abilities and can largely benefit classification500

of the samples of the two classes.501

Secondly, from Figure 9a, Figure 10a and Figure 11a, we can observe502

that DOS can provide superior or at least comparable classification perfor-503

mance to SIMCA, LDA and GDS. The classification results suggest that it504

is appropriate to use high discriminative ability, instead of using low eigen-505

values (or being away from the intersection of class subspaces), to select the506

eigenvectors of GD to span a discriminative subspace for classification.507

3.4. Discussion508

3.4.1. Intersection of two class subspaces and its discriminative ability509

In Section 2.3.1, we have shown a motivating example that the intersec-510

tion of two class subspaces can be discriminative for the fat dataset. In this511

section, we further investigate the relationship between the intersection and512

its discriminative ability for all the three datasets.513

To check whether an eigenvector vi is the intersection between class sub-514

spaces, we define ||e1||22 and ||e2||22 to measure the Euclidean distances from515

vi to its projections in the two class subspaces, respectively. When vi is in516

both class subspaces, it is the intersection of the two class subspaces. To517

be more specific, the Euclidean distances from vi to its projections in the518

two class subspaces are zeros when vi is the intersection. The larger the519

Euclidean distances, the farther vi away from the two class subspaces.520
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Suppose the two class subspaces, S(P 1) and S(P 2), are defined by two521

projection matrices P 1 ∈ Rp×p and P 2 ∈ Rp×p, respectively. The Euclidean522

distances from vi to its projections in the two subspaces can be calculated523

as524

||e1||22 = ||P 1vi − vi||22 (11)

and525

||e2||22 = ||P 2vi − vi||22, (12)

respectively. As ||e1||22 and ||e2||22 decrease, vi goes closer to the two class526

subspaces and to the intersection. If ||e1||22 = 0 and ||e2||22 = 0, then vi is527

the intersection of the two class subspaces, because vi is in both subspaces,528

i.e. P 1vi = vi and P 2vi = vi.529

In the following part of this section, we discuss the relationship between530

the subspace intersection and its discriminative ability based on the values531

of ||e1||22, ||e2||22, and the corresponding discriminative abilities of the eigen-532

vectors of GD.533
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(c) Discriminative ability

Figure 12: For the eigenvectors of GD of the fat dataset: their distances (||e1||22 and
||e2||22) to the two class subspaces, and their discriminative abilities.

As an extension of the motivating example in Section 2.3.1 for the fat534
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dataset, we present three plots in Figure 12 illustrating the relationship be-535

tween the intersection of the two class subspaces and its discriminative ability.536

Figure 12a and Figure 12b plot ||e1||22 and ||e2||22 against the descend-537

ing order of eigenvalues, respectively. More specifically, in Figure 12a and538

Figure 12b, the horizontal axis lists the eigenvectors of GD in the order of539

descending eigenvalues, and the vertical axis shows their values of ||e1||22 and540

||e2||22. Figure 12c depicts the discriminative abilities of the eigenvectors,541

which is the same as Figure 11b.542

We can clearly observe that the first few eigenvectors with the largest543

eigenvalues span the intersection of the two class subspaces of the fat dataset,544

because ||e1||22 and ||e2||22 of these eigenvectors are all zeros. However, we can545

also find that the corresponding discriminative abilities of these eigenvectors546

are higher compared with other eigenvectors, as shown in Figure 12c. That547

is, for the fat dataset, the intersection between the two class subspaces has548

high discriminative ability.549
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Figure 13: For the eigenvectors of GD of the meat dataset: their distances (||e1||22 and
||e2||22) to the two class subspaces, and their discriminative abilities.

In contrast to the relationship observed in the fat dataset, here we shall550

see that the intersection can also have low discriminative ability.551
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The first eigenvector of the meat dataset is the intersection between the552

two class subspaces, as shown in Figure 13a and Figure 13b. The discrim-553

inative ability of this eigenvector is 0.6, which is low compared with many554

other eigenvectors. In other words, for the meat dataset, the intersection of555

the two class subspaces has low discriminative ability.556
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Figure 14: For the eigenvectors of GD of the Phenyl dataset: their distances (||e1||22 and
||e2||22) to the two class subspaces, and their discriminative abilities.

Despite the two datasets discussed above that there exists intersection557

between class subspaces, now we show another dataset, the Phenyl dataset,558

that it is also possible that there is no intersection between two class sub-559

spaces.560

We can observe from Figure 14a and Figure 14b that ||e1||22 and ||e2||22 of561

the first eigenvector are far from zeros. Thus there seems to be no intersection562

between the two class subspaces for the Phenyl dataset.563

Therefore, we can draw two conclusions based on the observations from564

Figure 12, Figure 13, and Figure 14. First, the intersection between class565

subspaces does not always exist in all datasets. Second, even when the inter-566

section exists, there is no definitely negative correlation between the inter-567

section and its discriminative ability; that is, the discriminative ability of the568
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intersection of two class subspaces is data-dependent, not necessarily low.569

The second conclusion above supports our argument that there is differ-570

ence between a class subspace and a class. The intersection represents the571

same directions that two class subspaces can take, which can be discarded572

if we aim to classify two class subspaces. However, the intersection can be573

discriminative, and thus is important and cannot be simply discarded when574

we aim to classify the samples of two classes, which is actually the task of575

classification in practice.576

3.4.2. Cross-validation of the dimension of the discriminatively ordered sub-577

space578

In the DOS projection, the dimension of DOS Ds is an important param-579

eter we need to tune. In this section, we discuss the effectiveness of using580

cross-validation to determine it.581

5 10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

The dimension of D
s

M
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

(a) meat

5 10 15 20 25 30 35 40 45
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

The dimension of D
s

M
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

(b) Phenyl

10 20 30 40 50 60
0.85

0.86

0.87

0.88

0.89

0.9

0.91

The dimension of D
s

M
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

(c) fat

Figure 15: Effect of the dimension of Ds.

Figure 15 plots the effect of the dimension of Ds on the classification accu-582

racy on the test sets of the three real datasets, where the dimension changes583
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from one to the total number of eigenvectors in V sort. One hundred exper-584

iments of DOS are repeated for each dimension and the mean classification585

accuracies are plotted.586

For the meat dataset, the dimension of Ds determined by 10-fold cross-587

validation in Section 3.3, which uses the training set only, ranges from 41 to588

47 in the repeated experiments. Figure 15a shows a small peak of the mean589

classification accuracy of the test set around the dimension of 43, which is in590

line with the dimension determined by the training set-based 10-fold cross-591

validation.592

For the fat dataset, the same effectiveness can be observed: the peak of593

the mean classification accuracy of the test set is around seven, as shown in594

Figure 15c, which is roughly consistent with the dimension (which is from595

two to seven) determined by using 10-fold cross-validation on the training596

set.597

For the Phenyl dataset, Figure 15b does not show an obvious peak, and598

the mean classification accuracy of the test set seems to increase with the599

dimension and become stable when the dimension is larger than 41. The di-600

mension determined by 10-fold cross-validation using the training set ranges601

from 38 to 43, which also conforms with the dimension of 41 in the test set.602

In short, Figure 15 implies that the dimension of Ds determined by cross-603

validation using the training set is roughly consistent with the dimension604

with the largest mean classification accuracy of the test set. Thus cross-605

validation is an effective way to determine the dimension of Ds for the DOS606

projection.607
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4. Conclusion608

SIMCA is a widely-used subspace method for classifying two-class high-609

dimensional spectral datasets. It suffers from the problem that the class610

subspaces are built independently without considering between-class infor-611

mation. This problem can be tackled by projecting the data to a subspace612

more discriminative than the original feature space before applying SIMCA.613

We have proposed a new method, the DOS projection, to generate such a dis-614

criminative subspace, by considering the between-class information and the615

discriminative ability of each basis vector of the subspace. The experiments616

on three real-world spectral datasets have demonstrated the effectiveness of617

the DOS projection.618

Recently, subspace-based classification methods have been generalised to619

multi-view or tensor versions [14, 15, 16]. Inspired by these research, we aim620

to extend the DOS projection to multi-view or tensor versions in the future.621
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