
Noname manuscript No.
(will be inserted by the editor)

Privacy-Preserving Smart Metering Revisited

Alfredo Rial · George Danezis · Markulf Kohlweiss

Received: date / Accepted: date

Abstract Privacy-preserving billing protocols are useful in
settings where a meter measures user consumption of some
service, such as smart metering of utility consumption, pay-
as-you-drive insurance and electronic toll collection. In such
settings, service providers apply fine-grained tariff policies
that require meters to provide a detailed account of user
consumption. The protocols allow the user to pay to the
service provider without revealing the user’s consumption
measurements. Our contribution is twofold. First, we propose
a general model where a meter can output meter readings
to multiple users, and where a user receives meter readings
from multiple meters. Unlike previous schemes, our model
accommodates a wider variety of smart metering applications.
Second, we describe a protocol based on polynomial commit-
ments that improves the efficiency of previous protocols for
tariff policies that employ splines to compute the price due.

Keywords Universally composable security, privacy, billing,
smart meters, polynomial commitments

1 Introduction

In privacy-preserving billing a meter measures a user’s con-
sumption of some utility or service and service providers
apply fine-grained tariff policies, i.e., policies that require

Alfredo Rial
University of Luxembourg
Tel.: +352-4666445374
E-mail: alfredo.rial@uni.lu

George Danezis
University College London
E-mail: g.danezis@ucl.ac.uk

Markulf Kohlweiss
Microsoft Research
E-mail: markulf@microsoft.com

detailed and frequent consumption measurements, in order
to determine the bill.

A classical example is smart metering of electricity, water
and gas [36]. In this setting, utility providers install smart
meters in households in order to measure user consumption.
Smart meters provide meter readings to the service provider.
These readings are used by the service provider to calculate
the bill under the tariff policy. The tariff policy may be com-
plex, e.g., by applying a different rate depending on the time
of consumption or on whether the consumption measurement
reaches a threshold.

Other examples are electronic toll collection [24] and
pay-as-you-drive car insurance [7]. In these cases, drivers
install a meter in their cars that reports to the service provider
which roads are used and when. Typical tariff policies apply
different rates depending on the type of road (e.g. motorway,
street), the time of the day (e.g. day or night), or even the
speed of the vehicle.

In all the settings above, billing poses a threat to user
privacy. Meters report fine-grained readings to the service
provider, which potentially discloses sensitive information.
For example, electricity smart-meter readings reveal when
users are at home and the electrical appliances they use [2],
and electronic toll collection and “pay as you drive” insurance
reveal the driver’s whereabouts [40,3,49].

In privacy-preserving billing protocols, meters do not
send consumption measurements to the service provider. In-
stead, the computation of the bill is done locally and only the
amount to be paid is revealed to the service provider.

Privacy-preserving billing protocols, in particular those
which employ meters that are not tamper-resistant, involve
mechanisms to ensure that users report meter readings cor-
rectly, such as random spot-checks in the electronic toll col-
lection protocol in [3,37,43].

The protocols that use tamper-resistant meters either per-
form the bill calculation in the meter or outsource it to an

2 Alfredo Rial et al.

untrusted platform to keep the meters simple. In [49], the bill
calculation is performed inside the tamper-resistant meter. In
contrast, in [47] the tamper-resistant meter outputs signed
meter readings to a user application. At the end of a billing
period, the user application employs the tariff policy sent by
the service provider and the signed readings obtained from
the meter to calculate the bill. The user application reveals
to the service provider only the total bill, along with a proof
that the computation of the bill is correct. This proof does not
reveal any additional information on the meter readings. The
approach in [47] has the advantage that it allows to minimize
the trusted computing base and that it avoids the need to up-
date tamper-resistant meters when the tariff policy changes.
In addition, the mandatory deployment of smart meters in
many countries implies that the purchase cost of a meter
must be kept low. Therefore, it is advisable to keep meters
as simple as possible. In [47] and in our protocol, meters
are required to compute just digital signatures, but all the
other computations are executed outside the meter. Practical
implementations of these protocols have been shown in [17].

Our contribution. We revisit the work of [47] and improve it
in two ways. First, we generalize the security model in [47] to
consider multiple meters and multiple users. Second, we pro-
pose a privacy-preserving billing protocol for our model that,
in comparison to the protocol in [47], improves efficiency for
policies described by splines.

The security model in [47] considered a setting where
a meter communicates only with one user, and a user com-
municates only with one meter, i.e., there is a one-to-one
relation between users and meters. This is insufficient for
some smart metering applications. For example, consider a
building where there is one meter per apartment that mea-
sures the water consumption in that apartment. Additionally,
in the laundry room, there is one washing machine and one
meter per apartment, and the meter measures the water con-
sumption of the washing machine. In this example, the user
needs to use meter readings from both meters to compute the
water consumption bill.

As another example, consider a building with central
heating. Each apartment is provided with a smart meter that
measures the electricity consumption of its tenants. Addition-
ally, another meter measures the electricity consumption of
each of the tenants with respect to the central heating system.
To model this setting adequately, it is necessary to both allow
a meter to send meter readings to multiple users, and to allow
a user to receive meter readings from more than one meter.

Of course, it is possible to use a protocol that considers
only a one-to-one relation between users and meters in these
examples. Simply, each meter-user pair is considered sepa-
rately, and the user reports one separate bill for each meter.
However, doing so does not achieve the same level of privacy
offered in our model because the user reveals the price to be

paid for the consumption at each meter, instead of revealing
only the total price.

Therefore, we propose an ideal functionality FBIL for
privacy preserving billing protocols that considers multiple
meters and multiple users. In addition to that, FBIL has the
following main differences in comparison to the functionality
for smart metering described in [47].

– FBIL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

– FBIL includes an interface that allows meters to signal
the end of a billing period and to report to the users
the number of meter readings that were sent during the
billing period. This necessary interface was omitted in
the functionality in [47].

– FBIL models explicitly the communication with the sim-
ulator S . S needs this communication in order to provide
a simulation for the adversary in the security proof.

– FBIL allows any verifying party (and not just the service
provider) to verify the bill to be paid. This may be useful
in case of dispute between the meter and the service
provider.

– FBIL models the cases in which corrupt users collude
with corrupt meters and/or with the service provider.

We propose a privacy-preserving billing protocol that
realizes our functionality FBIL and thus allows a meter to
send meter readings to multiple users, and users to employ
meter readings from multiple meters in the computation of
a bill. In a nutshell, our protocol works as follows. At each
billing period, the provider registers a signed tariff policy.
Tariff policies are of the form Y : (c, t)→ p, where c is the
consumption measurement, t is the time of consumption, and
p is the price. The provider also sends to each user a signed
list of meters. Meters send signed meter readings to users
and a signed “end of billing period” message that contains
the number of meter readings sent from the meter to the user
at that billing period. The user application calculates the bill
and computes a zero-knowledge proof of knowledge of its
correctness. This zero-knowledge proof involves proofs of
signature possession that demonstrate that the correct tariff
policy is used to compute the price for each of the signed
meter readings.

In [47], it is shown how to sign different types of tariff
policies: a linear policy that multiplies each reading by a
price per unit of consumption and a cumulative policy that
divides the consumption range in intervals and applies a
different price per unit to each interval. Additionally, it is
mentioned that, in general, a tariff policy may be described
by a polynomial for each interval. (Other functions can be
approximated by polynomial splines.) Although the protocol
in [47] provides efficient zero-knowledge proofs for the linear

Privacy-Preserving Smart Metering Revisited 3

and cumulative policies, the cost of a zero-knowledge proof
of a tariff policy described by a polynomial grows with the
polynomial degree.

Our privacy-preserving billing protocol employs the same
technique in [47] to sign linear and cumulative policies, and
employs a new method for tariff policies described by splines.
Consider the following tariff policy as example. A day is
divided into L time intervals. For each time interval, the
price to be paid for the consumption c is given by a spline:

Y (c, t) =

Φ1(c) if t ∈ [t1, t2)
...

...
ΦL(c) if t ∈ [tL, tL+1)

Each spline Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

φ1(c) if c ∈ [c1, c2)
...

...
φM (c) if c ∈ [cM , cM+1)

Therefore, for a meter reading (c, t), the price to be paid is
defined by the polynomial φm(c) such that c ∈ [cm, cm+1)

that belongs to the spline Φl(c) associated to the time interval
[tl, tl+1) such that t ∈ [tl, tl+1).

Alternatively, one can consider consumption bands, i.e.
if a user’s consumption is below a certain threshold she may
get a better price at peak hours. For each consumption band,
the price to be paid at a certain time of day t is given by a
spline where the polynomials take the time as input.

Our method to sign a tariff policy given by splines em-
ploys the polynomial commitment scheme of [29]. In a nut-
shell, the service provider computes polynomial commit-
ments C to each of the polynomials in the tariff policy for
the billing period bp. Additionally, the service provider com-
putes, for each polynomial commitment, a signature on [bp,

C , tl−1, tl, cm−1, cm]. The service provider sends the poly-
nomial commitments and the signatures to the users, together
with the polynomials. To prove in zero knowledge that the
price calculated for a meter reading is correct, the user eval-
uates the polynomial on input the consumption to compute
the price, and then proves possession of a witness for the
polynomial commitment that shows that the price is the cor-
rect evaluation of the committed polynomial. The size of this
proof of witness possession is independent of the polyno-
mial degree. Additionally, the user proves possession of a
signature on the polynomial commitment, and proves that
the values of consumption and time in the meter reading lie
within the respective intervals in the signature.

Our use of polynomial commitments is somewhat dif-
ferent from their common use. In our scheme, the service
provider computes polynomial commitments and sends them
to the user together with the polynomials. Therefore, we do
not need the hiding property of commitments. However, we

need the binding property because the polynomial commit-
ments are employed by the user to prove in zero-knowledge
that prices are computed following the polynomials that de-
fine the tariff policy.

The reason why we use a polynomial commitment scheme
is that it provides efficient selective opening, i.e., the com-
mitment can be opened to an evaluation of the committed
polynomial with cost independent of the polynomial degree.
If a signature scheme is used, each of the coefficients of
the polynomial needs to be signed as a separate message in
the signature, and then the cost of proving possession of the
signature is linear in the polynomial degree.

We show that our protocol realizes FBIL. Unlike [47],
we analyze all the possible collusion scenarios. Concretely,
we analyze in detail the case in which the provider is corrupt,
the case in which a subset of the users U are corrupt, and
the case in which the provider, a subset of the users and a
subset of the metersM are corrupt. We analyze more briefly
the case in which the provider V and a subset of the users
are corrupt, the case in which a subset of the users U and a
subset of the metersM are corrupt, and the case in which
the provider V and a subset of the metersM are corrupt.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behaviour. Obviously, in this corruption model,
when the provider and a meter are corrupt, there is no protocol
that can prevent the provider from learning the meter readings
input to the meter because both entities are controlled by the
same adversary. For this reason, in Section 4.6.7, we consider
a corruption model in which different adversaries, with no
communication link between them, corrupt different parties.
We show that, under such corruption model, our protocol
prevents the corrupt meters from sending information about
the meter readings to the provider. This is akin to showing
that our protocol is collusion-free in the sense of [33].

Additionally, we consider the case in which the provider
and the meters are corrupt but do not have a side commu-
nication channel between them. We show that, in this case,
our protocol is collusion-free in the sense of [33] and pre-
vents corrupt meters from disclosing the meter readings to
the provider or another corrupt verifying party.

We discuss how our protocol compares to other possi-
ble approaches for the design of privacy-preserving billing
protocols in Section 5. Concretely, we discuss the use of
regulations and codes of conduct, trusted parties, techniques
to reduce variability, data anonymization methods, differen-
tial privacy, verifiable computing, and secure two-party and
multi-party computation.

We note that our protocol is not only useful for billing,
but, in general, allows to prove correctness of any compu-
tation on meter readings. This is important in settings such
as smart metering, where meter readings are not only used
for the sake of billing but also for consumption forecasting

4 Alfredo Rial et al.

or profiling. For these other purposes, protocols that support
complex computations on meter readings are necessary.

Outline of the paper. In Section 2, we summarize the univer-
sally composable security framework and we describe our
ideal functionality FBIL for privacy-preserving billing. In
Section 3, we describe the cryptographic building blocks that
are employed by our protocol. We depict our protocol in Sec-
tion 4. In Section 5, we discuss how our protocol compares
to other possible approaches, and we conclude in section 6.

2 Definition of Privacy-Preserving Billing

In Section 2.1, we summarize the universal composability
paradigm and describe the ideal functionalities for registra-
tion, common reference string and secure message transmis-
sion, which are employed in our protocols. In Section 2.2,
we describe our ideal functionality for privacy-preserving
billing.

2.1 Universal Composability

The universal composability framework [9] is a framework
for defining and analyzing the security of cryptographic pro-
tocols so that security is retained under arbitrary composition
with other protocols. The security of a protocol is defined
by means of an ideal protocol that carries out the desired
task. In the ideal protocol, all the parties send their inputs to
an ideal functionality F for the task. The ideal functionality
computes locally the outputs of the parties and provides each
party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the
view of an environmentZ in a real execution of ϕ against that
of Z in the ideal protocol defined in Fϕ. The environment Z
chooses the inputs of the parties and collects their outputs. In
the real world, Z can communicate freely with an adversary
A who controls the network as well as any corrupt parties.
In the ideal world, Z interacts with dummy parties, who
simply relay inputs and outputs between Z and Fϕ, and a
simulator S. We say that a protocol ϕ securely realizes Fϕ
if Z cannot distinguish the real world from the ideal world,
i.e., Z cannot distinguish whether it is interacting with A
and parties running protocol ϕ or with S and dummy parties
relaying to Fϕ.

More formally, let k ∈ N denote the security param-
eter and a ∈ {0, 1}∗ denote an input. Two binary distri-
bution ensembles X = {X(k, a)}k∈N,a∈{0,1}∗ and Y =

{Y (k, a)}k∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y) if for
any c, d ∈ N there exists k0 ∈ N such that for all k > k0 and
all a ∈ ∪κ≤kd{0, 1}κ, |Pr [X(k, a) = 1] − Pr [Y (k, a) =

1]| < k−c. Let REALϕ,A,Z(k, a) denote the distribution
given by the output of Z when executed on input a with A

and parties running ϕ, and let IDEALFϕ,S,Z(k, a) denote
the output distribution of Z when executed on a with S and
dummy parties relaying to Fϕ. We say that protocol ϕ se-
curely realizes Fϕ if, for all polynomial-time A, there exists
a polynomial-time S such that, for all polynomial-time Z ,
REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizes F in the G-hybrid model
when ϕ is allowed to invoke the ideal functionality G. There-
fore, for any protocol ψ that securely realizes functionality G,
the composed protocol ϕψ, which is obtained by replacing
each invocation of an instance of G with an invocation of an
instance of ψ, securely realizes F .

When describing ideal functionalities, we use the follow-
ing conventions:

Interface Naming Convention. An ideal functionality can be
invoked by using one or more interfaces. The name of
a message in an interface consists of three fields sep-
arated by dots, e.g., reg.register.ini in the registration
functionality described in Figure 1. The first field indi-
cates the name of the functionality and is the same in all
the interfaces of the functionality. This first field is useful
to distinguish between invocations of different function-
alities in a hybrid protocol that employs two or more
different functionalities. The second field indicates the
kind of action performed by the functionality and is the
same in all the messages that the functionality exchanges
within the same interface. The third field distinguishes
between the messages that belong to the same interface
and can take four different values. A message ∗. ∗ .ini is
the incoming message received by the functionality, i.e.,
the message through which the interface is invoked. A
message ∗. ∗ .end is the outgoing message sent by the
functionality, i.e., the message that ends the execution
of the interface. The message ∗. ∗ .sim is used by the
functionality to send a message to the simulator, and the
message ∗. ∗ .rep is used to receive a message from the
simulator.

Subsession identifiers. Some interfaces in a functionality
can be invoked more than once. When the functional-
ity sends a message ∗. ∗ .sim to the simulator in such an
interface, a subsession identifier ssid is included in the
message. The subsession identifier must also be included
in the response ∗. ∗ .rep sent by the simulator. The sub-
session identifier is used to identify the message ∗. ∗ .sim
to which the simulator replies with a message ∗. ∗ .rep.
We note that, typically, the simulator in the security proof
may not be able to provide an immediate answer to the
functionality after receiving a message ∗. ∗ .sim. The rea-
son is that the simulator typically needs to interact with
the copy of the real adversary it runs in order to pro-
duce the message ∗. ∗ .rep, but the real adversary may
not provide the desired answer, or may provide a delayed
answer. In such cases, when the functionality sends more

Privacy-Preserving Smart Metering Revisited 5

than one message ∗. ∗ .sim to the simulator, the simula-
tor may provide delayed replies, and the order of those
replies may not follow the order of the received ∗. ∗ .sim
messages.

Aborts. When we say that an ideal functionality F aborts
after being activated with a message (∗, . . .), we mean
that F halts the execution of its program and sends a
special abortion message (∗,⊥) to the party that invoked
the functionality.

Network vs. local communication. The identity of an ITM
instance (ITI) consists of a party identifier pid and a ses-
sion identifier sid . A set of parties in an execution of a
system of ITMs are a protocol instance if they have the
same session identifier sid . ITIs can pass direct inputs
to and outputs from “local” ITIs that have the same pid .
An ideal functionality F has pid = ⊥ and is considered
local to all parties. An instance of F with the session
identifier sid only accepts inputs from and passes outputs
to machines with the same session identifier sid . Some
functionalities require the session identifier to have some
structure. Those functionalities check whether the session
identifier possesses the required structure in the first mes-
sage that invokes the functionality. For the next messages,
the functionality implicitly checks that the session iden-
tifier equals the session identifier employed in the first
message. Communication between ITIs with different
party identifiers must take place over the network. The
network is controlled by the adversary, meaning that he
can arbitrarily delay, modify, drop, or insert messages.

The conventions we use to describe of our ideal function-
alities make them longer. The reason is that we have chosen
not to omit any details, which are frequently omitted in the
literature. There are two reasons why the descriptions of our
functionalities are longer than usual.

– When our functionalities receive a message, we list all the
reasons why the functionality must abort, including those
related to the input message being malformed. Other
functionalities in the literature omit these needed steps in
their description.

– We describe in detail how the communication with the
simulator takes place. In many ideal functionalities in
the literature, after the functionality sends a message to
the simulator, the functionality waits for the simulator
to provide a response to that message. Similarly, many
functionalities in the literature employ delayed outputs.
However, in many cases, the simulator in the security
proof needs to interact with a copy of the real adversary in
order to provide a response to the functionality. Therefore,
the simulator may not be able to provide a response, or
may be able to do so only at a later stage. This means
that many security proofs do not work because, when
the functionality demands an immediate response from

the simulator, the simulator is not able to provide it. To
solve this problem, our functionalities do not require
the simulator to provide an immediate response. Instead,
our functionalities save their state, create a subsession
identifier, and call the simulator on input this subsession
identifier. When the simulator sends a reply with a given
subsession identifier, our functionalities recover the state
and continue the computation. With this mechanism, our
functionalities do not require the simulator to provide an
immediate response.

It is possible to omit these operations in the description
of a functionality, and simply describe in a generic way that
functionalities abort when an input message is malformed
or that they save the state before calling the simulator and
recover it when receiving a reply. However, our approach is
less error-prone because it lists all the conditions for abortion
and it shows what information needs to be saved and how
this information is recovered.

Our protocol makes use of the functionality FREG for
key registration [9], FSMT for secure message transmission
[9], and FCRS.Setup

CRS [9] for common reference string gener-
ation. We describe these functionalities in Fig. 1. We also
employ a variant FREG.Ver

REG of the registration functionality
that is parameterized with a verification function REG.Ver.
We employ a box to indicate the steps that are only executed
in this variant of FREG. We consider static corruptions only.

The functionalities FREG, FREG.Ver
REG and FCRS.Setup

CRS are
set-up assumptions that we use in order to be able to provide
a protocol that realizes our functionality FBIL for privacy
preserving billing. In [9], it is explained that only very weakly
security guarantees can be obtained in the bare model, i.e.,
without set-up assumptions. In the real world, these set-up
assumptions can be realized by trusting certain parties, or
alternatively by relying on certain physical phenomena. In
the first case, to realize FREG, FREG.Ver

REG and FCRS.Setup
CRS , a

protocol that follows the ideal world protocol defined by
FREG, FREG.Ver

REG and FCRS.Setup
CRS is employed, i.e., a trusted

party in the real world executes the protocol.

In the case of FSMT, it is shown in [9] how this func-
tionality can be realized by a protocol that uses a public
key encryption scheme and an ideal functionality for au-
thenticated communication. In [9], it is also shown that the
ideal functionality for authenticated communication can be
realized by a protocol that uses an existentially unforgeable
signature scheme and the ideal functionality for registration
FREG. Here, FREG is a set-up assumption that allows the
realization of the ideal functionality for authenticated com-
munication, which, as proven in [10], cannot be realized
without set-up assumptions.

6 Alfredo Rial et al.

Functionality F
REG.Ver

REG

1. On input (reg.register.ini, sid , v) from a party T :
– Abort if sid 6= (T , sid ′) or if there is a tuple (sid , v ′, 0)

stored.
– Abort if 0 = REG.Ver(v).

– Store (sid , v , 0).
– Send (reg.register.sim, sid , v) to S.

S. On input (reg.register.rep, sid) from the simulator S:
– Abort if (sid , v , 0) is not stored or if (sid , v , 1) is already

stored.
– Store (sid , v , 1).
– Send (reg.register.end, sid) to T .

2. On input (reg.retrieve.ini, sid) from any party P:
– If (sid , v , 1) is stored, set v ′ ← v , else set v ′ ← ⊥.
– Create a fresh ssid and store (ssid ,P, v ′).
– Send (reg.retrieve.sim, sid , ssid , v ′) to S.

S. On input (reg.retrieve.rep, sid , ssid) from the simulator S:
– Abort if (ssid ,P, v ′) is not stored.
– Delete ssid from (ssid ,P, v ′).
– Send (reg.retrieve.end, sid , v ′) to P .

Functionality FSMT

Parameterized by a leakage function l : {0, 1}∗ → N that leaks
the message length, FSMT works as follows:

1. On input (smt.send.ini, sid ,m) from a party T :
– Abort if sid 6= (T ,R, sid ′).
– Create a fresh ssid and store (ssid ,R,m).
– Send (smt.send.sim, sid , ssid , l(m)) to S.

S. On input (smt.send.rep, sid , ssid) from S:
– Abort if (ssid ,R,m) is not stored.
– Delete ssid from (ssid ,R,m).
– Send (smt.send.end, sid ,m) toR.

Functionality FCRS.Setup
CRS

Parameterized by a ppt algorithm CRS.Setup, FCRS works as
follows:

1. On input (crs.get.ini, sid) from any party P:
– If (sid , crs) is not stored, run crs ← CRS.Setup and

store (sid , crs).
– Create a fresh ssid and store (ssid ,P).
– Send (crs.get.sim, sid , ssid , crs) to S.

S. On input (crs.get.rep, sid , ssid) from the simulator S:
– Abort if (ssid ,P) is not stored.
– Delete ssid from (ssid ,P).
– Send (crs.get.end, sid , crs) to P .

Fig. 1 The ideal functionalities F
REG.Ver

REG , FSMT and FCRS.Setup
CRS .

2.2 Ideal Functionality for Privacy-Preserving Billing

We depict the ideal functionality FBIL for privacy preserving
billing. FBIL interacts with a provider V , users Ui , meters
Mj , and any verifying parties P . The provider V creates
billing periods bp. A billing period is not necessarily a period
of time. More generally, it is an identifier that metersMj

associate to the meter readings that they output. The meter
readings associated to the same billing period are used to
compute the payment for that billing period.

The provider V associates to each billing period bp a tariff
policy Y . The tariff policy Y : (c, t)→ p is a function that
takes in a consumption value c and the time of consumption
t , and outputs the price to be paid p. FBIL can easily be
generalized to employ tariff policies that take as input more
variables.

At a billing period bp, the provider V also associates
each user Ui with a list of metersMj1 , . . . ,Mjm . The meter
readings output by those meters are employed by the user Ui
to calculate the bill p[bp] to be paid at the billing period bp.

A meterMj can send meter readings to multiple users. A
meter reading is a tuple (Ui , bp, c, t). At the end of a billing
period bp, Mj also sends a user Ui the number of meter
readings N [Mj , bp] thatMj sent to Ui during the billing
period bp.

A user Ui obtains the tariff policy Y and the list of meters
Mj1 , . . . ,Mjm for the billing period bp. The user Ui also
gets meter readings from multiple meters. In order to compute
the bill p[bp], Ui employs the meter readings received from
the meters in the list Mj1 , . . . ,Mjm . Ui applies the tariff
policy Y to each meter reading in order to compute a price
p. The prices for all the meter readings are added in order to
obtain the bill p[bp].

Any verifying party P receives the bill p[bp] from a user.
P could be the provider V but, in general, is any party that
verifies the correctness of p[bp].

The interaction between the functionality FBIL and the
provider V , the users Ui , the metersMj and the verifying
parties P takes place through the following interfaces:

1. The provider V uses the bil.policy.∗ interface to send the
pricing policy Y associated to the billing period bp.

2. The provider V uses the bil.listmeters.∗ interface to send
the list of metersMj1 , . . . ,Mjm associated to a user Ui
at the billing period bp.

3. A meterMj uses the bil.consumption.∗ interface to send
a meter reading (c, t) for the billing period bp to a user
Ui .

4. A meterMj uses the bil.period.∗ interface to send to a
user Ui the number of meter readings N [Mj , bp] that
Mj sent to Ui during the billing period bp.

5. A user Ui employs the bil.payment.∗ interface to send
to any verifying party P the bill p[bp] for the billing
period bp. Ui also discloses to the provider V the number

Privacy-Preserving Smart Metering Revisited 7

of meter readings N [Mj , bp] obtained from each of the
metersMj1 , . . . ,Mjm .

FBIL employs a table T to store meter readings. T stores
entries of the form (Mj ,Ui , bp, c, t , b).Mj is the identifier
of the meter that outputs the meter reading. Ui is the identifier
of the user that receives the meter reading. bp denotes the
billing period, c is the consumption value, and t is the time
of consumption. The bit b = 0 indicates that the reading
was not received by the user, while b = 1 indicates that the
reading was received by the user.
FBIL has the following main differences in comparison

to the functionality for smart metering described in [47].

– FBIL interacts with multiple users and multiple meters,
while the functionality in [47] only considers one me-
ter and one user. Furthermore, FBIL allows a meter to
send meter readings to multiple users, and users receive
meter readings from multiple meters. Therefore, FBIL is
applicable to a wider variety of billing settings.

– FBIL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

– FBIL includes an interface bil.period.∗, which allow me-
ters to signal the end of a billing period and to report to
the users the number of meter readings that were sent
during the billing period. This necessary interface was
omitted in the functionality in [47].

– FBIL models explicitly the communication with the sim-
ulator S . S needs this communication in order to provide
a simulation for the adversary in the security proof.

– FBIL allows any verifying party to receive the bill to be
paid. This may be useful in case of dispute between the
meter and the service provider.

– FBIL models the cases in which corrupt users collude
with corrupt meters and/or with the service provider. In
the functionality in [47], a corrupt meter was not consid-
ered because they were assumed to be tamper-resistant.
A collusion of a corrupt provider with a corrupt user was
also not considered because it lacked practical interest.
However, when considering multiple meters and users as
FBIL does, FBIL must still provide some security guar-
antees for honest users in the case in which some meters,
some users and the provider are corrupt. For example,
FBIL guarantees that such a collusion is prevented from
reporting a bill calculation to any verifying party P on
behalf of an honest user. We note that, when a user col-
ludes with the provider or with a meter included in the
list of meters for a billing period, the price to be paid is
not computed by FBIL but is input by the simulator S,
and thus may not be correct.

We now discuss the five interfaces of the ideal function-
ality FBIL, which we depict in Figure 2 and in Figure 3.

1. The provider V invokes the bil.policy.ini message on in-
put a billing period bp and a tariff policy Y . The restric-
tion that the provider’s identity must be included in the
session identifier sid = (V, sid ′) guarantees that each
provider can initialize its own instance of the functional-
ity. This check is implicitly done in the other interfaces.
The functionality also checks that the billing period and
the tariff policy belong to their respective universes of
allowed inputs. FBIL performs similar checks on the
data received as input through the other interfaces. FBIL

also aborts if a policy for that billing period was already
received through the bil.policy.ini message. Otherwise
FBIL stores bp and Y and sends bp and Y to the simula-
tor S through the bil.policy.sim message.
After being triggered by the simulator S through the
bil.policy.rep message on input a billing period bp, FBIL

aborts if the policy for that billing period was not received
through the bil.policy.ini message, or if the registration of
the policy was already finalized. To realize this feature in
any construction for FBIL, the registration functionality
in Section 2.1 can be employed. If FBIL does not abort,
FBIL stores the policy Y for the billing period bp.

2. The provider V invokes the bil.listmeters.ini message on
input a billing period bp, a user identifier Ui , and a list
of meter identifiers (Mj1 , . . . ,Mjm). FBIL aborts if a
list of meters for the same user and billing period was
already received as input before. We note that, if the
provider V and the user Ui are corrupt, S can change
the list of meters used for a payment through the mes-
sage bil.payment.rep. Otherwise FBIL records that a list
of meters for that user at that billing period has been
sent. FBIL creates a subsession identifier and sends Ui to
the simulator S through the message bil.listmeters.sim.
Since bp and (Mj1 , . . . ,Mjm) are not revealed to S , any
construction that realizes FBIL would need to employ a
communication channel that prevents bp and (Mj1 , . . . ,

Mjm) from being disclosed to S . The functionalityFSMT

in Section 2.1 fulfills this property.
After being triggered by S through the bil.listmeters.rep
message, FBIL aborts if the subsession identifier does not
exist. If FBIL does not abort, FBIL stores the meter list
and sends the meter list to the user Ui .

3. A meter Mj invokes the bil.consumption.ini message
on input a user identifier Ui , a billing period bp, a con-
sumption value c and a time t . FBIL aborts if the meter
Mj had already sent an end of period message for the
billing period bp through the bil.period.ini message. We
note that, if the meterMj and the user Ui are corrupt,
the simulator can input an incorrect bill p[bp] through the
bil.payment.rep message. Otherwise FBIL stores the me-
ter reading sent by the meter in the table T . FBIL creates

8 Alfredo Rial et al.

Functionality FBIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗

FBIL is parameterized by a universe of policies Uy , a universe of consumptions Uc , a universe of times Ut , a universe of billing periods Ubp ,
and a maximum size Mmax for the meter lists. FBIL interacts with a provider V , users Ui , metersMj and verifying parties P .

1. On input (bil.policy.ini, sid , bp,Y) from V:
– Abort if sid 6= (V, sid ′), or if bp /∈ Ubp , or if Y /∈ Uy , or if (sid , bp′,Y ′, 0) such that bp′ = bp is already stored.
– Store (sid , bp,Y , 0).
– Send (bil.policy.sim, sid , bp,Y) to S.

S. On input (bil.policy.rep, sid , bp) from S:
– Abort if (sid , bp,Y , 0) is not stored or if (sid , bp,Y , 1) is already stored.
– Store (sid , bp,Y , 1).
– Parse sid as (V, sid ′).
– Send (bil.policy.end, sid) to V .

2. On input (bil.listmeters.ini, sid , bp,Ui ,Mj1 , . . . ,Mjm) from V:
– Abort if bp /∈ Ubp , or if Ui is not a user identifier, or if m > Mmax , or if, for k = 1 to m,Mjm is not a meter identifier.
– Abort if (sid , bp′,U ′i ,M′j1 , . . . ,M

′
jm
, 0) such that bp = bp′ and Ui = U ′i is already stored.

– Store (sid , bp,Ui ,Mj1 , . . . ,Mjm , 0).
– Create a fresh ssid and store (ssid , bp,Ui ,Mj1 , . . . ,Mjm).
– Send (bil.listmeters.sim, sid , ssid ,Ui) to S.

S. On input (bil.listmeters.rep, sid , ssid) from S:
– Abort if (ssid , bp,Ui ,Mj1 , . . . ,Mjm) is not stored.
– Store (sid , bp,Ui ,Mj1 , . . . ,Mjm , 1).
– Delete (ssid , bp,Ui ,Mj1 , . . . ,Mjm).
– Send (bil.listmeters.end, sid , bp,Mj1 , . . . ,Mjm) to the user Ui .

3. On input (bil.consumption.ini, sid ,Ui , bp, c, t) from the meterMj :
– Abort if Ui is not a user identifier, or if bp /∈ Ubp , or if c /∈ Uc , or if t /∈ Ut .
– Abort if (sid ,M′j ,U ′i , bp

′,N [Mj , bp], 0) such thatM′j =Mj , U ′i = Ui and bp′ = bp is already stored.
– Store (Mj ,Ui , bp, c, t , 0) in Table T .
– Create a fresh ssid and store (ssid ,Mj ,Ui , bp, c, t).
– Send (bil.consumption.sim, sid , ssid ,Mj ,Ui) to S.

S. On input (bil.consumption.rep, sid , ssid) from S:
– Abort if (ssid ,Mj ,Ui , bp, c, t) is not stored.
– Delete ssid from (Mj ,Ui , bp, c, t).
– Abort if (sid ,M′j ,U ′i , bp

′,N [Mj , bp], 1) such thatM′j =Mj , U ′i = Ui and bp′ = bp is already stored.
– Replace (Mj ,Ui , bp, c, t , 0) by (Mj ,Ui , bp, c, t , 1) in Table T .
– Send (bil.consumption.end, sid ,Mj , bp, c, t) to Ui .

Fig. 2 FBIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗.

a subsession identifier and sends the meter identifierMj

and the user identifier Ui to the simulator S . The values c

and t are not disclosed. Therefore, any construction that
realizes FBIL would need to employ a secure channel
such as FSMT.
After being triggered by the simulator S through the
message bil.consumption.rep, FBIL aborts if the subses-
sion identifier is not stored. FBIL also aborts if the end
of billing period message has already been sent to the
user through a bil.period.end message. We note that it
is possible that FBIL receives a meter reading through
a bil.consumption.ini message before the end of billing
period message is received through a bil.period.ini mes-
sage, but the bil.consumption.rep message for that meter
reading is received after the end of billing period message
is sent to the user. If FBIL does not abort, FBIL indicates

in the table T that the meter reading is received by the
user and sendsMj , bp, c and t to the user Ui .

4. A meter Mj invokes the bil.period.ini message on in-
put a user identifier Ui and a billing period bp. FBIL

checks the validity of the input. FBIL aborts if the mes-
sage bil.period.ini was already sent for the same user,
meter and billing period. Else FBIL calculates the num-
ber N [Mj , bp] of meter readings that Mj sent to Ui
at the billing period bp. We note that, if the meterMj

and the user Ui are corrupt, the simulator can change the
number of meter readings for that billing period through
the bil.payment.rep message. FBIL creates a subsession
identifier and sends the meter identifierMj and the user
identifier Ui to the simulator S.
After being triggered by S through the bil.period.rep
message, FBIL aborts if the subsession identifier is not
stored. FBIL calculates the number of meter readings re-

Privacy-Preserving Smart Metering Revisited 9

Functionality FBIL: Interfaces bil.period.∗ and bil.payment.∗

4. On input (bil.period.ini, sid ,Ui , bp) fromMj :
– Abort if Ui is not a user identifier, or if bp /∈ Ubp .
– Abort if (sid ,M′j ,U ′i , bp

′,N [Mj , bp], 0) such thatM′j =Mj , U ′i = Ui and bp′ = bp is already stored.
– Set N [Mj , bp] to the number of entries (M′j ,U ′i , bp

′, c′, t ′, b) in Table T such thatM′j =Mj , U ′i = Ui and bp′ = bp.
– Store (sid ,Mj ,Ui , bp,N [Mj , bp], 0).
– Create a fresh ssid and store (ssid ,Mj ,Ui , bp,N [Mj , bp]).
– Send (bil.period.sim, sid , ssid ,Mj ,Ui) to S.

S. On input (bil.period.rep, sid , ssid) from S:
– Abort if (ssid ,Mj ,Ui , bp,N [Mj , bp]) is not stored.
– Delete ssid from (ssid ,Mj ,Ui , bp,N [Mj , bp]).
– Set N ′[Mj , bp] to the number of entries (M′j ,U ′i , bp

′, c′, t ′, b) in Table T such thatM′j =Mj , U ′i = Ui , bp
′ = bp, and b = 1.

– Abort if N ′[Mj , bp] 6= N [Mj , bp].
– Store (sid ,Mj ,Ui , bp,N [Mj , bp], 1).
– Send (bil.period.end, sid , bp,Mj ,N [Mj , bp]) to Ui .

5. On input (bil.payment.ini, sid ,P, bp) from Ui :
– Abort if P is not a valid party identifier, of if bp /∈ Ubp .
– Abort if (sid , bp′,Y ′, 1) such that bp′ = bp is not stored.
– If Ui is honest or if V is honest, abort if (sid , bp′,U ′i ,Mj1 , . . . ,Mjm , 1) such that bp′ = bp and U ′i = Ui is not stored.
– For k = 1 to m, if Ui is honest or if V andMjk are honest, abort if a tuple (sid ,M′j ,U ′i , bp

′,N [Mj , bp], 1) such thatM′j =Mjk ,
bp′ = bp and U ′i = Ui is not stored.

– Create a fresh ssid and store (ssid ,Ui ,P, bp).
– Send (bil.payment.sim, sid , ssid ,Ui ,P) to S.

S. On input (bil.payment.rep, sid , ssid), if either Ui is honest or if V and the meters in the list (sid , bp,Ui ,Mj1 , . . . ,Mjm , 1) are honest,
or else on input (bil.payment.rep, sid , ssid , p[bp], 〈Mjk ,N [Mjk , bp]〉mk=1) from S:

– Abort if (ssid ,Ui ,P, bp) is not stored.
– Delete ssid from (ssid ,Ui ,P, bp).
– Abort if Ui and V are corrupt and m > Mmax .
– If Ui or V are honest, retrieve (Mj1 , . . . ,Mjm) from the tuple (sid , bp,Ui ,Mj1 , . . . ,Mjm , 1), else employ the list of meters sent

by S.
– For k = 1 to m, ifMjk is honest, abort if a tuple (sid ,M′j ,U ′i , bp

′,N [M′j , bp], 1) such thatM′j =Mjk , bp′ = bp and U ′i = Ui
is not stored.

– If either Ui is honest or if V and the meters in the retrieved list are honest, for k = 1 to m, do the following:
– Set p[Mjk , bp] = 0.
– Retrieve N [M′j , bp] from the tuple (sid ,M′j ,U ′i , bp

′,N [M′j , bp], 1) such thatM′j =Mjk , bp′ = bp and U ′i = Ui .
– Retrieve all the N [M′j , bp] tuples (M′j ,U ′i , bp

′, c, t , 1) in Table T such thatM′j =Mjk , U ′i = Ui and bp′ = bp.
– For n = 1 to N [Mjk , bp], set p[Mjk , bp] = p[Mjk , bp] +Y (c[k,n], t[k,n]).

– If either Ui is honest or if V and the meters in the retrieved list are honest, set p[bp] = p[Mj1 , bp] + . . .+ p[Mjm , bp], else employ
the value p[bp] sent by S.

– For k = 1 to m, if Ui or Mjk (in the retrieved meter list) are honest, retrieve N [M′j , bp] from the tuple (sid ,M′j ,U ′i , bp
′,

N [M′j , bp], 1) such thatM′j =Mjk , bp′ = bp and U ′i = Ui , else employ the value N [Mjk , bp] sent by S or abort if this value is
lower than 0.

– Send (bil.payment.end, sid ,Ui , bp, p[bp],Mj1 ,N [Mj1 , bp], . . . ,Mjm ,N [Mjm , bp]) to P .

Fig. 3 FBIL: Interfaces bil.period.∗ and bil.payment.∗.

ceived by Ui fromMj at that billing period and aborts if
that number does not equal the number of meter readings
sent byMj to Ui . If FBIL does not abort, FBIL stores
N [Mj , bp] and sends N [Mj , bp] to Ui .

5. A user Ui invokes the bil.payment.ini message on input
the identifier of a verifying party P and a billing period
bp. FBIL aborts if the tariff policy is not stored. FBIL

also aborts if Ui or V are honest but the list of meters
for the billing period bp is not stored. FBIL does not
abort for this reason when Ui and V are corrupt because,
in that case, S is allowed to input another list through

the bil.payment.rep message. FBIL also aborts if Ui is
honest, or if V and any of the meters in the list are honest,
but the end of period message from that meter was not
received by the user Ui . We note that FBIL does not abort
for that reason when the meter is honest but the user and
the provider are corrupt. The reason is that, when the user
and the provider are corrupt, S may send a different list
of meters through the bil.payment.rep message. If FBIL

does not abort, FBIL creates a subsession identifier and
sends the user identifier Ui and the party identifier P to
the simulator S.

10 Alfredo Rial et al.

When the simulator S invokes the bil.payment.rep mes-
sage, we distinguish two cases.
User honest or provider and meters honest. S sends no

input to FBIL through the bil.payment.rep message.
FBIL aborts if the subsession identifier is not stored.
Otherwise FBIL computes the bill p[bp] as follows.
For each of the meters in the list of meters that the
provider sent to the user for the billing period bp,
FBIL takes the meter readings that the meter sent to
the user at that billing period. FBIL applies the policy
for the billing period bp to each of the meter readings
to obtain a price. The prices associated to a meter are
summed up to get a price p[Mjk , bp] for the meter
readings sent by the meterMjk . Finally, the prices
corresponding to each meter are summed up to get
the bill p[bp]. FBIL sends to the party P the bill, the
billing period and the user identifier along with the
meter list and the number of meter readings from
each meter.

User corrupt and provider or meters corrupt. S sends to
FBIL a price, a list of meters, and a counter of meter
readings for each meter. If the provider is honest,
FBIL disregards the list of meters sent by S and uses
instead the list that the functionality stores for that
billing period. For each of meters in the list, if the user
or the meter are honest, FBIL disregards the counter
of meter readings sent by S and uses instead the one
the functionality stores. FBIL outputs the price, the
billing period and the user identifier along with the
list of meters and counter of meter readings from each
meter.

We note that disclosing to the verifying party P the num-
ber of meter readings from each meter along with the bill
may reveal sensitive information about the user. It is easy to
modify FBIL so that this information is not disclosed. How-
ever, the constructions that realize such a functionality would
be less efficient.

3 Technical Preliminaries

3.1 Non-interactive Zero-Knowledge Proofs of Knowledge

Let R be a polynomial time computable binary relation. For
tuples (wit , ins) ∈ R we call wit the witness and ins the in-
stance. Let L be the NP-language consisting of the instances
ins for which there exist witnesses wit such that (wit , ins)

∈ R. A non-interactive zero-knowledge proof of knowledge
(NIPK) system for the relation R consists of three algorithms
PKSetup, PKProve and PKVerify. On input a security pa-
rameter 1k, PKSetup(1k) outputs the parameters parpk . The
algorithm PKProve(parpk ,wit , ins) checks whether (wit ,

ins) ∈ R and in that case outputs a proof π. PKVerify(parpk ,

ins, π) outputs 1 if π is a valid proof that ins ∈ L or 0 if that
is not the case.

Definition 1 A NIPK system must fulfill the following com-
pleteness, extractability and zero-knowledge properties.

Completeness. Completeness requires that the verification
algorithm PKVerify accepts the proofs computed by the
algorithm PKProve. More formally, for all (wit , ins) ∈
R, the completeness property is defined as follows.

Pr

parpk
$←− PKSetup(1k);

π
$←− PKProve(parpk ,wit , ins) :

1 = PKVerify(parpk , ins, π)

 = 1

Extractability. The extractability property requires the exis-
tence of a knowledge extractor (E1, E2). E1(1k) outputs
parameters parpk and a trapdoor tde such that parpk is
indistinguishable from the output of PKSetup(1k). More
formally, for all polynomial time adversaries A:

Pr[parpk
$←− PKSetup(1k) : 1 = A(parpk)] ≈

Pr[(parpk , tde)
$←− E1(1k) : 1 = A(parpk)]

For all polynomial time adversaries A, E2 extracts wit

from a valid proof with overwhelming probability. More
formally:

Pr

(parpk , tde)

$←− E1(1k);
(ins, π)

$←− A(parpk , tde);

wit ← E2(parpk , tde , ins, π) :

1 = PKVerify(parpk , ins, π) ∧
(ins,wit) /∈ R

 ≤ ε(k)

Zero-knowledge. Zero-knowledge requires that there exists
a simulator (S1,S2) such that, for all polynomial time
adversaries A:

Pr[parpk
$←− PKSetup(1k) :

1 = A(parpk)
↔Op(parpk ,·,·)] ≈

Pr[(parpk , tds)
$←− S1(1k) :

1 = A(parpk)
↔S(parpk ,tds ,·,·)]

The oracle Op(parpk ,wit , ins) executes the algorithm
PKProve(parpk ,wit , ins) and returns its output. (We re-
call that PKProve only outputs a proof if (wit , ins) ∈
R.) S(parpk , tds ,wit , ins) runs S2(parpk , tds , ins) and
returns its output if (wit , ins) ∈ R, else returns failure.

Privacy-Preserving Smart Metering Revisited 11

3.2 Signature Schemes

A signature scheme consists of the algorithms KeyGen, Sign,
and VfSig. Algorithm KeyGen(1k) outputs a secret key sk

and a public key pk , which include a description of the
message space M. Sign(sk ,m) outputs a signature s on
a message m ∈M. VfSig(pk , s,m) outputs 1 if s is a valid
signature on m and 0 otherwise. This definition can be ex-
tended to blocks of messages m̄ = (m1, . . . ,mn). In this
case, KeyGen(1k ,n) receives the maximum number of mes-
sages as input.

Definition 2 A signature scheme must fulfill the following
correctness and existential unforgeability properties [21].

Correctness. Correctness ensures that the algorithm VfSig
accepts the signatures created by the algorithm Sign on
input a secret key computed by the algorithm KeyGen.
More formally, correctness is defined as follows.

Pr

[
(sk , pk)

$←− KeyGen(1k); m
$←−M;

s
$←− Sign(sk ,m) : 1 = VfSig(pk , s,m)

]
= 1

Existential Unforgeability. The property of existential un-
forgeability ensures that it is not feasible to output a
signature on a message without knowledge of the secret
key or of another signature on that message. LetOs be an
oracle that, on input sk and a message m ∈M, outputs
Sign(sk ,m), and let Ss be a set that contains the mes-
sages sent to Os. More formally, for any ppt adversary
A, existential unforgeability is defined as follows.

Pr

(sk , pk)

$←− KeyGen(1k);

(m, s)
$←− A(pk)↔Os(sk ,·) :

1 = VfSig(pk , s,m) ∧
m ∈M ∧ m /∈ Ss

 ≤ ε(k)

3.3 Commitment Schemes

A commitment scheme consists of algorithms CSetup, Com
and VfCom. The algorithm CSetup(1k) generates the pa-
rameters of the commitment scheme parc , which include a
description of the message spaceM. Com(parc , x) outputs
a commitment com to x ∈M and some auxiliary informa-
tion open . The verification algorithm VfCom(parc , com, x ,

open) outputs 1 if com is a commitment to x ∈ M with
some auxiliary information open or 0 if that is not the case.

Definition 3 A commitment scheme should fulfill the fol-
lowing correctness, hiding and binding properties.

Correctness. Correctness requires that VfCom accepts all
commitments created by the algorithm Com, i.e., for all

x ∈M

Pr

 parc
$←− CSetup(1k);

(com, open)
$←− Com(parc , x) :

1 = VfCom(parc , com, x , open)

 = 1 .

Hiding. The hiding property ensures that a commitment com

to x does not reveal any information about x . For any PPT
adversary A, the hiding property is defined as follows:

Pr

parc
$←− CSetup(1k);

(x0, st)
$←− A(parc);

x1
$←−M;

b
$←− {0, 1};

(com, open)
$←− Com(parc , xb);

b′
$←− A(st , com) :

x0 ∈M ∧ b = b′

≤ 1

2
+ ε(k) .

Binding. The binding property ensures that com cannot be
opened to another value x ′. For any PPT adversary A,
the binding property is defined as follows:

Pr

parc

$←− CSetup(1k);

(com, x , open, x ′, open ′)
$←− A(parc) :

x ∈M ∧ x ′ ∈M ∧ x 6= x ′∧
1 = VfCom(parc , com, x , open) ∧
1 = VfCom(parc , com, x ′, open ′)

 ≤ ε(k) .

3.4 Polynomial Commitments

A polynomial commitment scheme [29] consists of the fol-
lowing algorithms.

PSetup(1k , `). On input the security parameter 1k and an
upper bound for the polynomial degree `, output the pa-
rameters parp , which include a description of the poly-
nomial spaceM.

PCommit(parp , φ(x)). On input the parameters parp and a
polynomial φ(x) ∈M, output a commitment C to φ(x)
and decommitment information d .

PProve(parp , φ(x), i , d). Output a witness w that φ(i) is
the evaluation of φ(x) on input i .

PVerify(parp ,C , i , φ(i),w). Output 1 if w is a valid wit-
ness that φ(i) is the evaluation of φ(x) on input i . Other-
wise output 0.

Definition 4 A polynomial commitment scheme should ful-
fill the correctness and evaluation binding properties.

Correctness. Correctness ensures that the output of PProve
is always accepted by PVerify. More formally, for all

12 Alfredo Rial et al.

φ(x) ∈M:

Pr

parp

$←− PSetup(1k , `);

(C , d)
$←− PCommit(parp , φ(x));

w ← PProve(parp , φ(x), i , d) :

1 = PVerify(parp ,C , i , φ(i),w)

 = 1

Evaluation Binding. A commitment to a polynomial φ(x)
cannot be opened to two different evaluations φ(i) and
φ(i)

′ on input i . More formally, for any ppt adversary A,
the evaluation binding property is defined as follows.

Pr

parp

$←− PSetup(1k , `);

(C , i , 〈φ(i),w〉, 〈φ(i)′,w ′〉) $←− A(parp) :

1 = PVerify(parp ,C , i , φ(i),w) ∧
1 = PVerify(parp ,C , i , φ(i)

′
,w ′) ∧

φ(i) 6= φ(i)
′

 ≤ ε(k)

4 Construction of Privacy-Preserving Billing

We describe our construction for privacy-preserving billing.
Construction BIL involves a provider V , users Ui , meters
Mj and verifying parties P .

First, we provide a generic description of construction
BIL in Figure 4 and Figure 5. This description does not de-
pend on the type of tariff policy being used. In Section 4.1,
Section 4.2 and Section 4.3, we give the details of our con-
struction when respectively a linear policy, a cumulative
policy and a polynomial policy are employed. In Section 4.4,
we discuss other policies.

Construction BIL is parameterized by a universe of poli-
cies Uy , a universe of consumptions Uc , a universe of times
Ut , a universe of billing periods Ubp , and a maximum size
Mmax for the meter lists. We denote by U the universe of
user identities and byM the universe of meter identities.

Construction BIL uses a commitment scheme (CSetup,
Com, VfCom). The provider employs a signature scheme
(KeyGen1, Sign1, VfSig1) to sign tariff policies, whose mes-
sage space is specific to each of the tariff policies, and a
signature scheme (KeyGen2, Sign2, VfSig2) to sign meter
lists, whose message space is (Ubp ,U ,MMmax). The me-
ters employ a signature scheme (KeyGen3, Sign3, VfSig3)
to sign meter readings, whose message space is (U ,Ubp ,N,
Uc ,Ut), and a signature scheme (KeyGen4, Sign4, VfSig4) to
sign the number of meter readings in a billing period, whose
message space is (U ,Ubp ,N). Construction BIL also em-
ploys a NIPK scheme (PKSetup, PKProve, PKVerify) for a
relation R. The relation R is specific to each of the tariff poli-
cies. Construction BIL works in the FSMT, FREG, FREG.Ver

REG

and FCRS.Setup
CRS -hybrid model. FSMT, FREG, FREG.Ver

REG and
FCRS.Setup

CRS are described in Section 2.1.
When a polynomial tariff policy is employed, construc-

tion BIL also employs a polynomial commitment scheme

(PSetup, PCommit, PProve, PVerify). In our generic de-
scription of the construction, we employ the box POL: . . .
to denote computations that only occur when a polynomial
policy is used.

The provider V , users Ui , metersMj and verifying par-
ties P are activated through the bil.policy.∗, bil.listmeters.∗,
bil.consumption.∗, bil.period.∗ and bil.payment.∗ interfaces.
We describe on a high level the computations performed for
each of these interfaces.

1. The provider V receives (bil.policy.ini, sid , bp,Y) as in-
put. If the parameters of the scheme are not stored, V
gets the parameters of the commitment scheme and of the
NIPK scheme from FCRS.Setup

CRS . In the case of a polyno-
mial policy, FCRS.Setup

CRS also provides the parameters of
the polynomial commitment scheme. If the signing key
is not stored, V also creates a key pair for the signature
scheme that signs the tariff policies. Next, V proceeds
to sign the tariff policy. The concrete method to sign the
tariff policy is described in Section 4.1, Section 4.2 and
Section 4.3 for the linear, cumulative, and polynomial
policies. Finally, V registers the signing public key and
the signed tariff policy with a new instance of FREG.Ver

REG

for the billing period bp.
2. The provider V receives (bil.listmeters.ini, sid , bp,Ui ,
Mj1 , . . . ,Mjm) as input. If a list of meters for the user
Ui at the billing period bp was already sent, V aborts.
Else, if the signing key is not stored, V creates a key pair
for the signature scheme that signs the lists of meters and
registers the public key with FREG. V signs the list of
metersMj1 , . . . ,Mjm and sends the list of meters and
the signature to the user Ui through an instance of the
functionality FSMT. Ui aborts if a list of meters for the
billing period bp was received before or if the signature
is not correct, else Ui outputs the list of meters.

3. The meterMj receives (bil.consumption.ini, sid ,Ui , bp,

c, t) as input. Mj aborts if the end of billing period
message was already sent to Ui at the billing period
bp. If the signing keys are not stored, Mj creates key
pairs for the signature schemes that sign meter readings
and the number of meter readings output in a billing
period, and registers them with an instance of FREG.
Next,Mj increments a counter ctm[bp,Ui] that counts
the number of meter readings sent to the user Ui during
the billing period bp.Mj signs the meter reading (Ui ,
bp, ctm[bp,Ui], c, t) and sends the meter reading and
the signature to the user Ui through an instance of the
functionality FSMT. Ui aborts if the end of billing period
message was already received from the meterMj at the
billing period bp. If Ui does not store the signing public
key, Ui retrieves it from the instance of FREG. Ui ver-
ifies the signature, checks that the counter value in the
meter reading does not equal the counter value of any of

Privacy-Preserving Smart Metering Revisited 13

the stored meter readings from that meter at that billing
period, and outputs the meter reading.

4. The meterMj receives (bil.period.ini, sid ,Ui , bp) as in-
put.Mj aborts if the end of period message was already
sent to Ui at the billing period bp.Mj signs the counter
that counts the number of meter readings sent to the user
Ui during the billing period bp.Mj sends the counter
and the signature to Ui through an instance of the func-
tionality FSMT. Ui aborts if the end of period message
was already received fromMj at the billing period bp.
Ui verifies the signature, checks that it stores the number
of meter readings indicated by the counter and that the
meter readings are numbered from 1 to the counter value,
and outputs the billing period bp, the meter identityMj

and the number of meter readings.
5. The meter Ui receives (bil.payment.ini, sid ,P, bp) as in-

put. If the parameters of the scheme are not stored, Ui
gets them from FCRS.Setup

CRS . If the public key and the
signed policy are not stored, Ui retrieves them from the
corresponding instance of FREG.Ver

REG . Next, Ui checks that
V sent the list of meters (Mj1 , . . . ,Mjm) for the billing
period bp. Ui also checks that each of the meters in that
list sent the end of billing period message. In that case, Ui
computes the bill to be paid by applying the tariff policy
to each of the meter readings and summing up the prices
to be paid for each of the meter readings. Ui computes
a non-interactive zero-knowledge proof that the bill is
correctly calculated. The details for this proof are given
in Section 4.1, Section 4.2 and Section 4.3 for the lin-
ear, cumulative, and polynomial policies respectively. Ui
sends the signed list of meters, the bill and the proof to
the verifying party P through an instance of the func-
tionality FSMT. If the parameters of the scheme are not
stored, P gets them from FCRS.Setup

CRS . P also retrieves the
public keys of the provider and of the meters. P verifies
the signed meter list and the proof, and then outputs the
bill.

4.1 Linear Policies

A linear policy is a tariff policy in which the time is divided
into time intervals [t1, t2), [t2, t3), . . . [tL, tL+1). The tariff
policy associates each time interval to a rate r . The rate
denotes a price per unit of consumption. The policy can be
expressed as follows:

Y (c, t) =

c · r1 if t ∈ [t1, t2)
...

...
c · rL if t ∈ [tL, tL+1)

In order to sign this tariff policy using a key pair (pk1 ,

sk1) for the signature scheme (KeyGen1, Sign1, VfSig1),

the provider V proceeds as follows. For each time interval
[tmin, tmax) in the tariff policy, V computes a signature s ←
Sign1(sk1 , 〈bp, r , tmin, tmax〉). The signed tariff policy Ys

consists of L tuples [rl, tmin,l, tmax,l, sl]Ll=1. The verification
function REG.Ver verifies the signatures in the signed tariff
policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui proceeds
as follows. Let (sid , bp,Mj1 , . . . ,Mjm , s) be the list of
meters signed by V . For k = 1 to m, let (sid ,Mjk , bp,

ctm[bp,Mjk], sk) be the number of meter readings sent by
meter Mjk . For d = 1 to ctm[bp,Mjk], let [Mjk , bp, d,

ck,d, tk,d, sk,d] be the meter readings sent to Ui byMjk . Ui
computes a non-interactive zero-knowledge proof of knowl-
edge for the following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4 ,k , sk, 〈bp,Ui , ctm[bp,Mjk]〉) ∧ (1)

[1 = VfSig3(pk3 ,k , sk,d, 〈Ui , bp, d, ck,d, tk,d〉) ∧ (2)

1 = VfSig1(pk1 , s
′
k,d, 〈bp, rk,d, tmin,k,d, tmax,k,d〉) ∧ (3)

tk,d ∈ [tmin,k,d, tmax,k,d] ∧ (4)

pk,d = ck,d · rk,d]
ctm[bp,Mjk

]

d=1 }mk=1 ∧ (5)

p =
∑m

k=1

∑ctm[bp,Mjk
]

d=1
pk,d ∧ (6)

1 = VfCom(parc , com, p, open)}. (7)

In this relation, for each meter Mjk in the meter list,
Line 1 requires the user to prove knowledge of the signa-
ture sk fromMjk on the tuple 〈bp,Ui , ctm[bp,Mjk]〉. This
signed tuple belongs to the instance of the proof. Despite the
fact that the signed values are revealed in the proof instance,
the signature sk must belong to the witness to prevent a ma-
licious meter from disclosing information to the verifying
party through sk. For the ctm[bp,Mjk] meter readings that
Mjk sent to Ui , Line 2 requires the user to prove knowledge
of a meter reading ck,d and tk,d and of a signature sk,d from
Mjk on that meter reading. The signed values Ui , bp, and d
belong to the proof instance. Line 3 requires the user to prove
knowledge of the rate rk,d, of an interval [tmin,k,d, tmax,k,d),
and of a signature s ′k,d in the tariff policy that signs those
values. The signed billing period bp belongs to the proof
instance. Line 4 is a range proof that requires the user to
prove that the time tk,d proven in Line 2 lies within the inter-
val [tmin,k,d, tmax,k,d) proven in Line 3. Thanks to that, the
verifier ensures that the user employs the rate rk,d associated
with the correct time interval in the tariff policy. Line 5 re-
quires the user to prove that the price associated to the meter
reading proven in Line 2 is computed by multiplying the
rate rk,d by the consumption ck,d. Finally, Line 6 and Line 7
require the user to prove that com is a commitment to the

14 Alfredo Rial et al.

Construction BIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗

Construction BIL involves a provider V , users Ui , metersMj and verifying parties P . We denote by U the universe of user identities and byM
the universe of meter identities. Construction BIL is parameterized by a security parameter 1k . It is also parameterized by a universe of policies
Uy , a universe of consumptions Uc , a universe of times Ut , a universe of billing periods Ubp , and a maximum size Mmax for the meter lists.
Construction BIL uses a commitment scheme (CSetup, Com, VfCom) and a NIPK scheme (PKSetup, PKProve, PKVerify). The provider
employs a signature scheme (KeyGen1, Sign1, VfSig1), whose message space is specific to each of the tariff policies, and another signature
scheme (KeyGen2, Sign2, VfSig2), whose message space is (Ubp ,U ,MMmax). The meters employ a signature scheme (KeyGen3, Sign3,
VfSig3), whose message space is (U ,Ubp , {0, 1}L,Uc ,Ut) (L is large enough to avoid collisions), and (KeyGen4, Sign4, VfSig4), whose
message space is (U ,Ubp ,N). Construction BIL employs a polynomial commitment scheme (PSetup, PCommit, PProve, PVerify). Con-

struction BIL works in the FSMT, FREG, FREG.Ver
REG and FCRS.Setup

CRS -hybrid model, where CRS.Setup consists of the algorithms (PSetup,
CSetup, PKSetup).

1. On input (bil.policy.ini, sid , bp,Y), V does the following:
– Abort if sid 6= (V, sid ′), or if bp /∈ Ubp , or if Y /∈ Uy .
– If the parameters POL: parp , parc and parpk are not stored, send the message (crs.get.ini, sid) to FCRS.Setup

CRS , receive the mes-

sage (crs.get.end, sid , 〈 POL: parp , parc , parpk 〉) from the functionality FCRS.Setup
CRS , and store POL: parp , parc and parpk . The

functionality FCRS.Setup
CRS runs POL: parp ← PSetup(1k , `) (` is the maximum degree of the polynomials in the policy), parc ←

CSetup(1k) and parpk ← PKSetup(1k).
– If (sk1 , pk1) is not stored, run (sk1 , pk1)← KeyGen1(1k) and store (sk1 , pk1).
– Compute a signed tariff policy Ys as described in Section 4.1, Section 4.2 or Section 4.3.
– Send (reg.register.ini, 〈sid , bp〉, 〈pk1 ,Ys〉) to FREG.Ver

REG and receive (reg.register.end, 〈sid , bp〉) from FREG.Ver
REG . In Section 4.1,

Section 4.2 or Section 4.3, we describe REG.Ver.
– Output (bil.policy.end, sid).

2. On input (bil.listmeters.ini, sid , bp,Ui ,Mj1 , . . . ,Mjm), V and Ui do the following:
– V aborts if bp /∈ Ubp , or if Ui is not a user identifier, or if m > Mmax , or if, for k = 1 to m,Mjm is not a meter identifier.
– V aborts if (sid , bp′,U ′i ,M′j1 , . . . ,M

′
jm
, s) such that bp = bp′ and Ui = U ′i is already stored.

– If (sk2 , pk2) is not stored, run (sk2 , pk2) ← KeyGen2(1k), send (reg.register.ini, sid , pk2) to FREG, receive (reg.register.end,
sid , pk2) from FREG and store (sk2 , pk2).

– V stores (sid , bp,Ui ,Mj1 , . . . ,Mjm).
– V signs s ← Sign2(sk2 , 〈bp,Ui ,Mj1 , . . . ,Mjm 〉).
– V sets sidSMT ← (V,Ui , sid) and sends (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉) to FSMT.
– Ui receives (smt.send.end, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉) from FSMT.
– Ui aborts if (sid , bp′,M′j1 , . . . ,M

′
jm
, s) such that bp = bp′ is already stored.

– If pk2 is not stored, Ui sends (reg.retrieve.ini, sid) to FREG, receives (reg.retrieve.end, sid , pk2), and stores pk2 .
– Ui runs b ← VfSig2(pk2 , s, 〈bp,Ui ,Mj1 , . . . ,Mjm 〉).
– Ui aborts if b = 0.
– Ui stores (sid , bp,Mj1 , . . . ,Mjm , s).
– Ui outputs (bil.listmeters.end, sid , bp,Mj1 , . . . ,Mjm).

3. On input (bil.consumption.ini, sid ,Ui , bp, c, t),Mj and Ui do the following:
– Mj aborts if Ui is not a user identifier, or if bp /∈ Ubp , or if c /∈ Uc , or if t /∈ Ut .
– Mj aborts if (sid ,U ′i , bp

′, ctm[bp,Ui], s) such that U ′i = Ui and bp′ = bp is already stored.
– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored,Mj runs (sk3 ,k , pk3 ,k)← KeyGen3(1k) and (sk4 ,k , pk4 ,k)← KeyGen4(1k),

sends (reg.register.ini, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) to FREG, receives (reg.register.end, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) from FREG

and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k).
– Mj increments a counter ctm[bp,Ui] (initialized at zero).
– Mj runs s ← Sign3(sk3 ,k , 〈Ui , bp, ctm[bp,Ui], c, t〉).
– Mj sets sidSMT ← (Mj ,Ui , sid) and sends (smt.send.ini, sidSMT, 〈Ui , bp, ctm[bp,Ui], c, t , s〉) to FSMT.
– Ui receives (smt.send.end, sidSMT, 〈Ui , bp, ctm[bp,Mj], c, t , s〉) from FSMT.
– Ui aborts if (sid ,M′j , bp

′, ctm ′[bp,Mj], s′) such thatM′j =Mj and bp′ = bp is already stored.
– If pk3 ,k and pk4 ,k are not stored, Ui sends (reg.retrieve.ini, 〈sid ,Mj 〉) to FREG, receives (reg.retrieve.end, 〈sid ,Mj 〉, 〈pk3 ,k ,

pk4 ,k 〉), and stores pk3 ,k and pk4 ,k .
– Ui runs b ← VfSig3(pk3 ,k , s, 〈Ui , bp, ctm[bp,Mj], c, t〉).
– Ui aborts if b = 0.
– For all the tuples [M′j , bp

′, ctm ′[bp,Mj], c, t , s] stored such that M′j = Mj and bp′ = bp, Ui aborts if ctm ′[bp,Mj] =

ctm[bp,Mj].
– Ui stores [Mj , bp, ctm[bp,Mj], c, t , s].
– Ui outputs (bil.consumption.end, sid ,Mj , bp, c, t).

Fig. 4 Construction BIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗.

Privacy-Preserving Smart Metering Revisited 15

Construction BIL: Interfaces bil.period.∗ and bil.payment.∗

4. On input (bil.period.ini, sid ,Ui , bp),Mj and Ui do the following:
– Mj aborts if Ui is not a user identifier, or if bp /∈ Ubp .
– Mj aborts if (sid ,U ′i , bp

′, ctm[bp,Ui]) such that U ′i = Ui and bp′ = bp is already stored.
– Mj stores (sid ,Ui , bp, ctm[bp,Ui]). The counter ctm[bp,Ui] equals 0 ifMj did not send any meter reading to Ui at the billing

period bp.
– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored,Mj runs (sk3 ,k , pk3 ,k)← KeyGen3(1k) and (sk4 ,k , pk4 ,k)← KeyGen4(1k),

sends (reg.register.ini, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) to FREG, receives (reg.register.end, 〈sid ,Mj 〉) from FREG and stores (sk3 ,k ,
pk3 ,k) and (sk4 ,k , pk4 ,k).

– Mj runs s ← Sign4(sk4 ,k , 〈Ui , bp, ctm[bp,Ui]〉).
– Mj sets sidSMT ← (Mj ,Ui , sid) and sends (smt.send.ini, sidSMT, 〈Ui , bp, ctm[bp,Ui], s〉) to FSMT.
– Ui receives (smt.send.end, sidSMT, 〈Ui , bp, ctm[bp,Mj], s〉) from FSMT.
– Ui aborts if there is a tuple (sid ,M′j , bp

′, ctm ′[bp,Mj], s) stored such thatM′j =Mj and bp′ = bp.
– If pk3 ,k and pk4 ,k are not stored, Ui sends (reg.retrieve.ini, 〈sid ,Mj 〉) to FREG, receives (reg.retrieve.end, 〈sid ,Mj 〉, 〈pk3 ,k ,

pk4 ,k 〉), and stores pk3 ,k and pk4 ,k .
– Ui runs b ← VfSig4(pk4 ,k , s, 〈Ui , bp, ctm[bp,Mj]〉).
– Ui aborts if b = 0.
– Ui counts the number of tuples [M′j , bp

′, ctm ′[bp,Mj], c, t , s] stored such thatM′j =Mj and bp′ = bp. If the number is different
from ctm[bp,Mj], Ui aborts. Ui also aborts if, from d = 1 to ctm[bp,Mj], Ui cannot find a tuple [M′j , bp

′, ctm ′[bp,Mj], c, t , s]

stored such thatM′j =Mj and bp′ = bp and d = ctm ′[bp,Mj].
– Ui stores (sid ,Mj , bp, ctm[bp,Mj], s).
– Ui outputs (bil.period.end, sid , bp,Mj , ctm[bp,Mj]).

5. On input (bil.payment.ini, sid ,P, bp), Ui and P do the following:
– Ui aborts if P is not a valid party identifier, of if bp /∈ Ubp .
– If POL: parp , parc and parpk are not stored, Ui sends the message (crs.get.ini, sid) to FCRS.Setup

CRS , receives the message

(crs.get.end, sid , 〈 POL: parp , parc , parpk 〉) from FCRS.Setup
CRS , and stores POL: parp , parc and parpk .

– If (sid , bp′, 〈pk1 ,Ys〉) such that bp = bp′ is not stored, Ui sends (reg.retrieve.ini, 〈sid , bp〉) toFREG.Ver
REG , receives (reg.retrieve.end,

〈sid , bp〉, 〈pk1 ,Ys〉) from FREG.Ver
REG , and stores (sid , bp, 〈pk1 ,Ys〉). Ui aborts if FREG.Ver

REG sends (reg.retrieve.end, 〈sid , bp〉,⊥).
– If a meter list (sid , bp′,Mj1 , . . . ,Mjm , s) such that bp′ = bp is not stored, Ui aborts.
– For k = 1 to m, Ui does the following:

– Abort if a tuple (sid ,M′j , bp
′, ctm[bp,Mj]) such thatMjk =M′j and bp′ = bp is not stored.

– Set pk = 0.
– For d = 1 to ctm[bp,Mj], retrieve each of the ctm[bp,Mj] tuples [M′j , bp

′, d, cd, td, sd] such thatMjk =M′j and bp′ = bp

and set pk = pk +Y (cd, td).
– Set p =

∑m
k=1 pk.

– Run (com, open)← Com(parc , p).
– Set wit and ins for a relation R as described in Section 4.1, Section 4.2 or Section 4.3.
– Run π ← PKProve(parpk ,wit , ins).
– Ui sets sidSMT ← (Ui ,P, sid) and sends (smt.send.ini, sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) to FSMT.
– P receives (smt.send.end, sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) from FSMT.
– If (sid , bp′, 〈pk1 ,Ys〉) such that bp = bp′ is not stored, Ui sends (reg.retrieve.ini, 〈sid , bp〉) toFREG.Ver

REG , receives (reg.retrieve.end,
〈sid , bp〉, 〈pk1 ,Ys〉) from FREG.Ver

REG , and stores (sid , bp, 〈pk1 ,Ys〉). Ui aborts if FREG.Ver
REG sends (reg.retrieve.end, 〈sid , bp〉,⊥).

– If pk2 is not stored, P sends (reg.retrieve.ini, sid) to FREG, receives (reg.retrieve.end, sid , pk2) from FREG, and stores pk2 .
– P aborts if 1 6= VfSig2(pk2 , s, 〈bp,Ui ,Mj1 , . . . ,Mjm 〉).
– For k = 1 to m, If pk3 ,k and pk4 ,k are not stored, P sends (reg.retrieve.ini, 〈sid ,Mj 〉) to FREG, receives (reg.retrieve.end, 〈sid ,
Mjk 〉, 〈pk3 ,k , pk4 ,k 〉), and stores pk3 ,k and pk4 ,k .

– If POL: parp , parc and parpk are not stored, P sends the message (crs.get.ini, sid) to FCRS.Setup
CRS , receives the message

(crs.get.end, sid , 〈 POL: parp , parc , parpk 〉) from FCRS.Setup
CRS , and stores POL: parp , parc and parpk .

– P checks that the instance ins is consistent with the received values pk1 , pk3 ,k , pk4 ,k , POL: parp , parc and parpk . P also checks

that, for k = 1 to m, the instance includes a counter ctm[bp,Mjk] of meter readings and that the proof proves possession of
ctm[bp,Mjk] meter readings numbered from 1 to ctm[bp,Mjk].

– P aborts if 1 6= PKVerify(parpk , ins, π).
– P aborts if 1 6= VfCom(parc , com, p, open).
– P retrieves (ctm[bp,Mj1], . . . , ctm[bp,Mjm]) from ins .
– P outputs (bil.payment.end, sid ,Ui , bp, p,Mj1 , ctm[bp,Mj1], . . . ,Mjm , ctm[bp,Mjm]).

Fig. 5 Construction BIL: Interfaces bil.period.∗ and bil.payment.∗.

16 Alfredo Rial et al.

total price, which is computed by summing up the prices for
each meter reading.
Ui sets the witness as follows.

wit ← (p, open, [〈ck,d, tk,d, pk,d, sk,d, s′k,d, rk,d,

tmin,k,d, tmax,k,d〉
ctm[bp,Mjk

]

d=1 , sk]
m
k=1)

Ui sets the instance as follows.

ins ← (parc , pk1 ,Ui , com, bp,
[pk3 ,k , pk4 ,k , ctm[bp,Mjk]]

m
k=1).

The verifying party P , in order to verify the statement
1 = VfSig3(pk3 ,k , sk,d, 〈Ui , bp, d, ck,d, tk,d〉) in Line 2 of
the relation, must employ values d from 1 to ctm[bp,Mjk].

4.2 Cumulative Policies

A cumulative policy is a tariff policy in which, as in the linear
policy, the time is divided into time intervals [t1, t2), [t2, t3),
. . . [tL, tL+1). Additionally, for each time interval [tl, tl+1),
the consumption is also divided into intervals [cl,1, cl,2),

[cl,2, cl,3), . . . [cl,M , cl,M+1). The tariff policy associates to
each time interval a set of rates, one for each consumption
interval. The rate denotes a price per unit of consumption.
The policy can be expressed as follows:

Y (c, t) =

Φ1(c) if t ∈ [t1, t2)
...

...
ΦL(c) if t ∈ [tL, tL+1)

Each of functions Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

(c − c1) · r1 + F1 if c ∈ [c1, c2)
...

...
(c − cM) · rM + FM if c ∈ [cM , cM+1)

Therefore, for a meter reading (c, t), the price to be paid is
defined by the function Φl(c) associated to the time interval
such that t ∈ [tl, tl+1). For a consumption c such that c ∈
[cm, cm+1), the function Φl(c) is (c − cm) · rm + Fm. Fm
is a constant that equals

∑m−1
m′=1(cm′+1 − cm′) · rm′ , i.e.,

Fm is the price to be paid for a consumption cm, which is
computed by summing up the prices to be paid for all the
previous consumption intervals.

In order to sign this tariff policy using a key pair (pk1 ,

sk1) for the signature scheme (KeyGen1, Sign1, VfSig1), the

provider V proceeds as follows. For each consumption in-
terval [cmin, cmax) in a function Φ(c) associated with the
time interval [tmin, tmax), V computes a signature s ←
Sign1(sk1 , 〈bp, r , F, tmin, tmax, cmin, cmax〉). The signed
tariff policy Ys consists of tuples of the form [r , F, tmin,

tmax, cmin, cmax, s]. The verification function REG.Ver ver-
ifies the signatures in the signed tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4 ,k , sk, 〈bp,Ui , ctm[bp,Mjk]〉) ∧ (8)

[1 = VfSig3(pk3 ,k , sk,d, 〈Ui , bp, d, ck,d, tk,d〉) ∧ (9)

1 = VfSig1(pk1 , s′k,d, 〈bp, rk,d, Fk,d,

tmin,k,d, tmax,k,d, cmin,k,d, cmax,k,d〉) ∧ (10)

tk,d ∈ [tmin,k,d, tmax,k,d] ∧ (11)

ck,d ∈ [cmin,k,d, cmax,k,d] ∧ (12)

pk,d = (ck,d − cmin,k,d) · rk,d + Fk,d (13)

]
ctm[bp,Mjk

]

d=1 ∧ }mk=1

p =
∑m

k=1

∑ctm[bp,Mjk
]

d=1
pk,d ∧ (14)

1 = VfCom(parc , com, p, open)}. (15)

We highlight the differences between this relation and the
relation for linear policies by using boxes. Line 10 requires
the user to prove knowledge of the rate rk,d, of the constant
Fk,d, of a time interval [tmin,k,d, tmax,k,d), of a consumption
interval [cmin,k,d, cmax,k,d) and of a signature s ′k,d in the
tariff policy that signs those values. The signed billing period
bp belongs to the proof instance. Line 12 is a range proof that
requires the user to prove that the consumption ck,d proven
in Line 9 lies within the interval [cmin,k,d, cmax,k,d) proven
in Line 10. Thanks to that, the verifier ensures that the user
employs the rate rk,d, the value cmin,k,d, and the constant
Fk,d associated with the correct consumption interval in the
tariff policy. Line 13 requires the user to prove that the price
associated to the meter reading proven in Line 9 is computed
by doing (ck,d − cmin,k,d) · rk,d + Fk,d.
Ui sets the witness as follows.

wit ← (p, open, [〈ck,d, tk,d, pk,d, sk,d, s′k,d, rk,d, Fk,d, tmin,k,d,

tmax,k,d ,cmin,k,d, cmax,k,d 〉
ctm[bp,Mjk

]

d=1 , sk]
m
k=1)

Privacy-Preserving Smart Metering Revisited 17

Ui sets the instance as in the case of a linear policy. As
for the linear policy, the verifying party P , in order to verify
the statement 1 = VfSig3(pk3 ,k , sk,d, 〈Ui , bp, d, ck,d, tk,d〉)
in Line 9 of the relation, must employ values d from 1 to
ctm[bp,Mjk].

4.3 Polynomial Policies

A polynomial policy is a tariff policy in which, as in the cumu-
lative policy, the time is divided into time intervals [t1, t2),
[t2, t3), . . . [tL−1, tL) and, for each time interval [tl, tl+1),
the consumption is also divided into intervals [cl,1, cl,2),

[cl,2, cl,3), . . . [cl,M , cl,M+1). The tariff policy associates to
each time interval a spline Φ. The policy can be expressed as
follows:

Y (c, t) =

Φ1(c) if t ∈ [t1, t2)
...

...
ΦL(c) if t ∈ [tL, tL+1)

Each of the splines Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

φ1(c) if c ∈ [c1, c2)
...

...
φM (c) if c ∈ [cM , cM+1)

Therefore, for a meter reading (c, t), the price to be paid is
defined by the polynomial φm(c) such that c ∈ [cm, cm+1)

that belongs to the spline Φl(c) associated to the time interval
[tl, tl+1) such that t ∈ [tl, tl+1).

To compute the signed tariff policy Ys, for all the poly-
nomials φ in the tariff policy, the provider V computes (C ,
d) ← PCommit(parp , φ) and signs s ← Sign1(sk1 , 〈bp,

C , tmin, tmax, cmin, cmax〉), where [tmin, tmax) and [cmin,

cmax) are the time and consumption intervals associated to
the polynomial φ. The signed tariff policy Ys consists of
tuples of the form [φ, tmin, tmax, cmin, cmax,C , d , s]. The
verification function REG.Ver verifies the signatures in the
signed tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4 ,k , sk, 〈bp,Ui , ctm[bp,Mjk]〉) ∧ (16)

[1 = VfSig3(pk3 ,k , sk,d, 〈Ui , bp, d, ck,d, tk,d〉) ∧ (17)

1 = VfSig1(pk1 , s′k,d, 〈bp,Ck,d,

tmin,k,d, tmax,k,d, cmin,k,d, cmax,k,d〉) ∧ (18)

tk,d ∈ [tmin,k,d, tmax,k,d] ∧ (19)

ck,d ∈ [cmin,k,d, cmax,k,d] ∧ (20)

1 = PVerify(parp ,Ck,d, ck,d, pk,d,wk,d) (21)

]
ctm[bp,Mjk

]

d=1 }mk=1 ∧

p =
∑m

k=1

∑ctm[bp,Mjk
]

d=1
pk,d ∧ (22)

1 = VfCom(parc , com, p, open)}. (23)

We highlight the differences between this relation and
the relation for cumulative policies by using boxes. Line 18
requires the user to prove knowledge of a commitment Ck,d,
of a time interval [tmin,k,d, tmax,k,d), of a consumption in-
terval [cmin,k,d, cmax,k,d) and of a signature s ′k,d in the tariff
policy that signs those values. The signed billing period bp

belongs to the proof instance. Line 21 requires the user to
prove that the price pk,d associated to the meter reading (ck,d,

tk,d) proven in Line 17 is the evaluation of the polynomial
committed to in Ck,d on input ck,d.
Ui sets the witness as follows.

wit ← (p, open, [〈ck,d, tk,d, pk,d, sk,d, s′k,d,

Ck,d,wk,d, tmin,k,d, tmax,k,d,

cmin,k,d, cmax,k,d〉
ctm[bp,Mjk

]

d=1 , sk]
m
k=1)

Ui computes the witnesses wk,d by running the algorithm
wk,d ← PProve(parp , φk,d, ck,d, dk,d).
Ui sets the instance as follows.

ins ←(parp , parc , pk1 ,Ui , com, bp,

[pk3 ,k , pk4 ,k , ctm[bp,Mjk]]
m
k=1).

As for the linear and cumulative policies, the verifying
party P , in order to verify the statement 1 = VfSig3(pk3 ,k ,

sk,d, 〈Ui , bp, d, ck,d, tk,d〉) in Line 17 of the relation, must
employ values d from 1 to ctm[bp,Mjk].

18 Alfredo Rial et al.

4.4 Other Policies

In [47], a discrete policy and an interval policy are also
considered. In a discrete policy, each consumption value is
associated with a price. In an interval policy, each range of
consumption values is associated with a price. These policies
can be supported by our protocol as simplifications of the lin-
ear and cumulative policies. Additionally, it is also possible
to consider composite policies created by combining two or
more of the aforementioned types.

In the tariff policies considered so far, the price to be
paid for a meter reading (c, t) is solely determined by the
tariff policy and the values (c, t). However, in many practical
tariff policies, the price to be paid depends also on the past
behavior of the user. For example, the tariff policies change
depending on the last daily or monthly consumption of the
user, or on the accumulated consumption of the current day.

Our protocol can support such history-dependent policies
as follows. Consider for instance a policy that employs the
past consumption pc of the user in the last billing period.

Φ[pca, pca+1](c, t) =
φ1(c) if t ∈ [t1, t2]
...

...
φL(c) if t ∈ [tL, tL+1]

In this policy, the past consumption pc is divided into inter-
vals [pca, pca+1] for a ∈ [1, A]. Each interval [pca, pca+1]

is associated to a spline Φ[pca, pca+1](c, t), where the price
to be paid is determined by a polynomial φl(c) for a meter
reading (c, t) such that t ∈ [tl, tl+1].

The modification needed in the protocol is as follows. To
sign the tariff policy, the service provider signs tuples [bp,C ,

tl, tl+1, pca, pca+1], where the the values [pca, pca+1] define
a past consumption interval.

In the payment phase, the user computes a commitment
com to the past consumption pc of the last billing period and
proves in zero-knowledge that pc is correctly computed, i.e.,
by summing up the consumption values of the meter readings
that belong to the last billing period. Then, to compute the
proof that the total bill is correct, the user proves knowledge
of the value pc in com and proves that pc ∈ [pca, pca+1]

to ensure that the correct commitment C associated to the
interval [pca, pca+1] in the tuple [bp,C , tl, tl+1, pca, pca+1]

is employed.

4.5 Efficiency Discussion

For a tariff or a cumulative policy, our protocol is quite similar
to the protocol provided in [47] for the setting with one meter
and one user. In [47], an implementation and performance
measurements are provided. Therefore, we refer to [47] for
an in-depth efficient analysis.

We analyze now the cost of the protocol proposed in [47]
when applying a polynomial tariff policy. To sign the tariff
policy, V computes signatures on tuples [bp, φ0, φ1, . . . , φt,

tl, tl+1, cm, cm+1], where (φ0, φ1, . . . , φt) denote the coeffi-
cients of the polynomial. In the payment message, the proof
of correct evaluation of the polynomial to show that p = φ(c)

employs the coefficients (φ0, φ1, . . . , φt). While in our pro-
tocol the communication cost of this proof does not depend
on the polynomial degree, the cost of this proof grows with
the degree.

In Section 4.6, we analyze the security of our protocol
under two corruption models. Our main analysis considers
Byzantine corruptions, where a single adversary corrupts
different parties and controls their behaviour. Obviously, in
this corruption model, when the provider and a meter are
corrupt, there is no protocol that can prevent the provider
from learning the meter readings input to the meter because
both entities are controlled by the same adversary.

For this reason, in Section 4.6.7, we also consider a cor-
ruption model in which different adversaries, with no com-
munication link between them, corrupt different parties. This
model is relevant in the case in which the provider V and
a subset of the metersM are corrupt, but they cannot com-
municate directly between each other. In this second corrup-
tion model, for the sake of efficiency, the protocol proposed
in [47] does not prevent the verifying party from learning the
meter readings. The reason is that, in that protocol, instead of
proving knowledge of the signatures on the meter readings,
the user sends those signatures to the verifying party. (The
signatures sign commitments to the meter readings, so as
not to reveal the meter readings.) By manipulating the signa-
ture value, a corrupt meter could disclose information on the
meter readings to the verifying party.

In [47], it is explained that, to protect user privacy in this
corruption model, the user must prove in zero-knowledge
possession of the signatures on the meter readings to the veri-
fying party. This is the approach we follow in our protocol, in
which the user proves possession of signatures on the meter
readings and on the counter of meter readings. Thanks to that,
no information output by the meter to the user is revealed
by the user to the verifying party, which allows us to protect
user privacy in this corruption model (see Section 4.6.7).

4.6 Security Analysis of Construction BIL

Theorem 1 Construction BIL securely realizes FBIL in the
FCRS.Setup

CRS , FSMT, FREG and FREG.Ver
REG -hybrid model.

We prove that the construction BIL realizes the function-
ality FBIL when a linear, a cumulative and a polynomial
policy are employed. We provide a unified description of
those proofs. The box POL: . . . is used to describe a com-

Privacy-Preserving Smart Metering Revisited 19

putation that only occurs in the case of a polynomial tariff
policy.

To prove that our protocol securely realizes the ideal
functionalityFBIL, we have to show that for any environment
Z and any adversary A there exists a simulator S, such that
Z cannot distinguish whether it is interacting with A and the
protocol in the real world or with S and FBIL. The simulator
thereby plays the role of all honest parties in the real world
and interacts with FBIL for all corrupt parties in the ideal
world.

Our simulator S employs any simulator SCRS, SSMT,
SREG and SREG.VerREG for the constructions that realize the
functionalities FCRS.Setup

CRS , FSMT, FREG and FREG.Ver
REG re-

spectively. We note that the simulators for all the construc-
tions that realize the functionalitiesFCRS.Setup

CRS ,FSMT,FREG

and FREG.Ver
REG communicate with each of those functionalities

through the same interfaces. These are the interfaces that our
simulator employs to communicate with any simulator SCRS,
SSMT, SREG and SREG.VerREG . S forwards all the messages ex-
changed between any simulator SCRS, SSMT, SREG and
SREG.VerREG and the adversary A. When the adversary A sends
a message that corresponds to a protocol that realizes any of
the functionalities FCRS.Setup

CRS , FSMT, FREG or FREG.Ver
REG , S

implicitly forwards that message to the respective simulator
SCRS, SSMT, SREG or SREG.VerREG .

We analyze the case in which the provider V is corrupt in
Section 4.6.1. In Section 4.6.2, we analyze the case in which a
subset of the users U are corrupt. In Section 4.6.3, we analyze
the case in which the provider, a subset of the users U and a
subset of the metersM are corrupt. We provide a detailed
analysis of these three cases. Note that the provider or a user
can also act as verifying parties, and thus we consider corrupt
verifying parties in all these cases.

We also consider the case in which the provider V and
a subset of the users are corrupt (Section 4.6.4), the case in
which a subset of the users U and a subset of the metersM
are corrupt (Section 4.6.5), and the case in which the provider
V and a subset of the metersM are corrupt (Section 4.6.6).
We do not provide a detailed security analysis of those cases
but describe on a high level the simulator.

We note that, e.g., the case in which only a subset of
the users is corrupt is not subsumed by the case in which
the provider, a subset of the users, and a subset of the me-
ters is corrupt. The reason is that the functionality behaves
differently depending on whether the provider is corrupt or
not. If the provider and a user are corrupt, the functionality
does not guarantee that the price reported by the corrupt user
to the verifying party is correct (even if the meters are hon-
est), but when only the user is corrupt, the functionality does
guarantee that the price is correct.

When we say that a subset of the users or a subset of the
meters is corrupt, we mean that at least one user or at least
one meter is corrupt. The security proof does not rely on the

fact that the number of corrupt users or the number of corrupt
meters is limited by a threshold.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behaviour. Obviously, in this corruption model,
when the provider and a meter are corrupt, there is no pro-
tocol that can prevent the provider from learning the meter
readings input to the meter because both entities are con-
trolled by the same adversary.

For this reason, we also consider a corruption model in
which different adversaries, with no communication link be-
tween them, corrupt different parties. This model is relevant
in the case in which the provider V and a subset of the me-
tersM are corrupt, but they cannot communicate directly
between each other. We show that, under such corruption
model, our protocol prevents the corrupt meters from send-
ing information about the meter readings to the verifying
parties in Section 4.6.7. This is akin to showing that our
protocol is collusion-free in the sense of [33].

We note that FBIL guarantees that the bill revealed to
the verifying party is correct when the user is honest or
when the provider and the meters that are involved in the bill
computation are honest. For the cases in which a corrupt user
colludes with the provider and/or with a meter involved in
the computation of the bill, our security analysis shows that
our protocol realizes FBIL, but the total bill revealed to the
verifying party is chosen by the adversary.

4.6.1 Case V Corrupt

We start with the case where the provider V is corrupt. The
simulator communicates with the ideal functionality and sim-
ulates the behaviour of the honest parties towards the corrupt
provider. To simulate the behaviour of the honest parties, our
simulator follows the real world protocol, with the exception
that it creates a simulation trapdoor for the NIPK system
and, when an honest user sends a bill to the corrupt provider
(which is acting as a verifying party), the simulator computes
a simulated non-interactive zero-knowledge proof of knowl-
edge π to create the message (smt.send.end, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉). Therefore, secu-
rity follows thanks to the zero-knowledge property of the
NIPK system. In Figure 6, we describe our simulator S.

Theorem 2 When the provider is corrupt, construction BIL

securely realizes FBIL in the FCRS.Setup
CRS , FSMT, FREG and

FREG.Ver
REG -hybrid model if the non-interactive proof of knowl-

edge scheme (PKSetup, PKProve, PKVerify) is zero knowl-
edge.

Proof. We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the

20 Alfredo Rial et al.

Simulator S: case V corrupt

The simulator S employs the simulator (S1,S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

– On input (crs.get.ini, sid) from SCRS, if (POL: parp , parc , parpk , tds) is not stored, S runs POL: parp ← PSetup(1k , `), parc

← CSetup(1k) and (parpk , tds) ← S1(1k), and stores (POL: parp , parc , parpk , tds). S creates a fresh ssid , stores ssid and sends

(crs.get.sim, sid , ssid , 〈 POL: parp , parc , parpk 〉) to SCRS.

– On input the message (crs.get.rep, sid , ssid) from SCRS, if ssid is stored, the simulator S deletes ssid and sends the message
(crs.get.end, sid , 〈 POL: parp , parc , parpk 〉) to SCRS.

– On input the message (reg.register.ini, sid , pk2) from SREG, the simulator S runs a copy of FREG on input (reg.register.ini, sid , pk2).
When FREG outputs the message (reg.register.sim, sid , pk2), S sends the message (reg.register.sim, sid , pk2) to SREG.

– On input the message (reg.register.rep, sid) from SREG, the simulator S runs FREG on input the message (reg.register.rep, sid). When
FREG outputs the message (reg.register.end, sid), the simulator S sends the message (reg.register.end, sid) to SREG.

– On input (reg.register.ini, 〈sid , bp〉, 〈pk1 ,Ys〉) from SREG.VerREG , S runs a copy of FREG.Ver
REG on input (reg.register.ini, 〈sid , bp〉, 〈pk1 ,

Ys〉). When FREG.Ver
REG outputs (reg.register.sim, 〈sid , bp〉, 〈pk1 ,Ys〉), S retrieves Y from Ys and sends (bil.policy.ini, sid , bp,Y) to

FBIL. When FBIL outputs (bil.policy.sim, sid , bp,Y), S sends (reg.register.sim, 〈sid , bp〉, 〈pk1 ,Ys〉) to SREG.VerREG .
– On input the message (reg.register.rep, 〈sid , bp〉) from SREG.VerREG , the simulator S runs the copy of FREG.Ver

REG on input the message
(reg.register.rep, 〈sid , bp〉). When FREG.Ver

REG outputs the message (reg.register.end, 〈sid , bp〉), the simulator S sends the message
(bil.policy.rep, sid , bp) to the functionality FBIL. When the functionality FBIL outputs (bil.policy.end, sid), the simulator S sends
(reg.register.end, 〈sid , bp〉) to SREG.VerREG .

– On input the message (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉) from SSMT, S checks that sidSMT is (V,Ui , sid). The
simulator S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉). When FSMT outputs the
message (smt.send.sim, sidSMT, ssid , l(〈bp,Ui ,Mj1 , . . . ,Mjm , s〉)), the simulator S forwards it to SSMT.

– On input the message (bil.consumption.sim, sid , ssid ,Mj ,Ui) from the functionality FBIL, the simulator S sets sidSMT ← (Mj ,Ui ,
sid) and sends the message (smt.send.sim, sidSMT, ssid , l) to SSMT, where l is the length of the message 〈Ui , bp, d, c, t , s〉.

– On input the message (bil.period.sim, sid , ssid ,Mj ,Ui) from the functionality FBIL, the simulator S sets sidSMT ← (Mj ,Ui , sid)
and sends the message (smt.send.sim, sidSMT, ssid , l) to SSMT, where l is the length of the message 〈Ui , bp, ctm[bp,Ui], s〉.

– On input (bil.payment.sim, sid , ssid ,Ui ,P) from FBIL, S sets sidSMT ← (Ui ,P, sid) and sends (smt.send.sim, sidSMT, ssid , l) to
SSMT, where l is the length of the message 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉.

– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows:
– If a message (smt.send.sim, sid ′SMT, ssid

′, . . .) such that (sid ′SMT, ssid
′) = (sidSMT, ssid) was not sent to SSMT, S ignores

the message.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 ,

. . . ,Mjm , s〉) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT

sends (smt.send.end, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉), S does nothing if there is not an instance of FREG that stores pk2 .
S does nothing if a tuple (sid , bp′,U ′i ,Mj1 , . . . ,Mjm , s) such that bp′ = bp and U ′i = Ui is already stored. S does nothing if
1 6= VfSig2(pk2 , s, 〈bp,Ui ,Mj1 , . . . ,Mjm 〉). Otherwise S stores (sid , bp,Ui ,Mj1 , . . . ,Mjm , s). S sends (bil.listmeters.ini, sid ,
bp,Ui ,Mj1 , . . . ,Mjm) to FBIL. When FBIL outputs (bil.listmeters.sim, sid , ssid ,Ui), S sends (bil.listmeters.rep, sid , ssid) to
FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.consumption.sim, sid , ssid ,Mj ,Ui)
from the functionality FBIL, the simulator S sends the message (bil.consumption.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.period.sim, sid , ssid ,Mj ,Ui) from
the functionality FBIL, the simulator S sends the message (bil.period.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.payment.sim, sid , ssid ,Ui ,P) from
FBIL, the simulator S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

– On input (bil.payment.end, sid ,Ui , bp, p[bp],Mj1 ,N [Mj1 , bp], . . . ,Mjm ,N [Mjm , bp]) from FBIL, S proceeds as follows:

– S retrieves the stored POL: parp , parc and (parpk , tds).

– S retrieves pk1 and Ys for the billing period bp from the corresponding copy of FREG.Ver
REG .

– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, for k = 1 to m, S runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k) and (sk4 ,k , pk4 ,k) ←
KeyGen4(1k) and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k).

– S runs (com, open)← Com(parc , p).
– S sets ins ← (POL: parp , parc , pk1 ,Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp,Mjk]]

m
k=1).

– S runs π ← S2(parpk , tds , ins). The relation R used by S2 is described in Section 4.1, Section 4.2 and Section 4.3.
– S recovers sidSMT from the last (smt.send.rep, sidSMT, ssid) message received from SSMT. S sends (smt.send.end, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) to SSMT.

Fig. 6 Simulator S: case V corrupt.

Privacy-Preserving Smart Metering Revisited 21

probability that the environment distinguishes Game i from
the real world protocol.

Game 0: This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1

computes parpk by running S1(1k). Game 1 stores tds .
The zero-knowledge property ensures that parpk output
by S1 are indistinguishable from those output by the algo-
rithm PKSetup. Therefore, |Pr [Game 1]−Pr [Game 0]| ≤
Advzk−nipk

A .

Game 2: Game 2 follows Game 1, except that, when an
honest user sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), Game 2 com-
putes the proof π by running π ← S2(parpk , tds , ins).
The zero knowledge property ensures that proofs π com-
puted by algorithm S2 are indistinguishable from those
output by PKProve. Therefore, we have that |Pr [Game 2]
− Pr [Game 1]| ≤ Advzk−nipk

A .

The distribution of Game 2 is identical to that of our simula-
tion.

4.6.2 Case U Corrupt

We analyze the case where a subset of the users Ui is corrupt.
The simulator communicates with the ideal functionality and
simulates the behaviour of the honest parties towards the
subset of corrupt users. To simulate the behaviour of the
honest parties, our simulator follows the real world protocol,
with two exceptions. First, as in the case where only the
provider is corrupt described in Section 4.6.1, the simulator
creates a simulation trapdoor for the NIPK system and, when
an honest user sends a bill to a corrupt user (which is acting
as a verifying party), the simulator computes a simulated
non-interactive zero-knowledge proof of knowledge π to
create the message (smt.send.end, sidSMT, 〈p, open, com,

bp,Mj1 , . . . ,Mjm , s, ins, π〉). Security follows thanks to
the zero-knowledge property of the NIPK system. Second,
the simulator aborts when a corrupt user sends a payment
message that is verified successfully but where the payment
p is incorrect. In this case, security follows thanks to the
unforgeability of the signature schemes used by the provider,
which prevent a dishonest user from forging signatures on
the tariff policy or on the list of meters for a billing period,
and on the unforgeability of the signature schemes used by
the meters, which prevents a dishonest user from forging
signatures on meter readings or on the number of readings
in a billing period. Additionally, the binding property of the
commitment scheme prevents a corrupt user from opening
the commitment to the price to an incorrect value. In the case
of a polynomial tariff policy, the evaluation binding property
of the polynomial commitment scheme prevents a dishonest
user from opening the polynomial commitments included in

the tariff policy to wrong values. The extraction property of
the NIPK scheme is also employed because it is necessary for
the simulator to get the signatures and the commitment and
polynomial commitment openings included in the witness
of the zero-knowledge proof, which is needed to reduce to
the unforgeability, binding and evaluation binding properties
respectively. In Figure 7 and in Figure 8, we describe our
simulator S.

Theorem 3 When a subset of the users is corrupt, construc-
tion BIL securely realizes FBIL in the FCRS.Setup

CRS , FSMT,
FREG andFREG.Ver

REG -hybrid model if the non-interactive proof
of knowledge scheme (PKSetup, PKProve, PKVerify) is zero-
knowledge and extractable, the signature schemes (KeyGen1,
Sign1, VfSig1), (KeyGen2, Sign2, VfSig2), (KeyGen3, Sign3,
VfSig3), (KeyGen4, Sign4, VfSig4) are existentially unforge-
able, and the commitment scheme (CSetup, Com, VfCom) is
binding. In the case of a polynomial policy, the polynomial
commitment scheme (PSetup, PCommit, PProve, PVerify)
must be evaluation binding.

Proof. We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the
probability that the environment distinguishes Game i from
the real world protocol.

Game 0: This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that, when the
adversary sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) such that s is
a correct signature on 〈bp,Ui ,Mj1 , . . . ,Mjm〉, but the
adversary did not receive any signature s ′ on 〈bp,Ui ,
Mj1 , . . . ,Mjm〉, Game 1 aborts. Thanks to the existen-
tial unforgeability of the signature scheme (KeyGen2,
Sign2, VfSig2), Game 1 aborts with negligible probabil-
ity. Therefore, |Pr [Game 1]−Pr [Game 0]| ≤ Advunf−sig

A .
Game 2: Game 2 follows Game 1, except that Game 2

computes the parameters parpk by running (parpk , tde)

← E1(1k). Game 2 stores tde . The extraction property
ensures that the parameters parpk output by E1(1k) are
indistinguishable from those output by PKSetup. There-
fore, |Pr [Game 2]− Pr [Game 1]| ≤ Advex−nipk

A .

Game 3: Game 3 follows Game 2, except that, when the ad-
versary sends (smt.send.ini, sidSMT, 〈p, open, com, bp,

Mj1 , . . . ,Mjm , s, ins, π〉), after verifying s , com and
π, Game 3 runs wit ← E2(parpk , tde , ins, π). Game 3

aborts if extraction fails. The extraction property ensures
that extraction works with overwhelming probability.
Therefore, |Pr [Game 3]− Pr [Game 2]| ≤ Advex−nipkA .

Game 4: Game 4 follows Game 3, except that, when the ad-
versary sends (smt.send.ini, sidSMT, 〈p, open, com, bp,

22 Alfredo Rial et al.

Simulator S: case U corrupt (I)

The simulator S employs the simulator (S1,S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

– On input (bil.policy.sim, sid , bp,Y) from FBIL, S proceeds as follows:

– If this is the first (bil.policy.sim, sid , . . .) message received from FBIL, S does the following. If (POL: parp , parc , parpk , tds)

are not stored, S runs the algorithms POL: parp ← PSetup(1k , `), parc ← CSetup(1k) and (parpk , tds)← S1(1k), and stores

(POL: parp , parc , parpk , tds). S creates a fresh ssid , stores (ssid , bp,Y), and sends (crs.get.sim, sid , ssid , 〈 POL: parp , parc ,

parpk 〉) to SCRS.
– Else, S computes a signed tariff policy Ys for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp,Ys) and sends
(reg.register.sim, 〈sid , bp〉, 〈pk1 ,Ys〉) to SREG.VerREG .

– On input (crs.get.ini, sid) from SCRS, S works as in the case where V is corrupt.
– On input the message (crs.get.rep, sid , ssid) from SCRS, S proceeds as follows:

– If there is a tuple (ssid ′, bp,Y) such that ssid = ssid ′, S proceeds as follows. S runs (sk1 , pk1)← KeyGen1(1k) and stores (sk1 ,
pk1). S computes a signed tariff policy Ys for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp,Ys), deletes
(ssid , bp,Y) and sends (reg.register.sim, 〈sid , bp〉, 〈pk1 ,Ys〉) to SREG.VerREG .

– Else, S sends the message (crs.get.end, sid , 〈 POL: parp , parc , parpk 〉) to SCRS.

– On input (reg.register.rep, 〈sid , bp〉) from SREG.VerREG , if (bp,Ys) is stored, S sends (bil.policy.rep, sid , bp) to FBIL.
– On input (reg.retrieve.ini, 〈sid , bp〉) from SREG.VerREG , S creates a fresh ssid . If 〈pk1 ,Ys〉 are not stored, S stores (sid , bp, ssid ,⊥) and

sends (reg.retrieve.sim, 〈sid , bp〉, ssid ,⊥) to SREG.VerREG , else stores (sid , bp, ssid , 〈pk1 ,Ys〉) and sends (reg.retrieve.sim, 〈sid , bp〉, ssid ,
〈pk1 ,Ys〉) to SREG.VerREG .

– On input (reg.retrieve.rep, 〈sid , bp〉, ssid) from SREG.VerREG , S ignores the message if there is no tuple (sid , bp, ssid , . . .) stored. If there is
a tuple (sid , bp, ssid ,⊥) stored, S sends (reg.retrieve.end, 〈sid , bp〉,⊥) to SREG.VerREG . If there is a tuple (sid , bp, ssid , 〈pk1 ,Ys〉) stored,
S sends (reg.retrieve.end, 〈sid , bp〉, 〈pk1 ,Ys〉) to SREG.VerREG .

– On input (bil.listmeters.sim, sid , ssid ,Ui) from FBIL, S sets sidSMT ← (V,Ui , sid) and sends (smt.send.sim, sidSMT, ssid , l) to
SSMT, where l is the length of the message 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉.

– On input (bil.listmeters.end, sid , bp,Mj1 , . . . ,Mjm) from FBIL, S proceeds as follows. If (sk2 , pk2) is not stored, S runs (sk2 ,
pk2)← KeyGen2(1k) and stores (sk2 , pk2). S signs s ← Sign2(sk2 , 〈bp,Ui ,Mj1 , . . . ,Mjm 〉). S uses the last sidSMT received in a
(smt.send.rep, sidSMT, ssid) message from SSMT and sends (smt.send.end, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉) to SSMT.

– On input (reg.retrieve.ini, sid) from SREG, S creates a fresh ssid . If (sk2 , pk2) is not stored, S stores (ssid ,⊥) and sends
(reg.retrieve.sim, sid , ssid ,⊥) to SREG, else stores (ssid , pk2) and sends (reg.retrieve.sim, sid , ssid , pk2) to SREG.

– On input (reg.retrieve.rep, sid , ssid) from SREG, S ignores the message if there is no tuple (ssid , . . .) stored. If there is a tuple (ssid ,⊥)
stored, S sends (reg.retrieve.end, sid ,⊥) to SREG. If there is a tuple (ssid , pk2) stored, S sends (reg.retrieve.end, sid , pk2) to SREG.

– On input (bil.consumption.sim, sid , ssid ,Mj ,Ui) from FBIL, S sets sidSMT ← (Mj ,Ui , sid) and sends (smt.send.sim, sidSMT,

ssid , l) to SSMT, where l is the length of the message 〈Ui , bp, d, c, t , s〉.
– On input (bil.consumption.end, sid ,Mj , bp, c, t) from FBIL, S proceeds as follows. If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored

for the meterMj ,Mj runs (sk3 ,k , pk3 ,k)← KeyGen3(1k) and (sk4 ,k , pk4 ,k)← KeyGen4(1k), and stores (sk3 ,k , pk3 ,k) and (sk4 ,k ,
pk4 ,k). S recovers sidSMT from the last (smt.send.rep, sidSMT, ssid) message sent by SSMT. S gets Ui from sidSMT. S increments a
counter ctm[bp,Mj ,Ui] (initialized at zero) that counts the number of meter readings thatMj sends to Ui during the billing period bp. S
runs s ← Sign3(sk3 ,k , 〈Ui , bp, ctm[bp,Mj ,Ui], c, t〉). S sends (smt.send.end, sidSMT, 〈Ui , bp, ctm[bp,Mj ,Ui], c, t , s〉) to SSMT.

– On input (reg.retrieve.ini, 〈sid ,Mj 〉) from SREG, S creates a fresh ssid . If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, S stores
(ssid ,⊥) and sends (reg.retrieve.sim, 〈sid ,Mj 〉, ssid ,⊥) to SREG, else stores (ssid , 〈pk3 ,k , pk4 ,k 〉) and sends (reg.retrieve.sim, 〈sid ,
Mj 〉, ssid , 〈pk3 ,k , pk4 ,k 〉) to SREG.

– On input (reg.retrieve.rep, 〈sid ,Mj 〉, ssid) from SREG, S ignores the message if there is no tuple (ssid , . . .) stored. If there is a
tuple (ssid ,⊥) stored, S sends (reg.retrieve.end, 〈sid ,Mj 〉,⊥) to SREG. If there is a tuple (ssid , 〈pk3 ,k , pk4 ,k 〉) stored, S sends
(reg.retrieve.end, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) to SREG.

– On input (bil.period.sim, sid , ssid ,Mj ,Ui) from FBIL, S sets sidSMT ← (Mj ,Ui , sid) and sends (smt.send.sim, sidSMT, ssid , l)
to SSMT, where l is the length of the message 〈Ui , bp, ctm[bp,Mj], s〉.

– On input (bil.period.end, sid , bp,Mj ,N [Mj , bp]) from FBIL, S proceeds as follows. If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored
forMj , S runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k) and (sk4 ,k , pk4 ,k) ← KeyGen4(1k), and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k). S
recovers sidSMT from the last (smt.send.rep, sidSMT, ssid) message sent by SSMT. S gets sidSMT and Ui from sidSMT. S runs
s ← Sign4(sk4 ,k , 〈Ui , bp,N [Mj , bp]〉). S sends (smt.send.end, sidSMT, 〈Ui , bp,N [Mj , bp], s〉) to SSMT.

– On input (bil.payment.sim, sid , ssid ,Ui ,P) from FBIL, S sets sidSMT ← (Ui ,P, sid) and sends (smt.send.sim, sidSMT, ssid , l) to
SSMT, where l is the length of the message 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉.

– On input (bil.payment.end, sid ,Ui , bp, p[bp],Mj1 ,N [Mj1 , bp], . . . ,Mjm ,N [Mjm , bp]) from FBIL, S proceeds as in the case where
V is corrupt, except that S replaces V by the identity of the corrupt user that acts as verifying party.

Fig. 7 Simulator S: case U corrupt (I).

Privacy-Preserving Smart Metering Revisited 23

Simulator S: case U corrupt (II)

– On input (smt.send.ini, sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) from SSMT, S proceeds as follows.
– S ignores the message if (sk2 , pk2) or (sk2 , pk2) are not stored, or if (sk3 ,k , pk3 ,k) or (sk4 ,k , pk4 ,k) are not stored for any meter
Mjk (for k = 1 to m), or if POL: parp , parc and parpk are not stored.

– S parses sidSMT as (Ui ,P, sid).
– S checks if the values POL: parp , parc , pk1 , pk3 ,k , and pk4 ,k stored are equal to those in the instance ins = (POL: parp , parc ,

pk1 ,Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp,Mjk]]
m
k=1). If not, S ignores the message. S also checks that, for k = 1 to m, the instance

includes a counter ctm[bp,Mjk] of meter readings and that the proof proves possession of ctm[bp,Mjk] meter readings numbered
from 1 to ctm[bp,Mjk].

– S ignores the message if 1 6= VfCom(parc , com, p, open).
– S ignores the message if 1 6= VfSig2(pk2 , s, 〈bp,Ui ,Mj1 , . . . ,Mjm 〉).
– S aborts if the adversary did not receive any signature s on 〈bp,Ui ,Mj1 , . . . ,Mjm 〉.
– S ignores the message if 1 6= PKVerify(parpk , ins, π).
– S aborts if, for k = 1 to m, the adversary did not receive a signature sk on the tuple 〈bp,Ui , ctm[bp,Mjk]〉.
– S performs the computation of the price p′ to be paid by Ui at the billing period bp using as input the meter readings sent to Ui by the

meters 〈Mj1 , . . . ,Mjm 〉 and the tariff policy for that billing period. If p′ 6= p, S aborts.
– S gets the verifying party identifier P from sidSMT and sends (bil.payment.ini, sid ,P, bp) to FBIL.

– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows.
– If a message (smt.send.sim, sid ′SMT, ssid

′, . . .) such that (sidSMT, ssid) = (sid ′SMT, ssid
′) was not sent to SSMT, S ignores

the message.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.listmeters.sim, sid , ssid ,Ui) from
FBIL, S sends (bil.listmeters.rep, sid , ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.consumption.sim, sid , ssid ,Mj ,Ui)
from the functionality FBIL, the simulator S sends the message (bil.consumption.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.period.sim, sid , ssid ,Mj ,Ui) from
the functionality FBIL, the simulator S sends the message (bil.period.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.payment.sim, sid , ssid ,Ui ,P) from
FBIL, the simulator S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

Fig. 8 Simulator S: case U corrupt (II).

Mj1 , . . . ,Mjm , s, ins, π〉), after extracting the witness
wit , Game 4 aborts if any of the signatures sk in the
witness wit signs a tuple 〈bp,Ui , ctm[bp,Mjk]〉 such
that no signature on that tuple was sent to the adver-
sary. Thanks to the existential unforgeability of the sig-
nature scheme (KeyGen4, Sign4, VfSig4), Game 4 aborts
with negligible probability. Therefore, |Pr [Game 4] −
Pr [Game 3]| ≤ Advunf−sig

A .
Game 5: Game 5 follows Game 4, except that, when the

adversary sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after extract-
ing the witness wit , S aborts if any of the signatures sk,d
in the witness wit signs a tuple 〈Ui , bp, d, ck,d, tk,d〉 such
that a signature on that tuple was not sent to the adver-
sary. Thanks to the existential unforgeability of the sig-
nature scheme (KeyGen3, Sign3, VfSig3), Game 5 aborts
with negligible probability. Therefore, |Pr [Game 5] −
Pr [Game 4]| ≤ Advunf−sig

A .
Game 6: Game 6 follows Game 5, except that, when the

adversary sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after extract-
ing the witness wit , S aborts if any of the signatures s ′k,d
in the witness wit signs a tuple such that the tuple is not

in the signed policy Ys sent to the adversary. The tuple
is of one of the following forms.

Linear Policy. The tuple is of the form 〈bp, rk,d, tmin,k,d,

tmax,k,d〉.
Cumulative Policy. The tuple is of the form 〈bp, rk,d,

Fk,d, tmin,k,d, tmax,k,d, cmin,k,d, cmax,k,d〉.
Polynomial Policy. The tuple is of the form 〈bp,Ck,d,

tmin,k,d, tmax,k,d, cmin,k,d, cmax,k,d〉.
Thanks to the existential unforgeability of the signature
scheme (KeyGen1, Sign1, VfSig1), Game 6 aborts with
negligible probability. Therefore, we have that |Pr [Game 6]−
Pr [Game 5]| ≤ Advunf−sigA .

Polynomial policy only:
Game 7: Game 7 follows Game 6, except that, when

the adversary sends a message (smt.send.ini,
sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins,

π〉), after extracting the witness wit , Game 7

aborts if any price pk,d in the witness wit is not
the result of evaluating on input the consumption
ck,d the polynomial in the policy Ys associated
to the time interval [tmin,k,d, tmax,k,d) and the

24 Alfredo Rial et al.

consumption interval [cmin,k,d, cmax,k,d) such that
tk,d ∈ [tmin,k,d, tmax,k,d) and ck,d ∈ [cmin,k,d,

cmax,k,d). The evaluation binding property of
the polynomial commitment scheme prevents a
polynomial commitment from being open on the
same input to two different values. Therefore,
|Pr [Game 7]− Pr [Game 6]| ≤ Advbd−pcomA .

Game 8: Game 8 follows Game 7, except that, when the
adversary sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after extract-
ing the witness wit , S aborts if (p′, open ′) in the witness
wit does not equal (p, open). The binding property of
the commitment scheme prevents the commitment com

from being opened to two different values. Therefore, we
have that |Pr [Game 8]− Pr [Game 7]| ≤ Advbd−comA .

In Game 8, we have shown that S receives with negligi-
ble probability a message (smt.send.ini, sidSMT, 〈p, open,

com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) that makes S abort.

Game 9: Game 9 follows Game 8, except that Game 9

computes parpk by running S1(1k). Game 9 stores tds .
Game 9 does not run the extractor E2. The zero knowl-
edge property ensures that parpk output by S1 are indis-
tinguishable from those output by PKSetup. Therefore,
|Pr [Game 9]− Pr [Game 8]| ≤ Advzk−nipkA .

Game 10: Game 10 follows Game 9, except that, when an
honest user sends (smt.send.ini, sidSMT, 〈p, open, com,

bp,Mj1 , . . . ,Mjm , s, ins, π〉), Game 10 computes the
proof π by running π ← S2(parpk , tds , ins). The zero-
knowledge property ensures that proofs π computed by
algorithm S2 are indistinguishable from those output by
PKProve. Therefore, |Pr [Game 10] − Pr [Game 9]| ≤
Advzk−nipk

A .

The distribution of Game 10 is identical to that of our simu-
lation.

4.6.3 Case V , U andM Corrupt

We analyze the case where the provider V , a subset of the
users Ui and a subset of the meters Mj are corrupt. The
simulator communicates with the ideal functionality and sim-
ulates the behaviour of the honest parties towards the subset
of corrupt users, the subset of corrupt meters, and the corrupt
provider. To simulate the behaviour of the honest parties, our
simulator follows the real world protocol, with two excep-
tions. First, as in the cases where only the provider is corrupt
described in Section 4.6.1 and where a subset of the users
is corrupt in Section 4.6.2, the simulator creates a simula-
tion trapdoor for the NIPK system and, when an honest user
sends a bill to a corrupt verifying party, the simulator com-
putes a simulated non-interactive zero-knowledge proof of

knowledge π to create the message (smt.send.end, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉). Security fol-
lows thanks to the zero-knowledge property of the NIPK sys-
tem. Second, the simulator aborts when a corrupt user sends
a payment message that is verified successfully but where,
for any of the meters in the payment message, if the meter is
honest, the number of meter readings included in the instance
ins is not correct. In this case, security follows thanks to the
unforgeability of the signature scheme that meters use to sign
the number of meter readings. The extraction property of the
NIPK scheme is also employed because it is necessary for
the simulator to get the signatures on the number of meter
readings included in the witness of the zero-knowledge proof,
which is needed to reduce to the unforgeability property. In
Figure 9 and Figure 10, we describe our simulator S.

Theorem 4 When the provider V , a subset of the users and
a subset of the meters are corrupt, construction BIL se-
curely realizes FBIL in the FCRS.Setup

CRS , FSMT, FREG and
FREG.Ver

REG -hybrid model if the non-interactive proof of knowl-
edge scheme (PKSetup, PKProve, PKVerify) is zero knowl-
edge and extractable and the signature scheme (KeyGen4,
Sign4, VfSig4) is existentially unforgeable.

Proof. We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the
probability that the environment distinguishes Game i from
the real world protocol.

Game 0: This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1

computes the parameters parpk by running (parpk , tde)

← E1(1k). Game 2 stores tde . The extraction property
ensures that the parameters parpk output by E1(1k) are
indistinguishable from those output by PKSetup. There-
fore, |Pr [Game 1]− Pr [Game 0]| ≤ Advex−nipk

A .

Game 2: Game 2 follows Game 1, except that, when the
adversary sends a message (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after verify-
ing s , com and π, Game 2 runs wit ← E2(parpk , tde ,

ins, π). Game 2 aborts if extraction fails. The extraction
property ensures that extraction works with overwhelm-
ing probability. Therefore, |Pr [Game 2]−Pr [Game 1]| ≤
Advex−nipkA .

Game 3: Game 3 follows Game 2, except that, when the ad-
versary sends (smt.send.ini, sidSMT, 〈p, open, com, bp,

Mj1 , . . . ,Mjm , s, ins, π〉), after extracting the witness
wit , Game 3 aborts if any of the signatures sk in the
witness wit signs a tuple 〈bp,Ui , ctm[bp,Mjk]〉 such
that the meter Mjk is honest and no signature on that

Privacy-Preserving Smart Metering Revisited 25

Simulator S: case V , U andM corrupt (I)

– On input (crs.get.ini, sid) from SCRS, S works as in the case where V is corrupt.
– On input (crs.get.rep, sid , ssid) from SCRS, S works as in the case where V is corrupt.
– On input (reg.register.ini, sid , pk2) from SREG, S works as in the case where V is corrupt.
– On input (reg.register.rep, sid) from SREG, S works as in the case where V is corrupt.
– On input (reg.register.ini, 〈sid , bp〉, 〈pk1 ,Ys〉) from SREG.VerREG , S works as in the case where V is corrupt.
– On input (reg.register.rep, 〈sid , bp〉) from SREG.VerREG , S works as in the case where V is corrupt.
– On input (reg.retrieve.ini, sid) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, sid , ssid) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.ini, 〈sid , bp〉) from SREG.VerREG , S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, 〈sid , bp〉, ssid) from SREG.VerREG , S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 , . . . ,Mjm , s〉) from SSMT, S works as in the case where V is corrupt.
– On input (reg.register.ini, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) from SREG, the simulator S runs a copy of FREG on input (reg.register.ini,
〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉). When FREG outputs the message (reg.register.sim, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉), S sends the message
(reg.register.sim, 〈sid ,Mj 〉, 〈pk3 ,k , pk4 ,k 〉) to SREG.

– On input the message (reg.register.rep, 〈sid ,Mj 〉) from SREG, the simulator S runs FREG on input the message (reg.register.rep,
〈sid ,Mj 〉). When FREG outputs the message (reg.register.end, 〈sid ,Mj 〉), the simulator S sends the message (reg.register.end, 〈sid ,
Mj 〉) to SREG.

– On input (reg.retrieve.ini, 〈sid ,Mj 〉) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, 〈sid ,Mj 〉, ssid) from SREG, S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, 〈Ui , bp, d, c, t , s〉) from SSMT, the simulator S checks that sidSMT = (Mj ,Ui , sid) whereMj is

a corrupt meter. S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, 〈Ui , bp, d, c, t , s〉). When FSMT outputs the
message (smt.send.sim, sidSMT, ssid , l(〈Ui , bp, d, c, t , s〉)), the simulator S forwards it to SSMT.

– On input (bil.consumption.sim, sid , ssid ,Mj ,Ui) from FBIL, S works as in the case where U is corrupt.
– On input (bil.consumption.end, sid ,Mj , bp, c, t) from FBIL, S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, 〈Ui , bp, ctm[bp,Ui], s〉) from SSMT, the simulator S checks that sidSMT = (Mj ,Ui , sid) where
Mj is a corrupt meter. The simulator S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, 〈Ui , bp, ctm[bp,Ui], s〉).
When FSMT outputs the message (smt.send.sim, sidSMT, ssid , l(〈Ui , bp, ctm[bp,Ui], s〉)), the simulator S forwards it to SSMT.

– On input (bil.period.sim, sid , ssid ,Mj ,Ui) from FBIL, S works as in the case where U is corrupt.
– On input (bil.period.end, sid , bp,Mj ,N [Mj , bp]) from FBIL, S works as in the case where U is corrupt.
– On input (bil.payment.sim, sid , ssid ,Ui ,P) from FBIL, S works as in the case where V or U acting as verifying parties are corrupt.
– On input (bil.payment.end, sid ,Ui , bp, p[bp],Mj1 ,N [Mj1 , bp], . . . ,Mjm ,N [Mjm , bp]) from FBIL, S works as in the case where V

or U acting as verifying parties are corrupt.
– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows:

– If a message (smt.send.sim, sid ′SMT, ssid
′, . . .) such that (sidSMT, ssid) = (sid ′SMT, ssid

′) was not sent to SSMT, S ignores
the message.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, 〈bp,Ui ,Mj1 ,

. . . ,Mjm , s〉) from SSMT, S works as in the case where V is corrupt.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, 〈Ui , bp, d, c,

t , s〉) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT sends
(smt.send.end, sidSMT, 〈Ui , bp, d, c, t , s〉), S does nothing if there is not an instance of FREG that stores 〈pk3 ,k , pk4 ,k 〉. (S checks
that the meter identifierMj in sidSMT and the meter identifier contained in the session identifier 〈sid ,Mj 〉 of FREG are the same.)
S does nothing if 1 6= VfSig3(pk3 ,k , s, 〈Ui , bp, d, c, t〉). S does nothing if there is a tuple (sid ,U ′i ,M′j , bp

′, ctm ′[bp,Mj]) stored
such that U ′i = Ui ,M′j =Mj and bp′ = bp. S does nothing if it stores a tuple [U ′i ,M′j , bp

′, d′, c, t , s] such that Ui = U ′i ,M′j
=Mj , bp′ = bp′ and d′ = d. Otherwise S stores [Ui ,Mj , bp, d, c, t , s]. S sends (bil.consumption.ini, sid ,Ui , bp, c, t) to FBIL.
When FBIL outputs (bil.consumption.sim, sid , ssid ,Mj ,Ui), S sends (bil.consumption.rep, sid , ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, 〈Ui , bp,
ctm[bp,Ui], s〉) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT

sends (smt.send.end, sidSMT, 〈Ui , bp, ctm[bp,Ui], s〉), S does nothing if there is not an instance of FREG that stores 〈pk3 ,k ,
pk4 ,k 〉. (S checks that the meter identifierMj in sidSMT and the meter identifier contained in the session identifier 〈sid ,Mj 〉 of
FREG are the same.) S does nothing if 1 6= VfSig4(pk4 ,k , s, 〈Ui , bp, ctm[bp,Mj]〉). S does nothing if there is a tuple (sid ,U ′i ,
M′j , bp

′, ctm ′[bp,Mj]) stored such that U ′i = Ui ,M′j = Mj and bp′ = bp. S does nothing if the number of tuples [U ′i ,M′j ,
bp′, d, c, t , s] stored such that U ′i = Ui ,M′j = Mj and bp′ = bp is different from ctm[bp,Mj]. S also aborts if, from d = 1

to ctm[bp,Mj], S cannot find a tuple [U ′i ,M′j , bp
′, ctm ′[bp,Mj], c, t , s] stored such that U ′i = Ui ,M′j = Mj and bp′ = bp

and d = ctm ′[bp,Mj]. Otherwise S stores (sid ,Ui ,Mj , bp, ctm[bp,Mj], s). S sends (bil.period.ini, sid ,Ui , bp) to FBIL. When
FBIL outputs (bil.period.sim, sid , ssid ,Mj ,Ui), S sends (bil.period.rep, sid , ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.payment.sim, sid , ssid ,Ui ,P)
from FBIL, if (ssid , p, 〈Mjk , ctm[bp,Mjk]〉mk=1) is stored, S deletes that tuple and sends (bil.payment.rep, sid , ssid , p, 〈Mjk ,
ctm[bp,Mjk]〉mk=1) to FBIL, else S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

Fig. 9 Simulator S: case V , U andM corrupt (I).

26 Alfredo Rial et al.

Simulator S: case V , U andM corrupt (II)

– On input (smt.send.ini, sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) from SSMT, S proceeds as follows.
– S ignores the message if pk1 or pk2 are not stored, or if pk3 ,k or pk4 ,k are not stored for any Mjk (for k = 1 to m), or if

POL: parp , parc and parpk are not stored.

– S parses sidSMT as (Ui ,P, sid) and checks that Ui is corrupt.
– S checks if the values POL: parp , parc , pk1 , pk3 ,k , and pk4 ,k stored are equal to those in the instance ins = (POL: parp , parc ,

pk1 ,Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp,Mjk]]
m
k=1). If not, S ignores the message. S also checks that, for k = 1 to m, the instance

includes a counter ctm[bp,Mjk] of meter readings and that the proof proves possession of ctm[bp,Mjk] meter readings numbered
from 1 to ctm[bp,Mjk].

– S ignores the message if 1 6= VfCom(parc , com, p, open).
– S ignores the message if 1 6= VfSig2(pk2 , s, 〈bp,Ui ,Mj1 , . . . ,Mjm 〉).
– S ignores the message if 1 6= PKVerify(parpk , ins, π).
– S aborts if, for k = 1 to m,Mjk is honest and the number of meter readings ctm[bp,Mjk] contained in the instance ins is not the

one sent to the adversary byMjk at that billing period.
– S sends (bil.payment.ini, sid ,P, bp) to FBIL. When FBIL sends (bil.payment.sim, sid , ssid ,Ui ,P), S stores (ssid , p, 〈Mjk ,

ctm[bp,Mjk]〉mk=1) and sends (smt.send.sim, sidSMT, ssid , l(〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉)) to SSMT.

Fig. 10 Simulator S: case V , U andM corrupt (II).

tuple was sent to the adversary. Thanks to the existen-
tial unforgeability of the signature scheme (KeyGen4,
Sign4, VfSig4), Game 3 aborts with negligible probabil-
ity. Therefore, |Pr [Game 3]−Pr [Game 2]| ≤ Advunf−sig

A .

In Game 3, we have shown that S receives with negligi-
ble probability a message (smt.send.ini, sidSMT, 〈p, open,

com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) that makes S abort.

Game 4: Game 4 follows Game 3, except that Game 4

computes parpk by running S1(1k). Game 4 stores tds .
Game 4 does not run the extractor E2. The zero knowl-
edge property ensures that parpk output by S1 are indis-
tinguishable from those output by PKSetup. Therefore,
|Pr [Game 4]− Pr [Game 3]| ≤ Advzk−nipkA .

Game 5: Game 5 follows Game 4, except that, when an
honest user sends (smt.send.ini, sidSMT, 〈p, open, com,

bp,Mj1 , . . . ,Mjm , s, ins, π〉), Game 5 computes the
proof π by running π ← S2(parpk , tds , ins). The zero-
knowledge property ensures that proofs π computed by
algorithm S2 are indistinguishable from those output
by PKProve. Therefore, we have that |Pr [Game 5] −
Pr [Game 4]| ≤ Advzk−nipk

A .

The distribution of Game 5 is identical to that of our simula-
tion.

4.6.4 Case V and U Corrupt

We omit a formal proof of this case. We give a high level
description of the simulator.

bil.policy.∗, bil.listmeters.∗. For these interfaces, the simu-
lator S proceeds as in the case where the provider, a
subset of the users and a subset of the meters are corrupt.

bil.consumption.∗, bil.period.∗. For these interfaces, the sim-
ulator S proceeds as in the case where only a subset of
users is corrupt.

bil.payment.∗. In this interface, the simulator proceeds as in
the case where the provider, a subset of the users and a
subset of the meters are corrupt. The only difference is
that, when a corrupt user sends a payment message, since
now all the meters are honest, the simulator does not
need to check whether the meters involved in a payment
message are honest or not, and thus the simulator always
aborts if the payment message contains a signature on
a billing period, user identifier, and counter of meter
readings such that no signature on that tuple was sent to
the adversary while simulating the corresponding honest
meter.

4.6.5 Case U andM Corrupt

We omit a formal proof of this case. We give a high level
description of the simulator.

bil.policy.∗, bil.listmeters.∗. For these interfaces, the simula-
tor S simulates the honest provider towards the adversary
as in the case where only a subset of the users is corrupt.

bil.consumption.∗, bil.period.∗. For these interfaces, when
an honest meter sends a meter reading or an end of billing
period message to a corrupt user, the simulator S pro-
ceeds as in the case where only a subset of users is corrupt.
When a corrupt meter sends a message to an honest user,
the simulator S proceeds as described in the case where
a subset of users, a subset of meters and the provider are
corrupt.

bil.payment.∗. In this interface, when an honest user sends
a payment message to a corrupt verifying party, the sim-

Privacy-Preserving Smart Metering Revisited 27

ulator proceeds as described in the case where only the
provider is corrupt. If a corrupt user sends a payment
message to an honest verifying party, the simulator S dis-
tinguishes between two cases. If all the meters involved in
the payment message are honest, the simulator proceeds
as described in the case where only a subset of the users
is corrupt. If any of those meters is corrupt, the simulator
S proceeds in a similar way as the one described for the
case in which a subset of the meters, a subset of the users
and the provider are corrupt. The only difference is that S
also aborts if the payment message contains a signature
on a list of meters, user identifier and billing period that
was not sent to the adversary. Therefore, security in this
case also relies on the existentially unforgeability of the
signature scheme (KeyGen2, Sign2, VfSig2).

4.6.6 Case V andM Corrupt

We omit a formal proof of this case. We give a high level
description of the simulator.

bil.policy.∗, bil.listmeters.∗. For these interfaces, the simu-
lator S proceeds as in the case where only the provider is
corrupt.

bil.consumption.∗, bil.period.∗. For these interfaces, when
a corrupt meter sends a message to an honest user, the
simulator S proceeds as described in the case where a
subset of users, a subset of meters and the provider are
corrupt.

bil.payment.∗. In this interface, when an honest user sends
a payment message to a corrupt verifying party, the sim-
ulator proceeds as described in the case where only the
provider is corrupt.

4.6.7 Case V andM Corrupt but Collusion-Free

In Section 4.6.6, we have argued that our protocol realizes
FBIL. However, in that corruption model, the adversary con-
trols all the corrupt parties and is thus able to communicate
information between them. Therefore, a corrupt meter can
communicate the meter readings of an honest user to any
corrupt party, which violates user privacy.

In a smart metering setting, it is useful to consider a cor-
ruption model where the meters and the provider (or other
verifying parties) are corrupt but do not have a side commu-
nication channel between them. In our protocol, the only way
such adversarial parties would have to coordinate their ac-
tions and to disclose information between each other would
be to construct a side channel through the user.

However, we can show that our protocol does not allow
that and is collusion-free in the sense of [33]. The payment
message sent by a user to a verifying party is 〈p, open, com,

bp,Mj1 , . . . ,Mjm , s, ins, π〉. The values (p, open, com, π)

are computed by the user. The billing period bp, the meter

identifiersMj1 , . . . ,Mjm and the signature s are sent by the
provider. The instance ins is of the following form.

ins =(parp , parc , pk1 ,Ui , com, bp,

[pk3 ,k , pk4 ,k , ctm[bp,Mjk]]
m
k=1).

Here, only the values [pk3 ,k , pk4 ,k , ctm[bp,Mjk]]
m
k=1

are generated by the meter. The public keys pk3 ,k and pk4 ,k
can be generated at setup, before meter readings are output.
The counter ctm[bp,Mjk] must employ a unique representa-
tion for all the numbers in its domain, so that the meter is not
able to use it to disclose any information to the verifying par-
ties. To prevent a corrupt meter from manipulating the value
of the counter to convey information, it is possible to enforce
a constant number of meter readings from each meter in a
payment message. When these conditions are met, our proto-
col avoids a collusion between corrupt meters and verifying
parties that do not have a side communication channel.

5 Related Work

To the best of our knowledge, currently deployed fine-grained
billing protocols reveal meter readings to the service provider.
In the case of smart metering, relevant standards that de-
fine communication protocols between meters and service
providers include ANSI C12.18, C12.19 and C12.22, and
the open smart grid protocol. We refer to [23] for a wider
overview of communication protocols and standards appli-
cable to the smart grid. In the case of electronic toll collec-
tion, the Decision 2009/750/EC, which defines the European
Electronic Toll Service and its technical elements, requires
location data to be reported to the service provider for the
purpose of billing.

In the context of the smart grid, several papers analyze
the types of personal information that can be inferred from
power consumption data [35,44]. They show how to infer
many intimate details of users’ daily lives. In the context
of location-based applications, the privacy threats related to
disclosing location data have also been analyzed [18].

In order to protect privacy in smart metering applications,
several approaches have been considered in the literature:

Regulations and codes of conduct. We find tools to define
and enforce privacy policies [45], privacy-friendly access
control protocols to ensure that data is only accessed by
authorised parties [8], and audit tools to verify that no
inappropriate access has taken place [5]. For example,
Kumari et al. [31] propose usage control mechanisms
for data shared by smart meters. In addition, there are
transparency-enhancing tools that help users to under-
stand how data is collected, shared, stored, processed

28 Alfredo Rial et al.

and analyzed [38,11], which can be applied to smart
metering.

Variability reduction. Data mining methods take advantage
of the changes in power consumption in order to infer
personal data. One approach to minimize this informa-
tion leakage consists in installing a rechargeable battery
on the user’s side [50,27,46]. The rechargeable battery
inputs power at an (ideally) constant rate and outputs it
depending on the user’s needs. Therefore, the provider’s
view is that of a user whose consumption of electricity
does not vary. In practice, the privacy provided by this
approach depends on the capacity of the battery. If the
user consumption is lower (resp. greater) than the battery
consumption, the battery must reduce (resp. increase) its
consumption, and thus in practice it is not possible to
achieve a constant rate.

Anonymization. Anonymization techniques allow the ser-
vice provider to obtain meter data from users without
being able to tell apart the meter readings that belong
to each individual user [51,16]. This technique can be
useful for applications such as forecasting, leak detection
or flow monitoring, where knowing the consumption of
each user may not be needed. For billing, Popa et al. [43]
propose a protocol based on anonymization for electronic
toll collection. Users send location data segments anony-
mously to a database. The provider computes the prices
for each segment and sends them to the users. Each user
employs the prices corresponding to their segments to
compute the total bill and a proof of correctness of the bill
calculation. The main problems of anonymization tech-
niques are that they require anonymous communication
channels and that they are vulnerable to deanonymization
attacks [30].

Differential Privacy. Differential privacy methods consist in
adding noise to meter readings in such a way that the re-
sult of a statistical query on a database of meter readings
does not reveal any information about individual meter
readings [1,4]. Differential privacy methods are difficult
to apply in the case of billing because adding noise to
consumption measurements leads to an inaccurate bill.
Nevertheless, differential privacy has been used together
with a privacy-preserving billing protocol to hide from
the provider the bill to be paid by adding positive noise
to it, together with a rebate mechanism that ensures that
users get back their excess payments [15].

Verifiable Computing. Verifiable computing allows a client
with limited resources to outsource the computation of
a function to an untrusted worker in such a way that the
client is able to verify the correctness of the computa-
tion [20]. The basic requirement is that the cost of verify-
ing correctness is smaller than the cost of computing the
function. Some schemes provide public verifiability [42],
so that the verification can be performed by any party.

The zero-knowledge property ensures that the worker
can convince the client that it knows an input that fulfills
some property, while the client does not learn further
information on the input beyond what can be inferred
from the result of the function [41].
Verifiable computing can be applied to our setting as
follows. The provider acts as the client and outsources
the computation of the tariff policy to the user. The user
inputs the meter readings from the meter, uses the zero-
knowledge property to prove that they are signed by the
meter, performs the computation of the tariff policy and
reveals to the provider the result, along with a proof of
correctness.
Although verifiable computing can in principle be applied
to our setting, there are several shortcomings. First, the
provider is not resource-constrained; it in fact possesses
more computation power than the user. So in our protocol
we do not focus on saving provider’s resources at the
expense of the user. Furthermore, verifiable computing
schemes have a costly preprocessing phase where the
client computes an evaluation key, which is sent to the
worker. The cost of this preprocessing phase is amortized
after outsourcing the computation of the function several
times. However, in smart metering applications, tariff
policies change dynamically depending on the power
generation cost. For example, in Spain, the tariff policy
changes hourly1. Therefore, it may be possible that the
preprocessing cost is not amortized.

Trusted party. Meter readings are sent to a trusted party that
keeps them secret and only reveals the results of the
computations done on them. Bohli et al. [6] propose a
solution where a trusted party aggregates meter readings
and reveals the aggregate to the provider.

Secure Two-Party Computation. In these protocols, two par-
ties, each of them with a private input, wish to jointly
compute a function of their inputs and learn the result
without disclosing their private inputs. The feasibility
of secure two-party computation for any function has
been shown [52], and subsequent works improve the effi-
ciency of computation [34,39] and minimize the number
of communication rounds [26,25]. Recently, some proto-
cols involve a costly preprocessing phase and an efficient
online phase [13], while others distribute the workload
asymmetrically between participants [12], like in server-
aided secure computation [28], but as mentioned above
this is not advisable in our setting.
Our protocol is a secure two-party computation optimized
for the task of billing. In this setting, only the user has
a private input (the meter readings signed by the me-
ter), while the provider only needs to verify the result
of the computation. This allows us to design a simple
non-interactive protocol where the user performs the bill

1 http://moneysaverspain.com/electricity-bill-spain/

Privacy-Preserving Smart Metering Revisited 29

calculation locally and sends the result to the provider,
along with a proof of correctness.

Secure Multi-Party Computation. In this case, several par-
ties, each of them with a private input, compute jointly
the result of function on input their private inputs. Parties
obtain the result of the computation but they do not learn
the private inputs of the other parties. The feasibility of
secure multi-party computation has been shown [22].
In the context of smart metering, secure multi-party com-
putation has been applied to reveal to the service provider
the result of a function that takes in the meter readings of
more than one user. Some works focus on revealing to the
service provider the aggregate consumption of a group of
users, for purposes such as fraud detection, statistics col-
lection or demand management [48,19,32,14]. We note
that [48] shows a two party protocol for billing purposes,
but it requires to perform all the computation inside the
tamper-resistant meter and the class of tariff policies that
it supports is very limited.

6 Conclusion

Privacy-preserving billing protocols allow users to calculate
the total bill on input meter readings and prove to the ser-
vice provider that the bill is correct without disclosing meter
readings. They are useful to protect user privacy in any ap-
plication that employs fine-grained billing, such as smart
metering, electronic traffic pricing and road tolling. First,
we have revisited the security model in [47] and we have
proposed an ideal functionality for privacy-preserving billing
where a meter can output meter readings to multiple users,
and where a user receives meter readings from multiple me-
ters. We have also proposed a protocol that realizes our ideal
functionality and that, for tariff policies described by splines,
improves the communication cost of the protocol in [47].

References

1. Acs, G., Castelluccia, C.: I have a dream!(differentially private
smart metering). In: Information Hiding, pp. 118–132. Springer
(2011)

2. Anderson, R., Fuloria, S.: On the security economics of electricity
metering. In: WEIS (2010)

3. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I.,
Geuens, C.: Pretp: Privacy-preserving electronic toll pricing. In:
USENIX Security Symposium, pp. 63–78. USENIX Association
(2010)

4. Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Zanella-Béguelin,
S.: Verified computational differential privacy with applications to
smart metering. In: Computer Security Foundations Symposium
(CSF), 2013 IEEE 26th, pp. 287–301. IEEE (2013)

5. Biswas, D., Niemi, V.: Transforming privacy policies to auditing
specifications. In: High-Assurance Systems Engineering (HASE),
2011 IEEE 13th International Symposium on, pp. 368–375. IEEE
(2011)

6. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart meter-
ing. In: Communications Workshops (ICC), 2010 IEEE Interna-
tional Conference on, pp. 1–5. IEEE (2010)

7. Bordoff, J., Noel, P.: Pay-as-you-drive auto insurance: A simple
way to reduce driving-related harms and increase equity. Hamilton
Project Discussion Paper (2008)

8. Byun, J.W., Li, N.: Purpose based access control for privacy
protection in relational database systems. The VLDB Journal
17(4), 603–619 (2008). DOI 10.1007/s00778-006-0023-0. URL
http://dx.doi.org/10.1007/s00778-006-0023-0

9. Canetti, R.: Universally composable security: A new paradigm for
cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer
Society (2001)

10. Canetti, R.: Universally composable signature, certification, and
authentication. In: Computer Security Foundations Workshop,
2004. Proceedings. 17th IEEE, pp. 219–233. IEEE (2004)

11. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall,
M., Reagle, J.: The platform for privacy preferences 1.0 (p3p1. 0)
specification. W3C recommendation 16 (2002)

12. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation
with low communication. In: Theory of Cryptography, pp. 54–74.
Springer (2012)

13. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty compu-
tation from somewhat homomorphic encryption. In: Advances in
Cryptology–CRYPTO 2012, pp. 643–662. Springer (2012)

14. Danezis, G., Fournet, C., Kohlweiss, M., Zanella-Béguelin, S.:
Smart meter aggregation via secret-sharing. In: Proceedings of
the first ACM workshop on Smart energy grid security, pp. 75–80.
ACM (2013)

15. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing
with rebates. In: Information Hiding, pp. 148–162. Springer (2011)

16. Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymiza-
tion of smart metering data. In: Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on,
pp. 238–243. IEEE (2010)

17. Fournet, C., Kohlweiss, M., Danezis, G., Luo, Z.: Zql: A compiler
for privacy-preserving data processing. In: USENIX Security, pp.
163–178 (2013)

18. Freudiger, J., Shokri, R., Hubaux, J.P.: Evaluating the privacy risk
of location-based services. In: Financial Cryptography and Data
Security, pp. 31–46. Springer (2012)

19. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via ho-
momorphic encryption. In: Security and Trust Management, pp.
226–238. Springer (2011)

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In:
Advances in Cryptology–CRYPTO 2010, pp. 465–482. Springer
(2010)

21. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput.
17(2), 281–308 (1988)

22. Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental
game, or a completeness theorem for protocols with an honest
majority. In: Proc. of the Nienteenth Annual ACM STOC, vol. 87,
pp. 218–229 (1987)

23. Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati,
C., Hancke, G.P.: Smart grid technologies: communication tech-
nologies and standards. Industrial informatics, IEEE transactions
on 7(4), 529–539 (2011)

24. Hensher, D.A.: Electronic toll collection. Transportation Research
Part A: General 25(1), 9–16 (1991)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai,
A.: Efficient non-interactive secure computation. In: Advances in
Cryptology–EUROCRYPT 2011, pp. 406–425. Springer (2011)

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography
on oblivious transfer–efficiently. In: Advances in Cryptology–
CRYPTO 2008, pp. 572–591. Springer (2008)

30 Alfredo Rial et al.

27. Kalogridis, G., Efthymiou, C., Denic, S.Z., Lewis, T.A., Cepeda,
R.: Privacy for smart meters: Towards undetectable appliance load
signatures. In: Smart Grid Communications (SmartGridComm),
2010 First IEEE International Conference on, pp. 232–237. IEEE
(2010)

28. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-
aided secure function evaluation. In: Proceedings of the 2012
ACM conference on Computer and communications security, pp.
797–808. ACM (2012)

29. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commit-
ments to polynomials and their applications. In: M. Abe (ed.)
ASIACRYPT, Lecture Notes in Computer Science, vol. 6477, pp.
177–194. Springer (2010)

30. Krumm, J.: Inference attacks on location tracks. In: Pervasive
Computing, pp. 127–143. Springer (2007)

31. Kumari, P., Kelbert, F., Pretschner, A.: Data protection in hetero-
geneous distributed systems: A smart meter example. Dependable
Software for Critical Infrastructures (2011)

32. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggre-
gation for the smart-grid. In: Privacy Enhancing Technologies, pp.
175–191. Springer (2011)

33. Lepinksi, M., Micali, S., et al.: Collusion-free protocols. In: Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pp. 543–552. ACM (2005)

34. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-
choose oblivious transfer. Journal of cryptology 25(4), 680–722
(2012)

35. Lisovich, M., Wicker, S.: Privacy concerns in upcoming residential
and commercial demand-response systems. In: 2008 Clemson
University Power Systems Conference. Clemson University (2008).
URL http://www.truststc.org/pubs/332.html

36. Massoud Amin, S., Wollenberg, B.F.: Toward a smart grid: power
delivery for the 21st century. Power and Energy Magazine, IEEE
3(5), 34–41 (2005)

37. Meiklejohn, S., Mowery, K., Checkoway, S., Shacham, H.: The
phantom tollbooth: Privacy-preserving electronic toll collection in
the presence of driver collusion. In: USENIX Security Symposium,
vol. 201 (2011)

38. Nguyen, D.H., Mynatt, E.D.: Privacy mirrors: understanding and
shaping socio-technical ubiquitous computing systems (2002)

39. Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation.
In: Theory of Cryptography, pp. 368–386. Springer (2009)

40. Ogden, K.: Privacy issues in electronic toll collection. Transporta-
tion Research Part C: Emerging Technologies 9(2), 123–134 (2001)

41. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly
practical verifiable computation. In: Security and Privacy (SP),
2013 IEEE Symposium on, pp. 238–252. IEEE (2013)

42. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and
verify in public: Verifiable computation from attribute-based en-
cryption. In: Theory of Cryptography, pp. 422–439. Springer
(2012)

43. Popa, R.A., Balakrishnan, H., Blumberg, A.J.: Vpriv: Protecting
privacy in location-based vehicular services. In: USENIX security
symposium, pp. 335–350 (2009)

44. Quinn, E.L.: Privacy and the new energy infrastructure. Available
at SSRN 1370731 (2009)

45. Quinn, E.L.: Smart metering and privacy: Existing laws and com-
peting policies. SSRN eLibrary (2009)

46. Rajagopalan, S.R., Sankar, L., Mohajer, S., Poor, H.V.: Smart meter
privacy: A utility-privacy framework. In: Smart Grid Communica-
tions (SmartGridComm), 2011 IEEE International Conference on,
pp. 190–195. IEEE (2011)

47. Rial, A., Danezis, G.: Privacy-preserving smart metering. In:
Y. Chen, J. Vaidya (eds.) WPES, pp. 49–60. ACM (2011)

48. Thoma, C., Cui, T., Franchetti, F.: Secure multiparty computation
based privacy preserving smart metering system. In: North Ameri-
can Power Symposium (NAPS), 2012, pp. 1–6. IEEE (2012)

49. Troncoso, C., Danezis, G., Kosta, E., Preneel, B.: Pripayd: pri-
vacy friendly pay-as-you-drive insurance. In: P. Ning, T. Yu (eds.)
WPES, pp. 99–107. ACM (2007)

50. Varodayan, D., Khisti, A.: Smart meter privacy using a rechargeable
battery: Minimizing the rate of information leakage. In: Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, pp. 1932–1935. IEEE (2011)

51. Wang, S., Cui, L., Que, J., Choi, D.H., Jiang, X., Cheng, S., Xie,
L.: A randomized response model for privacy preserving smart
metering. Smart Grid, IEEE Transactions on 3(3), 1317–1324
(2012)

52. Yao, A.C.C.: How to generate and exchange secrets. In: Founda-
tions of Computer Science, 1986., 27th Annual Symposium on, pp.
162–167. IEEE (1986)

